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ABSTRACT

Runtime fairness is not a one-time constraint but a dynamic property evaluated
over a sequence of decisions. To ensure fairness at runtime it is necessary to
account for past decisions, information neglected by conventional, static classi-
fiers. Traditional fairness shields enforce runtime fairness abruptly, by intervening
deterministically whenever a sequence of decisions violates the target for a run-
ning fairness measure. This motivates our main conceptual contribution: energy
shields. An energy shield is a novel, lightweight, adaptive controller that mon-
itors a sequence of decisions and intervenes probabilistically to ensure runtime
fairness smoothly, by utilizing physics-inspired energy functions to nudge the se-
quence towards fairness: the more unfair the decisions, the stronger the nudging
force becomes. This makes energy shields the first fairness shields to provide both
short-term safety and long-term liveness guarantees. Safety ensures that the run-
ning fairness measure stays within a running target interval with high probability,
and liveness ensures that the limit of the fairness measure lies within the limit tar-
get interval. Intuitively, the short-term specifies the tolerated fairness values and
the long-term specifies the desired fairness values. We also provide a synthesis
procedure for constructing the least intrusive energy shield for a given target spec-
ification, and demonstrate its efficiency experimentally. As a sanity check for the
theoretical contributions, we evaluate our energy shields against existing fairness
shields through the lens of short- and long-term fairness.

1 INTRODUCTION

Algorithmic decision making is ubiquitous in modern life, from hiring and lending to online adver-
tising. In these settings, binary decisions, e.g., approving or denying a loan or displaying one ad
over another, are often made sequentially |[Liu et al.| (2018)); |[D’ Amour et al. (2020). Much research
has focused on designing statically fair algorithms, which ensure fairness in expectation over a fixed
distribution |Caton & Haas| (2020). This guarantees that in the long term the sequence of decisions
will be fair (as long as the distribution does not shift). However, this perspective on fairness fails
to address unfair behavior that arises in the short term from the cumulative history of decisions. In
particular, a statically fair classifier may produce arbitrarily biased sequences in the short term |Cano
et al.[(2025a). For illustration, we use a simplified binary online advertisement setting.

Example 1. Two companies, A and B, bid c o and cp for ad space. At each time t € N, a user sees
an ad from A (X, = 1) with decision probability p, or from B (X; = 0) otherwise. In the static
setting, the decision maker is fair if p matches the bid ratio, i.e., p € ca/(ca + cg) + € fore > 0.
In the sequential setting, a sequence 1, ...,xTy of ad placements is fair at time t if the empirical
running average of ads matches the bid ratio, i.e., u(xy,...,xs) = % 22:1 x; €caf(ca+cep)te
Sfore > 0. We want u(x1,...,x) to be always in the interval. Furthermore, the sequence of ad
placements is fair in the limit if imy_, o0 p(21, ..., 2) = p.

Running vs. limit fairness: safety and liveness. Ex. [I|illustrates two fairness properties defined
w.r.t. a running and a limit target interval. The short-term property requires the running target interval
to be met by the running average at a finite time, and the long-term property requires the limit target
to be met by the limit average of the decision sequence. Intuitively, the running target expresses what
fairness values we tolerate in the short-term, and the limit target expresses what fairness values we
desire in the long-term. This distinction matches safety-liveness classification of properties studied
in formal verification|Baier & Katoen|(2008)). The violation of a safety property can be determined at
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a finite time, thus matching our short-term requirement for fairness, which we call running fairness.
The satisfaction of a liveness property can be determined in the limit only, thus matching our long-
term requirement for fairness, which we call limit fairness. Our objective is to ensure that a decision
sequence meets given target intervals for both running and limit fairness.

Traditional vs. energy shielding. To enforce dynamic fairness requirements, runtime shielding
has emerged as a promising approach |Cano et al.| (2025b). Originating in formal verification, a
shield is a lightweight controller that monitors a decision sequence and intervenes minimally to
correct decisions in order to enforce desired fairness requirements |Alshiekh et al.| (2018)). Unfortu-
nately, existing fairness shields act deterministically, alternating abruptly between full intervention
and no intervention, to enforce highly restrictive short-term fairness requirements, and they fail to
provide long-term fairness guarantees altogether |Cano et al.| (2025b). Here, we introduce gentle,
probabilistic shielding mechanisms that have both short- and long-term fairness guarantees.

Contributions. Our main conceptual contribution is the introduction of energy shields, a proba-
bilistic shielding framework inspired by physics-based energy functions to ensure both running and
limit fairness requirements. An energy shield smoothly nudges a sequence of decisions toward fair-
ness by assigning higher “energy” to unfair sequences and intervening, proportional to the energy,
to enter a lower-energy state. As a consequence, our energy shields are the first fairness shields
capable of providing short- and long-term fairness guarantees To demonstrate that energy shields
provide short-term fairness guarantees, we provide exponentially decaying tail bounds on the prob-
ability and expected value of running fairness violations with respect to a given target interval. To
demonstrate that energy shields provide long-term fairness guarantees, we characterize the limit
behavior of the shielded process, deriving conditions on the energy function to ensure convergence
of the fairness measure to a given target. Additionally, we quantify the long-run expected cost of in-
tervention and prove that steeper energy functions yield fewer violations, an important monotonicity
property. We exploit the monotonicity property of energy functions to propose a synthesis pro-
cedure that combines binary search and dynamic programming with tail bounds to find the least
intrusive energy shield satisfying the desired running and limit fairness properties. We validate the
effectiveness and efficiency of the synthesis procedure experimentally. Moreover, we benchmark
our energy shields against the seminal energy shields by |Cano et al.|(2025b), empirically supporting
the claim that energy shields are the first shields to provide both short- and long-term guarantees.

As the bulk of our contribution is theoretical, we focus in the main text on presenting results and
their intuitions. The complete proofs of all statements are provided in the appendix.

2 RELATED WORK

Most algorithmic fairness research focuses on fairness in a static setting. This includes: measures for
the fairness of a decision maker at the level of groups Feldman et al.|(2015)); Hardt et al.|(2016) and
individuals Dwork et al.|(2012); pre-, in-, and post-processing techniques to synthesize fair decision
maker [Hardt et al.| (2016); \Gordaliza et al.| (2019); [Zafar et al.| (2019); |/Agarwal et al.| (2018); Wen
et al.| (2021); verification techniques to check whether static decision makers are fair |/Albarghouthi
et al.|(2017);Bastani et al.|(2019); |Sun et al.| (2021); Ghosh et al.| (202 1)); Meyer et al.|(2021)); L1 et al.
(2023). Among the existing techniques for static fairness, our shields could be classified as a post-
processing technique. The key difference is that those methods modify decision-makers once before
deployment, whereas our work addresses fairness during deployment via runtime intervention.

We are not the first to be concerned with algorithmic fairness over a sequence of decisions /Alamdari
et al.| (2024)); Cano et al.| (2025a)). A large body of work focuses on detecting unfair behavior at
runtime, both for individual |Gupta et al.| (2025) and for group fairness |Albarghouthi & Vinitsky
(2019); Henzinger et al.[ (2023al); | Baumeister et al.[ (2025)). Beyond detection, (Cano et al.| (2025b)
is the only work enforcing fairness at runtime. Their shields adopt the sequential fairness definition
from Parand et al. |/Alamdari et al.| (2024)), ensuring that a sequence of decisions will be fair with
probability 1 at predefined periodic intervals. Our shields soften this condition, providing high-
probability short-term guarantees and are the first to provide limit guarantees.

Although the monitoring and enforcement of fairness has only recently emerged as a topic of inter-
est, classical runtime monitoring and enforcement have long been studied in the runtime verification
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community, with monitors Stoller et al.| (201 1)); [Faymonville et al.|(2017); Maler & Nickovic|(2004);
Donzé & Maler (2010)); Bartocci et al.| (2018]); Baier et al.| (2003)) and shields |Carr et al.| (2023)); |Al-
shiekh et al.| (2018)); |(Cordoba et al.| (2023) developed for Linear Temporal Logic specifications.
Shielding has also been explored in probabilistic settings Jansen et al.| (2020); [Yang et al.| (2023)),
drawing on techniques from probabilistic model checking |[Katoen| (2016). We build on results from
stochastic approximation Borkar| (2008); Karandikar & Vidyasagar| (2024) to design gentler proba-
bilistic shields that preserve almost sure convergence guarantees.

3  SETTING
In this section, we formally introduce the setting, the fairness properties, and the notion of a shield.

Decision process. We model the setting in Ex. [1| using a single coin with decision probability

€ [0,1]. At each point in time ¢ € N the coin is tossed, resulting in an decision z; € B, where
B = {0,1}, which is the realization of the random variable X; ~ Bernoulli(p). Combined they
generate the decision process X = (X;);en consisting of i.i.d. Bernoulli p random variables. A
realization x = (z1):en € {0, 1} of X is an infinite sequence of binary values.

Fairness. We are interested in measuring the fairness of the process defined above. The measure
we use is called average outcome fairness|Cano et al.|(2025a). Formally, given an infinite sequence
of binary decisions z € {0,1}*, e.g., a realization of the decision process, we measure the fairness
of a finite prefix x1., = (x1,..., ) as its average decision, denoted by p(z1.¢), or p if clear from
the context. We use p(z) to denote the fairness measure of the realization in the limit, if it exists:

() le, and () = lim p(ae). (1)

t—o00

A fairness target is a tuple ¢ = (7,8, L) consisting of a burn-in time 7 € N, a running target
S C [0, 1], and a limit target £ C [0, 1]. The fairness target specifies the acceptable fairness measure
values at every finite time greater than the burn-in 7 and at the limit. For the target to be satisfiable
we require that the running and limit target intersect S N £ and that the burn-in is sufficiently large
to account for initial high variance. Given a fairness target, a infinite sequence x € B“ satisfies:

- point fairness at time ¢t > N, if the fairness measure is in the running target at ¢, i.e., u(z1.+) € S;
- running fairness, if point fairness is always satisfied after the burn-in 7, i.e., Vt > 7: u(z1.4) € S;
- limit fairness, if the fairness measure is in the limit target in the limit, i.e., lim;_, o p(21.4) € £;

- fairness, if both running fairness and limit fairness are satisfied.

Example 2 (Ex.[I| cont.). Assume the bid ratio is 0.5. In the long-term we require a fairness mea-
sure of 0.5, and in the short-term we accept a tolerance of 0.1 after some burn-in 7. The cor-
responding fairness target is ¢ = (7,[0.4,0.6]{0.5}). Note, the decision X; follows a Bernoulli

distribution, thus the fairness measure j1(X1.1) follows a binomial distribution scaled by 1/t. Since
t—o0

(1/t)Bin(t,p) —— p, limit fairness requires p = 0.5. The probability of satisfying point fairness

art is Plu(X14) € S] = P[Bin(t,0.5) € 1(0.5 £ 0.1) = S 100, ()p'(1 —p)—.

Shielding. As illustrated in Ex. 2] without control of p, the only possible intervention on the pro-
cess is to overwrite individual decisions. This is called shielding. A deterministic shield for a
decision process is a program with the power to flip the decisions made at runtime. Formally, a
deterministic shield G: (B x B)* x B — B uses the history of decisions x1,...,z; € B! at time
t € N and the history of intervention yy,...,4—1 € Bt~ to compute the next intervention ;. The
intervention indicates whether the decision z; is flipped, i.e., if y; = 1 then the shielded decision is
2z = 1 — x4, otherwise the shielded decision is z; = z;. The objective of the shield is to aid the
satisfaction of the fairness target, evaluated over the sequence shielded decisions z = (z;);en With
as little interference as possible. To measure this, we define the average interference cost l/t over a

sequence of interventions y1, . . ., y; as the average number of interventions vy = (1/t) ZZ 1 Yi-

Example 3 (Ex. [2|cont.). A trivial shield guaranteeing running and limit fairness, ensures that the
company ads alternate, i.e., the shielded decision sequence is (01)%, thus p(z1.2¢) = 0.5 for all t.
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A less restrictive shield that satisfies running fairness, but not the limit fairness, is one that only
interferes if the point fairness is about to be violated. We call this shield the naive shield. For
example, assume at t = 100 we have u(z1.1) = 40/100, if x;11 = O, then the fairness measure
would be 40/101 < 0.4, so the shield enforce enforces, i.e., z;11 = 1.

Probabilistic shields. The deterministic shields act aggressively and apruptly once the fairness
measure is at risk of leaving the target and remains idle most of the time. This leads to two regimes,
one where the shield has full control over the decision and one where it has none. We introduce
probabilistic shields where the intervention is done probabilistically, allowing for a much more
gentle approach to shielding. Formally, a probabilistic shield is a function &: (B xB)* x B — [0, 1]
mapping a history of decisions z1,...,2; € B! at time ¢ € N and the history of interventions
(y1,--.,yt—1) into an nudging probability ¢; = &(z1,y1,-.-,Yt—1,2t), defining the distribution
from which the next intervention is sampled, i.e., ¥; ~ Bernoulli(g;).

Problem sketch. We consider four processes: the decision process X = (X;)¢en, the intervention
process Y = (Y}).en, the shielded decision process Z = (Z;)ien, and the shielded fairness process
M = (My)ten- The processes are defined at every time ¢ € N as follows:

X; ~ Bernoulli(p), Y; ~ Bernoulli(&(Xy,Y,...,Yi 1, Xy)),
Zt:(l—Xt)}/;:—f—Xt(l—n), and Mt:M(Zh"th)'

Intuitively, the shielded fairness process, i.e., the fairness measure evaluated over the shielded deci-
sion process, should satisfy a given fairness target ¢ = (7, S, £) with a high-probability, i.e.,

PV¢>7: My eS)>1—-4, and P(tleMteﬁ)Zl—é ford € (0,1).

4 ENERGY-BASED SHIELDS

We introduce energy shields, a family of physics inspired probabilistic shields. The shields acts by
computing an energy state for the process and nudging the system toward lower-energy configura-
tions. The energy state is given by an energy function and the current fairness measure.

Energy function. An energy function is bowl-shaped with minimum at its pivot point.
Definition 1. An energy function with pivoting point k € [0,1] is a function ¢: [0,1] — [0, 1]
satisfying: (i) ¢ is continuously differentiable, i.e., ¢ is differentiable, and ¢’ is continuous; (ii)
¢'(e) <0fore < k,and ¢’'(¢) > 0 for ¢ > k; (iii) ((k) = ¢/(k) =0, and {(c) > 0 for c € {0,1}.
Example 4. Two families of energy functions are even-polynomials and exponential energy func-
tions (see Fig.|ld)) defined, as (L' ,(x) = a|r — x|? and (F*P_(z) = p(1 — e_”(””_”)2), where k €

K,o, 8 K,p,0
(0,1), B € (1,00), a € (0,1/ max(r,1— k)%, o € (0,00), and p € (0,1/(1 — e~ (min{r1=x})*))
The parameter ranges ensure that the energy function does not exceed 1 without clipping.

Energy shield. An energy shield is defined w.r.t. an energy function ¢: [0, 1] — [0, 1] with pivot-
ing point x € [0, 1]. The pivot point determines the favored decision, while the energy function de-
termines the nudging probability. Formally, assume we have observed the decisions z1, ..., z; and
accumulated the interventions y1, . . . , yz—1, which determined the shielded decisions 21, ..., 2;_1 at
time ¢ € N. Then if p;—1 < k, the shield accepts x; = 1 and flips z; = 0 with probability ¢ (p¢—1),
and if ys—1 > k, the shield accepts x; = 0, and flips ; = 1 with probability. This determines the
distribution over the next shielded decision Z; and fairness value M,.

Claim 1 (Shielded decision process). A decision process Z shielded by an energy shield forms a
sequence of Bernoulli random variables with evolving bias, i.e, Z; ~ Bernoulli(p;). The biases are
defined recursively as py = 1 and py11 = f(uy) for a given history z1, . . ., z;, where

p+ (1 =p)p) if p<s,
f(p) = { ; : 2
W= c) iruw
Moreover, the resulting shielded fairness process update can be written as
1 ,
My = py—1 + ;(Zt — pie—1)  (with po = 0). 3)

4
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Intuitively, Eq. [ shows that the decision maker pulls the fairness value p toward p, while the shield
exerts an opposing pull toward . Stronger energy values amplify this effect, shifting the process
further to . Eq.[3|makes this dynamic explicit: the sequence of /1;’s evolves as a stochastic approx-
imation process drifting in the direction of E[Z; 1 |u¢] — pr = f(ue) — - At a convergence point,
this drift should vanish, which occurs at a fixed point of f, i.e., a value of y satisfying f(u) = p.

5 SHORT-TERM: SAFETY GUARANTEES

For the short-term running fairness property we require the shielded fairness process to stay within
the running target S C [0, 1] at all finite times after the burn-in 7 (see Ex. [2). To prove that our
shield satisfies running fairness with high-probability we develop upper bounds on the probability
and the expected number of point fairness violations over an interval.

Definition 2. Let M be the shielded fairness process generated by the decision probability p and
an energy shield with energy function ¢. For a running target interval S C [0, 1], we define two
violation measures, the probability of violating point fairness Ps and the expected number of point
fairness violations £s over a time interval [T, 7'] C N U {oo}, respectively, as

T
PS(MT:T’) =P [Ht € [T, T/]: Mt Q S] and ES(MT:T’) = ZE [I[Mt ¢ SH .
t=T

5.1 UPPER-BOUNDS

Our main result is a bound for the probability of the shielded fairness process violating point fairness
at time 7. This result follows from constructing a martingale that upper-bounds the distance of the
process to its converging point x*, and using Azuma-Hoeffding’s inequality on said martingale.
Theorem 1. Let I = [L,U] suchthat ,p € I. Let 7 = 4/ min(|L—p*|, |[U—p*|), K = (1/32)-45,
and 3 = sup,.¢(o,1) f'(r), then for every t > T we have

P(My ¢ I) <exp(—Kt|L— p*|?) +exp (—Kt|{U — p*?). “4)
Note that, by Eq.[2} f is always non-increasing (see Fig. , implying that 5 < 0 and K < 1/32.

Property bounds. Utilizing Theorem [T} the expected number of violations and the probability of
a single violation in an interval, follows from Boole’s inequality.

Corollary 1. Letrp = ¢~ KIB=1"F for B € {L,U}. Forevery T, T' € Ns.t. 1 <T < T, then

T T T
; " "L Ty
ES(MT;T/) S Z(TL + TU)’ and ES(MT:OO) S 1 _ rL + 1— TU'

t=T
Hence, it follows that Ps(Mry.7/) < Es(Mry.r) for T e NU {oo} s.t. T' > T.

5.2 MONOTONICITY WITH RESPECT TO THE ENERGY FUNCTION

In this section, we define a partial order among energy functions given by their steepness, and show
how our violation properties are monotone with respect to steepness.

Definition 3. Let (7, (> be two energy functions. We say that (; is steeper than (5, and denote it by
G = GifGi(y) > C(y) forall y € [0, 1].

Intuitively, a steeper energy function (see Fig.[Ta)) constitutes a more “aggressive” shield, leading to
fewer safety violations, both in probability and in expectation.

Theorem 2. Let (1 = (o be two energy functions, with a common minimum at k. Let S = [L, U].
Let M and M¢? be the shielded fairness process generated by enforcing the decision process of
p € [0,1] with (1 and (s, respectively. Let T = [max{1/|x — L|,1/|x — U|}], forall T € N and
T € NU{oo} such that T < T’ we have

Es(Mfip) < Es(Mp),  and  Ps(Mpig) < Ps(Mgpp).
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6 LONG-TERM: LIVENESS GUARANTEES

For the long-term limit fairness property, we require the shielded fairness process to converge to a
point in the limit target £ C [0, 1]. To prove that our shield satisfies limit fairness, we identify the
conditions on the energy function to ensure that the shielded fairness process converges to a target
value p* under the decision probability p with an expected average interference cost of |p — p*|.

Main result. It is remarkable that both the convergence of M; and the expected cost depend only
on p and the value of ( at the target point * and not on the pivot point .

Theorem 3. Let u* € [0, 1]. Given the shielded decision process from Eq.|3} with bias p and energy
Sunction (, the shielded fairness process (My)icn converges almost surely (a.s.) to p* if and only if

w_ JWw=p)/1—=p) ifp<p,
) = {(p —w)/p otherwise ®)

Furthermore, the expected interference cost (E[vy])ien converges almost surely to |u* — pl.

Proof intuition. We establish that the shielded fairness process M = (M;);en converges at the
fixpoint of f. First, we show f has indeed a unique fixed point located between p and the pivot «.

Lemma 1. The function f: [0,1] — [0, 1] defined as in Eq. is continuously differentiable, and has
a unique point p* € [0,1] such that f(u*) = p*. Furthermore, p* sits between p and k.

Once we know f has a unique fixed point, we use stochastic approximation theory to prove that the
shielded fairness process M converges almost surely to the fixed point.

Lemma 2. The fairness process, defined in Eq.[3] converges a.s. to the unique fixpoint y* of f, as
defined in Eq.|2| The error (M; — 1*)? converges a.s. at the rate of o(1/t}) for all \ € (0,1).

Proof sketch. Let g(x) = f(x) — x, then we rewrite the update rule in Eq. [3|as
M1 = My + v (Q(Mt) =+ §t+1)7 (6)

where &, = Z; — f(M;—1), and 7, = 1/t. This is a classical Robbins-Monro form for stochastic
approximation [Borkar| (2008). From stochastic approximation theory we know that, under certain
regularity conditions, M, from Eq.[6|approximates the zero value of g, which is fixed point of f. We
use |[Karandikar & Vidyasagar| (2024)) to bound the convergence rate. O

Equation [3]in Theorem [3 follows from Lemma [2] by noticing that the fixed point p* has to satisfy
Eq.[7] Since the fixed point lies between p and &, the branch in Eq.[7]is chosen based on z* < p.

* = {p+ (1=p)-Cp") if p<r,

p-(1—=¢(p")) if >k
We show that the expected cost of intervention at step ¢ + 1 is the probability of not seeing the
favorable decision (1 when the current average is below x and 0 otherwise) and having an energy

high enough to intervene. The expected intervention cost h () converges h(u:) — h(u*), because
the fairness value converges p1; — p*, where h is defined as

_JA=p)-C(p) ifp<s
hlp) = {p~§(u) otherwise

)

®)

Lemma 3. For the process described in Eq.[3|, the corresponding sequence of average interference
(Vt)1en converges to h(p*), where pi* is the fixpoint of f (Eq.[2) and h is as defined in Eq.[8]

Finally, Eq.|5|and Lemmaimply that the expected intervention cost converges to |p — p*|.

7 SHIELD SYNTHESIS

In this section, we state the energy shield synthesis problem and propose Alg.[I]as a solution.
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Problem statement. A problem instance (V, =, p, ¢, d,¢) consists of: a violation measure V €
{P, &}, a totally ordered set of energy functions = = {(x }xer indexed by some interval R C R
where for all ¢ < j € R we have (; = (;, a decision probability p € [0, 1]; a fairness target
v = (1,8, L), aviolation threshold § > 0, and an approximation tolerance ¢ > 0. Given a problem
instance, find the least invasive energy shield that satisfies the fairness violation constraint.

Problem 1. Given (V,Z,p, v, 0,¢) find an energy function { € = such that:
(i) the shielded fairness process M¢ with parameter p satisfies

VsC(MS. ) <8 and tlim M € L almost surely, and )
e el

(i) C is e-minimal, i.e., if (* € E is the smallest valid element, then |Vs(MS., ) — Vs(MS. )| < e

We remark that if the violation measure is P, then running fairness should be satisfied with probabil-
ity greater than 1 — 4, and if it is £, then the total number of point fairness violations after 7 should
be bounded by . In Alg. [l| we show a synthesis procedure based on having a family of energy
functions Z = ({,)rcp that is indexed by some interval R C R and is monotonic with respect to the
index. In Appendix E we describe such a family, denoted (Ci\/lz?{‘g £)re(0,1), Which is defined w.rt. a
decision probability p and a specification ¢, as a piecewise exponential and polynomial function.

Algorithm 1 Shield synthesis

Require: problem instance (V, =, p, , 6, €).
1: | < min R;u < max R > Set lower and upper bound for ene function w.r.t. <.

: Tpp + min{t e N| 1= 4+ == <e} > smallestts.t. bound (Cor.

2 = < ) satisfies tolerance
3: if CONDITION((,, Tpp) > 6 then return FAIL > The most strict energy function is not enough
4: while [ # u do

5 m <+ (I4+u)/2; d<+ CONDITION((pm, TDhp)

6 if |d — | < ¢ then return ¢,

7 ifd <dthen!l < m else u <+ m

Algorithm. The algorithm exploits the monotonicity of the energy function family to find the
least steep energy function that satisfies the violation condition, which determines the least inva-
sive shield. Inside of the binary-search it is necessary to approximate the violation measure V. The
approximation algorithm, in CONDITION, uses dynamic programming and the tail-bounds from Sec-
tion[5] Concretely, we divide the interval |7, 0o) into two intervals: a prefix interval [, Tpp] and tail
interval (Tpp, o). For the prefix, we compute the exact violation measure with standard dynamic
programming techniques, For the tail term, we use the bound in Sec.[5.1] Since the bounds for a
violation in the tail can be made arbitrarily small for large enough Tpp, we use them to approximate
the exact violation value with as much precision as required—a time-precision trade-off.

8 UNKNOWN AND NON-STATIONARY INPUT DISTRIBUTIONS

Until know we have assumed that the bias of the system p is fixed an unknown. In this section, we
explore what results are possible when relaxing said conditions.

Setting 1: p is fixed but unknown. This corresponds to shielding a sequence sampled from a fixed
distribution, with unknown bias p. In this case, we can use the natural estimator p; = (1/t) >, x;
as a replacement for p and update our energy function at each step to reflect the current estimation
of. Since p; converges to p a.s., the energy function we use also converges, and since it is design to
make the shielded process converge to a certain target, we retain the long-term a.s. guarantees.

Theorem 4. Let p* € [0,1] be a fairness target. Let ((4)qe(0,1) be a family of energy functions
satisfying
. W =a)/(l=q ifg<pr
= 10
i) {(q —n)/q otherwise. (10)

Then the shielded process that takes at each step the energy function (3, converges a.s. to |1*.
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Setting 2: (p;)¢cn is varying and unknown. If (p;):cy is allowed to evolve arbitrarily, a non-
trivial shield cannot guarantee convergence for the shielded process to a target point. The best effort
solution we can give is that a fixed energy function, if it is steep enough, can guarantee that the
process stays within a certain target interval almost surely.

Theorem 5. Let (: [0,1] — [0, 1] be an energy function, and L, R the unique point satisfying
L<kand ((L)=1L, R>k and ((R)=1-R.
Then, for the shielded process (My)ien it holds almost surely that

litm inf M; > L, and limsup M; < R.
— 00

t—o0

9 ENERGY SHIELDS FOR GROUP FAIRNESS

Group fairness formalizes equal treatment of demographic groups in binary decision set-
tings [Mehrabi et al.|(2021)). Group fairness metrics typically compare decision probabilities across
groups. For example, demographic parity ensures that the ratio of positive decisions is independent
of the group. With a tolerance of € > 0, this means

P(X =1 ]| Group = A) —P(X =1 | Group = B) € [—¢, +¢]. (11)

Probabilities are taken w.r.t. the population distribution and a decision maker.

In situations where the inputs come in pairs and we are forced to give a positive decision to one
group and a negative decision to the other group, the fairness-relevant part of the sequence can be
modeled with the stochastic processes described in Sec.[3] This is illustrated in Ex.[I]

Two-group setting. A more common sequential input setting is that at each time an instance of
either group A or group B is presented, and the decision can be either positive or negative for
that instance. To model group fairness in such problems, we need to extend our input space X to
be G x B, where G = {A, B}. At each point in time, we obtain an input (g¢, z;), where g; €
{4, B} indicates whether the input belongs to the demographic group A or B, and x; € {0,1}
indicates whether the initial decision is positive or not. The value of g, is sampled from a distribution
Bernoulli(7), where 7 indicates the probability of seeing an instance of group A. The probability
of a positive decision z; is group dependent, i.e., x; is sampled from a distribution Bernoulli(py, ),
where p 4 and pp indicate the positive decision probability for each group, respectively. The values
of m € (0,1), and pa,pp € [0, 1] are the parameters of the setting.

The shield can modify the decision, but not the demographic group. Therefore a (probabilistic)
shield is now a function &: (G x B x B)* x (G x B) — [0, 1] mapping a history (g;, i, %:)Z1 and
an input (g¢, +) € G x B to a nudging probability ¢;, defining the distribution from which the next
intervention is samples, i.e., Y; = Bernoulli(g;).

Updated problem sketch. We consider the group process G = (G).en, the decision process
X = (X})ten the intervention process Y = (Y;):en, the shielded input process Z = (Z;)ien, and
the shielded fairness process M = (M;);cn, defined as follows:

Gy ~ Bernoulli(7), X; ~ Bernoulli(pg,),Y; = Bernoulli(&6(G1, X1, Y1, ..., Yi—1, G, X3))

toz.1G = A ¢ Z..1|G; =B
Zi=(-X) N+ X-(1-v), M= Z MO A Sy B VG =B
Zi:l 1[Gi = A] Zi:l 1[Gi = B]

Given a fairness target ¢ = (7,8, £) and a probability § € [0, 1] the goal of the shield is to guarantee

PVt >71: My eS)>1—-6, and ]P’(tlim Myel)>1-4.
— o0

Note that now the fairness measure M, can take values in the interval [—1, +1], so we can expect
the fairness targets to reflect that, i.e., in general S, £ C [—1, +1].
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Implementation of the energy shield. In this setting, an energy function follows the same def-
inition as Def. (I} with the only modification that the domain changes from [0, 1] to [—1, +1], so
¢: [-1,+1] —[0,1].

The shield monitors the evolution of the shielded fairness process M. At each time ¢, the current
fairness value is p¢. If uy > k, the shield favours the decision that tends to decrease p, and if
1t < K, the shield favours the decision that tends to increase p;. When the inputis (g: = A, x4, y¢),
forcing z; = 1 increases the value of j;, and forcing z; = 0 decreases it. On the other hand, when
g+ = B, forcing z; = 1 decreases the value of u., and forcing z; = 0 increases it.

The shield is implemented with the same rationale as in the setting with a single process: if the
proposed decision agrees with the direction favoured by the shield, the shield accepts it. Otherwise,
the shield may flip the decision with a probability given by ().

In this setting, we obtain similar long-term guarantees as with Thm. 3]

Theorem 6. Letr p* € [—1,+1]. The two-group shielded fairness process (My)icn converges a.s.
to w* if and only if

o _ J (= (a—pB))/(1—(pa—pB)) ifpa—pp<p”,
)= {(pA —pp —1*)/(pa —pB) otherwise. 12)

The expected interference cost (E[vy])ten converges a.s. to a value smaller than |p* — (pa — pB)|-

10 EXPERIMENTS

We evaluate the impact of energy function on the fairness measure in the setting of Ex. [ explore
the time-precision trade-off in Alg.|l} and compare against existing fairness shields.

Energy functions We consider a fair (p = 0.5) and biased (p = 0.65) decision maker with
fairness target ¢ = (7, [0.4,0.6],{0.5}). In addition to considering polynomial (P! and exponential
CPxP energy functions (see Ex we cons1der ¢!le which is always 0, and ¢N2iv¢, which is 0 in
the interior of the running target and 1 elsewhere. In Fig. [Ta] we can observe that: 1f the fixpoint
of the functions—indicated by the intersections of 45°-line with the value graph of f—is contained
within the running target, the number of violations decays quickly; if the decision maker is biased,
a pivot within a given target interval does not guarantee the fairness value convergence to a point in
the target. if the decision maker is fair, our shields remain useful by further reducing violations.

Approximation precision. The synthesis Algorithm [I] performs a violation probability approxi-
mation (VPA) by running dynamic programming (DP) up to a horizon Thp and then utilizing the
infinite horizon tail-bound from Sec.[5] Fig.[Ibinvestigates the precision-time trade-off. We observe
that an extension of the DP horizon Tpp leads to an exponential gain in VPA precision, at the cost
of a quadratic increase in computation time. This impacts the runtime of Alg.|l} as higher precision
requirements demands longer DP horizons. The culprit is the looseness of the tail-bounds over the
short horizon, as demonstrated by the gain in precision, if larger burn-ins are considered.

Comparison. We benchmark our energy shields w.r.t. ¢}'°n .S, against two baselines: the naive
shield (Ex. [3), which enforces running fairness strictly, and perlodic shields |Cano et al.| (2025b)),
which requires heavy-computation at runtime to enforce point fairness periodically with optimal
expected cost. For a fairness target ¢ = (100, [0.4,0.6],[0.49,0.51]) and decision probability p =
0.3, our shield (tuned to ;* = 0.5) achieves both running and limit fairness, unlike baselines, which
do not support long-term guarantees. When configured for running fairness, baselines cluster at
target boundaries without converging; when tuned for limit fairness, periodic shields over-intervene
and naive shield are almost maximally invasive. This is reflected in the intervention costs: baselines
prioritizing running fairness intervene less, while those targeting limit fairness intervene more.

11 DISCUSSION

Safety and liveness. Formal verification classifies properties over infinite traces as safety or live-
ness [Lamport (1977); Henzinger et al.| (2023b). A safety property asserts that “bad” things never
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(a) Simulated impact of the energy functions ¢ for fairness target ¢ = (0,[0.4,0.6], {0.5}), decision proba-
bility p. Rows (R): (R1) p = 0.5 and ¢ € {1, (5% 2, (o aPt 108 }5 (R2) considers p = 0.65 and
¢ e {¢Noive ¢Mdle (s 70, o 21,128} Columns (C): (C1) the behavior of the energy function for each fair-
ness value. (C2) illustration of the characteristic functions f and their respective fixpoints f(u) = p. (C3)
95% confidence interval of fairness values at each time. (C4) Average point fairness violations with standard
deviation at each time. The simulation results are averaged over 1000 simulations for each p and (.
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(b) Time-precision trade-off in the violation probability approximation (VPA) of Alg. (1| with fairness

target @ = (100,[0.3,0.7],{0.45,0.55}), decision probability p = 0.65, and energy function { €

¢hatve ¢tdle (o 72, ¢ 21128} Columns (C): (C1) VPA with increasing until dynamic programming

(DP) threshold Tpp. (C2) Computation time as Tpp increases. (C3) VPA precision, i.e., VPA with Tpp = 0
compared to Tpp = 15000, for increasing burn-ins 7. (C4) Runtime time of Alg.[T]as precision ¢ increases,
for different decision probabilities p, with fixed § = 0.1.
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(c) Energy shields compared against naive and periodic shield, for fairness target ¢ = (7 = 100,S =

[0.4,0.6], £ = [0.49, 0.51]) and decision probability p = 0.3. As energy function, we use (3’7 s . Columns
(C): The naive and periodic shield are tuned for the: (C1&2) running target [0.4,0.6]; (C3&4) limit target
[0.49,0.51]. (C1&C3) depicts the fairness measure and (C2&C4) the accumulated number of interventions.

Figure 1: Experimental evaluation of energy shields: Fig. shows the impact of different energy

functions; Fig. [Tb] shows time-precision trade-offf in Alg. [I} Fig. [Ic| shows the comparison with
existing fairness shields.
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occur, e.g., the car never crashes, thus its violation can be observed on a finite prefix. A liveness
property asserts that “good” things will eventually happen, e.g., the car reaches its goal, thus its
satisfaction can only be determined in the limit, and every finite trace can be extended to an infinite
satisfiable trace. For stochastic processes one evaluates the satisfaction probability of the safety or
liveness property w.r.t. the law of the process Baier & Katoen| (2008)). We deliberately connected
short- and long-term fairness to safety and liveness respectively. The short-term running fairness
property requires the fairness measure to remain within the running target at all times, which im-
plies that once violated it remains violated along the infinite sequence, i.e., safety. The long-term
limit fairness property requires the limit of the fairness measure to lie in the limit target, which im-
plies it can only be determined in the limit, i.e., liveness. The convergence in the limit holds because
the fairness measure is an average. This normalization allows the distance to p* to shrink and the
process to converge almost surely. We emphasize that this implies that almost surely the fairness
measure eventually remains within the limit target. It does not imply that the fairness measure even-
tually remains within the limit target almost surely. Formally, P(37 € NVt > 7: M; € £) = 1 s
satisfied, and 37 € N: P(Vt > 7: M; € £) = 1 is not.

12 CONCLUSION

We introduced energy shields, a physics-inspired framework for enforcing fairness at runtime. En-
ergy shields are a lightweight, probabilistic mechanisms that provide rigorous short- and long-term
fairness guarantees. Utilizing a bowl-shaped energy function, enforcing fairness is reduced to an
energy minimization problem, which enables gentle, adaptive interventions. We provide a synthesis
algorithm based on binary search and dynamic programming to find the least-invasive shield for
a given specification. The experimental validation demonstrates the practicality of our synthesis
procedure and supports, in the comparison with |Cano et al.| (2025b), the claim that energy shields
are the first shields to satisfy both short- and long-term guarantees. While our results establish a
foundational theory of energy-based fairness shielding, extending these guarantees to multi-group
fairness, properties beyond fairness and dynamic environments remains an exciting direction.
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A DETAILED PROOFS

Claim 1] (Shielded decision process). The shielded decision process generated by the energy shield
can be written as a sequence of Bernoulli random variables with evolving bias, Z; ~ Bernoulli(p;).

The biases are defined recursively as p1 = 1 and pi11 = f () for a given history z1, . . . , zt, where
p+ (1 —=p)p) if p<s,

fp) = { : (13)
W= 0-cw)  usn

Moreover, the resulting shielded fairness process can be written as

1
M; = M;_1+ E(Zt — Mtfl) (with My = 0). (14)

Proof. Both equations are just simple computations.

Equation [I3] Suppose 1, < k, i.e., the shield favors 1’s. Then a 1 can be obtained either by
X1 = 1 (which happens with probability p), or by flipping the decision X;;; = 0 (which happens
with probability (1 — p)¢(u¢)). Therefore, when p; < k, Z;+1 behaves like a Bernoulli of bias
p+ (1 — p){(ue). Analogously, when p; > k, the shield favors 0’s, so to obtain a 1 we need to toss
X1 = 0 and for the shield to fail to flip the decision, which happens with probability (1 — (fst)).

Equation [14}

t t—1
A Z t—1 2 Z t—1 1
= 72171 e AR 721*1 L=t 4+ —M; 1 =My g(Zt Mt71).

M, =
t t t t—1 t t

O

A.1 LONG TERM GUARANTEES

Lemma The function f: [0,1] — [0, 1] defined as in Eq.|2|is continuously differentiable, and
has a unique point u* € [0, 1] such that f(u*) = p*. Furthermore, u* sits between p and k.
Proof. We need to prove smoothness, existence of the fixpoint, and that it sits between p and .

Smoothness. The function f inherits continuous differentiability from ( clearly at all points except
maybe p = k. For u = k, the assumption of the energy function being flat at the pivoting point x
guarantees continuous differentiability (Def. E], item 3). We first write the expression for f’:

T b (D) ifp>k
) = {(1 —p)¢’(n) otherwise. (15)

14
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We can check that f is continuous at ;4 = &, as

p-(1=¢(x)) =p, and p+(1-p) ((k)=p.
Similarly, we can check that f’ is continuous at f = x, as
—p-¢'(k) =0, and (1 —p) - {'(x) = 0.
Note that both are necessary conditions. For f to be continuous at u = x, we need

p(1 =C(k) =p+ (1 =p)C(r) <= —p((k) = (k) —pl(k) < ((k) =0.

Similarly, for f’ to be continuous as y = k, we need
—p¢' () = (L= p){'(k) < ((k) =0.

Existence and uniqueness of a fixpoint. Consider the function g(u) = f(u) — u. We have g(0) =
p(1-¢(0))—0 > 0and g(1) = p+(1—p)¢(1)—1 < 1—1 = 0. Since g is continuous, there must be
a point p* € [0, 1] such that g(u*) = 0. Suppose this point is not unique, i.e., there exist two point
x < g such that g(z) = g(u) = 0. As we can see in Eq. equation[13] f/(n) < 0 for all p € [0, 1],
therefore g is non-increasing, so if g(z) = g(u) = 0, then g(z) = 0 for all z € [z, u]. The interval
[x, p] contains at least two numbers that are either larger or lower than k. Let 21, 22 € [z, u] N[0, )
be such numbers, with z; < z5. Then we have

p+ 1 =p)C(z1) =z =p+ (1 = p)(22) — 22,
which implies that

2 — 21 = (1=p)(C(22) — ¢(21)).
On the left-hand side we have a positive number (because z; < z5). On the right-hand side we have
a non-positive number (because ¢ is decreasing in the range [0, ), which is a contradiction. Since
assuming 21, z2 € [x,u] N[0, %) leads to a contradiction, it must be that 21,29 € [z, pu] N (&, 1].
However, with a similar argument this implies that

p(1=((21)) — 21 =p(1 = {(22)) — 22 == 22 — 21 = p(C(21) — ((C2))-

Since ( is in the decreasing range, in the right-hand side we have again a non-positive term, which
is a contradiction.
Placement of the fixpoint. We write the case where p < &, the case where p > « is analogous. If
p < Kk, we have

g(p) =(1—-p)C{(p) >0, and g(k)=p—r <0.
By continuity, there exists a point u* € [p, ] such that g(u*) = p*. Note that this includes the
special case where p = «, in which the unique fixpoint is p* = k = p. O

Lemma The process described in Eq.|3| converges almost surely to the unique fixpoint * of f,
as defined in Eq.|2} Furthermore, the convergence rate of the error satisfies (M; — p*)? = o(1/t*)
Sorall X € (0,1) almost surely.

Proof. Error construction. For convenience, we will prove that the sequence converges to the unique
root of g(u) = f(u) — p. Let (Vi)ien be the sequence of squared distances to the target, i.e.,
Vi = (e — p*)%. We will prove that V; — 0 a.s. (almost surely).

First we need to find a recurrence formula for V;. Recall from Eq. [6] the recurrence for pi; is

pt = pe—1 + Ye(g(pe—1) + &),

where v; = 1/t and &; has null expectation. For V; we have

Vi = (= 1°)* = (o1 — 1" + (g (1) + &))° (16)
= (-1 = 1) + 29 (pe—1 — 1) (g(e—1) + &) + 77 (g(pe—1) + &) amn

Taking conditional expectations we have
E[V; | 1] = Vic1 + 2ve(pe—1 — 1) + 77E[(9(pe—1) + &) (18)
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Since g(p—1) is determinstic given p;—1 and E[&; | p4—1] = 0, we have

El(g(pe-1) + €)% = g(pe-1)” + o7,
where we define 02 = E[¢? | j14—1]. Recall that & = Z; — f(ut_i, which is always in the interval

[—1, 1], therefore o7 < 1. Plugging everything into Eq. equation |17, we have
E[Vi | o] < Veer + 2% (ue—1 = n*)g(pe—1) + 97 (9(pe-1)* + 07).- (19)
Let o = 72%% and f; = v2(g(pi—1)? + o2). Note that o is well defined, even when

e—1 = u* as, using L'Hopital’s rule:
_ /
lim M = lim M = lim M = gl(M*)-
pept o — o pepr g — g p—pr 1
Also, g is decreasing around p*, so g(u¢—1) and u;—1 — p* have opposite signs. Therfore a;; > 0.
We can then rewrite Eq. equation[I9]as

E[Vi | pe—1] < (1 — ) Vie1 + Be. (20)

Proof of convergence. This is a standard form for the condition in the classical Robbins-Siegmund
theorem |Robbins & Siegmund| (1971)), which guarantees convergence of V; almost surely whenever
the sequences () and (3;) are non-negative and satisfy the limiting properties that >_.~ , ay = oo
and Zfil B¢ < oo almost surely. We use the recent results in Karandikar & Vidyasagar (2024) to
guarantee convergence. In particular, we use Thm. 5.1 to guarantee V; — oo almost surely, and
Thm. 5.2 to guarantee rates of convergence. To apply both theorems, we need to guarantee that

1. >3, oy = oo almost surely, and

2. Y72, < oo almost surely.

Note that both results are true in the strict sense (not only “almost surely”). In the case of a4, note
that there exists C' > 0 such that g(p;)/(1* — pe) > C. Otherwise, it would imply that g has a zero
other than p* or that ¢’(u*) = 0, both which we know are not true. Therefore

[eS) oo
ZO&t Z QCZ’)/t = Q.
t=1 t=1

Since y; = 1/t, the sum Y, ¢ diverges. For the case of 3, recall by definition that g(u;)? < 1. We
have also previously established that o2 < 1:

o0 o0
Zﬁt < 22%2 < 0.
t=1 t=1

Theorem 5.1 in |[Karandikar & Vidyasagar (2024) is stated in terms of a sequence h;. We can use
ht = V; (since the identity is what |[Karandikar & Vidyasagar| (2024)) defines as a class B function),
to guarantee V; — 0 almost surely.

Convergence rates. From Theorem 5.2 in Karandikar & Vidyasagar| (2024), we have that V; =
o(1/t*) for any X such that a; > M/t for sufficiently large . In our case, we can take A =
2|g'(u*)| — € for any € > 0. Therefore, V; = o(1/t*) for any A € (0,1) N (0,2|¢'(u*)|) =
(0, min{1, 2|g"(u*)|})-

However, we can be more fine grained and show that actually min{1, 2|g(x*)|} = 1. Recall from
the definition of g that ¢’(u) = f'(u) — 1, and f'(u) < 0 for all p € [0,1]. Therefore |¢'(u)| =
1+ |f'(p)| > 1. Altogether, we obtain the expected result of V; = o(1/t}) forall A € (0,1). O

Lemmal[3} For the process described in Eq.[3], the corresponding sequence of average interference
(vt)ten converges to h(p*), where y* is the fixpoint of f (Eq.[2) and h is as defined in Eq. |8

16
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Proof. By definition Ny = 1 3™ | V;.
Since E[Y; | pe—1] = h(pe—1), and py Imeo, w* almost surely. Since h is a continuous function,
Jim 8o = b (fim M) = ().
O

Theorem Let u* € [0,1]. Given the shielded decision process as described in Eq. |3} with bias
parameter p and energy function (, the shielded fairness process (My)tcn converges almost surely
to 1* if and only if
" *— 1-— ifp < p*,
Clu) = Iu* pl/(1—p) ifp " en
|w* —pl/p otherwise.

Furthermore, the expected interference cost (E[vy])ien converges almost surely to |u* — pl.

Proof. We know from Lemma [] that the fairness outcome converges to a fixpoint that is always
between p and . If we want the process to converge to a desired outcome p*, then we need to find
 and ¢ such that f(u*) = p*.

The function f(u) is defined by parts depending on whether 1 is larger or smaller than k. If p < p*,
then we need K > p*, so we will be using the expression f(u) = p+ (1 — p){(u) for p = p*.
Imposing p* to be a fixpoint, we have

*

n—p
1—p°

pr=p+(1-p)p") <= (W)=

Analogously, if p > &, then we need x < p*, so we will use the expression f(u) = p(1 — ¢(p)). If
we set 11* to be a fixpoint, we have

= p(l - () = (") =1- %

To prove the expectation of cost, just recall from Lemmathat the expected cost converges to h(p*).
If p < p*, then kK > u*, so we have

*

W) = (1= p)), and () = =% = h(p) = .
Analogously, if p > p*, then £ < u*, so we have
h(p*) = p¢(p*), and ((p*)=1- % = h(@')=p—p"
This completes the proof, since in both cases h(p*) = |u* — p O

A.2 SHORT-TERM GUARANTEES: UPPER BOUNDS

Lemmad. Let Ay = puy — p*. Recall & = Zy — f(Mi—1) from Equation@Thefollowing holds:

t—1

A=A A1 + Z Wit1,¢ Eigls where (22)
i=1
(- 4 Flawe) —p*
Aivt:H(l_ — ), Wy = =t and o ::1—/“75. (23)
j=i J + 1 1 e — b
Furthermore, the following inequality holds:
t—1 417[3
waﬂ,t < — with 3= sup f'(r). (24)
=1 t+1 relf0,1]

17



Under review as a conference paper at ICLR 2026

Proof. From the definition of A; and the recursion for i, expressed in Equation[3] we have

o €11
A1 = (1 t+1)At i 25)

Equation [22] follows by induction on ¢ from Eq. 23] The base case ¢ = 1 is trivial, since product
defining A, ; is empty, and so is the sum of w;y; +&41. For the induction step, can apply the
induction hypothesis to Equation[25]to obtain

(6%
Avr = (1 - t+t1)At + %11

:< t+1)<A”A1+Zw”“§’“> tgill'Al’t(l t+1>A1+

Note that, from the definition of A; ;, we have

(677 Qi
1—7),42- — A, d (1— ) it = Wiel.
( 1 ot 41 an T+ 1 Wit = Wi t41

Using the previous identities, plus the case that w41 441 = we get

1
t+1
t—1

&1
N1 =A A E
t+1 = A1+1401 + - Wit1,t+18i+1 + Pl

t

=A11141 + E Wit 1641841,
i1

which finishes the induction step.

To prove the lower bound expressed in Equation 24, consider 8 = sup,¢[o 1] f'(7). Since f(u*) =
w*, and f is differentiable on the compact interval [0, 1], by the mean-value theorem

Fw) = J) = Fw) {f'(2) : = between pand u*} C ( — oo, f].

= M=
Therefore, we have the following lower bound for «; that holds for every ¢t € N:
atzl—f('u)i_f21—5, (26)
H—H

For u € (0, 1), we can use the bound log(1 — u) < —u. We can apply this to the definition of A, ;

t—1 . 1-p

o t+1 1+ 1
logA;; = 1 < — < (B=1)log—— =1 . (27
og Ai ¢ 20g< +1> ;jjq,(b’ )log -~ og<t+1) 27)

J=1

The last inequality stems from using twice that ', 1/t < log(t + 1). Using (i + 1)/i < 2, we

have 2 2—-28 2—-23
w2, = M < 1/i+1 < 2 ;28
bt i 2 \t+1 “\t+1 :

Using this bound, we have

- 41—,8 t—1 41—,@

- ; -2  (+_

41-8
t+1’

Nt28 <

where in the (*) inequality we are bounding each element of the sum by tha largest one, which is
t—26 and that there are ¢ — 1 summands. O

1
Lemma 5. Lerd > 0. Let 7 = 21(;# —1,and K = (1/32) - 4°. Forallt > 7, we have

P[A; > 0] < exp (—K6°t) , P[A; < —6] < exp (—K6°t). (28)

18
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Proof. The idea is to use the expression in Equation@]to bound A;. Of the two summands, A; ;A
will be bounded by bounding A; ; for large enough ¢. For the second summand, we will show it
is a martingale and use a concentration inequality to bound its value. We show the case for the
first inequality. The second inequality follows the same argument, with a symmetric use of the
Azuma-Hoeffding’s inequality.

Fix t € N and consider F; ; = 22:1 wi1,:&i+1, for © < t. When conditioning over the decisions
up to time ¢, we have E[¢; 11 | p;] = 0, and therefore

E[Ei+ | i) = EBic1p + wir14E[&i41 | i) = Bic1 e

So (Ez-ﬂg)ﬁ;% is a martingale. Its increments are bounded by |E; ; — Ej_1| = |wit1.4&i+1] <
|wit1,¢]. Applying Azuma-Hoeffding’s inequality to F;_; ; we have, for any 6 > 0
52 t+1)52
P [Etfl’t > (S] < eXp | ——=i=17 5 < exp (_(‘f’l)ﬁ) (29)
dim1 wi2+1,t 2-4

From Equation[27] applied to ¢ = 1, we have

1-8
9
A < [ —— .
bE= <t+1>

We can apply the triangle inequality to Equation22]to get
[Ay] < A1 A1 ]+ [ Mi—14]. (30)

So we can apply the bound in Equationwith 0/2 to bound P[A; > ¢] as long as ¢ is large enough
to guarantee |A; ;Aq| < /2. In such case

(t+1)(5/2)?

P[A; > 6] <P[Ei—1+ > 6/2] < exp (_ 9. 415

) —exp (CK(t+ 1)), (3D

with K = (8-4178)~1 = (1/32) - 4. For the previous bound to hold, we need ¢ large enough so
that |A; ;A¢| < §/2. Using |A1] < 1 and Equation 30, we have

2 \!7*
AL A < [ == 2
| A1, 1|_<t+1> , (32)

1+1%
which is smaller than ¢/2 for ¢ > 261% — 1. O

Theorem[l} Let I = [L,U] suchthat k,p € I. Let 7 = 4/ min(|L — p*|, |U — u*|). Then for every
t > 7 we have

P(M; ¢ I) < exp (=Kt|L - p*|*) +exp (=Kt|U — p*[*) (33)
where K is a positive constant defined as K = (1/32) - 48 and B = sup,co,17 f'(7)-

Proof. This is just a matter of unpacking the results from Lemma[5]into the case of having a concrete
interval. First note that

P[M, ¢ 1] = P[M, < L] +P[M, > U] = P[A, < —|L — (] + B[A, > |U - °[].
We bound each of the summands using Lemma [5} which is guaranteed to hold as long as ¢ >

e .
= — L. Since 3 < 0, we have that

21+ﬁ 4
so if ¢ > 4/6, Lemma [5 holds. This is exactly the condition that ¢t > 7, for 7 = 4/ min(|L —
w U = ). 0
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Corollary[l} Letr_ = exp(—K|L — p*|?), ry = exp(—K|U — p*[?). For every T,T' € N such
that T <T < T'" we have:

T’ T T

r r
M./<§:t+t d Mrpo) < —— + —+
55( T.T)ftZT(Tf 7“+) an 55( T: )fl " 17y

Moreover; this provides the upper bound Ps(Mry.7/) < Es(Mr.r) for T' € NU{oo} s.t. T' > T.

Proof. This corollary is just an application of Boole’s inequality (also known as union bound) on
the results from Theorem 11 O

A.3 SHORT-TERM GUARANTEES: MONOTONICITY

To prove Theorem 2] we will use an inductive argument and the tower property of the expectation.

Definition 4 (Tower operator). Let i = {u: [0,1] — R} be the space of all measurable functions
from [0,1] to R. Let ¢t € N, and ¢ be an energy function. The towering operator is the function
T¢,+: U — U, that takes a function v and returns T¢ ;u defined as

(Teaw)(y) = fe()uly () + (1= few)) uly, (),

where y;" (y) :== y + ;—f and y; (y) ==y — 5.
The iterated tower operator is Tc(t) =T¢10d¢p0--0Ty
Lemma 6. Let u,v: [0,1] = R, y € [0,1], ¢t € N, ¢ an energy function and (y) be a stochastic
process generated following Eq. equation[3| The following properties hold:

* Expectation: E¢[u(y;)] = E¢[Tei—1u(yi—1)]

* Iterated expectation: E.[u(y;)] =E {Tétil)u(yl)]

* Monotonicity: Ifu(y) < v(y), then (T 1u)(y) < (Tev)(y).

Proof. The first property follows from a simple computation of the expectation, using that Py; 1 =
v | ye] = fc(ye). In fact, the tower operator is defined with the expectation property in mind.
Applying the expectation property consecutively leads to the next property

Eclu(ye)] = BT Vuly).

Monotonicity follows directly from the definition, noting that both f(y™) and 1— f¢(y~) are always
non-negative. O

The iterated expectation property is useful because it lets us write the expectation of u(y,, ), which
depends on the distribution of y,, after m steps of the process, in terms of the expectation of a
function depending only on the much simpler distribution of y;. In particular, the distribution over
y1 does not depend on ¢. If we want to prove a result of the form E¢, [u(y;)] < E, [u(y;)] for some
u, (1, and (o, it is equivalent to prove that E[Tg_l)u(yl)] < E[Tg_l)u(yl)}, so it suffices to prove
that

T Vu(y) <7 Vuly),  for ye{0,1). (34)
This observation lets us go from a local comparison to a global result. We study two properties on
the short term: the probability of violating point fairness, and the expected number of point fairness
violations. For the first one, we can take u(y) = 1{y ¢ (L,1 — U}. For the second one, we can
take u(y) = (L = yk)+ + (yr — (L = U)) 4.
Lemma 7. Consider the functions y;",y; as defined in Def. 4} Then

1. If y < K (start below):

(a) Ifyf(y) < K (no overshoot), then |yt+(y) — K| <ly; (y) — &l
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(b) Ify; (y) > K (overshoot), then

1—k 1
) — k| < —— “(y) — K| < ——.
@) =kl < o @) sl < oy 35)
2. Ify > K (start above):

(a) Ify; (y) = K (no overshoot), then |y (y) — | > |y; (y) — &l,
(b) Ify; (y) < K (overshoot), then

_ K 1
[y (y) — K| < PR lyi (y) — k| < P (36)

Proof. We follow the proof case by case.

* Case I(a). ly; (y) — &l — |y (y) — 6l = ui (y) —y; (y) =1/(t+1) > 0.
Case 1(b)(left).

1—y 1—-kt—k+yt
+ — = — — = —
ly, (v) — &l o (k—y) T

Using y < & in the previous equation, we can cancel —xt with «t, and get the result.

Case 1(b)(right). Using y, (y) > 0, we have |y, (y) — k| =k —y; (y) < k.

Case 2(a). |y (y) — k| — |y; (y) — k| =y (y) —y; (y) =1/(t+1) > 0.
Case 2(b)(left).

y—yt—y+rt+k
== W—r)= :
t+1 t+1

We can cancel y and —y, and using x < y, we can cancel yt with —yt, and get the result.

lye (y) — &

Case 2(b)(right). Simply note that |yt+(y) — k| < |yt+(y) -y, (W) =1/+1).

O

Lemma 8. Let (1 = (2. Let T € N. Let u be a unimodal function, minimized at r, and with
u(y) = 0 fory € [a,b], where

1
<K— —=— b> _—
=T TIT ZEt T
Then for allt > T, we have fory € {0,1} that

t t
Tg(l)U(y) < Téz)U(y)-

Proof. Step 1: a pointwise one-step inequality. We first prove that for any t € N, y € [0, 1], and any
measurable function v, symmetric around «, minimized at £ and null on [a, b], we have

(T )W) < (T ) (). (37)
Using the definition of the tower operator, we have
(Te, ) () = (Tera)W) = (Fo, o) + (0= fo, 0)owD)) = (fa @) + (1 = fe 0)eG))
= fa W) (v = v) = fe ) (v = v(w)
= (fa )~ f®)) - (v = vw)).

Therefore, to check (T¢, +v)(y) — (T¢,+v)(y) < 0 we just need to prove that both factors of the
previous equation are of different sign, or one of them is zero.
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We check both sides of « separatedly.

Case y < k. Since (1 = (2, we have f¢,(y) > fc,(y). If we are in the no-overshoot regime
(v (y) < k), we have v in its descending mode in the whole interval [y; (v), ¥ (v)], so v(y; (y)) <
v(y; (y))- Therefore f¢, (y) — fe, (y) and v(y;") — v(y; ) have opposed signs.

If we are in the overshoot regime (y; (y) < k), we want to make sure that v(y; ) = v(y; ) = 0.
Using Eq. equation[33] we can guarantee it with

< 1 d b> 11—k
a<kK T >k + ey
which is guaranteed for ¢ > 7' in the hypothesis of the lemma.

Case y > . This case is analogous, following the same argument as in y < k, taking into account
the switch in signs.

Step 2: iterate the one-step inequality. Forr = 0,1, ...t define
®,:=B1By--- B, Ar+1Ar+2 s Ay U,
with the conventions

A=Tgs  By=Tgs  ®o=MArAu=T" u, & =BBy Bu=Tu.

Our goal is to show the chain of inequalities
Do(y) < @iy) < --- < Bu(y),  fory e {0,1}, (38)
which implies Téf)u(y) < Tg)u(y) at the endpoints.
Telescoping principle. Foreachr = 1,... ¢, set
0" = A1 A - Agu

Then
®,_1 =By Br_1 (A0")), &, =By--B._i (Bv").

Thus, if we can show
A0 (y) < B (y),  ye{o,1}, (39)

then applying the prefix operator B - - - B,_1 (which is order-preserving because of the monotonic-
ity property in Lemmas|[6) yields

D,._1(y) < D,.(y) fory € {0,1}.
Chaining over r = 1, ..., t establishes the desired inequality.

Verification of equation[39 Fix r and write y* := y; (y), y~ := y; (y) for brevity. By the algebraic
identity from Step 1,

(40" = Bo)(y) = (fo (v) = foa () (0 (y*) =0 (y7)).

At the endpoints y € {0, 1}, the sign of f., — f¢, is fixed by the assumption {; > (2, while the sign
of v(") (y*) —v(") (y~) is determined by the geometry of the successors and the plateau assumption:

- For y = 0: we have f¢,(0) > f¢,(0). If y© < k (no overshoot), then |y — k| < |y~ — k|, hence
v (yt) < v (y~). If yt > K (overshoot), then by the plateau condition both y* € [a,b], so
v (y*) = 0. In both cases, v(") (y") — v(’)(y_) < 0, so the product is < 0.

- Fory = 1: we have f¢, (1) < f¢,(1). If y~ > & (no overshoot), then |y~ — x| < |y — k|, hence
v (y7) < v (yh), e v (yT) — v (y~) > 0. f y~ < & (overshoot), then y* € [a,b], so
v (y*) = 0. In both cases, v(") (y+) — v (y~) > 0, so the product is < 0.

Thus (A,v(") — B,v()(y) < 0fory € {0, 1}, proving equation which in turn proves Eq. equa-
tion[38] as we wanted. 0
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Theorem Let {1 = (o be two energy functions, with a common minimum at k. Let S = [L,U].
Let M and M¢? be the shielded fairness process generated by enforcing the decision process of
p € [0,1] with (1 and (o, respectively. Let T = [max{1/|x — L|,1/|x — U|}], forall T € N and
T € NU{oo} such that T < T' we have

Es(Mgip) < Es(M$Pp),  and  Ps(Mglip) < Ps(MEp).

Proof. This is a direct consequence of Lemma E} The condition on 7 follows from it, and the
condition on the values of either probability or expectation of point fairness violation come from
the characterization of both of the safety measures as the expectation with certain functions u. In
particular, for the first one, we can take u(y) = 1{y ¢ (L, U}, and for the second one, we can take
u(y) = (L — yg)+ + (yr — U) 4. The expectation of the outcome at a certain timestep corresponds
to the expectation of the iterated tower operator at the first timestep because of Lemma 6]

A.4 SHIELD SYNTHESIS

Markov chain construction. We construct the acyclic Markov chain M = (S, P, s¢) consisting
of a set of states S, a Markov transition kernel P: S x S — [0, 1], and an initial state so = (0, 0).
Intuitively, the set of states is stratified into time steps S = ;¢ [,y St where Sy = {(t,m) [ m €
[t]} for all t € [0; T]. Intuitively, a state s = (¢,¢) € S is labeled with a point in time ¢, the positive
decision counter c clearly upper bound by the point in time . The Markov transition kernel P is
defined as follows: for every state s = (¢, ¢) with t € [T'— 1] we transition to state s = (t +1,c+1)
with probability f(c/t), and to state s’ = (¢ + 1, ¢) with probability 1 — f(c/t).

Dynamic programming. We compute the value of both the probabilistic and expected violation
measure for the interval [1; 7] using dynamic programming on the Markov chain (5, P, sg). Let
v(s) = 1[c/t ¢ S], then for every s = (t,¢) € S we define its value Vg for the expected violation
measure as

Ve(s) =v(s) + (flc/)Ve(t +1,c+ 1) + (1 — f(c/t))Ve(t + 1,¢)) ift e [T —1]
Ve(s) =7(s) ift=T

Moreover, we define its value Vp for the expected violation measure as
Vp(s) = max (’y(s), Fle/OVp(t+1,c4+ 1) + (1 — f(c/)Vp(t+ 1, c)) ift e [T — 1]
Vp(s) =(s) ift="T
Notice that if v(c,t) = 1 no further computation recursion is required.
Intuition. The value function V¢ (s) represents the expected number of violations incurred from

state s = (¢, ¢) onward, including a possible violation at time ¢. Formally, our process M takes on
the value M; = ¢/t at time ¢, then
Mt] |

Hence, the value at the initial state sy = (0, 0) equals the total expected number of violations up to
time 7"

T

Z 1[M; ¢ S]

i=t+1

Ve(t,c) = 1[M; ¢ S]+E

T
Ve(so) = E[Z 1[M; ¢ P(i)]] .

The value function Vp (s) instead captures the probability of encountering at least one violation from
state s onward. This probability equals 1 if M; ¢ S, and otherwise it coincides with the probability
of observing a violation at some later time:

Vp(t,c) = P[max 1[M; ¢ S]=1 ‘ Mt} .
i€[t;T]

In particular, Vp(sq) gives the probability of observing any violation within the time horizon [1, T').
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B FAMILIES OF ENERGY FUNCTIONS OF INTEREST

In this section we propose two families of general-purpose energy shields, and one family of energy
shields specifically designed to fit a given specification. Note that some of these functions have
isolated non-smooth points, where the function is continuous but not differentiable. These do not
pose a theoretical issue, since we can always “glue” the non-smooth endpoints of the two smooth
pieces using infinitely differentiable bump functionsﬂ

B.1 POLYNOMIAL

Pol

K,(X,B(x) = Oé|1‘ - Hlﬁ’

where § € (1,00), k € (0,1) and o € (0 +> In this family, x marks the pivoting

> max{k,l—K}P

point, and « and 3 control the shape, with larger « and 8 producing steeper functions.

B.2 EXPONENTIAL

CE.?cp (J)) —a (1 _ e_ﬁ(m_ﬂ)2> 7

K,a,B

where 3 € (0,00), k € (0,1),and « € (0 é)

I 17876(111111{.‘@,17&})2

B.3 CONSTRUCTION OF A MONOTONIC FAMILY OF ENERGY FUNCTIONS

Letp € (0,1), ¢ = (7,8, L) be a specification, with S = [Ls,Us| and £ = [L., U], L C S. We
give the construction for 71}/[;‘39 - For ease of notation, within this section we will call it just ;.. The
family of monotonic function is built differently depending on the relative position of p and L.

* If p < L. The family of energy functions is (¢, )rer, with R = (0, 1), and is built as
follows. Let x = (Uz + Us)/2, ar = (1 —r)Le 4+ rUg, Cr = (ar — p)/(1 — p),
ar=(1—=r)/r.

¢Hz) ifz <a,,
Gr(x) =< C(x) ifa, <z <k, (40)
¢3(z) otherwise.

With the following definitions:

T— Ay

Ma)=C, + (1 —cr)(1 —eTrT),
G- (1-222)",

K — Gy
o= 1-em(-()")

where m is a fixed integer m > 2, we choose m = 2.

* If p > U. We follow a symmetric construction as the previous case. The family of energy
functions is ((;)rer, with R = (0,1), and is built as follows. Let K = (Ls + L.)/2,
ar=rLe+(1—r)U., C.=(p—a.)/p, . =1 —71)/r.

CHz) ifx <k,
Gr(2) =4 G@) ifr<z<ar, (41
¢3(z) otherwise.

!'This follows the same rationale as why most theoretical results in convergence of machine learning algo-
rithms work with the non-smooth ReLLU activation function.
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Figure 2: Monotonic families of functions

With the following definitions:

Gy =1-c (&)
o= 1 ‘)

ar — K

Gy =Gt (1-)(1- ea?f).

* If p € [Lz,Ur). In this case, the natural bias of the process already aligns with the short-
term requirements, so we can choose x = p and use a family of either polynomial or
exponential functions. We show here a family of modified polynomial functions that satisfy
the monotonicity requirements. The family of energy functions is (¢, )recg, wWith R =
(0,1), built as follows. Let o, = /(1 —r), and m > 2 fixed, I, = k — ﬁ, Uy =
k + —=. Then

1/m
ar/

aplr —r&|™ ifx e [l u]
6rl(@) = {1 otherwise.

We use m = 2.

Claim 2. The family of functions ((,-).cr satisfies the following properties:

* It is monotonic in r, i.e., for each x € [0,1] and each pair s,r € (0,1), if s < r, then

G(z) < Go(@).
 The corresponding characteristic function f, (as defined in Eq.|2) has a fixpoint at © = a,..

* Ifp< Lyg, forall x # k:

lim ,.(z) = {ng -p)/(1-p) ifz<Lc

r—0

(Le—p)/(1=p) ifre[UL~|

lim ¢, (x) =
otherwise. ’ tim ¢ (z) {1 otherwise.

o Ifp > Upg, forall x # k:

(p=Le)/p Fr2Uc oy

. _ (p—Lc)/p ifx €[k L]
}1—%9(@ B {O otherwise. = r—1 {1

otherwise.

s Ifpe L, forallx # kandalll € {0,1}, lim,_; ¢-(z) = L.

All the properties are satisfied by construction. Fig. [2]illustrates them.
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