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Abstract
High-resolution structural topology optimization is extremely challenging due to a large number of degrees of freedom
(DoFs). In this work, a Convolution-Hierarchical Deep Learning Neural Network-Tensor Decomposition (C-HiDeNN-TD)
framework is introduced and applied to solve the computationally challenging giga-scale topology optimization problem
using only a single personal computer (PC). Utilizing the idea of convolution, the C-HiDeNN opens a new avenue for the
development of topology optimization theory with arbitrarily high-order smoothness under given DoFs. The convolution
involves a set of controllable parameters, including patch size, dilation parameter, and polynomial order. These parameters
allow built-in control of the design length-scale, accuracy, and smoothness of solutions. From the point of view of neural
networks, increasing the “patch size” is analogous to adding an extra hidden layer with extra neurons, leading to an enhanced
approximation capability. Under the separation of variables, the C-HiDeNN-TD can greatly reduce the computational cost
of finding a 3D high-resolution topology design by decomposing the ultra-large-scale 3D mechanical problem into several
tractable small 1Dproblems.Orders ofmagnitude speedups compared to traditional finite element-based topologyoptimization
have been demonstrated through numerical examples. Furthermore, the C-HiDeNN-TD method enables much more efficient
concurrent multi-scale topology design than traditional approaches. The proposed framework opens numerous opportunities
for high-resolution design, n-scale concurrent design, and structure-lattice-materials design.
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and metamaterial design · Hierarchical deep-learning neural networks with GPU
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1 Introduction

Topology optimization (TO) aims to find an optimal struc-
ture under certain constraints to achieve structural design
needs [1]. Its applicability has so far been limited to the
design of single components or simple structures, owing to
the resolution limits of current optimization methods [2].
Recent advancements in manufacturing technologies have
led to the need for high-resolution engineering structures that
require billions or trillions of degrees of freedom (DoFs)
in design, presenting a significant challenge to the design
community, particularly when computational resources are
limited [3, 4]. “Record resolutions are by now measured in
billions, which still require advanced algorithms and super-
computers”, as stated in Ole Sigmund’s recent paper [5]. As a
result, achieving high-resolution design through TO remains
a major challenge.
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In this paper,wepropose aC-HiDeNN-TD-TOframework
opening a new avenue for the development of high-resolution
topology optimization with the following highlights:

• Conducting large-scale topology optimization with a sin-
gle PC.

• Providing a new topology optimization technique that
exhibits high continuity in both partial differential equa-
tion (PDE) solutions and represented structures without
requiring increased DoFs.

• Convolution approximation-based reduced-order models
lead to highly accurate and efficient solutions.

• The convolution parameters provide built-in filtering for
structure and solutions and can improve the stability of
topology design such as avoid checkerboard pattern and
length-scale control.

• Possessing the potential for extension to an n-scale
concurrent design and structure-lattice-materials design,
which are prohibitively expensive to achieve with exist-
ing methods.

To start, we will first review current approaches in deal-
ing with large-scale topology optimization problems, which
include parallel computing, reduced-order methods, and data
science approaches [3]. With the development of computa-
tional hardware such as Graphics Processing Units (GPUs)
and parallel computing technologies such as Message Pass-
ing Interface (MPI) and Open Multi-Processing (OpenMP)
[6, 7], the utilization of parallel computing to reduce calcula-
tion timehas becomea topic of interest. In the earlier stage,A.
Mahdav et al. [8] used domain decomposition to implement
parallel computing in TO. Other research works have used
multiple processors and GPUs to accelerate the computation
(A.Niels et al. [9], Evgrafov et al. [10],Wadbro andBerggren
[11]). These papers provide methods to utilize parallel com-
puting hardware to accelerate the calculation time. However,
the number of required CPU hours is still extremely large [2,
4]. The limited availability of computing resources mostly
hinders the widespread implementation of high-resolution
TO in high-performance computing environments.

Another way to reduce the calculation time of TO is
reduced-order modeling (ROM). Contrary to the nested
approach, where the finite element method (FEM) is used
to solve the equilibrium equation during every iteration,
reduced-order models can be adopted as surrogate models
to approximate the FEM solution with acceptable accu-
racy while drastically lessening the computational cost [12].
In these models, a reduced subspace/basis typically has
a much lower dimension compared to the original solu-
tion space. Recently, dimension reduction techniques such
as principal component analysis (PCA) and its equivalent,
proper orthogonal decomposition (POD), and singular value
decomposition (SVD) have been used to solve TO problems.

For example, Xia et al. [12] proposed the combination of
POD with homogenization techniques for 2-scale concur-
rent topology optimization. Ferro et al. [13] applied POD to
derive the density map, but the basis cannot be updated dur-
ing the analysis. Xiao et al. [3] used POD to generate the
basis on the fly during FE solution and design optimization.
Although ROMs show potential for reducing the computa-
tional burden, the reduction error of such ROMs may cause
some numerical instability, and additional offline computa-
tion may persist as a bottleneck [14].

Apart from high-performance computing TO and ROM
TO, data science approaches are another way to alleviate
the exorbitant computational cost of nested TO methods.
In terms of machine learning (ML) techniques, Lei et al.
[15] combined supported vector regression (SVR) and K-
nearest-neighbors (KNN) methods to solve the layout of
an optimized structure under different external loads. Jiang
et al. [16] proposed an ML-based parameter tuning strat-
egy to automatically select hyperparameters of the moving
morphable component (MMC) scheme. Deep learning (DL)
methods have been recently used as an end-to-end model
to perform TO. For example, Sosnovik and Oseledets [17]
used a convolutional neural network (CNN) to obtain optimal
structures based on intermediate structures at each iteration.
Yu et al. [18] combined CNN and conditional generative
adversarial network (cGAN) to predict the optimal solu-
tions based on 100,000 training data points. Sasaki et al.
[19] trained a DL surrogate model to replace expensive FEM
computations at each iteration. Deng et al. [20] reported a
Self-directedOnline LearningOptimization (SOLO) scheme
that can automatically generate new trainingdata basedon the
previously predicted optimal structure anddynamically adapt
the new training data for better prediction until convergence.
One of the main disadvantages of data science approaches
is their dependence on offline databases and their inabil-
ity to make accurate predictions beyond the range of these
training databases (extrapolation). Very recently, Huang
et al. proposed a Problem-Independent Machine Learning
(PIML)-based TO that has the capability to solve problems
with millions of design variables [21]. The database-free
machine learning approach is still a developing area. Fur-
thermore, the real ability of data-driven approaches to solve
large-scale problems is still unclear [22].

In order to tackle the current challenges in high-
performance computing TO (large memory and computa-
tion requirements), reduced-order model-based TO (loss in
accuracy), and data-driven TO (dependent on an offline
database), we propose the Convolution-Hierarchical Deep
Learning Neural Network-Tensor Decomposition for Topol-
ogy Optimization (C-HiDeNN-TD-TO). This is based on
a newly developed Convolution-Hierarchical Deep Learn-
ing Neural Network (C-HiDeNN) [23] framework, which
leverages the partition of unity (POU) of the patch func-
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tions with higher order approximations such as meshfree
and radial basis functions without increasing the degrees of
freedom compared to FEM. This work presents in detail
the C-HiDeNN topology optimization methodology and
the numerous advantages for large-scale structural design,
including efficient high-order smoothness and automatic
length-scale filtering with different controllable parameters.
Other applications of C-HiDeNN related to graphics process-
ing unit (GPU) computing can be found in [24], which can be
combined with this work as a future extension. The proposed
C-HiDeNN design framework has the following advantages:

• Storage and speed The C-HiDeNN-TD enables high-
resolution topology optimization by decomposing the
whole 3D/2D space problem into several small 1D prob-
lems; it can solve a giga-scale problem using a single
PC’s hardware, while FEM-TO requires a highly paral-
lel supercomputer environment with multiple nodes. Our
method allows thousands of times speedup in terms of
CPU hours for a giga-scale problem.

• Solution accuracy and smoothness The C-HiDeNN
solver improves accuracy and enables higher conver-
gence rates in solvingphysical problems.TheC-HiDeNN-
TD high-order continuity is implemented only by chang-
ing the convolution shape functions, similar to adding
extra layers in the neural network. No extra DoFs are
required to smoothen solutions, empowering increased
accuracy for a given mesh.

• Design smoothness The design variables are interpolated
using C-HiDeNN shape functions with high-order conti-
nuity. Therefore the design can reach higher smoothness
than with the Solid Isotropic Material with Penaliza-
tion (SIMP) method, where ρ is usually discontinuous
through space. Same as for solutions, C-HiDeNN-TD
can smoothen designs without introducing more DoFs or
refining a mesh.

• No offline database The “training” procedure of C-
HiDeNN-TD solves the governing PDE as an optimiza-
tion problem. No offline training dataset is needed.
C-HiDeNN-TD-TO can handle arbitrary boundary con-
ditions and design setups without generating an offline
database.

We will first briefly review topology optimization to make
this paper more readable for a general audience. Depending
on different descriptions of the designed geometry, it can be
categorized into but not limited to: Solid Isotropic Material
with Penalization (SIMP) [1] method, level-set method [25],
and moving morphable components (MMC) method [26].
This paper focuses on the SIMP method, which defines the
structure with a density variable ρ(x). The notation used in
TO is defined in Table 1.

Table 1 Notation used for
topology optimization c Objective function

ρ Design variable

� Virtual work

∇s Differential operator

D Constitutive relation

� Design domain

� Design boundary

f External loading

t External traction

ρmin Minimal density

g(ρ) Design constraints

A general optimization problem for the SIMPmethod [27]
can be written as

min c(ρ)

s.t . : δ� =
∫

�

∇suT D(ρ)∇sδud� −
∫

�

f T δuρd�

−
∫

�

tT δud� = 0,

ρmin ≤ ρ ≤ 1, 0 < ρmin � 1,

V (ρ) ≤ V ∗,
r(ρ) ≥ rmin,

g(ρ) ≤ 0,

(1)

where c(ρ) is the objective function with design variables
ρ. The equilibrium equation is written as δ� in the prin-
ciple of virtual work form. The design variable constraint
is defined as ρmin ≤ ρ ≤ 1, where ρ = ρmin corre-
sponds to no material, and ρ = 1 is solid material. The
total volume is V (ρ) with V ∗ as the volume constraint.
The minimal length-scale, which is the minimum allow-
able size of structural features in the design, is defined as
r(ρ) and with constraints r(ρ) ≥ rmin . Other design con-
straints, such as stress constraints, are defined in g(ρ) ≤ 0.
The optimization Eq. (1) can be solved by optimization algo-
rithms such as theOptimumCriterion (OC)method [1] or the
Method of Moving Asymptotes (MMA) [10]. For nested TO
problems, one solves the equilibrium equations during each
optimization iteration. As the resolution increases, solving
equilibrium equations will become much more expensive.
The developed C-HiDeNN-TD method aims to accelerate
topology optimization by reducing the computationwith TD.
More specifically, we focus on accelerating the solution time
of equilibrium equation δ�. The proposed C-HiDeNN-TD-
TO framework opens numerous opportunities for designing
high-resolution, 3D printable, lightweight, and high-stiffness
structures required by the advanced manufacturing industry.
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Fig. 1 Structure of the HiDeNN for the displacement in a 1D problem with linear elements [15]. The whole neural network consists of small neural
network blocks shown inside the dashed line box

The paper is organized in the following order. In Sect. 2,
the C-HiDeNN-TD for topology optimization theory will
be introduced. After that, we will show the unique features
of convolution shape functions in Sect. 3. In Sect. 4, the
influence of the convolution parameters on the optimization
results will be studied. Numerical examples of cantilever
beam and drone design problems are given in Sect. 5. We
will discuss the future directions and conclusions in Sects. 6,
7, respectively.

2 C-HiDeNN-TD for topology optimization

In this section, the C-HiDeNN-TD for topology optimiza-
tion is introduced. We start by describing the Convolution
HiDeNN (C-HiDeNN) theory with a 1D problem to illustrate
the basic ideas. Then, we introduce Tensor Decomposition
(TD) for topology optimizations to decompose the multi-
dimensional (3D) problem into several 1D problems. The
whole flowchart for C-HiDeNN-TD-TO is also discussed in
this part.

2.1 Convolution-HiDeNN theory

To better understand the C-HiDeNN, we briefly review the
idea of HiDeNN. The idea of HiDeNN is to use deep learning
neural networks to construct the FE-like shape functions [28]
so as to solve partial differential equations for science and
engineering problems. For example, for a 1D problem, the

HiDeNN shape function on node I can be written as

Ni (x; x∗
i ,A) := Fi (x;w, b,A), (2)

where Fi stands for a deep learning neural network with
inputs x , weights w, biases b, and the activation functionA.
Ni denotes the shape function for the node at position x∗

i . The
detailed structure of the neural network blocks can be found
in Zhang et al. [28]. The whole neural network is assembled
by adding all the neural network blocks together, as shown
in Fig. 1. For a 1D problem, the input for the HiDeNN is the
location x on the domain. The output is the displacement at
this location

uHiDeNN(x) =
n∑

i=1

uh,ei (x) =
nd∑
i=1

Ni (x; x∗
i ,A)ui , (3)

where uh,ei is the approximated displacement in each ele-
ment, ui is the discretized nodal solution of the problem, and
uHiDeNN is the approximated solution function. After the
construction of the HiDeNN shape function, the differentia-
tion and integration of the shape function can be implemented
similarly to the finite element method. The problem can be
solved for displacement via optimization algorithms [28].
Several advantages of the HiDeNN method include: (1) it
is independent of an offline database; it can solve arbitrary
problems with different boundary conditions; (2) it can be
extended to r-h-p adaptivity to improve themesh and increase
solution accuracy; (3) it can utilize advanced machine learn-
ing hardware such as GPU and TPU. To further improve

123



Computational Mechanics

Fig. 2 Illustration of the patch domain and final convolution patch for
linear element e. The path size is defined as s = 2. a shows the patch
domain associatedwith node i−1. b shows the patch domain associated
with node i . c shows the final convolution patch associatedwith element
e with the relation

the accuracy of the HiDeNN method, Convolution-HiDeNN
(C-HiDeNN) is developed [23]. It can be seen as a general-
ization of the reproducing kernel particle methods (RKPM)
[29, 30]. The detailed theoretical foundation and formulation
of the C-HiDeNN method can be found in [23].

C-HiDeNN is based on a newly developed convolution
approximation, which is formed by two functions: (1) a
general polynomial function; (2) a local patch function that
operates on a set of nodal points adjacent to the node as a
convolution operator. Within an element e, the displacement
can be written as:

uC-HiDeNN(x) =
∑
i∈Ae

Ni (x)
∑
j∈Ai

s

W xi
a, j (x)u j

=
∑

k∈�patch:=⋃
i∈Ae Ai

s

Ñk(x)uk, (4)

where Ae denotes the support domain of the piecewise
polynomial associated with element e, and Ai

s is the local
convolution patch domain for each supporting node i in the
polynomial function. The relation and definition of the sup-
port domain, patch domain, and final convolution patch can
be found in Fig. 2. Ni (x) is the polynomial function asso-
ciated with node i , and W xi

a, j (x) is the local convolution
patch function that considers the contribution from the neigh-
borhood (Ai

s) of node i . The convolution patch function is
designed to have a similar role as the kernel function in a
convolution neural network. Details of constructing Ni (x)

Fig. 3 H1 norm error versus computation time plot for a 1D Pois-
son problem. FEM uses dashed lines, while C-HiDeNN uses solid
lines. Curves with the same polynomial order p have the same color.
Both FEM and C-HiDeNN are solved via a Jacobi-preconditioned
conjugate gradient iterative solver implemented on a small GPU
(NVIDIA GeForce GTX 1650, 4GB memory). For more information
on the GPU implementation, readers may refer to [24] or GitHub:
https://github.com/hachanook/C-HiDeNN_tutorial

and W xi
a, j (x) can be found in appendix B and papers [23,

24]. It should be noted that there are three key controlling
parameters in the convolution patch functions: (1) the patch
size s defining the size of the patch domain; (2) the polyno-
mial order p; (3) the dilation parameter a. These parameters
dictate the smoothness of the approximated solutions and
convergence rates, as discussed in [23, 24]. We will study
their influence on TO design in this work.

The convolution shape function Ñk(x)uk only changes
the formulation of the original shape function Nk(x)uk with-
out adding extra DoFs. This unique feature can increase the
smoothness and accuracy of the approximation while avoid-
ing extra DoFs, resulting in faster computation time for a
given accuracy. Figure3 shows the speedup of C-HiDeNN
compared to higher-order FEM for a given level of accuracy.
A 1D Poisson’s equation is solved, and H1 norm error esti-
mator is computed (details of the problem can be found in
appendix C). Overall, when the polynomial order p is the
same, C-HiDeNN is faster than FEM for a given error. Note
that higher-order FEMuses higher-order elementswhile both
linear FEM (p = 1) and C-HiDeNN use linear elements.
That is, quadratic FEM (p = 2) and cubic FEM (p = 3)
use 3-node and 4-node elements, respectively, while linear
FEM (p = 1) and C-HiDeNN use 2-node elements in a
1D problem. Considering this, C-HiDeNN can achieve accu-
rate solutions orders of magnitude faster than linear FEM
(p = 1). For example, as illustrated in Fig. 3, C-HiDeNNs
with (s = 1, p = 1), (s = 2, p = 2), and (s = 3, p = 3) are
around 4 times, 100 times, and 300 times faster than linear
FEM (p = 1) to achieve 10−4 H1 norm error. This clearly
demonstrates the improved efficiency of C-HiDeNN.

The structure of C-HiDeNN is shown in Fig. 4. Compared
to HiDeNN, there is an extra layer of convolution neurons
that perform the convolution operations. The accuracy and
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Fig. 4 Structure of the Convolution HiDeNN (C-HiDeNN) for the displacement in a 1D problem with linear elements [24]. The convolution neural
network block is shown in the dashed line box. C-HiDeNN only changes the structure of neural network blocks without increasing the number of
DoFs of displacement

convergence study of C-HiDeNN can also be found in [23,
24]. To simplify numerical implementation, Eq. (4) can be
converted into the natural coordinate system:

uC-HiDeNN(ξ) =
∑
i∈Ae

Ni (ξ)
∑
j∈Ai

s

Wξi
a, j (ξ)u j

=
∑

k∈�patch:=⋃
i∈Ae Ai

s

Ñk(ξ)uk, (5)

where ξ denotes general natural (or parametric) coordinates.
As discussed in [23, 24], the benefits of C-HiDeNN

include:

• C-HiDeNN significantly improves accuracy and con-
vergence rates only by changing the formulation of
approximation functions. The DoFs in discretized sys-
tems remain unchanged compared to FEMwith the same
node/mesh used;

• C-HiDeNN can achieve arbitrary orders of smoothness
and convergence rates by adjusting the different control-
ling parameters in the convolution patch function;

• C-HiDeNN provides a highly scalable framework that
can be accelerated using deep learning libraries and par-
allel computing hardware such as JAX [24] and TPU
[31].

The focus of this paper is the implementation of C-
HiDeNN for topology optimization, which is discussed in
the following sections.

2.2 C-HiDeNN-TD for topology optimization

C-HiDeNN-TD is a reduced-ordermodeling technique of the
C-HiDeNNmethods. For structural TO, C-HiDeNN-TD can
serve the same role as FEM for solving partial differential
equations and enforcing physics constraints. As discussed
in the introduction, one of the major difficulties in solving
a large number of simultaneous equations using numerical
methods is the computational cost of large matrix inversion.
To this end, the Proper Generalized Decomposition (PGD)
andTensorDecomposition (TD) based reduced-ordermodel-
ing techniques have been developed [32–36]. The basic idea
is to assume the physical quantities of the problem can be
written into a form with a separation of variables. For exam-
ple, the displacement u = [u, v, w] for a 3D design problem
can be written as

u (x, y, z) =
Q∑

q=1

uqx (x) uqy (y) uqz (z),

v (x, y, z) =
Q∑

q=1

v
q
x (x) v

q
y (y) v

q
z (z),

w (x, y, z) =
Q∑

q=1

w
q
x (x) w

q
y (y) w

q
z (z), (6)

where the index q denotes mode number q out of Q total
modes, ux , uy, uz are 1D functions to be computed, and sim-
ilarly for vx , vy, vz and wx , wy, wz . Similarly, the design
variable ρ can also be decomposed into

ρ (x, y, z) =
K∑

k=1

ρk
x (x) ρk

y (y) ρk
z (z). (7)
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To distinguish the modes of u and ρ, the index of mode in
ρ is defined as k, and the maximum number of modes is
K . Assuming the density distribution is updated during each
design iteration, this decomposition can be done repeatedly
by the Higher-Order PGD (HOPGD) method [37–39]. Con-
sequently, the original 3D problem is converted to finding
the corresponding 1D modes of those ux , uy, uz , vx , vy, vz ,
wx , wy, wz , and ρx , ρy, ρz . Therefore, the computational
complexity is significantly reduced. The equilibrium equa-
tion in the form of the principle of virtual work can be written
as

δ� =
∫

�

∇sδuT (Dρ)∇sud� −
∫

�

δuT f ρd�

−
∫

�

δuT td� = 0, (8)

where ∇s is the symmetric gradient operator, and ∇su is
the strain in Voigt notation. Considering the separation of
variables, the principle of virtual work becomes

For each mode q,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ�,δuqx
= 0, ∀δuqx

δ�,δuqy
= 0, ∀δuqy

δ�,δuqz
= 0, ∀δuqz

δ�,δv
q
x

= 0, ∀δv
q
x

δ�,δv
q
y

= 0, ∀δv
q
y

δ�,δv
q
z

= 0, ∀δv
q
z

δ�,δw
q
x

= 0, ∀δw
q
x

δ�,δw
q
y

= 0, ∀δw
q
y

δ�,δw
q
z

= 0, ∀δw
q
z

, (9)

where δ�,δu denotes the partial derivative with respect to δu.
From the Eq. (9), the whole 3D problem has been decom-
posed into several 1D problems. There are many ways to
solve the above variational equations. In this paper, we
applied the C-HiDeNN approximation for each separated
function [23]. The element-wise approximations of solutions
then read

For each mode q,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uq,e
x = ∑

k∈As
Ñk(x)u

q
x,k

uq,e
y = ∑

k∈As
Ñk(y)u

q
y,k

uq,e
z = ∑

k∈As
Ñk(z)u

q
z,k

v
q,e
x = ∑

k∈As
Ñk(x)v

q
x,k

v
q,e
y = ∑

k∈As
Ñk(y)v

q
y,k

v
q,e
z = ∑

k∈As
Ñk(z)v

q
z,k

w
q,e
x = ∑

k∈As
Ñk(x)w

q
x,k

w
q,e
y = ∑

k∈As
Ñk(y)w

q
y,k

w
q,e
z = ∑

k∈As
Ñk(z)w

q
z,k

, (10)

where uqx,k, u
q
y,k, u

q
z,k, v

q
x,k, v

q
y,k, v

q
z,k, w

q
x,k, w

q
y,k, w

q
z,k are

the nodal solution values of each separated function. Ñ is the
convolution shape function. Let uqx , u

q
y, u

q
z , v

q
x , v

q
y, v

q
z ,w

q
x ,

w
q
y,w

q
z denote the global nodal solution vector for each func-

tion, thenEq. (9) can be discretized and rearranged to become

For each mode q,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K̃ uqx
uqx = f uqx

K̃ uqy
uqy = f uqy

K̃ uqz
uqz = f uqz

K̃ v
q
x
v
q
x = f v

q
x

K̃ v
q
y
v
q
y = f v

q
y

K̃ v
q
z
v
q
z = f v

q
z

K̃w
q
x
w
q
x = f w

q
x

K̃w
q
y
w
q
y = f w

q
y

K̃w
q
z
w
q
z = f w

q
z

, (11)

Finally, the solution of Eq. (8) can be approximated by solv-
ing the above set of equations.Thedirectional stiffnessmatrix
of each mode for the separated displacement function is
defined as K̃ with the integrated external force f . Details
of the derivation from Eqs. (9) to (11) can be found in the
appendix A. Equation (11) can be solved sequentially by
looping over each mode of u. The number of modes is deter-
mined by setting a convergence criterion. After convergence,
all modes can be optimized again to increase the accuracy
further, as discussed in [35].

It is evident that for each iteration in Eq. (11), the dimen-
sion of the directional stiffness matrix is only determined by
the number of DoFs in each direction. This results in a drastic
reduction in thematrix dimension compared to the traditional
FEM. For a problemwith a mesh size of 1000×1000×1000
using linear elements, the DoFs of the problem including
design density on each node is (1001×1001×1001×4) →
(4, 012, 012, 004). Solving such a large number of equations
is extremely expensive. However, in our work, the number
of the DoFs for every one dimensional problem would be
only 4004. Ultimately, this can lead to orders of magnitude
reduction in the overall computational cost.

With the newC-HiDeNN-TDsolver, theTOflowchart can
be redesigned as in Fig. 5. The overall procedure is similar to
the traditional nested TO. The main difference comes from
the solver part. In our design framework, the C-HiDeNN-TD
is used for solving the equilibrium Eq. (8), whereas tradi-
tional TO usually uses FEM. The initial design variable is set
to be uniformly distributed and satisfies the volume fraction
constraint in the whole design domain. The design variable
ρ is decomposed into three directions for a 3D problem or
two directions for a 2D problem, as defined in Eq. (7). In this
paper, we use HOPGD to perform the decomposition of the
whole density field [37].After the decomposition, the decom-
posed density is sent to the C-HiDeNN-TD solver with the
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Fig. 5 Flow chart of C-HiDeNN-TD for topology optimization

convolution shape function defined in Eq. (10). The design
variables are optimized using the OC method [1]. With each
design variable update, a convergence criterion is tested to
determine whether or not the design has converged.

We remark that the overall design framework is flexible
and can be coupledwith traditional FEMor other C-HiDeNN
methods in a hybrid way. For example, FEM can be used dur-
ing the first few iterations with a coarse mesh to get some
initial design before ultimately switching to C-HiDeNN-
TD with a higher resolution to achieve finer structures that
perform better. This kind of hybrid strategy will be further
investigated in our future work.

3 Convolution interpolation for built-in
density filtering and higher-order density
smoothness without extra DoFs

This section studies the effect of C-HiDeNN approximation
on the optimized density distribution. In TO with the SIMP
approach, the design variable, i.e., density field, is consid-
ered constant inside each element of the background mesh.
Let �e denote an element region. The SIMP-based density
description is defined as

ρSIMP(ξ) = ρe, ∀ξ ∈ �e. (12)

Consequently, the SIMP approach can lead to discontinuous
density distributions and checkerboard patterns across mul-
tiple elements. Using higher-order elements for a smooth
description of the density field is one of the solutions to
resolve this issue, as suggested by [40, 41]. However, using
higher-order finite elements can result in excessive increases
in the computational cost of TO due to the additional DoFs
in both the physical equations and the design variables,
as indicated by Sigmund et al. [42]. Another way to miti-
gate checkerboarding and enforce length-scale control is the
filtering technique [43]. Several filter methods have been
developed, including sensitivity filter, density filter, Heav-
iside filter, and averaging filter [44–46]. However, the extra
filtering stage increases the computational burden in the
design loop, especially for high-resolution problems where
the filter may be applied over millions or billions of design
DoFs.

From the above perspectives, the C-HiDeNN approxima-
tion is advantageous in providing a built-in filter to improve
the design smoothness without increasing the overall num-
ber of design variable DoFs and DoFs of the numerically
discretized physical system. Therefore, the proposed C-
HiDeNN-TD-TO framework is expected to lead to a higher-
order smooth density description compared to SIMP if the
same background mesh (resolution) is used.

TheC-HiDeNNapproximated density field can be defined
using the nodal values of the background mesh. Similar to
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Fig. 6 a SIMP-TO approach, an extra filter is needed to control the length-scale and avoid a checkerboard pattern. b C-HiDeNN-TD-TO approach,
no extra filter is needed. The length-scale control can be done by choosing the patch size s, polynomial order p, and dilation parameter a

Fig. 7 a Checkerboard pattern.
b A density filter is applied to
the density shown in a as
traditional TO approaches. The
checkerboard pattern is reduced.
c The C-HiDeNN built-in filter
is applied to a. It has a similar
effect as the density filter but
without the extra filtering step

the displacement field, the nodal density can be denoted by
ρ j , and the approximated density then reads:

ρC-HiDeNN(ξ) =
∑
i∈Ae

Ni (ξ)
∑
j∈Ai

s

Wξi
a, j (ξ)ρ j

=
∑

k∈�patch:=⋃
i∈Ae Ai

s

Ñk(ξ)ρk, ∀ξ ∈ �e,

(13)

where the support domain Ae and local convolution patch
domain Ai

a are defined the same as for the displacement
approximation. The polynomial function associated with
node i is Ni (ξ), and the local convolution patch function
isWξi

a, j (ξ). In a general sense, they can be different from the
displacement approximation.

The dilation parameter a, the polynomial order p, and the
patch size s serve as built-in filtering parameters to control
the minimum design length-scale and remove checkerboard

patterns. Figure6 shows the difference between the SIMP-
TO approach and the C-HiDeNN-TD-TO approach. Unlike
SIMP-TO, the density is interpolated using C-HiDeNN-TD-
TO shape functions and the convolution operation serves as
a filter on the density field, which will automatically prevent
checkerboarding and incur length-scale control. One exam-
ple is shown in Fig. 7. To illustrate the idea, we generate a
density field with a checkerboard pattern, as shown in Fig. 7.
This is commonly seen if the filter is not applied during the
design iteration using SIMP.We applied the density filter and
the C-HiDeNN built-in filter on the same density field. The
minimum length-scale of the density filter is set to 2. For a fair
comparison, the patch size s is set to 2 with a dilation param-
eter a = 2 and polynomial order p = 2. Figure7 shows that
the C-HiDeNN built-in filter has the capability to remove a
checkerboard pattern similar to a dedicated density filter. It is
noted that for some 3D examples with a volume fraction less
than 0.3, the C-HiDeNN-TD-TO built-in filter may be insuf-
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Fig. 8 a Topology optimization SIMP density plot. b C-HiDeNN-TD-
TO density plot with 27 interpolation points in each element. With the
same design representation mesh, C-HiDeNN-TD-TO has a continuity
≥ C1 and is much smoother and more 3D printable with desirable
smoothness

ficient to remove all isolated substructures. More studies are
needed, including designing a more stable built-in filter and
finding optimal parameter sets.

The other feature is that the convolution interpolation
does not increase the DoFs in the design variables but
improves the smoothness of interpolation. One example
to compare the difference between the SIMP approach and
the C-HiDeNN-TD-TO approach is shown in Fig. 8, which
depicts a cantilever beam design example with a mesh size
of 100 × 50 × 50 using SIMP and C-HiDeNN descriptions.
As shown in Fig. 8a, the density in the SIMP approach is dis-
continuous in the design domain. For C-HiDeNN-TD-TO,
the density is smooth, with a desired higher-order continu-
ity defined by the C-HiDeNN shape function. To represent
the C-HiDeNN-based continuous density function in the 3D
domain, we select a few interpolation points in each ele-
ment. Figure8b shows the plot of C-HiDeNN-TD-TO with
27 interpolation points in each element. It can be seen that,
without adding any additional DoFs in the design, the C-
HiDeNN-TD-TO gives a smoother design structure than the
SIMP-TO. With more interpolation points added, the plot
can be a very smooth structure with details on the surface.
It should be noted that although the C-HiDeNN approxima-
tion increases the smoothness of the design, it can not lead to
the same results as high-resolution design since higher res-
olutions can result in greater design flexibility creating finer
structures with better design objective values.

4 Parametric study of the convolution
parameters on the final design

In this section, we study the effect of the convolution parame-
ters on the final design structures. Asmentioned earlier, there

are three parameters in the convolution shape functions: the
patch size s defining the size of the patch domain; the poly-

nomial order p defining the polynomial order of Wξ i
a, j (ξ);

the dilation parameter a in Wξ i
a, j (ξ) controlling the size of

the window function, as shown in Fig. 9b.
As shown in Fig. 9, the cantilever beam is used with the

left side clamped and a uniform loading on the right side. The
background design mesh size is 100 × 50 × 50. The design
formulations are defined as:

min c(ρ) =
∫

�

f T ud� +
∫

�

tT ud�

s.t . : δ� =
∫

�

∇suT D(ρ)∇sδud� −
∫

�

f T δuρd�

−
∫

�

tT δud� = 0,

ρmin ≤ ρ ≤ 1, 0 < ρmin � 1,

V (ρ) ≤ V ∗,
r(ρ) ≥ rmin .

(14)

The objective function is system compliance as defined
in Eq. (14). The volume fraction V ∗ is set to 0.5 for the
design region. The convolution parameters are defined as fol-
lows. The patch size s is defined as the size of the extended
region outside the element (bold green region). The dilation
parameter a is defined as the tuning parameter of the win-
dow function. The polynomial order of the convolution patch
function is defined as p. In this study, we fix the patch size s
but vary the polynomial order p and the dilation parameter
a.

Figure 10 shows the different results related to the poly-
nomial order p. The patch size is set as s = 4. To better
understand the synergism of C-HiDeNN with the tensor
decomposition, we set Fig. 10awith a very small and positive
a, which produces the Tensor Decomposition-TO (TD-TO)
result. From these results, higher order p does give a better
design (lower objective function) with more support struc-
tures, especially when compared to p = 1 (the case of
TD-TO). The reason is that the higher-order approximation
gives a smoother and more accurate solution of the physics
field and significantly improves the sensitivity of the density
to displacement. Finally, the optimal design converges with
p = 3 in this case.

Figure 11 shows another example to test the dilation
parameter a. The polynomial order and patch size are p =
3, s = 4. From the figure, it is obvious that a large dila-
tion parameter gives a lower objective function. The optimal
design (objective function) converges with a = 4. Fur-
thermore, the dilation parameter seems to contribute to the
length-scale filtering, as a larger a might remove more small
support structures in the final design. This can be seen inside
the black circles in the figure.
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Fig. 9 a Cantilever beam
example with a uniform loading
on the right side and a clamped
boundary condition on the left
side. The size is set to
M = N = 50 and L = 100. b
Illustration of the patch size s,
and dilation parameter a

Fig. 10 Convolution
polynomial order study. The
patch size is set to s = 4.
Example (a) uses a small
dilation parameter to degenerate
into the TD-TO method. From
the comparison, polynomials of
higher order produce a better
objective value with more
support structures because of the
smoothness of the
corresponding solutions

Fig. 11 Convolution
polynomial order study. The
patch size is set to s = 4.
Example (a) uses a small
dilation parameter to degenerate
into the TD-TO method. From
the comparison, a larger dilation
parameter produces a better
design and contributes to the
design length-scale control

From the above two comparisons, we can see that the
greater the polynomial order, p, and the larger the dilation
parameter, a, the more accurate the solved displacements
are, leading to better topology-optimized designs. However,
it should be noted that there exists an optimal pair of p and
a for each problem. Using larger numbers for p and a can

result in a higher computational cost. The balance between
accuracy and cost should be considered when choosing the
optimal convolution parameters. The effect of this dilation
on the length-scale control and the relationship to physical
quantities in the TO can be further investigated in the future.
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Fig. 12 DoFs vs computational cost between FEM-TO and C-
HiDeNN-TD-TO. C-HiDeNN-TD-TO can solve a giga-scale problem
only using hundreds ofCPUhourswith an affordable personal computer

5 Numerical examples for high-resolution
design

5.1 Example 1: high-resolution cantilever beam

The first example is still the cantilever example, as illustrated
in Fig. 9. This time, the efficiency of C-HiDeNN-TD-TO is
studied with an increasing number of DoFs (higher resolu-
tion). In order to make a comparison to the example in [4],
the volume fraction is set to be 0.12, and the minimal length-

scale parameter rmin in Eq. (1) is set to be 0.1 of the short
edge. The objective function and optimization formulations
are same as Eq. (14). Three different design resolutions are
considered at this time: 480× 240× 240, 960× 480× 480,
and 1440 × 720 × 720. The dilation parameter a is set to 4
with the polynomial order p = 3 and a patch size s = 4.

The computational cost with different DoFs for FEM-TO
and the proposed C-HiDeNN-TD-TO are shown in Fig. 12.
The number of FEM DoFs also considering the density vari-
able on each node. The CPU hours in FEM-TO with the
SIMPmethod are estimated according to work done by Aage
et al. [2, 4] using supercomputer resources. For the FEM-
TO method, the CPU time increases from 104 hours to 106

hours as the DoFs increase from 108 to 109. However, for
C-HiDeNN-TD-TO, the CPU time only increases from 33
to 112h, with a 6857 times speedup for the larger mesh
when compared to the FEM-TO method. Table 2 lists the
detailed numbers of the three cases, including the number of
equations, the number of modes in the C-HiDeNN-TD-TO
method, the CPU time, and the speed-up relative to FEM-TO.

The final design structures of the three cases are shown
in Fig. 13. As the design resolution increases, the overall
structure becomes more and more similar. For the same vol-
ume fraction and the given length-scale control, the topology
design tends to have a convergent result. However, for some

Table 2 Comparison of speed-up in different cases

Resolution FEM DoFs C-HiDeNN-TD-TO DoFs Number of modes CPU time Speed-up
ρ u FEA-TO C-HiDeNN-TD-TO

480 ×240 × 240 111,747,844 964,926 34 334 9000h 33h 273

960 × 480× 480 889,351,684 3,830,616 36 664 72,000h 64h 1125

1440 × 720× 720 2,996,363,524 7,273,809 42 841 768,000h 112h 6857

The CPU time of the FEM-TO method is estimated based on [4]

Fig. 13 Three cantilever beam
cases with different mesh sizes.
Higher resolution TO produces
more optimal designs with more
supporting structural features
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Fig. 14 Drone design problem definition

Fig. 15 Drone design results with volume constraint 0.2 with different
design resolutions

regions, such as the region in a dashed circle, the increasing
resolution results inmore support structures and an improved,
lesser objective function.

5.2 Example 2: Drone design problem

In the second example, the C-HiDeNN-TD-TO is applied to
a drone design problem shown in Fig. 14. The design region
is a rectangular box with loads on the four top corners and
the center of the bottom. For the numerical implementation,
the four corners are treated as the fixed boundary conditions
in all directions. Furthermore, there is a void region in the
design space to leave room for batteries and a control unit,
as shown in Fig. 14. The design goal is to minimize sys-
tem compliance under some predefined design constraints
on the volume fraction and minimum length-scale control,
as defined in Eq. (14). Here we study two different volume
fractions, 0.12 and 0.2, with the minimum length-scale set at
0.03L as shown in Fig. 14. The void region is performed by
enhancing a passive region in the design loop, which means
the void region is forced to have zero density at each design
iteration.

The final TO structures are shown in Figs. 15, 16 with
different design resolutions. In Fig. 15, the drone is designed
with a volume fraction constraint of 0.2, whereas in Fig. 16,
the drone is designed with a volume constraint of 0.12. It
can be observed that the lower volume fraction will produce
thinner truss structures. The objective function of designwith
volume constraint 0.2 is 3.3618, and the objective function
with volume constraint 0.12 is 3.4162.

6 Future development

In this section, we will discuss several future develop-
ments of C-HiDeNN-TD-TO. One direction is how to utilize
advanced computing hardware to improve the efficiency of
C-HiDeNN-TD-TO further.Wewill use one example to illus-
trate the idea. We will also discuss the extension of the
method to a two-scale design C-HiDeNN-TD2. A concurrent
drone problem will be given from the preliminary developed
C-HiDeNN-TD2 framework.More details and results will be
introduced in a future paper, including r- or mesh adaptiv-
ity for which the C-HiDeNN shape functions are expressed
as functions of position x, giving rise to a mesh refinement
criterion around local regions.

6.1 GPU acceleration in C-HiDeNN-TD-TO

One feasible direction is to use GPU to accelerate C-
HiDeNN-TD-TO. In particular, several subroutines of the
overall framework are highly parallelizable. As shown in
Fig. 17, the HOPGD subroutine can be accelerated by paral-
lelizing operations and utilizing GPU hardware, with a slight
modification of the convergence criterion used to indicate
a sufficient number of decomposed modes. For the high-
resolution mesh, the HOPGD algorithm ultimately saw a
142 times reduction in compute time on an Nvidia GeForce
RTX 3070 GPU relative to the original standard implemen-
tation [37] executed on an AMD Ryzen 5900X CPU with
12 cores. Decomposition modes must be calculated sequen-
tially during HOPGD, which results in compute time scaling
linearly with the number of decomposed modes to be cal-
culated. This leads to CPUs, which generally have faster
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Fig. 16 Drone design results with volume constraint 0.12with different
design resolutions

clock rates, outperforming GPUs on small resolution meshes
where the vector operations within each mode calculation
offer limited opportunity for parallelization. GPU execution
offers a massive advantage for high-resolutionmeshes where
C-HiDeNN-TD-TO can excel compared to traditional FEM
TO. For ultra-fine meshes where C-HiDeNN-TD-TO may
exceed the memory limits of GPU hardware, Message Pass-
ing Interface (MPI) to distribute computation across multiple
processors should further improve performance. The linear
scaling of HOPGD compute time with the number of ten-
sor decomposition modes is not particularly problematic for
two reasons. First, the bulk of the computational expense of
C-HiDeNN-TD-TO for fine meshes is in the solution sub-
routine, for which the equations of each mode can be solved
in parallel. Second, the use of inordinately many modes is

not essential to achieve sufficient representation accuracy.
Hundreds of modes have been observed to capture complex
geometries adequately, and if extreme accuracy is desired,
one could choose to implement more modes only during the
final iterations of a topology optimization procedure. This
example shows how to utilize the massive parallelization
offered by GPUs to accelerate the original C-HiDeNN-TD-
TO code. More studies will be performed in the future.

6.2 Multi-unit cell concurrent drone design

In the second direction, we will discuss C-HiDeNN-TD2

for concurrent multi-unit cell design. Concurrent multi-scale
design is based on themulti-scale theory and aims to optimize
the two or more scales simultaneously [47]. Considering
homogenization theory, we extend the original C-HiDeNN-
TD to a two-scale design method called C-HiDeNN-TD2.

The design problem definition of the drone structure is
shown in Fig. 18. The boundary conditions and the loading
type are the same as in the previous example. The difference
is in the predefined regions of the design domain. For each
region,we assume it consists of the same unit cells. At the ini-
tial design stage, all the unit cells of each region have the same
initial set-up with a volume fraction of 0.5. The drone struc-
ture and the unit cells are simultaneously updated during the
concurrent design stage. Results are shown in Fig. 19. From
the figure, different regions have different unit cell struc-
tures that better reduce the objective function. By applying
the reinforcing connectivity conditions, we ensure each unit
cell is perfectly connected with its neighbors. This exam-
ple shows one potential application of the C-HiDeNN-TD2

method. In the future, it can be extended to an n-scale concur-
rent design framework with high-resolution design routines
at each scale.

Fig. 17 GPU acceleration within the C-HiDeNN-TD-TO. With operation vectorization, the HOPGD subroutine can execute 142 times faster on
GPU than the original implementation on CPU
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Fig. 18 Multi unit cell
concurrent drone design
problem definition. The initial
design domain is divided into
different regions as shown in b
front view and c side view

Fig. 19 Multi unit cell concurrent drone designed structure. Each section showed good connectivity between each region

Apart from the two directions, another future direction
is to leverage the computational efficiency of C-HiDeNN-
TD-TO for concurrent multiscale topology optimization, for
which the scheme can be nested to optimize structures at
the part and element scales simultaneously, further increas-
ing the feasibility of structure optimization for extremely
high-resolution meshes. Additionally, the incorporation of
finite deformation representation would empower the frame-
work to produce designs for large deformation problems.
Finally, further study of the convolution scheme to smoothen
design representation and the current improvement of solu-
tion accuracy is expected to increase TO stability and the
manufacturability of resulting structures going forward.

7 Conclusions

In this paper, we proposed the Convolution-Hierarchical
Deep Learning Neural Network-Tensor Decomposition (C-
HiDeNN-TD) for topology optimization. We introduced the
C-HiDeNN theory,which is a deep learning-based discretiza-

tion method with advantages in terms of both accuracy
and computational efficiency. Then, the convolution tensor
decomposition-based topology optimization is developed to
reduce the calculation cost.Numerical examples demonstrate
the superior performance of the C-HiDeNN-TD-TO, espe-
cially for ultra-large-scale topology design and concurrent
multi-scale topology optimization. In addition, the effects of
controlling the dilation parameter and polynomial order in
convolution approximation have been studied. We summa-
rize the key features of the C-HiDeNN-TD-TO:

• Overcomes the memory limitations of high-resolution
topology optimization by avoiding the storage of a full
matrix.

• Reduces the computational cost, enabling thousands
of times speedup for giga-scale topology optimization
problems and efficient concurrent multi-scale topology
design.

• Improved solution accuracy compared to traditional
SIMPmethods byusing a convolution approximation that
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leads to higher-order smooth descriptions of structures
for a given mesh.

• Theconvolution approximationprovides a built-in length-
scale filter for topology optimization and avoids the extra
filtering step in traditional topology optimization.

• Local design refinement can be easily achieved due to
the location dependence of the convolution shape func-
tions. This feature can be exploited for mesh adaptivity
as demonstrated byHiDeNN [28] and HiDeNN-TD [35].

The proposed topology design framework can be further
accelerated by GPU and has considerable potential to enable
fabrication-specific topology design for additive manufac-
turing, which usually requires extreme model resolutions to
predict the physical shape properties accurately. C-HiDeNN-
TD-TO democratizes topology optimization for practical
problems by preserving solution accuracy while alleviating
the formerly extravagant memory and computation require-
ments [48].

Appendix A: derivation of C-HiDeNN-TD for
topology optimization solver

To start with, the displacement u = [u, v, w] and the density
ρ are assumed to have the separated form.

u (x, y, z) =
Q∑

q=1

uqx (x) uqy (y) uqz (z),

v (x, y, z) =
Q∑

q=1

v
q
x (x) v

q
y (y) v

q
z (z),

w (x, y, z) =
Q∑

q=1

w
q
x (x) w

q
y (y) w

q
z (z),

ρ (x, y, z) =
K∑

k=1

ρk
x (x) ρk

y (y) ρk
z (z),

(15)

To distinguish the modes of u and ρ, the index of mode in ρ

is defined as k, and the maximum number of modes is K ; the
index of mode in u is defined as q with themaximum number
as Q. The equilibrium equation in principle of virtual work
can be written as

δ� =
∫

�

∇sδuT D∇suρd� −
∫

�

δuT f ρd� −
∫

�

δuT td�

= δ�int − δ�ext = 0, (16)

To solve the problem, we can borrow the alternating fix point
algorithm, like PGDmethods [32]. In this case, themaximum
number of modes Q of u is a dynamic changing variable. For

example, initially, we start from Q = 1. All the separated
functions of displacement are then computed for the mode 1.
Once they are computed, we can consider they are constant
and update the Q as Q = Q + 1 for computing the second
mode. This procedure successively enrich the modes until
convergence. For the density ρ, the maximum number of
modes K is determined by the HOPGD procedure [37].

In the next, we illustrate the procedure for the Q-th mode,
assuming Q − 1 modes have been computed earlier. Then
we can compute first the uq=Q

x (x) by assuming the other
displacement components are constant. The variation of the
displacement becomes

δu =
[
δuQ

x (x)uQ
y (y) uQ

z (z) , 0, 0
]T

, (17)

Therefore, the variation of Eq. (16) under current mode with
variable uq=Q

x (x) can be expressed as

δ�int
uQx 1

+ δ�int
uQx 2

+ δ�int
uQx 3

+ δ�int
uQx 4

+ δ�int
uQx 5

+ δ�int
uQx 6

+ δ�int
uQx 7

− δ�ext
uQx

= 0, (18)

where each term of the �int
uQx

is defined as below

δ�int
uQx 1

= E(1 − μ)

(1 + μ)(1 − 2μ)

K∑
k=1

Q∑
q=1[∫

x

(
∂δuQ

x

∂x

∂uqx
∂x

)
ρk
x dx

∫
y

(
uQ
y u

q
y

)
ρk
ydy

∫
z

(
uQ
z u

q
z

)
ρk
z dz

]
, (19)

δ�int
uQx 2

= Eμ

(1 + μ)(1 − 2μ)

K∑
k=1

Q∑
q=1[∫

x

(
∂δuQ

x

∂x
v
q
x

)
ρk
x dx

∫
y

(
uQ
y

∂v
q
y

∂ y

)
ρk
ydy

∫
z

(
uQ
z v

q
z

)
ρk
z dz

]
, (20)

δ�int
uQx 3

= Eμ

(1 + μ)(1 − 2μ)

K∑
k=1

Q∑
q=1[∫

x

(
∂δuQ

x

∂x
w

q
x

)
ρk
x dx

∫
y

(
uQ
y w

q
y

)
ρk
ydy

∫
z

(
uQ
z

∂w
q
z

∂z

)
ρk
z dz

]
, (21)

δ�int
uQx 4

= E

2(1 + μ)

K∑
k=1

Q∑
q=1
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[∫
x

(
δuQ

x u
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δ�int
uQx 7

= E

2(1 + μ)

K∑
k=1

Q∑
q=1[∫

x

(
δuQ

x
∂w

q
x

∂x

)
ρk
x dx

∫
y

(
uQ
y w

q
y

)
ρk
ydy

∫
z

(
∂δuQ

z

∂z
w

q
z

)
ρk
z dz

]
, (25)

where the original 3D integration in the Eq. (16) is decom-
posed into the product of 1D integration.This is the advantage
due to the separation of variables for reducing the computa-
tional complexity.

The external virtual work can be defined as

�ext
uQx

=
∫

�

M∑
m=1

f mrxδu
Q
x f mryu

Q
y f mrz u

Q
z ρd�

−
∫

�

N∑
n=1

tnrxδu
Q
x t

n
ryu

Q
y t

n
rzu

Q
z �, (26)

with the decomposition of the external body force f =
[ fr , fs, ft ]T and boundary traction: t = [tr , ts, tt ]T .

fr (x, y, z) =
M∑

m=1

f mrx (x) f mry (y) f mrz (z), (27)

tr (x, y, z) =
N∑

n=1

tnrx (x) tnry (y) tnrz(z), (28)

In the expression for the external virtual work (26), other
components of the body force and traction force become zero
as it will not contribute to uQ

x .
With these definitions, we can discretize the problem (18)

using C-HiDeNN. The final discretized form reads

K̃
uQx

uQ
x = f

uQx
(29)

where K̃ uQx
is the directional stiffness matrix associated with

component uQ
x .

By analogy, we can derive the equations for uQ
y,k by con-

sidering

δu =
[
uQ
x (x)δuQ

y (y) uQ
z (z) , 0, 0

]T
, (30)

and similar for other displacement components uQ
z,k, v

Q
x,k,

v
Q
y,k, v

Q
z,k, w

Q
x,k, w

Q
y,k, w

Q
z,k . The equations will be solved

repetitively until the Q-th mode remains unchanged before
passing the next mode.

Appendix B: derivation of window function
[23]

Consider the following 1D case for illustration purposes.

uC-FEM(ξ) =
∑
i∈Ae

Ni (ξ)
∑
j∈Ai

s

W
ξ i
a, j (ξ)u j (31)

Then we can define the following interpolation as the part
of the approximation centering around the i-th node in the
element domain.

ui (ξ) =
∑
j∈Ai

s

W ξi
a, j (ξ)u j , (32)

where the supporting node set ofW is Ai
s with a given patch

size s. Assuming the nodal solution value for the 4 nodes
is [u1, u2, u3, u4], we illustrate the radial basis interpolation
procedure for the part centering around i = 2. In this case, the
parametric coordinates for the support nodes are {−3,−1, 1}.
Then we can consider the radial basis interpolation ui=2(ξ)

has the following form

ui (ξ) = �a(ξ)k + p(ξ)l, (33)

where �a is a defined kernel function, which can be the
reproducing kernel or cubic spline kernel [29, 49] with the
dilation parameter a, p(ξ) is the polynomial basis vector of
p-th order, k = [k1, k2, k3]T and l = [l1, l2, l3]T are the
coefficient vector that helps to enforce the reproducing con-
dition and Kronecker delta property. We give here a specific
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example for �a and p(ξ) using a cubic spline Kernel and a
second-order polynomial.

�a(ξ) = [	a(ξ − ξ1), 	a(ξ − ξ2), 	a(ξ − ξ3)]
where 	a(ξ − ξI ) : = 	a(z) with z = |ξ − ξI |

a

=

⎧⎪⎨
⎪⎩

2
3 − 4z2 + 4z3 ∀z ∈ [0, 1

2 ]
4
3 − 4z + 4z2 − 4

3 z
3 ∀z ∈ [ 12 , 1]

0 ∀z ∈ (1,+∞)

,

(34)

and

p = [1, ξ, ξ2] (35)

Now we can compute k and l by enforcing the below condi-
tions.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ui (ξ1) = u1
ui (ξ2) = u2
ui (ξ3) = u3∑

k = 0
[ξ1, ξ2, ξ3] k = 0
[ξ21 , ξ22 , ξ23 ] k = 0

, (36)

Solving the above equations gives the solution to k and l,
which reads

{
k = Ku

l = Lu
, (37)

with

⎧⎪⎨
⎪⎩
u = [u1, u2, u3]T
L = (PTR0P)−1PTR−1

0

K = R−1
0 (I − PL)

, (38)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0=
⎛
⎜⎝

�a(ξ1)

�a(ξ2)

�a(ξ3)

⎞
⎟⎠=

⎛
⎜⎝

	a(ξ1 − ξ1) 	a(ξ1 − ξ2) 	a(ξ1 − ξ3)

	a(ξ2 − ξ1) 	a(ξ2 − ξ2) 	a(ξ2 − ξ3)

	a(ξ3 − ξ1) 	a(ξ3 − ξ2) 	a(ξ3 − ξ3)

⎞
⎟⎠

P=
⎛
⎜⎝
p(ξ1)

p(ξ2)

p(ξ3)

⎞
⎟⎠ =

⎛
⎜⎝
1 ξ1 ξ21

1 ξ2 ξ22

1 ξ3 ξ23

⎞
⎟⎠

,

(39)

Finally, the radial basis interpolationwith the computed coef-
ficients reads:

ui (ξ) = �a(ξ)k + p(ξ)l = �a(ξ)Ku + p(ξ)Lu

= (�a(ξ)K + p(ξ)L)u

= W ξi
a,1(ξ)u1 + W ξi

a,2(ξ)u2

+ W ξi
a,3(ξ)u3

=
∑
j∈Ai

s

W ξi
a, j (ξ)u j ,

(40)

where W ξi
a, j is obtained by identifying the corresponding

coefficient of u j . By analogy, we can compute the other con-
volution patch functions W with the support Ai=3

s . Detailed
mathematical derivation and analysis of the radial basis inter-
polation can be found in [50].

Appendix C: 1D Poisson’s problem

Poisson’s equation is commonly used to demonstrate the effi-
ciency of a numerical method because the analytical solution
can be derived. In this paper, we solve a 1D Poisson’s prob-
lem defined as:


u(x) + b(x) = 0 in �

u = 0 on �

where� = [0, 10] is the problemdomain and� is the domain
boundary. We first construct an analytical solution u(x) and
then derive the body force b(x) from the equation. The solu-
tion u(x) and the body force b(x) are given as:

u(x) =
[
e−5(x−2.5)2−e−31.25

]
+2

[
e−5(x−7.5)2−e−281.25

]

−e−31.25 − e−281.25

10
x, (41)

b(x) = −
[
100(x − 2.5)2 − 10

]
e−5(x−2.5)2

−2
[
100(x − 7.5)2 − 10

]
e−5(x−7.5)2 . (42)

To measure the accuracy, the H1 norm error estimator was
used:

‖e‖H1 =
(∫

�

(
u − uh

)2
dx + ∫

�
‖∇u − ∇uh‖22dx

)1/2
(∫

�
u2dx + ∫

�
‖∇uh‖22dx

)1/2 .

(43)

123



Computational Mechanics

References

1. BendsøeMP (1989)Optimal shape design as amaterial distribution
problem. Struct Optim 1(4):193–202

2. Aage N, Andreassen E, Lazarov BS, Sigmund O (2017) Giga-
voxel computational morphogenesis for structural design. Nature
550(7674):84–86

3. Xiao M, Lu D, Breitkopf P, Raghavan B, Dutta S, ZhangW (2020)
On-the-flymodel reduction for large-scale structural topology opti-
mization using principal components analysis. Struct Multidiscip
Optim 62(1):209–230

4. Aage N, Andreassen E, Lazarov BS (2015) Topology optimization
using petsc: an easy-to-use, fully parallel, open source topology
optimization framework. Struct Multidiscip Optim 51(3):565–572

5. Sigmund O (2022) On benchmarking and good scientific practise
in topology optimization. Struct Multidiscip Optim 65(11):315

6. Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra JJ, Squyres
JM, Sahay V, Kambadur P, Barrett B, Lumsdaine A et al (2004)
Open mpi: goals, concept, and design of a next generation mpi
implementation. European parallel virtual machine/message pass-
ing interface users’ groupmeeting. Springer, NewYork, pp 97–104

7. Walker DW, Dongarra JJ (1996) Mpi: a standard message passing
interface. Supercomputer 12:56–68

8. Mahdavi A, Balaji R, FreckerM,Mockensturm E (2006) Topology
optimizationof 2d continua forminimumcomplianceusingparallel
computing. Struct Multidiscip Optim 32(2):121–132

9. Aage N, Poulsen TH, Gersborg-Hansen A, Sigmund O (2008)
Topology optimization of large scale stokes flow problems. Struct
Multidiscip Optim 35(2):175–180

10. Evgrafov A, Rupp CJ, Maute K, Dunn ML (2008) Large-scale
parallel topology optimization using a dual-primal substructuring
solver. Struct Multidiscip Optim 36(4):329–345

11. Wadbro E, Berggren M (2009) Megapixel topology optimization
on a graphics processing unit. SIAM Rev 51(4):707–721

12. XiaL,Breitkopf P (2014)A reducedmultiscalemodel for nonlinear
structural topology optimization.ComputMethodsApplMechEng
280:117–134

13. Ferro N, Micheletti S, Perotto S (2019) Pod-assisted strategies for
structural topologyoptimization.ComputMathAppl 77(10):2804–
2820

14. Xiao M, Lu D, Breitkopf P, Raghavan B, Zhang W, Dutta S (2020)
Multi-grid reduced-order topology optimization. Struct Multidis-
cip Optim 61(6):1–23

15. Lei X, Liu C, Du Z, Zhang W, Guo X (2019) Machine learning-
driven real-time topology optimization under moving morphable
component-based framework. J Appl Mech 86(1):011004

16. Jiang X, Wang H, Li Y, Mo K (2020) Machine learning based
parameter tuning strategy for mmc based topology optimization.
Adv Eng Softw 149:102841

17. Sosnovik I, Oseledets I (2019) Neural networks for topology opti-
mization. Russ J Numer Anal Math Model 34(4):215–223

18. Yu Y, Hur T, Jung J, Jang IG (2019) Deep learning for determin-
ing a near-optimal topological design without any iteration. Struct
Multidiscip Optim 59(3):787–799

19. Sasaki H, Igarashi H (2019) Topology optimization accelerated by
deep learning. IEEE Trans Magn 55(6):1–5

20. Deng C, Wang Y, Qin C, Fu Y, Lu W (2022) Self-directed online
machine learning for topologyoptimization.NatCommun13(1):1–
14

21. Huang M, Du Z, Liu C, Zheng Y, Cui T, Mei Y, Li X, Zhang
X, Guo X (2022) Problem-independent machine learning (piml)-
based topology optimization-a universal approach. Extreme Mech
Lett 56:101887

22. Woldseth RV, Aage N, Bærentzen JA, Sigmund O (2022) On the
use of artificial neural networks in topology optimisation. Struct
Multidiscip Optim 65(10):1–36

23. Lu Y, Li H, Zhang L, Park C,Mojumder S, Knapik S, Sang Z, Tang
S,ApleyDW,WagnerGJ, LiuWK (2023)Convolution hierarchical
deep-learning neural networks (c-hidenn): finite elements, isogeo-
metric analysis, tensor decomposition, and beyond, Computational
Mechanics

24. Park C, Lu Y, Saha S, Xue T, Guo J, Mojumder S, Apley D, Wag-
ner G, LiuW (2023) Convolution hierarchical deep-learning neural
network (c-hidenn) with graphics processing unit (gpu) accelera-
tion, Computaitonal Mechanics

25. WangMY,WangX, GuoD (2003) A level set method for structural
topology optimization. Comput Methods Appl Mech Eng 192(1–
2):227–246

26. Guo X, Zhang W, Zhong W (2014) Doing topology optimization
explicitly and geometrically-a newmovingmorphable components
based framework. J Appl Mech 81(8)

27. Bendsoe MP, Sigmund O (2003) Topology optimization: theory,
methods, and applications. Springer, New York

28. Zhang L, Cheng L, Li H, Gao J, Yu C, Domel R, Yang Y, Tang S,
Liu WK (2021) Hierarchical deep-learning neural networks: finite
elements and beyond. Comput Mech 67(1):207–230

29. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle
methods. Int J Numer Meth Fluids 20(8–9):1081–1106

30. Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing
kernel particle methods for structural dynamics. Int J Numer Meth
Eng 38(10):1655–1679

31. Jouppi N, Young C, Patil N, Patterson D (2018) Motivation for and
evaluation of the first tensor processing unit. IEEEMicro 38(3):10–
19

32. AmmarA,MokdadB,Chinesta F,KeuningsR (2006)Anew family
of solvers for some classes of multidimensional partial differential
equations encountered in kinetic theory modeling of complex flu-
ids. J Nonnewton Fluid Mech 139(3):153–176

33. Chinesta F, Ladeveze P, Cueto E (2011) A short review on model
order reduction based on proper generalized decomposition. Arch
Comput Methods Eng 18(4):395–404

34. Scanff R, Néron D, Ladevèze P, Barabinot P, Cugnon F, Delsemme
J-P (2022) Weakly-invasive latin-pgd for solving time-dependent
non-linear parametrized problems in solid mechanics. Comput
Methods Appl Mech Eng 396:114999

35. Zhang L, Lu Y, Tang S, Liu WK (2022) Hidenn-td: reduced-order
hierarchical deep learning neural networks. ComputMethods Appl
Mech Eng 389:114414

36. Goutaudier D, Berthe L, Chinesta F (2021) Proper generalized
decomposition with time adaptive space separation for transient
wave propagation problems in separable domains. Comput Meth-
ods Appl Mech Eng 380:113755

37. LuY, Blal N, Gravouil A (2018)Multi-parametric space-time com-
putational vademecum for parametric studies: application to real
time welding simulations. Finite Elem Anal Des 139:62–72

38. LuY, Blal N, Gravouil A (2018) Adaptive sparse grid based hopgd:
toward a nonintrusive strategy for constructing space-time welding
computational vademecum. Int J Numer Meth Eng 114(13):1438–
1461

39. Saha S,KafkaOL, LuY,YuC, LiuWK(2021)Microscale structure
to property prediction for additively manufactured in625 through
advanced material model parameter identification. Integr Mater
Manuf Innov 10(2):142–156

40. Diaz A, Sigmund O (1995) Checkerboard patterns in layout opti-
mization. Struct Opt 10(1):40–45

41. Haber RB, Jog CS, Bendsøe MP (1996) A new approach to
variable-topology shape design using a constraint on perimeter.
Struct Opt 11(1):1–12

123



Computational Mechanics

42. Sigmund O, Petersson J (1998) Numerical instabilities in topology
optimization: a survey on procedures dealing with checkerboards,
mesh-dependencies and local minima. Struct Opt 16(1):68–75

43. Bourdin B (2001) Filters in topology optimization. Int J Numer
Meth Eng 50(9):2143–2158

44. Sigmund O (1997) On the design of compliant mechanisms using
topology optimization. J Struct Mech 25(4):493–524

45. Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum
length scale in topology optimization using nodal design variables
and projection functions. Int J Numer Meth Eng 61(2):238–254

46. Svanberg K, Svärd H (2013) Density filters for topology optimiza-
tion based on the pythagorean means. Struct Multidiscip Optim
48:859–875

47. WuJ, SigmundO,Groen JP (2021)Topologyoptimizationofmulti-
scale structures: a review. Struct Multidiscip Optim 63:1455–1480

48. Wu J, Dick C, Westermann R (2015) A system for high-
resolution topology optimization. IEEE Trans Vis Comput Graph-
ics 22(3):1195–1208

49. Chen J-S, Liu WK, Hillman MC, Chi S-W, Lian Y, Bessa MA
(2017) Reproducing kernel particle method for solving partial dif-
ferential equations. Encycl Comput Mech Second Edition 1–44

50. SchabackR,WendlandH (2001)Characterization and construction
of radial basis functions. Multivar Approx Appl 1–24

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123


	Convolution Hierarchical Deep-Learning Neural Network Tensor Decomposition (C-HiDeNN-TD) for high-resolution topology optimization
	Abstract
	1 Introduction
	2 C-HiDeNN-TD for topology optimization
	2.1 Convolution-HiDeNN theory
	2.2 C-HiDeNN-TD for topology optimization

	3  Convolution interpolation for built-in density filtering and higher-order density smoothness without extra DoFs 
	4 Parametric study of the convolution parameters on the final design
	5 Numerical examples for high-resolution design
	5.1 Example 1: high-resolution cantilever beam
	5.2 Example 2: Drone design problem

	6 Future development
	6.1  GPU acceleration in C-HiDeNN-TD-TO
	6.2 Multi-unit cell concurrent drone design

	7 Conclusions
	Appendix A: derivation of C-HiDeNN-TD for topology optimization solver
	Appendix B: derivation of window function Lu2023chidenn
	 Appendix C: 1D Poisson's problem
	References


