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Abstract

We present an elementary concentration bound for Gibbs measures whose log-likelihood is
a function of the empirical risk. This bound controls the distance between samples from
the (random) Gibbs measure and the minimizers of the population risk function. This
bound is a generalization of a recent inequality developed by Ramsay et al. (2024). As a
corollary, we obtain sample complexity bounds and bounds on the inverse temperature so
that the samples are within a prescribed error of the population value. The latter bound on
the inverse temperature is essentially sharp. We demonstrate our work on three canonical
classes of examples: classification of two component mixture models, robust regression, and
spiked matrix and tensor models.

1 Introduction

A basic task in learning theory is empirical risk minimization. Empirical risk minimization can be challenging:
for example, the empirical risk can be non-convex or involve combinatorial constraints. There is a vast
literature tackling these challenges from many perspectives.

One popular approach to circumvent the aforementioned issues is to (approximately) sample from a Gibbs
measure whose log-likelihood is proportional to the empirical risk, where the proportionality constant, called
the inverse temperature is a hyperparameter to be tuned. This perspective is the main motivation for
the popular method of “simulated annealing” (Kirkpatrick et al., 1983). That said, in recent years, this
perspective has motivated analyses for other algorithms such as Stochastic Gradient Langevin Dynamics
(Welling & Teh, 2011; Raginsky et al., 2017; Zhang et al., 2017) and Stochastic Gradient Descent (Mandt
et al., 2017; Cheng et al., 2020; Yu et al., 2021). Methods involving samples from Gibbs measures of
this type have been used to tackle a broad range of problems in learning theory ranging from supervised
and unsupervised learning (Aubin et al., 2018; Coja-Oghlan et al., 2018; Barbier et al., 2019), to inference
problems with combinatorial structure (Jerrum, 1992; Gamarnik et al., 2021; Ben Arous et al., 2020), to
differential privacy (McSherry & Talwar, 2007).

When studying such approaches there are two important, but distinct issues to consider: one is algorithmic in
nature, namely determining the run time or rate of convergence of the sampling scheme, and one is statistical
in nature, namely determining the quality of a sample from the Gibbs measure as an estimator. We focus
on the statistical aspects of the problem. For the algorithmic setting, see, e.g., (Mandt et al., 2017; Zhang
et al., 2017; Raginsky et al., 2017; Green et al., 2015) and the references therein.

There are many deep analyses for specific problems, e.g., (Lelarge & Miolane, 2017; Jagannath et al., 2020;
Bhattacharya & Martin, 2022). Statistical analyses taking a general perspective have focused mainly on
asymptotic theory (Ghosal et al., 2000; Shen & Wasserman, 2001; Chernozhukov & Hong, 2003; Grünwald
& Mehta, 2016; Syring & Martin, 2020; Bhattacharya & Martin, 2022; Bochkina, 2022). The goal of this
work is to complement the aforementioned asymptotic statistical theory by providing finite sample results.
In particular, we seek concentration bounds for these estimators with the aim of answering the following,
naive question: How large should the inverse temperature, β, and the sample size, n, be to guarantee that
a sample from the Gibbs measure is within a distance t of a minimizer of the population risk?
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In this paper, we provide an elementary, quantitative concentration bound on this distance. This bound
depends on the accuracy of the prior, the inverse temperature, and the number of samples, thereby allowing
us to provide a quantitative answer to the above question. As one might expect, this bound depends
on a quantification of the trade-off between the two inherent sources of randomness in the problem: the
“energy-entropy” trade off of the Gibbs distribution and the randomness in the underlying data. As a
direct consequence, we obtain a quantitative answer to the above question, namely bounds on the sample
complexity and the inverse temperature required to obtain a prescribed error level with high probability.
From a technical perspective, our bound is an extension of a concentration bound recently introduced by
Ramsay et al. (2024) in the context of differential privacy. As compared to that work, we have relaxed the
main conditions so as to allow the inequality to be used in a broad range of settings in statistical learning
theory.

We demonstrate our bound on three classes of learning problems: classification of a two component mixture
model, robust regression, and inference for spiked matrix and spiked tensor models. (Finally, we note here
that as shown in Remark 6.2 below, the bound we obtain is essentially sharp.)

2 A concentration inequality

Let us begin by stating our main concentration inequality, which is a generalization of a concentration
bound first shown by Ramsay et al. (2024). In particular, we present a bound which applies to learning
problems beyond differential privacy through relaxing the main conditions. Suppose that we are given n
i.i.d. observations, X1, . . . , Xn, from a probability measure µ on a complete separable metric space (X , d).
Given a loss function ℓ : Θ × X → R, we seek to estimate a minimizer of the population risk, namely
R(θ) = Eµℓ(θ,X). Here Θ is the parameter space - the set of candidate minimizers. Our estimate is given
by one draw from the Gibbs distribution,

ν
β
(dπ) ∝ exp(−βR̂n(θ))dπ, (2.1)

that is, θ̃n ∼ ν
β
, π is a prior on the unknown parameter, R̂n(θ) = n−1∑n

i=1 ℓ(θ,Xi) is the empirical risk
and β > 0 is a fixed hyperparameter called the inverse temperature. Note that if θ̃n concentrates around a
minimizer of the population risk, this generally implies bounds on the accuracy of other familiar estimates
based on the above Gibbs measure. For instance, if θ̃n concentrates around the minimizer of the population
risk then we immediately get a bound on

∫
θdν

β
(θ). Let A∗ = {θ : R(θ) = min

η
R(η)} denote the set of

(global) minimizers of R(θ), which is assumed to contain at least one point (but may contain more). Our
bound requires the following three conditions on the triple (ℓ, µ, π):
Condition 1. The function R(θ) has a minimizer and

∫
exp(−βR̂n(θ))dπ < ∞.

Condition 2. The function R(θ) is L-Lipschitz for some L > 0.
Condition 3. There exists t0 > 0 and constants c1, c2 > 0 which don’t depend on t, such that for all t ≥ t0,
it holds that

Pr
(

sup
θ∈Θ

∣∣∣R̂n(θ) −R(θ)
∣∣∣ ≥ t

)
≤ c1e

−c2nt
2
.

Condition 1 ensures the problem is well-defined. Condition 2 is a smoothness condition on the risk function.
This can be relaxed to a uniform continuity condition if needed, see (Ramsay et al., 2024) for a similar
modification. Condition 3 says that the empirical risk concentrates uniformly around the population risk.
This condition is in principle the hardest to check. It can be checked by various methods from concentration
of measure, such as Talagrand’s inequality for empirical processes (Talagrand, 1994) (see Section 4) or a
Logarithmic–Sobolev inequality (see Section 3). Note that Condition 3 can be relaxed at the expense of
slower concentration rates.

We also need the following important quantities to state our concentration result. For a set E ⊆ Θ, let
Br(E) = {θ : d(θ,E) ≤ r}. Specifically, the minimum excess risk is given by

α(t) = inf
θ∈Bc

t (A∗)
R(θ) − inf

θ∈Θ
R(θ) .
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It measures the minimum excess risk of a point θ that is at least t distance away from the minimizing set.
The calibration function is given by

ψπ(λ) = min
t>0

[λ · L · t− log π(Bt(A∗))] . (2.2)

The calibration function is small when the risk is smooth and there is a small neighborhood of the minimizing
set on which the prior is non-negligible. Lastly, the rate function of the prior

I(t) = − log π(Bct (A∗))

measures the rate of decay of the tails of the prior. Our main result is then as follows
Theorem 2.1. Suppose that the triple (ℓ, µ, π) satisfy Conditions 1–3 for some t0, L, c1, c2 > 0. Then, for
any α(t) ∨ I(t)/β ≥ 2t0, we have

Pr
(

max
θ∈A∗

d(θ̃n, θ) ≥ t

)
≤ c1e

−c2n[ 1
β I(t)∨α(t)]2

/4 + e−βα(t)/2−I(t)/2+ψπ(β). (2.3)

The left-hand term in equation 2.3 represents the error from using the empirical risk R̂n(θ) to approximate
the theoretical risk function R(θ), and the right-hand term represents the error from using a draw from the
Gibbs measure, rather than the minimizer of the empirical risk.

Note that by Markov’s inequality, this also implies a high-probability bound on the probability of ν
β
(Bt(A∗)c)

as well. Now, for quantities a, b, we write a ≳ b (a ≲ b) when there is a universal constant C > 0 such
that a ≥ Cb (a ≤ Cb). One can obtain sample complexity bounds from the above as follows: When
n ≳ log(1/γ)/c2α(t)2 the left-hand term is bounded by 1 − γ. Then, if one chooses β such that β ≳
(ψπ(β) ∨ log(1/γ))/α(t) the right-hand term is also bounded by 1 − γ. The problem then amounts to
bounding − log(π(Bt(A∗))) for small t, see Lemma 6.1. This is akin to the conditions on the prior necessary
to apply the results given by Shen & Wasserman (2001); Syring & Martin (2020).

3 Classification for a two component mixture model

As our first example, consider the basic task of supervised classification of a two component Gaussian mixture
model via a single-layer neural network. Suppose that we are given data of the form {(Xi, Yi)}ni=1 where Yi
are i.i.d. Rademacher random variables and Xi = YiZi where Zi ∼ N (v, I) are i.i.d. and v is a fixed, but
unknown, vector satisfying ∥v∥ = 1. We view Xi ∈ Rd as the features and Yi ∈ {−1,+1} as the class labels
and our goal is to develop a classifier for this problem. The standard approach is to develop such a classifier
via a single-layer neural network. More precisely, we take the loss function to be

ℓ(θ, (X,Y )) = − log σ(Y ⟨X, θ⟩),

where σ(x) = (1 + exp(−x))−1 is the usual sigmoid function and θ ∈ Sd−1. The corresponding classifier is
then obtained by a simple thresholding: ŷ(x) = (2 · 1(σ(⟨x, θ⟩) > 1/2) − 1).1

We check the conditions of Theorem 2.1 in turn: It is straightforward to check that the risk function R(θ)
is minimized at θ0 = v and that R(θ) is (

√
d + 1)-Lipschitz, so that Conditions 1 and 2 hold. Checking

Condition 3 is more involved, but it is a straightforward consequence of Gaussian concentration of measure
that holds with t0 =

√
d/n, c1 = 2 and c2 = 1/32. See Lemma A.3 below.

Let us now determine sufficient values of β and n such that ∥θ̃n − θ0∥ ≤ t with probability at least 1 − γ. To
this end, let W,W ′ ∼ N (0, 1) and W be independent of W ′, then we may write the minimum excess risk as

α(t) = E log σ(W + 1) − E log σ(W ′ + 1 − t2/2). (3.1)

1As θ is effectively the normal vector for the separating hyperplane for the data, we need only to consider θ ∈ Sd−1 as
rescaling θ will not affect the classifier after thresholding.
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(Note that this is a one-dimensional Gaussian integral and does not depend on d.) Next, note that, as shown
in Lemma A.1 below, for all d > 2 and all 0 < t < 2,

− log(π(Bt(θ0))) ≲ d log h(t ∧ 1),

where h(t) = (1−t2/4)/(t
√

1 − t2/4−t2/4). Combining this fact with Theorem 2.1 gives the following result.
Theorem 3.1. For the triple (ℓ, µ, π) as in the described two component mixture model, all d > 2 and t > 0,
∥θ̃n − θ0∥ ≤ t with probability at least 1 − γ provided that

n ≳
log(1/γ) ∨ d

α(t)2 β ≳
log(1/γ) ∨ d log

(
h(α(t)/8

√
d)
)

α(t) ,

where α is given in equation 3.1.

One way to interpret Theorem 3.1 is as follows. For fixed t and γ = e−d, we have that log h(α(t)/8
√
d) =

O(log d). Theorem 3.1 then says that taking β ≳ d log d/α(t) guarantees an error level of t with success
probability 1 − e−d, provided that the number of samples satisfies

n ≳ d/α(t)2.

By way of comparison, the standard result for logistic regression is the PAC learning bound (Hanneke, 2016).
One can show that in this case, the PAC learning bound can be written in terms of the minimum excess risk,
which says that the number of samples needed to produce an estimator with error level t with probability
at least 1 − e−d, is given by

n ≳ d/α(t)2.

Comparing the bounds shows that if β ≳ d log d/α(t), then drawing a sample from the Gibbs measure does
not increase the sample complexity of the estimator. Lastly, the bound given on β is tight up to logarithmic
factors in d, see Remark 6.2.

4 Robust Regression

For our remaining examples, we focus on problems that are non-convex. One standard problem of this type
is robust regression. Suppose that we observe n i.i.d. data points, {(Xi, Yi)}ni=1, such that Yi = X⊤

i θ0 + ϵi,
where Xi ∼ N (v, σ2

xI), ϵi ∼ Cauchy(0, 1) and θ0 is some unknown, fixed vector of regression coefficients.
In this case, the standard Ordinary Least Squares procedure will not perform well: if ℓ is the squared error
loss, then for all θ ∈ Rd, R(θ) = ∞. Similarly, the Huber loss function, commonly used in robust statistics
due to its convexity and robustness, will not perform well either since the corresponding population risk is
also infinite everywhere. A popular approach to resolving this issue is to work with the Tukey loss (Gross
et al., 1973), also known as Tukey’s biweight function

ℓ(θ, (X,Y )) =


κ2

6

(
1 −

[
1 −

(
X⊤θ−Y

κ

)2
]3
) ∥∥X⊤θ − Y

∥∥ < κ

κ2/6
∥∥X⊤θ − Y

∥∥ ≥ κ,

(4.1)

where κ > 0 is a hyperparameter. Under the Tukey loss, R(θ) is no longer degenerate. However, the Tukey
loss is not convex. It may thus be difficult to compute the corresponding empirical risk minimizer. Let us
then consider the performance of θ̃n as an estimator of the minimizer of R(θ).

We begin by checking the conditions of Theorem 2.1. It is immediate that the risk function R(θ) is minimized
at θ0 and is Lipschitz with constant L = 2κ(

√
d ∨ ∥v∥) so that Conditions 1–2 are satisfied. To check

Condition 3, we rely on the fact that the class of loss functions F = {ℓ(θ, ·) : θ ∈ Rd} has the property
VC(F ) = d + 1, where VC denotes the Vapnik–Chervonenkis dimension of the class of functions F , see
Lemma A.2. Observe that in this case, the empirical risk is a bounded empirical process with finite VC-
dimension, and so we can apply Talagrand’s inequality (Talagrand, 1994). This observation implies that
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Condition 3 is satisfied with c1 = d log(cn/d) for a universal constant c > 0 and c2 = 72/κ2, see equation A.1
and related discussion below for more detail. Now that the conditions of Theorem 2.1 have been checked,
it remains to compute the minimum excess risk. Suppose we take π = N (η, ρ2I). First, observe that if
W ∼ N (0, 1) and ϵ, ϵ′ ∼ Cauchy(0, 1) where ϵ is independent of ϵ′, then

α(t) = κ2

6

[
E

([
1 − ϵ2

κ2

]3

1 {|ϵ| < κ} −
[
1 − (Wσ2

xt+ ϵ′)2

κ2

]3

1
{

|Wσ2
xt+ ϵ′| < κ

})]
.

Again, this is a relatively simple expression which does not depend on the dimension. We are now in a
position to apply Theorem 2.1, which gives the following result.
Theorem 4.1. For the triple (ℓ, µ, π) as in the described robust regression problem and all t > 0 it holds
that ∥θ̃n − θ0∥ ≤ t with probability at least 1 − γ provided that

n ≳ κ2
log(1/γ) ∨ d log( κ

cα(t) ) ∨ 1)
α(t)2 and β ≳ κ

log(1/γ) ∨
[
∥θ0 − η∥2

/ρ2 + d log
(
κρ(d∨∥v∥)

α(t)

)]
α(t) .

Note that κ is typically chosen to be O(1) (Gross et al., 1973; Kafadar, 1983), and so suppose κ = O(1). If in
addition, t = O(1), ∥v∥ is polynomial in d and ∥θ0 − η∥/ρ = O(

√
d), then choosing the inverse temperature

such that β = O(d log d) implies the sample complexity is O(d log d). Under the Cauchy error model, the
sample complexity of the robust regression estimator is linear in d. Standard minimax theory provides a
lower bound on the sample complexity of subGaussian regression with identity covariance of O(d). Thereore,
we cannot hope to do much better O(d) in the more challenging case of Cauchy errors. Note that the same
analysis can be applied to nonlinear regression, where the conditional mean is given by f(X, θ), and the class
G = {f(·, θ); θ ∈ Θ} satisfies VC(G ) < ∞.

5 Spiked matrix and tensor models

Spiked matrix models (SMMs) and tensor models are popular statistical models used for a wide variety of
inference and compression tasks (Johnstone, 2001; Richard & Montanari, 2014; Anandkumar et al., 2014). In
these settings, however, the relevant loss functions are non-convex, which makes both information theoretic
analysis and computation challenging. Despite this, there have been many breakthroughs in these areas over
the past two decades using a variety of sophisticated techniques from random matrix theory and spin glass
theory, e.g., (Johnstone, 2001; Baik et al., 2005; Benaych-Georges & Nadakuditi, 2011; El Alaoui et al., 2020;
Jagannath et al., 2020; Perry et al., 2020). As a result, much is known about these models and the goal of
this section is not to present new results concerning spiked matrix and tensor models, but to demonstrate
that Theorem 2.1 can be used to quickly obtain information theoretic bounds for certain difficult problems
rather easily.

We begin by analyzing several spiked matrix models via Theorem 2.1, under various popular assumptions
on the unknown models, namely the spherical, Rademacher, and sparse settings. We can summarize these
as follows, let E ⊂ Sd−1

τ for some fixed τ > 0, where Sd−1
τ = {x ∈ Rd : ∥x∥ = τ}. Suppose we have observed

n i.i.d. random matrices {A(i)}ni=1 such that for some θ0 ∈ E and all i = 1, . . . , n,

A(i) = W (i) + λθ0θ
⊤
0

where λ > 0, and each W (i) is a d × d matrix whose elements are independent and satisfy W
(i)
jk = W

(i)
kj ∼

N (0, 1 + 1 {j = k}). In these problems, the goal is to produce an estimate of θ0. For (θ,A) ∈ E × Rd×d,
the appropriate loss function is ℓ(θ,A) = −θ⊤Aθ. Specific choices of E recover well-known problems: taking
E = Sd−1 gives the classical spherical setting, taking E = {±1}d gives the Rademacher prior and taking
E = {0, 1}d ∩ Sd−1

τ gives the sparse models.

We now turn to checking the conditions of Theorem 2.1. First, it is easy to see that R(θ) is minimized at
θ = θ0 and so Condition 1 is satisfied. Further, R(θ) = −λ(θ⊤θ0)2 which is 2λτ3-Lipschitz. For a matrix V
let ∥V ∥ be the operator norm of V and let W = n−1∑n

i=1 W
(i). Condition 3 holds by Gaussian concentration
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Table 1: Values of key quantities for different spiked matrix models. Note that if we let Ber(p) be the
Bernoulli measure with success probability p, then for p, q ∈ (0, 1) KL(p, q) is the Kullback-Leibler divergence
of Ber(p) with respect to Ber(q). Note that f(t) = α(t)/λ, see Theorem 5.1 for more details on f and g.

Classical Rademacher Sparse
L 2λ 2λd3/2 2λτ3

E Sd−1 {±1}d {0, 1}d ∩ Sd−1
τ

f(t) t4(1 − t2/4) 4⌈t2/2⌉(d− ⌈t2/2⌉) ⌈t2/2⌉(2τ2 − ⌈t2/2⌉)
g(d, τ, t) d log h(t4(1 − t2/4)/16 ∧ 1) KL(t8/d4, 1/2) · d log d τ2 log d

of measure, i.e., noting that
√
nW and W1 are identically distributed, we have that there exists universal

constants C, c > 0 such that for t ≥ C
√
d/n,

Pr
(
||W || ≥ t

)
≤ e−c n t2 .

Now, we are in a position to apply Theorem 2.1. Note that for t ∈ [0, τ ], the minimum excess risk is given
by

α(t) = λ τ4 − sup
{θ∈E : ∥θ−θ0∥>t}

λ (θ⊤θ0)2.

Observe that for each SMM, we can write α(t) = λf(t). Values of f for specific SMMs can be seen in Table
5. For each of these problems, we may take π to be uniform on E. For j ∈ {sph, rad, spa}, let πj be the
uniform measure on E as in the classical, the Rademacher, and the sparse spiked matrix models, respectively.
Similarly, let θ̃n,j denote a sample from equation 2.1, corresponding to the triple (ℓ, µ, πj) implied by for the
classical, the Rademacher, and the sparse spiked matrix models, respectively.
Theorem 5.1. For all j ∈ {sph, rad, spa}, for each triple (ℓ, µ, πj), there are positive functions fj , gj such
that for all t > 0 and all d > 2 it holds that ∥θ̃n,j − θ0∥ ≤ t with probability at least 1 − γ, provided that

n ≳
log(1/γ) ∨ d

λ2fj(t)2 , β ≳
log(1/γ) ∨ gj(d, τ, t)

λfj(t)
. (5.1)

Specific values of gj are given in Table 5. Much of the SMM literature has focused on the case where n = 1,
e.g., see Johnstone (2001); Perry et al. (2018); Gamarnik et al. (2021) and the references therein. One
important question is that of weak recovery: How small can λ be such that there is an estimator θ̂ of θ0
which has non-trivial correlation with θ0 as d → ∞? A well-known result, known as the BBP transition,
show that the smallest value of λ for which we can weakly recover θ0 is

√
d. We see that reflected in Theorem

2.1. Indeed, taking n = 1 in equation 5.1 gives an upper bound of O(
√
d log d) on the smallest λ for which an

estimate weakly recovers θ0. Another example can be taken from the sparse SMM. Suppose we assume that
τ2 = ρ d, which implies that d/τ2 = 1/ρ. Gamarnik et al. (2021) show that the smallest value of λ for which
we can weakly recover θ0 is O(

√
− log ρ/τ), which again matches the upper bound implied by equation 5.1

in Theorem 2.1.

We may also extend these results to Tensor principal component analysis. Specifically, define
W (1), . . . , W (n) ∈ (Rd)k such that each element i1, . . . , ik of each tensor j is such that W (j)

i1,...,ik
∼ N (0, 1),

and all elements are independent. Suppose instead that for some λ > 0 and θ0 ∈ Sd−1, we observe
A(i) = W (i) + λθ⊗k

0 where x⊗k denotes the kth tensor of a vector. In this problem, we have that

R(θ) = −λ⟨θ⊗k, θ⊗k
0 ⟩ ≥ −λ,

with equality at θ = θ0. Therefore, R(θ) is minimized at θ = θ0 and so Condition 1 is satisfied. Further, the
risk function is k λ-Lipschitz and so Condition 2 is also satisfied. For a tensor, V let ∥V ∥ be the operator
norm of V . Condition 3 holds again by Gaussian concentration. It follows from (Ben Arous et al., 2019, see
Lemma 4.7) that for all t > 0

Pr
(
∥W∥ ≥ t

)
≤ ed log k−nt2/8. (5.2)
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The next step is to compute the minimum excess risk, which, in this case, for t <
√

2,

α(t) = λ (1 − (1 − t2/2)k).

It is again intuitive to set the prior to be the uniform measure on Sd−1. We are now in a position to apply
Theorem 2.1, which results in the following
Theorem 5.2. For the triple (ℓ, µ, π) as in the described Tensor PCA model and all k ∈ N, t > 0, d > 2
and λ > 0, we have that ∥θ̃n − θ0∥ ≤ t with probability at least 1 − γ provided that

n ≳
log(1/γ) ∨ d log k

λ2(1 − (1 − t2/2)k)2 ,

β ≳
log(1/γ) ∨ d log h((1 − (1 − t2/2)k)/8k)

λ(1 − (1 − t2/2)k) .

Since our bounds are general, they are necessarily not sharp. Nevertheless, they can be seen to match the
correct order of growth as shown by other authors: Letting λ∗ be the threshold below which weak recovery
is impossible, it is easy to see that Theorem 2.1 implies that λ∗ ≤ K

√
d log k, for a constant K >

√
2 which

matches scaling in k and d obtained by Perry et al. (2020).

6 Technical details

We now turn to proving the technical results in the manuscript.

Proof of Theorem 2.1. The proof is in the same spirit as that of Ramsay et al. (2024). For brevity, let

Dn,t =
{

max
θ0∈A∗

∥θ̃n − θ0∥ > t

}
, and for any y > 0, let En,y =

{
sup
θ∈Θ

|R̂n(θ) −R(θ)| < y

}
. Note that from

Condition 3, we have that for any y > t0 it holds that

Pr
(

max
θ0∈A∗

∥θ̃n − θ0∥ > t

)
≤ c1e

−c2ny
2

+ Pr (En,y ∩Dn,t) . (6.1)

By definition, we have that

1
β

log Pr (En,y ∩Dn,t) = 1
β

log
∫
En,y

∫
Bc

t (A∗) exp
(
β R̂n(θ)

)
dπ∫

X exp
(
β R̂n(θ)

)
dπ

dµ. (6.2)

On En,y it holds that

exp (−β R(θ)) exp(−β y) ≤ exp (−β R̂n(θ)) ≤ exp (−β R(θ)) exp (β y). (6.3)

We can then apply equation 6.3 to the right-hand side of equation 6.2, which yields

1
β

log Pr (Dn,t ∩ En,y) ≤ 1
β

log

∫
Bc

t (A∗) exp (−βR(θ))dπ∫
X exp (−βR(θ))dπ

+ 2y. (6.4)

The next step is to bound the denominator below. For any r > 0, Condition 2 implies that

1
β

log
∫

X
exp (−βR(θ))dπ ≥ 1

β
log
∫
Br(A∗)

exp (−βR(θ))dπ

= R(θ0) + 1
β

log
∫
Br(A∗)

exp (−β(R(θ) −R(θ0)))dπ

≥ R(θ0) − L · r + β−1 log π(Br(A∗)).
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Maximizing the right-hand side of the above, and recalling the definition of equation 2.2, yields

1
β

log
∫

X
exp (−βR(θ))dπ ≥ R(θ0) − ψ(β)/β.

We can then plug this lower bound into equation 6.4, resulting in

1
β

log Pr (Dn,t ∩ En,y) ≤ 1
β

log
∫
Bc

t (A∗)
exp (−βR(θ))dπ −R(θ0) + ψ(β)/β + 2y

≤ sup
θ∈Bc

t (A∗)
R(θ) −R(θ0) + 1

β
log π(Bct (A∗)) + ψ(β)/β + 2y

= −α(t) − I(t)/β + ψ(β)/β + 2y,

where the last line follows from the definitions of α(t) and I(t). Rewriting the last inequality gives that

Pr (Dn,t ∩ En,y) ≤ exp (−βα(t) − I(t) + ψ(β) + 2βy) . (6.5)

Now, setting y = f(t, β) = α(t)/2 ∨ I(t)/2β and plugging equation 6.5 into equation 6.1 results in

Pr
(

max
θ0∈A∗

∥θ̃n − θ0∥ > t

)
≤ c1e

−c2nf(t,β)2
+ Pr

(
Dn,t ∩An,f(t,β)

)
≤ c1e

−c2nf(t,β)2
+ e−βα(t)−I(t)+ψ(β)+2βf(t,β). (6.6)

Now, note that
α(t) + I(t)/β − f(t, β) ≥ α(t)/2 + I(t)/2β.

Plugging this inequality into equation 6.6 results in

Pr
(

max
θ0∈A∗

∥θ̃n − θ0∥ > t

)
≤ c1e

−c2nf(t,β)2
+ e−βα(t)/2−I(t)/2+ψ(β).

The following lemma is useful for proving the remaining theorems.
Lemma 6.1. If the Conditions of Theorem 2.1 hold then, for all d > 0 and all t > 0 satisfying α(t)∨I(t)/β ≥
2t0 we have that supA∗ d(θ̃n, θ0) ≤ t with probability at least 1 − γ provided

n ≥ log(e/2c1γ)
c2α(t)2 , and β ≳

log(1/γ) ∨ − log π(Bα(t)/8L(A∗)
α(t) . (6.7)

Proof. The aim is to show that Pr
(
maxθ0∈A∗ d(θ̃n, θ0) ≥ t

)
≤ γ. Focusing on the left-hand term, when

n ≥ log(e/2c1γ)
c2α(t)2 .

we have that
c1e

−c2n[ 1
β I(t)∨α(t)]2

/4 ≤ γ/2.

Next, note that together, ψπ(β) ≤ βα(t)/4 and β ≥ 4 log(1/γ)/α(t) imply that

e−βα(t)/2−I(t)/2+ψπ(β) ≤ γ/2.

Thus, it remains to find a condition on β such that ψπ(β) ≤ βα(t)/4. To this end, recall that by definition
ψπ(β) = minr>0[β · L · r − log π(Br(A∗)]. Taking r = α(t)/8L in the right-hand expression above gives
ψπ(β) ≤ βα(t)/8 − log π(Bα(t)/8L(A∗)). It is then enough to have

β ≥ 8
− log π(Bα(t)/8L(A∗))

α(t) .

8
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Remark 6.2 (Sharpness of bound). We note here that our bound on the inverse temperature required is in a
sense sharp. To see this, suppose for simplicity that we are interested in a high-dimensional inference task
where we seek to infer an unknown vector on the unit sphere θ0 ∈ Sd−1. Suppose that our loss satisfies
ℓ(θ,X) ≤ 1 and that π is the uniform measure on Sd−1. This set-up captures,e.g., the PCA and logistic
regression settings above, and our arguments show that the sampling approach works provided β ≲ d. This
is sharp: By an elementary bound, νβ(A) ≤ e2βπ(A) for any A ⊆ Sd−1. Taking A = {θ : ⟨θ, θ0⟩ > t}, a
standard concentration bound yields π(A) ≲ e−c(t)d for some c(t) > 0 so that νβ(A) ≲ e2β−c(t)d Thus if
β = o(d), νβ(A) → 0, which would contradict the performance of the sampling-based estimator
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