
Advancing Tool-Augmented Large Language Models:
Integrating Insights from Errors in Inference Trees

Sijia Chen1,2,∗ Yibo Wang1,2,∗ Yi-Feng Wu3 Qing-Guo Chen3

Zhao Xu3 Weihua Luo3 Kaifu Zhang3 Lijun Zhang1,4,2,†

1National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
2School of Artificial Intelligence, Nanjing University, Nanjing, China

3Alibaba International Digital Commerce 4Pazhou Laboratory (Huangpu), Guangzhou, China
{chensj, wangyb, zhanglj}@lamda.nju.edu.cn

{yixin.wyf, qingguo.cqg, changgong.xz,
weihua.luowh, kaifu.zkf}@alibaba-inc.com

Abstract

Tool-augmented large language models (LLMs) leverage tools, often in the form
of APIs, to improve their reasoning capabilities on complex tasks. This enables
them to act as intelligent agents interacting with the real world. The recently
introduced ToolLLaMA model by Qin et al. [2023] utilizes the depth-first search-
based decision tree (DFSDT) mechanism for multi-step reasoning with 16000+
real-world APIs, effectively enhancing the performance of tool-augmented LLMs
compared to traditional chain reasoning mechanisms. However, their approach
only employs successful paths from decision trees (also called inference trees) for
supervised fine-tuning (SFT), missing out on the potential learning opportunities
from failed paths. Inspired by this, we propose an inference trajectory optimiza-
tion framework based on preference learning to address this limitation. We first
introduce a novel method for constructing preference data from tree-like expert
trajectories, which leverages the previously ignored failed explorations in the de-
cision trees. Specifically, we generate a step-wise preference dataset, ToolPref-
erence, from the ToolBench dataset for tool learning. In the subsequent training
phase, we first fine-tune the LLM with successful tool-usage expert trajectories
and then apply direct preference optimization (DPO) with ToolPreference to up-
date the LLM’s policy, resulting in our ToolPrefer-LLaMA (TP-LLaMA) model.
This approach not only enhances the utilization of original expert data but also
broadens the learning space of the model. Our experiments demonstrate that by
obtaining insights from errors in inference trees, TP-LLaMA significantly outper-
forms the baselines across almost all test scenarios by a large margin and exhibits
better generalization capabilities with unseen APIs. At the same time, TP-LLaMA
has also demonstrated superior reasoning efficiency compared to the baselines,
making it more suitable for complex tool-usage reasoning tasks.

1 Introduction

In recent years, large language models (LLMs) have exhibited impressive capabilities in various ar-
eas, including language understanding and generation, multi-modal content learning and reasoning,
and even embodied intelligence task processing [Brown et al., 2020, Zeng et al., 2023, Alayrac et al.,

∗Equal contribution. Work done during the internship at Alibaba International Digital Commerce.
†Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Figure 1: Our Inference Trajectory Optimization Framework.

2022, Li et al., 2023, Lu et al., 2024, Cao et al., 2024a,b, Mazzaglia et al., 2024]. Despite these no-
table strengths, these models still face significant challenges, such as a lack of access to real-time
information [Komeili et al., 2021] and difficulties in precise mathematical tasks [Patel et al., 2021,
Lu et al., 2023b]. The development of tool-augmented LLMs tackles these challenges by enabling
LLMs to interact with external tools (often in the form of APIs), significantly enhancing their ca-
pabilities. This advancement allows LLMs to serve as efficient intermediaries between users and
a large ecosystem of applications. Notably, tool-augmented LLMs based on the ChatGPT [Brown
et al., 2020] and GPT-4 [Achiam et al., 2023] have achieved outstanding results by using few-shot
or zero-shot prompts to activate the LLM’s inherent tool-usage abilities [Deng et al., 2023, Lin et al.,
2024, Lu et al., 2023a]. Despite this progress, some studies demonstrate that open-source LLMs
still exhibit a significant gap in their capacity to utilize external tools compared to state-of-the-art
(SOTA) closed-source models like GPT-4 [Liu et al., 2024, Wang et al., 2024b]. To bridge this gap,
aligning these open-source LLMs with tool-usage downstream tasks is essential.

Currently, most efforts to align open-source LLMs with tool-usage downstream tasks rely on su-
pervised fine-tuning (SFT) with expert trajectory datasets, which trains LLMs to learn strategies
for subsequent actions based on previous actions and observations [Patil et al., 2023, Schick et al.,
2023]. Early studies in this field typically have limitations such as a restricted variety of APIs, the
reliance on single-tool scenarios, and the use of simple reasoning methods [Wei et al., 2022, Yao
et al., 2023, Patil et al., 2023]. The recent work by Qin et al. [2023], which focuses on the scene
of LLM’s multi-step reasoning with external tools, solves the above limitations. They introduce
an instruction tuning dataset called ToolBench, which includes over 16, 000 real-world APIs and
various realistic instructions, along with expert trajectories annotated by ChatGPT based on a depth-
first search-based decision tree (DFSDT) reasoning mechanism. They then perform SFT training on
LLaMA with this dataset to create the ToolLLaMA model, which shows remarkable performance.
However, ToolLLaMA’s training is still based on expert behavior cloning, potentially limiting explo-
ration of the target space and leading to suboptimal strategies. Additionally, although their expert
trajectories are structured as DFS trees, only successful trajectories are utilized in the SFT training,
which neglects valuable insights from failed attempts and results in low data utilization.

As the saying goes, “a fall into a pit, a gain in your wit”, effective human learning involves not
only drawing lessons from success but also from failures. Inspired by this, we propose a new in-
ference trajectory optimization framework for developing tool-augmented LLMs as illustrated in
Figure 1, which enhances the tool learning process by incorporating previously ignored failure ex-
ploration information via preference learning. Specifically, using the tree-like expert trajectories
from ToolBench [Qin et al., 2023], we first parse each pair of branch nodes along the successful
trajectory in the decision tree into a preference sample pair, thereby constructing a novel step-wise
tool-usage preference dataset named ToolPreference. Subsequently, after conducting SFT training
on the pre-trained LLM with successful trajectories, we employ the direct preference optimization
(DPO) method [Rafailov et al., 2023] with the ToolPreference dataset to further align the LLM with
tool-usage downstream tasks, and thus obtain our model, named ToolPrefer-LLaMA (TP-LLaMA).
Our strategy improves the utilization of expert data and simultaneously broadens the learning space.

2

Our experiments are conducted on the test tasks from ToolBench. To evaluate the performance, we
adopt two metrics: the pass rate, which measures the probability of the model successfully providing
an answer within limited steps; and the win rate, which quantifies the likelihood that the evaluator
will prefer the model’s responses. From the experiment results, we have the following findings:

• Across all test scenarios, TP-LLaMA consistently surpasses ToolLLaMA and other base-
lines, with an average pass rate improvement of at least 12% and a win rate that outperforms
nearly all other models by an average of 4%. These results demonstrate that learning from
failed attempts can significantly enhance the decision-making ability of LLMs. Addition-
ally, our model shows superior generalization to unseen APIs.

• Efficiency experiments show that our model requires an average of only 22.62 steps for
DFSDT inference, compared to 32.06 steps for the SFT model. This enhancement stems
from our method’s ability to avoid unnecessary branch explorations in DFSDT reasoning.

• Our ablation experiments verify that the effectiveness of our preference dataset and infer-
ence trajectory optimization framework has nothing to do with the base model itself. Better
results can still be obtained after replacing the base model with Mistral-7B [Jiang et al.,
2023], Qwen1.5-7B [Bai et al., 2023], and Gemma-7B [Team et al., 2024].

In summary, this work aims to enhance the performance of LLMs on multi-step reasoning with
external tools by integrating insights from errors in tree-like reasoning trajectories and employing
step-wise preference pairs for preference learning. Our key contributions include: (i) The careful
design and construction of a new tool-usage preference dataset — ToolPreference, providing a valu-
able resource for the community; (ii) The proposal of using ToolPreference to optimize the LLM’s
tool-usage ability with the DPO training, along with the development of the TP-LLaMA model;
(iii) Extensive experimental evaluations and in-depth analyses of the TP-LLaMA model, providing
evidence of its effectiveness and validating its performance across various dimensions.

2 Related work

In this section, we briefly review recent progress on tool-augmented large language models and the
development of preference learning.

Tool-augmented large language models. Over the past year, extensive research has been dedi-
cated to developing tool-augmented LLMs, which exhibit improved reasoning abilities across vari-
ous tasks by integrating external tools [Patil et al., 2023, Lin et al., 2024, Lu et al., 2023a, Schick
et al., 2023]. The workflow for tool-augmented LLMs typically involves four key stages: task plan-
ning, tool selection, tool calls, and response generation. Early research mainly uses few-shot or
zero-shot prompting methods to activate LLM’s inherent tool-usage abilities, often employing GPT
as the LLM agent to manage several external tools such as AI models, web search, Python, and
more [Shen et al., 2023b, Lu et al., 2023a]. While GPT performs well with external tools, open-
source LLMs like LLaMA often struggle with direct tool usage and need additional task alignment.
Therefore, subsequent research often utilizes instruction-tuning datasets annotated with tool calls
to train open-source models, enhancing their ability to use tools. At the same time, these studies
continue to explore a wider range of tools and scenarios [Schick et al., 2023, Patil et al., 2023].

One of the most comprehensive efforts in this field is by Qin et al. [2023]. They initially collect
16, 464 real-world APIs across 49 categories, then utilize ChatGPT to automatically generate in-
structions that could invoke these APIs, and annotate expert trajectories to create a high-quality
instruction tuning dataset named ToolBench. During the annotation, they employ the DFSDT rea-
soning mechanism to broaden the search space and enhance reasoning capabilities. By fine-tuning
LLaMA on ToolBench, they develop ToolLLaMA, which has shown a compelling capability to
handle both single-tool and complex multi-tool instructions.

Preference learning Preference learning uses human preferences from feedback data to assist
decision-making. The earliest research in this field employs specially designed neural networks
to help agents optimize action choices based on structured human guidance in programming lan-
guages [Maclin and Shavlik, 1996]. Subsequent studies shift focus to learning from numerical re-
wards provided by humans and performing reinforcement learning based on the prediction of these

3

rewards [Knox, 2012, Isbell et al., 2006, Knox and Stone, 2008]. This approach finds applications
in areas like embodied intelligence [Pilarski et al., 2011, Suay and Chernova, 2011] and dialogue
systems [El Asri et al., 2016]. The introduction of preference-based reinforcement learning marks a
key milestone in the field, which uses qualitative human preferences, often in the form of rankings,
to guide the optimization of policy models [Akrour et al., 2011, Cheng et al., 2011]. Following
this idea, Christiano et al. [2017] propose reinforcement learning from human feedback (RLHF),
where a reward model is derived from human preferences to enhance reinforcement learning. This
technique is later extended to natural language generation tasks [Kreutzer et al., 2018, Ziegler et al.,
2019], advancing the integration of preference learning with LLM research [Ouyang et al., 2022].

3 Preliminaries

In this section, we start by formally defining the problem setup, and then we introduce key knowl-
edge about preference learning methods, which is relevant to our approach.

3.1 Problem setup

In this work, we use an iterative paradigm for the LLM’s multi-step reasoning with external tools,
where the model selects each tool call based on the previous response, rather than pre-planning all
tool calls at the start. Formally, we define it as a state transition process. The environment consists of
a set of available tools T = {T1, T2, . . . , Tn}, each with specific functionalities accessible through
API calls. The task begins with an initial instruction I , usually consisting of a user query and a
system prompt. At each reasoning step t, the LLM processes the current context St, defined as:

St = {I,Ht}
where Ht is the previous history, which includes the API decisions made{A1, · · · , At−1}, and the
API responses received {R1, · · · , Rt−1}:

Ht = {(A1, R1), . . . , (At−1, Rt−1)}
The LLM then generates an action decision At based on this context, specifying both the tool Ti ∈ T
to use and its parameters. After the tool executes, the response Rt is generated and used to update
the context. The reasoning process continues until the LLM determines that the task is complete and
produces a final output O to answer the original query or gives up the task.

3.2 Direct Preference Optimization

Preference learning has gained growing attention in LLM research. Its main goal is to opti-
mize model outputs based on human (or expert) preferences, better aligning the model’s behavior
with the expectations of real-world applications. Assume there is a preference dataset defined as
D = {(x(i), y

(i)
w , y

(i)
l)}i=1,...,|D|, where x(i) denotes the i-th prompt, y(i)w and y

(i)
l denote the cor-

responding preferred and dispreferred output respectively. Moreover, the notation yw ≻ yl | x
indicates that yw is preferred than yl for prompt x. Because the true distribution of human prefer-
ences is inaccessible, we assume it is generated by a latent reward model r∗(x, y), where higher
rewards indicate stronger preferences. Then, according to Rafailov et al. [2023], the human prefer-
ence distribution p∗ can be captured by the Bradley-Terry (BT) model [Bradley and Terry, 1952]:

p∗ (y1 ≻ y2 | x) = exp (r∗ (x, y1))
exp (r∗ (x, y1)) + exp (r∗ (x, y2))

= σ (r∗ (x, y1)− r∗ (x, y2)) ,

where σ is the logistic function. Obviously, we can estimate the parameters of the reward model via
maximum likelihood estimation (equivalent to minimizing the negative log-likelihood.):

LR(rϕ,D) = − E(x,yw,yl)∼D [logσ (rϕ (x, yw)− rϕ (x, yl))] , (1)

where rϕ is a parameterized reward model.

To optimize the inference trajectories of LLM based on human preference, a popular method in
recent LLM research is Reinforcement Learning from Human Feedback (RLHF) [Christiano et al.,
2017, Ouyang et al., 2022]. In the RL phase of this method, the optimization goal is

maxπθ
Ex∼D,y∼πθ(y|x) [rϕ(x, y)]− βDKL [πθ (y | x) ∥πref (y | x)] , (2)

4

where rϕ is the reward model learned before, πθ is the policy model we need to optimize, β is a
weighting parameter that controls the deviation from the base reference policy model πref (i.e., the
LLM after SFT training). In practice, πθ is also initialized to the LLM after SFT. RLHF will use
reinforcement learning methods (such as PPO [Schulman et al., 2017]) to optimize (2) and update
the LLM’s strategy, with rϕ(x, y) providing reward feedback. Additionally, some research in multi-
step reasoning scenarios trains process reward models to evaluate each step instead of the entire
output [Ma et al., 2023, Wang et al., 2024a]. However, RLHF incurs significant computational
overhead, long training times, and potential instability [Shen et al., 2023a, Rafailov et al., 2023],
making it less suitable for general tool-usage tasks.

Therefore, we choose a more convenient and faster approach that can also effectively align the
model’s preferences — Direct Preference Optimization (DPO) [Rafailov et al., 2023], which elim-
inates the need to learn the reward model and directly uses preference data to optimize the LLM.
Specifically, the optimal solution of (2) can be written as

πr (y | x) = 1

Z(x)
πref (y | x) exp

(
1

β
r(x, y)

)
, (3)

where Z(x) =
∑

y πref (y | x) exp
(

1
β r(x, y)

)
is the partition function [Rafailov et al., 2023]. We

rearrange (3) to express r(x, y) in terms of πr and πref:

r(x, y) = βlog
πr (y | x)
πref (y | x)

+ βlogZ(x). (4)

Substitute (4) into (1), we can finally get the learning goal of DPO

LDPO(πθ, πref) = −E(x,yw,yl)∼D

[
logσ

(
βlog

πθ (yw | x)
πref (yw | x)

− βlog
πθ (yl | x)
πref (yl | x)

)]
,

where πθ is a parametrized policy that we need to optimize. As a result, the optimization objective
of DPO avoids additional learning of the reward model and the RL process while maximizing the
final reward, which is more suitable for our general tool-usage scenarios.

4 Our method

In this section, we introduce our inference trajectory optimization framework, beginning with an
overview of the framework, followed by a description of the preference data construction process.

4.1 The framework

Our framework is composed of two key stages: dataset construction and training. In the dataset
construction stage, we create a tool-usage preference dataset, named ToolPreference, which is de-
rived from the tree-like expert trajectories in Toolbench [Qin et al., 2023]. The specific process for
constructing this dataset will be detailed in section 4.2.

Remark 1 It is important to emphasize that our preference data construction approach is not lim-
ited to Toolbench and can be adapted to any tree-structured multi-step instruction-tuning dataset,
offering flexibility for various applications.

In the training stage, we first perform SFT training on a pre-trained LLM using a resampled version
of the instruction-tuning data from Toolbench (refer to Remark 2 for the resampling process). SFT
training has been commonly adopted in previous research to enhance tool-augmented LLMs. How-
ever, mere cloning expert behavior through SFT is insufficient, as this method fails to adequately
explore the environment, and can result in suboptimal strategies. To address this, after the SFT train-
ing, we further perform DPO training on the model with the ToolPreference dataset. This additional
preference learning enhances the models reasoning capabilities when interacting with external tools
and aligns its decision-making preferences with human preferences.

4.2 Preference data construction

Before introducing our preference data construction method, we first describe the dataset structure
and expert trajectory format used in ToolBench [Qin et al., 2023].

5

• Dataset structure. ToolBench consists of two main components: API information data
and instruction tuning data. The API information data is sourced from RapidAPI Hub3

and includes 3,451 tools across 49 categories, with a total of 16,464 APIs (as each tool
can have multiple APIs). Each API entry contains detailed information such as the name,
description, HTTP method, URL, required and optional parameters, and executable code
snippets for API calls. This comprehensive data enables LLMs to perform few-shot infer-
ence with effective API calls. The instruction-tuning data includes various single-tool or
multi-tool instructions as well as corresponding annotated expert trajectories, generated in
a self-instruction method by ChatGPT.

• Expert trajectory format. While traditional LLMs often use sequential reasoning meth-
ods like chain-of-thought (CoT) [Wei et al., 2022], which follow a single path to comple-
tion, ToolBench adopts a depth-first search (DFS) reasoning approach. As shown in the
left half of Figure 2, expert trajectories in ToolBench are structured as decision trees with
each tree node representing an LLM decision about an API call. Based on the tree struc-
ture, ToolBench implements DFS reasoning using two techniques. First, it defines two
additional functions: one is “Finish with final answer”, where the LLM concludes it has
gathered enough API responses to provide a correct answer and terminate the reasoning
process, and the other is “Finish with giving up”, where the LLM feels unable to proceed
with the task, abandons the current path and returns to a previous node. Second, diversity
prompts are used to expand the search space. When expanding child nodes, the LLM will
be prompted with information about previously explored child nodes of the same layer,
and explicitly encouraged to generate different ones. Consequently, the LLM is allowed to
either abandon the current path and restart from a previous step or proceed along a more
promising path, exploring until an answer is reached or the node limit is reached.

We employ the second release of ToolBench4, which includes over 120, 000 expert trajectories. Our
approach is designed based on the motivation of improving data utilization. Although the tree-
like expert trajectories in ToolBench extensively search the answer space, only successful paths
are used in their training, neglecting valuable insights from failure paths. To address this, we extract
preference decision pairs from each tree-like expert trajectory. After filtering out trajectories without
failed exploration branches, we explore two different construction methods:

• Path-wise means using an entire success path and an entire failure path in the same de-
cision tree to form a preference pair. As shown in the upper right part of Figure 2,
⟨0, 9, 12, 13, 14, 15⟩ is the success path of the decision tree, and ⟨0, 1, 2⟩, ⟨0, 3, 4, 5, 6⟩,
⟨0, 3, 7, 8⟩, ⟨0, 9, 10, 11⟩ are 4 failure paths, so their Cartesian product can constitute a
path-wise preference dataset, where ≻ denotes the left part is preferred than the right part.

• Step-wise means using each branch node along the success path in the tree and its corre-
sponding pair of child nodes (which must contain a child node on the success path) to con-
struct a preference pair. As shown in the lower right part of Figure 2, ⟨0, 9, 12, 13, 14, 15⟩
is the success path of the decision tree, while 0 and 9 are nodes with branches along the
success path. Therefore, ⟨0, 9⟩ ≻ ⟨0, 1⟩, ⟨0, 9⟩ ≻ ⟨0, 3⟩, and ⟨0, 9, 12⟩ ≻ ⟨0, 9, 10⟩ can
respectively form a preference pair.

Although it is intuitive and common to use path-wise preference samples, this approach is not well-
suited to our task scenario. Theoretically, it may limit the model to only differentiate between correct
and incorrect final responses to specific instructions, resulting in poor generalization with unseen
instructions or tools. From an engineering perspective, learning preferences for an entire path at
once is inconsistent with the model’s reasoning mechanism of inferring the next API call based on
the response of the previous API execution each time, which makes it inherently unsuitable for the
DFSDT reasoning mechanism.

In contrast, the step-wise design highlights the differences between each reasoning step, providing
the model with more fine-grained process supervision. Theoretically, this method can better ad-
just the model’s reasoning process and enhance its generalization performance. It is also a more
suitable fit for implementation within the DFSDT reasoning framework. Consequently, we create
69, 393 pairs of preference samples from ToolBench in a step-wise manner. Each pair is formatted

3https://rapidapi.com/hub
4https://github.com/OpenBMB/ToolBench.git

6

Figure 2: Depth-first search-based decision tree and two preference data construction methods

as {Instruction, Input, Output}. The Instruction includes the system prompt, detailing the
DFSDT reasoning task and the relevant API documentation. The Input contains the user query
and the reasoning history up to the current step, while the Output presents a preferred and a dispre-
ferred reasoning step for the given input. Additionally, to prevent information leakage, we carefully
remove any diversity prompts from each node’s information during parsing.

Remark 2 To ensure a rigorous comparison between models with and without preference learning
in subsequent experiments, we also do not directly use the instruction-tuning dataset provided by
Toolbench during the SFT phase. Instead, we filter out expert trajectories lacking failed exploration
branches, as these could not be parsed into preference samples, and resampled the remaining data
to create our SFT training set. This ensures the training data distribution remains consistent across
models, regardless of whether preference learning is applied.

Our ToolPreference is currently one of the few large-scale preference data sets suitable for a wide
range of tasks in the tool-usage domain. We believe that it provides valuable reference data for
future research on improving the tool-usage capabilities of LLMs.

5 Experiments

In this section, we investigate the performance of our inference trajectory optimization framework.
We first introduce the experiments settings in Section 5.1. We then present the main results in
Section 5.2, the efficiency experiments in Section 5.3, and the ablation experiments in Section 5.4.

5.1 Experiments settings

Evaluation metrics. Since our model uses APIs from the online platform RapidAPI Hub, there
may be changes such as version updates or service termination over time, making it difficult to
provide a fixed solution path for each test instruction. Following Qin et al. [2023], we use pass rate
and win rate as evaluation metrics in our experiments. The pass rate represents the proportion that
the model successfully gives answers within a certain number of reasoning actions (set to 200 in our
experiment)5. Specifically, a sample is considered passed if the reasoning trajectory finishes with
the “Finish with final answer” API call. Additionally, we filter out samples that yield meaningless
answers using a predefined set of feature keywords, such as “sorry”, “apologize”, etc. The win
rate measures the likelihood that the solution path provided by the test model is preferred over the

5During our experiment process, we noticed that ToolBench has been updated with a revised definition of
pass rate [Qin et al., 2024]. The definition we use in the main text follows the original version, while the revised
definition and corresponding results will be provided in Appendix B.1

7

Table 1: Main Experiment Results. Avg represents the average pass rate or win rate of the 6 test
scenarios. A win rate higher than 50% means the model performs better than ChatGPT+DFSDT.

Pass Rate

Model G1-Ins. G1-Tool G1-Cat. G2-Ins. G2-Cat. G3-Ins. Avg

ChatGPT 0.52 0.55 0.60 0.51 0.51 0.21 0.48
Davinci 0.49 0.47 0.45 0.40 0.27 0.29 0.40
ToolLLaMA 0.54 0.60 0.62 0.47 0.54 0.17 0.49
LLaMA with SFT 0.47 0.53 0.72 0.48 0.63 0.35 0.53
TP-LLaMA (ours) 0.55 0.65 0.80 0.62 0.67 0.61 0.65

Win Rate

Model G1-Ins. G1-Tool G1-Cat. G2-Cat. G2-Ins. G3-Ins. Avg

ChatGPT - - - - - - -
Davinci 0.37 0.37 0.35 0.35 0.29 0.54 0.38
ToolLLaMA 0.55 0.53 0.57 0.56 0.52 0.68 0.57
LLaMA with SFT 0.54 0.51 0.56 0.65 0.57 0.81 0.61
TP-LLaMA (ours) 0.56 0.59 0.54 0.70 0.64 0.86 0.65

reference solution path for the same instruction. We use the answers given by ChatGPT+DFSDT as
the reference solution paths and employ ChatGPT to determine preference6.

Training settings. For the 2-epoch SFT training, we randomly sampled 11,142 instances from the
expert-annotated data in ToolBench after removing those without failed exploration branches. The
batch size is 16 and the learning rate is 1e-5 during SFT training. For the 1-epoch DPO training, we
randomly sample 8, 202 preference data pairs from our ToolPreference dataset, the batch size is 8,
the learning rate is 1e-6 and the β in (2) is set to 0.5. It is important to note that our sampling is
performed at the instruction level, which means that samples corresponding to the same instruction
are either all included in the training set or none are included. We provide a detailed explanation of
our design choices for training hyperparameters in Appendix A.1. All our experiments are conducted
on a single machine equipped with the 8 NVIDIA A100 GPUs with 80G memory.

Testing settings. We investigate six test scenarios same as Qin et al. [2023]: G1-Cat., G1-Ins., G1-
Tool, G2-Cat., G2-Ins., and G3-Ins.. The specific meanings are as follows: (1) G1: instructions that
only use a single tool; (2) G2: instructions that use intra-category multi-tools; (3) G3: instructions
that use inter-category multi-tools; (4) Cat. (Category): unseen tools that belong to the unseen
category of tools in the training data; (5) Ins. (Instruction): unseen instructions for the same set
of tools in the training data; (6) Tool: unseen tools that belong to the same category of tools in the
training data. Each test scene contains 200 test samples, except G3-Ins., which contains 100 test
samples. The six test scenarios have different task difficulties and generalization challenges, which
can well reflect the comprehensive performance of models.

Baselines. We compare our model with several models without preference learning. Among them,
we select the expert model ChatGPT and OpenAI Text-Davinci-003 (Davinci for short) as baselines.
In addition, we also show the results of ToolLLaMA and the model trained by SFT using our resam-
pled SFT training set (LLaMA with SFT for short) for comparison. Note that all models here are
combined with DFSDT for inference. In addition, regarding the ToolLLaMA results, we directly
use the reasoning answers of ToolLLaMA on test sets provided by ToolBench’s GitHub repository
to calculate pass rates and win rates.

5.2 Main results

We employ LLaMA-2-7B as the base model of our training framework and finally obtain our model,
named ToolPrefer-LLaMA (TP-LLaMA). The context length of LLaMA-2-7B is extended to 8192

6The ChatGPT version we used in the experiments in the main text is gpt-3.5-turbo-16k.

8

Table 2: Efficiency Results of TP-LLaMA. Imp denotes the improvement of TP-LLaMA over
LLaMA with SFT in terms of the average steps.

Model G1-Ins. G1-Tool G1-Cat. G2-Ins. G2-Cat. G3-Ins. Avg Imp

LLaMA with SFT 32.82 34.60 31.45 31.98 35.05 26.44 32.06 -
TP-LLaMA (ours) 24.54 24.19 23.85 23.98 23.53 15.61 22.62 29.44%

tokens to accommodate our tool-usage reasoning tasks. The main results are shown in Table 1. We
have the following important observations:

• TP-LLaMA significantly outperforms LLMs without preference learning in terms of pass
rate, demonstrating the best performance across all six test scenarios, with an average im-
provement of over 12% compared to models not optimized using preference data.

• Regarding win rate, TP-LLaMA also exhibits competitive performance, just 3% below
ToolLLaMA in the G1-Cat. scenario, while achieving the best results in all other scenarios.

• Furthermore, TP-LLaMA shows strong performance in more challenging task scenarios
such as G2-Cat., G2-Ins., and G3-Ins., maintaining effectiveness similar to that in simpler
tasks. Notably, in the G3-Ins. scenario, TP-LLaMA’s pass rate increased by over 26%,
proving that our DPO training process using preference data significantly enhances the
model’s ability to handle complex multi-tool tasks.

Although we use the provided reasoning answers of ToolLLaMA from ToolBench’s GitHub repos-
itory to calculate its rates, the results indeed differ from those reported in their paper [Qin et al.,
2023]. This may be due to the reasoning answers version not matching the one used in their paper
or differences in the evaluation environment settings. However, it’s important to emphasize that our
results remain valid and reliable. We apply consistent settings across all models, so their relative dif-
ferences are meaningful. Overall, our experimental results indicate that through preference learning,
TP-LLaMA can master various tool-usage instructions better and exhibits stronger generalization
capabilities to unseen tools, categories, and instructions.

5.3 Efficiency Evaluation

We also evaluate the inference efficiency of TP-LLaMA on six test scenarios and employ the average
number of DFSDT inference steps required for samples that ended with the Finish function as the
metric. From Table 2, we can find that LLaMA with SFT requires an average of 32.06 steps for
reasoning, while our TP-LLaMA only requires an average of 22.62 steps of reasoning in all test
scenarios, with an improvement of 29.44%. These results clearly demonstrate that the inference
efficiency of TP-LLaMA is remarkably superior to that of the model trained only with success
trajectories. This advantage arises from our step-wise preference data, which allows the model to
identify the most optimal decisions at each step of reasoning through DPO training. As a result,
the model avoids the exploration of unnecessary sub-optimal branches in the decision tree, thereby
increasing reasoning speed and efficiency.

5.4 Ablation experiments

In the ablation experiments, to verify the effectiveness of our framework, we further replace LLaMA-
2-7B with other base models, including Mistral-7B, Qwen1.5-7B, and Gemma-7B. The results are
shown in Table 3 and Table 4.

From Table 3, no matter which base model is used, training on preference data can always bring
gains to the performance of the model, which verifies the model-independent effectiveness of our
framework. Specifically, in terms of pass rates, models that have learned from expert errors im-
prove by at least 8% on average compared to those that only receive training on success trajectory
information. Similarly, in terms of win rates, models with insights from preference data generally
outperform those without preference learning. Table 4 further confirms that our method significantly
improves model inference efficiency by a large margin, up to an average of 33.35%.

9

Table 3: Ablation Performance Experiment Results. Avg represents the average pass rate or win
rate of the 6 test scenarios. A win rate higher than 50% means the model performs better than
ChatGPT+DFSDT.

Pass Rate

Model G1-Ins. G1-Tool G1-Cat. G2-Ins. G2-Cat. G3-Ins. Avg

Mistral with SFT 0.70 0.43 0.42 0.53 0.46 0.27 0.47

TP-LLaMA (Mistral) 0.71 0.53 0.55 0.70 0.64 0.57 0.62

Qwen with SFT 0.69 0.51 0.51 0.66 0.55 0.49 0.57

TP-LLaMA (Qwen) 0.77 0.53 0.60 0.72 0.61 0.65 0.65

Gemma with SFT 0.67 0.44 0.49 0.47 0.44 0.29 0.47

TP-LLaMA (Gemma) 0.80 0.48 0.61 0.70 0.65 0.68 0.65

Win Rate

Model G1-Ins. G1-Tool G1-Cat. G2-Cat. G2-Ins. G3-Ins. Avg

Mistral with SFT 0.52 0.47 0.55 0.61 0.61 0.72 0.58

TP-LLaMA (Mistral) 0.53 0.50 0.57 0.62 0.64 0.74 0.60

Qwen with SFT 0.53 0.52 0.52 0.64 0.66 0.75 0.60

TP-LLaMA (Qwen) 0.54 0.54 0.58 0.66 0.67 0.81 0.63

Gemma with SFT 0.58 0.54 0.53 0.50 0.62 0.73 0.58

TP-LLaMA (Gemma) 0.61 0.57 0.58 0.65 0.67 0.75 0.64

Table 4: Ablation Efficiency Experiment Results. Imp denotes the improvement of TP-LLaMA over
LLaMA with SFT in terms of the average steps.

Model Average Number of Steps in One Successful Path

G1-Ins. G1-Tool G1-Cat. G2-Ins. G2-Cat. G3-Ins. Avg Imp

Mistral with SFT 28.92 26.65 30.22 25.69 26.58 25.24 27.22 -
TP-LLaMA (Mistral) 25.30 25.01 23.36 23.51 20.74 16.42 22.39 17.74%

Qwen with SFT 35.74 34.66 36.85 32.74 36.18 37.93 35.68 -
TP-LLaMA (Qwen) 25.12 23.83 24.49 23.84 26.92 22.18 24.40 31.61%

Gemma with SFT 27.49 22.77 24.10 18.70 20.52 21.19 22.46 -
TP-LLaMA (Gemma) 17.15 13.88 15.91 13.63 13.30 15.94 14.97 33.35%

6 Conclusion and future work

In this work, we propose a novel inference trajectory optimization framework that leverages prefer-
ence learning to enhance the performance of tool-augmented LLMs. We first built a new step-wise
tool-usage preference dataset – ToolPreference — based on tree-like expert trajectories in Tool-
Bench, converting previously ignored failed explorations in decision trees into valuable training
data. After initial SFT training on the LLM, we use ToolPreference for DPO training to further re-
fine the LLM’s strategy, resulting in our TP-LLaMA model. Our extensive comparative experiments
prove that TP-LLaMA significantly outperforms the baseline models in nearly all test scenarios by
learning from single-step errors in inference trees. TP-LLaMA also exhibits superior generaliza-
tion capabilities and efficiency. Furthermore, ablation experiments confirm the model-independent
effectiveness of our framework. In future work, we will try to explore tool-learning research with
more complex, human-like reasoning mechanisms, and incorporate preference learning for further
optimization. We also aim to extend our research to multimodal scenarios to evaluate the broader
effectiveness of our approach.

10

Acknowledgments and Disclosure of Funding

This work was partially supported by NSFC (U23A20382, 62122037), and the Collaborative Inno-
vation Center of Novel Software Technology and Industrialization.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint, arXiv:2303.08774, 2023.

Riad Akrour, Marc Schoenauer, and Michele Sebag. Preference-based policy learning. In Pro-
ceedings of the 2011 European Conference on Machine Learning and Knowledge Discovery in
Databases (ECML PKDD), pages 12–27, 2011.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual lan-
guage model for few-shot learning. In Advances in Neural Information Processing Systems 35
(NeurIPS), pages 23716–23736, 2022.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint, arXiv:2309.16609, 2023.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems 33 (NeurIPS), pages
1877–1901, 2020.

Qinglong Cao, Zhengqin Xu, Yuntian Chen, Chao Ma, and Xiaokang Yang. Domain-controlled
prompt learning. In Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI),
pages 936–944, 2024a.

Qinglong Cao, Zhengqin Xu, Yuntian Chen, Chao Ma, and Xiaokang Yang. Domain prompt learning
with quaternion networks. In Proceedings of the 41st IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 26637–26646, 2024b.

Weiwei Cheng, Johannes Fürnkranz, Eyke Hüllermeier, and Sang-Hyeun Park. Preference-based
policy iteration: Leveraging preference learning for reinforcement learning. In Proceedings of
the 2011 European Conference on Machine Learning and Knowledge Discovery in Databases
(ECML PKDD), pages 312–327, 2011.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Advances in Neural Information Processing
Systems 30 (NIPS), pages 4302–4310, 2017.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. In Advances in Neural Information Processing
Systems 36 (NeurIPS), pages 28091–28114, 2023.

Layla El Asri, Bilal Piot, Matthieu Geist, Romain Laroche, and Olivier Pietquin. Score-based inverse
reinforcement learning. In Proceedings of the 15th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 457–465, 2016.

Charles Lee Isbell, Michael Kearns, Satinder Singh, Christian R Shelton, Peter Stone, and Dave
Kormann. Cobot in lambdamoo: An adaptive social statistics agent. Autonomous Agents and
Multi-Agent Systems, 3(13):327–354, 2006.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint, arXiv:2310.06825, 2023.

11

W Bradley Knox and Peter Stone. Tamer: Training an agent manually via evaluative reinforcement.
In Proceedings of the 7th IEEE International Conference on Development and Learning (ICDL),
pages 292–297, 2008.

William Bradley Knox. Learning from human-generated reward. Ph.D. dissertation, 2012.

Mojtaba Komeili, Kurt Shuster, and Jason Weston. Internet-augmented dialogue generation. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL),
pages 8460 – 8478, 2021.

Julia Kreutzer, Joshua Uyheng, and Stefan Riezler. Reliability and learnability of human bandit
feedback for sequence-to-sequence reinforcement learning. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (ACL), pages 1777–1788, 2018.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In Proceedings of the 40th
International Conference on Machine Learning (ICML), pages 19730–19742, 2023.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brahman, Shiyu Huang, Chandra Bhagavatula,
Prithviraj Ammanabrolu, Yejin Choi, and Xiang Ren. Swiftsage: A generative agent with fast
and slow thinking for complex interactive tasks. In Advances in Neural Information Processing
Systems 37 (NeurIPS), page to appear, 2024.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. In Proceedings of the
12th International Conference on Learning Representations (ICLR), 2024.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language mod-
els. In Advances in Neural Information Processing Systems 36 (NeurIPS), pages 43447–43478,
2023a.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and Kai-Wei Chang. A survey of deep learning
for mathematical reasoning. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (ACL), pages 14605–14631, 2023b.

Shiyin Lu, Yang Li, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang, and Han-Jia Ye. Ovis:
Structural embedding alignment for multimodal large language model. arXiv preprint, arXiv:
2405.20797, 2024.

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan, Pengfei Liu, Yang You, and Hongxia Yang.
Let’s reward step by step: Step-level reward model as the navigators for reasoning. arXiv preprint,
arXiv:2310.10080, 2023.

Richard Maclin and Jude W Shavlik. Creating advice-taking reinforcement learners. Machine
Learning, 22(1):251–281, 1996.

Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt, Aaron Courville, and Sai Rajeswar. Multimodal
foundation world models for generalist embodied agents. In Proceedings of the 41st International
Conference on Machine Learning (ICML) Multi-modal Foundation Model meets Embodied AI
Workshop, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. In Advances in Neural Information Processing Systems 35
(NeurIPS), pages 27730–27744, 2022.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple
math word problems? In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies (NAACL), pages
2080–2094, 2021.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint, arXiv:2305.15334, 2023.

12

Patrick M Pilarski, Michael R Dawson, Thomas Degris, Farbod Fahimi, Jason P Carey, and
Richard S Sutton. Online human training of a myoelectric prosthesis controller via actor-critic
reinforcement learning. In Proceedings of the 2011 IEEE International Conference on Rehabili-
tation Robotics (ICORR), pages 1–7, 2011.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
16000+ real-world apis. arXiv preprint, arXiv:2307.16789v1, 2023.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
dahai li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating large language models to mas-
ter 16000+ real-world APIs. In Proceedings of the 12th International Conference on Learning
Representations (ICLR), 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In Ad-
vances in Neural Information Processing Systems 36 (NeurIPS), pages 53728–53741, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models
can teach themselves to use tools. In Advances in Neural Information Processing Systems 36
(NeurIPS), pages 68539–68551, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint, arXiv:1707.06347, 2017.

Tianhao Shen, Renren Jin, Yufei Huang, Chuang Liu, Weilong Dong, Zishan Guo, Xinwei Wu,
Yan Liu, and Deyi Xiong. Large language model alignment: A survey. arXiv preprint,
arXiv:2309.15025, 2023a.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hug-
ginggpt: Solving ai tasks with chatgpt and its friends in hugging face. In Advances in Neural
Information Processing Systems 36 (NeurIPS), pages 38154–38180, 2023b.

Halit Bener Suay and Sonia Chernova. Effect of human guidance and state space size on interactive
reinforcement learning. In Proceedings of the 20th IEEE International Symposium on Robot and
Human Interactive Communication (Ro-Man), pages 1–6, 2011.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint, arXiv:2403.08295, 2024.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhi-
fang Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL),
pages 9426–9439, 2024a.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji. Mint:
Evaluating llms in multi-turn interaction with tools and language feedback. In Proceedings of the
12th International Conference on Learning Representations (ICLR), 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In Advances
in Neural Information Processing Systems 35 (NeurIPS), pages 24824–24837, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In Proceedings of the 11th Interna-
tional Conference on Learning Representations (ICLR), 2023.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. In Proceedings
of the 11th International Conference on Learning Representations (ICLR), 2023.

13

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint, arXiv:1909.08593, 2019.

14

Appendix

A Experimental details

In this section, we supplement some details of the experiments in the main text, including the training
details in Appendix A.1, the API information format in Appendix A.2, and the ToolPreference
sample example in Appendix A.3.

A.1 Details for training

Training hyperparameters We provide an explanation of our design choices regarding training
hyperparameters, specifically the sizes of the training and test sets. We first filter 42,192 tree-like
expert trajectories with branching nodes from Toolbench, which leads to 69,393 DPO samples and
184,816 SFT samples after processing (as each instruction may correspond to multiple samples).
After allocating a small part as a validation set, we sample training sets of different sizes based
on these samples. The sampling methods we tried include “by instruction” and “by sample”. For
sampling by instruction, the size of the SFT training set ranges from 2,500 to 10,000 queries, and
the size of the DPO training set ranges from 5,000 to 32,192 queries, yielding nine combinations.
For sampling by sample, the size of SFT varies from 10,000 to 183,561, and the size of DPO varies
from 10,000 to 68,951, yielding seven combinations. We conduct small-scale tests based on these
different training settings and find that increasing the size may lead to decreased model performance
in scenarios with strong generalization, such as G3-ins. (e.g., with settings {SFT: 44,412, DPO:
41,226}, the pass rate drops to 0.36), possibly due to overfitting. Consequently, we select the set
{SFT: 11,142, DPO: 8,202} in our final experiments.

Computation time consumption With 8 NVIDIA A100 GPUs, our SFT training phase takes an
average of 4.6 hours, and the DPO training phase takes an average of 3.2 hours. In the inference
phase, each API call takes about 3.4 seconds, and each query takes about 48.7 seconds. Computation
time varies due to task complexity, network conditions, and API service status.

A.2 Details for API Information

Below we provide a detailed document of the API collected in ToolBench to help readers understand
the format and content of API information.

API Information Sample

{
"name": "Get Character By ID",
"url": "Get individual character by ID\n Options :\n\n-

Limit \ u2192 Limit amount of responses received
\n- Step \ u2192 Skip amount of characters ",

" method ": "GET",
" required_parameters ": [

{
"name": "id",
"type": " NUMBER ",
" description ": "",
" default ": ""

}
],
" optional_parameters ": [],
"code": " import requests ",
" test_endpoint ": {

"err": " Please enter a valid number for the character id."
}

}

15

A.3 Details for ToolPreference

Here we show an example preference pair in ToolPreference. For the sake of brevity, we have
omitted some less important information, including some rules in the instruction, API parameter
information, and some response content.

Preference Sample Pair

Instruction

You are AutoGPT , you can use many tools(functions) to do
the following task Specifically , you have access to
the following APIs:

{"name": " get_amazon_product_details_for_abiola_amazon_data
_scraper ", " description ": "This is the subfunction for tool

‘abiola_amazon_data_scraper ’, you can use this tool. The
description of this function is: This endpoint get the
general product description of any amazon product .", "
parameters ":}

{"name": " get_amazon_product_reviews_for_abiola_amazon_data
_scraper ", " description ": "This is the subfunction for tool

‘abiola_amazon_data_scraper ’, you can use this tool. The
description of this function is: This endpoint gives you
the review of the product you enter .", " parameters ":
......}

{"name": " get_amazon_product_offer_for_abiola_amazon_data
_scraper ", " description ": "This is the subfunction for tool

‘abiola_amazon_data_scraper ’, you can use this tool. The
description of this function is: This endpoint gets the
offer of any amazon product .", " parameters ":}
......

Input

{"from": "user", " value ": "Can you fetch the product
details , reviews , and offers for the product with ID
B08L5NP6NG ? Also , provide me with the search results for
the product ‘Apple MagSafe Charger ’. Begin !"}

{"from": " assistant ", "value ": " Thought : Action :
get_amazon_product_details_for_abiola_amazon_data_scraper
Action Input : {‘productid ’: ‘B08L5NP6NG ’}"}

{"from": " function ", " value ": "{‘name ’: ‘Apple MagSafe
Charger ’, ‘product_information ’: {‘brand ’: ‘Visit the Apple

Store ’, ‘brand_url ’: ‘https :// www. amazon .com/ stores /Apple /
page /77 D9E1F7 -0337 -4282 -9 DB6 - B6B8FB2DC98D ?ref_=ast_bln ’, ‘
full_description ’: ‘’, ‘pricing ’: ‘$39 .00’,} "}

{"from": " assistant ", "value ": " Thought : Action :
get_amazon_product_reviews_for_abiola_amazon_data_scraper
Action Input : {‘productid ’: ‘B08L5NP6NG ’}"}

{"from": " function ", " value ": " "}

16

Preference Sample Pair

Output

{"from": " assistant ", "value ": " Thought : Action :
get_amazon_product_offer_for_abiola_amazon_data_scraper
Action Input : {‘productid ’: ‘B08L5NP6NG ’}"}

{"from": " assistant ", "value ": " Thought : Action :
get_amazon_product_details_for_abiola_amazon_data_scraper
Action Input : {‘productid ’: ‘B08L5NP6NG ’}"}

B Supplementary experiment results

In this section, we first supplement the experiments on another defined pass rate in Appendix B.1.
Then we conduct a qualitative analysis of our method in Appendix B.2, giving a specific case study.

B.1 Another definition of pass rate

In the second version of ToolBench [Qin et al., 2024], a new pass rate definition using GPT-assisted
evaluation is introduced. For each query, it first checks if the “Finish with Final Answer” API is
called; if not, it’s considered a failure. If it is, GPT evaluates whether the answer resolves the query.
If successful, it is marked as a pass. If not, GPT further assesses whether the query is solvable
with the available APIs. If it isn’t, it is still considered a pass; otherwise, it is marked as a failure.
Due to the ToolBench API server being offline temporarily, we use our own RapidAPI accounts to
access APIs for evaluation experiments with the new pass rate definition. To maintain consistency
in API status, we utilize ToolLLaMA’s open-source model7 to perform reasoning on the test sets,
instead of reusing the reasoning answers from its GitHub repository. Similarly, we re-run tests for
other models using our RapidAPI accounts. We employ gpt-3.5-turbo-16k and gpt-3.5-turbo-1106
as GPT evaluators, with the results shown in Table 5.

First, TP-LLaMA still outperforms the models without preference learning, further validating the
effectiveness of our method. However, the absolute pass rates depend heavily on the specific GPT
version. We observe notable differences in preferences and consistency across GPT versions. After
repeating the evaluation of each sample 7 times, we find that gpt-3.5-turbo-1106 is more likely to
mark a sample as passed, while gpt-3.5-turbo-16k tends to judge it as not passed. This difference
mainly stems from how each version assesses whether a query is solvable. Additionally, gpt-3.5-
turbo-16k shows greater consistency across the 7 evaluations, meaning it is more likely to produce
the same inference repeatedly. This highlights the importance of selecting the appropriate GPT
version for evaluation, as relative scores may be more meaningful than absolute ones.

Furthermore, we observe that the gap between TP-LLaMA and ToolLLaMA narrows under the new
evaluation. We believe this is due to two factors: (1) The models have different preferences formed
during their respective training processes. TP-LLaMA tends to avoid giving up on reasoning and
attempts partial answers, whereas ToolLLaMA is more likely to abandon a task entirely, leading to
a complete failure. However, this gap narrows due to the use of GPT to evaluate whether the task
is solvable. (2) During this supplementary experiment, our RapidAPI accounts have access limits
(some APIs even can only be accessed 5 times per month per account), reducing the number of
valid samples in the test sets. This particularly affects complex multi-tool reasoning tasks, where
TP-LLaMA usually excels, making its performance gains appear smaller.

Additionally, the results we report for ToolLLaMA are still lower than those in Qin et al. [2024],
likely due to shifts in the distribution of real-world APIs, which may make certain test samples
unsolvable. Moreover, some features ToolLLaMA learned from past environments may not fully

7https://huggingface.co/ToolBench/ToolLLaMA-2-7b-v2

17

Table 5: New Pass Rate Experiment Results

Model G1-Ins. G1-Tool G1-Cat. G2-Ins. G2-Cat. G3-Ins. Avg

gpt-3.5-turbo-16k

ToolLLaMA 0.29 0.35 0.40 0.33 0.29 0.25 0.32
LLaMA with SFT 0.22 0.29 0.39 0.28 0.29 0.28 0.29
TP-LLaMA (ours) 0.27 0.37 0.48 0.35 0.36 0.35 0.36

gpt-3.5-turbo-1106

ToolLLaMA 0.35 0.42 0.39 0.63 0.59 0.68 0.51
LLaMA with SFT 0.33 0.40 0.40 0.64 0.55 0.60 0.50
TP-LLaMA (ours) 0.37 0.40 0.41 0.65 0.63 0.69 0.53

align with current conditions, resulting in reduced performance. In the future, we can further explore
ways to enhance the models performance stability in evolving environments.

B.2 Case study

We further illustrate the effectiveness of preference learning in improving the tool-usage capabilities
of LLMs with a case study focused on the G3-Ins. scenario. To begin, we present the query along
with the relevant API documentation

Case Study: Query and Relevant APIs

Query: I’m organizing a film festival and I’m looking for award-winning films. Can you
search for videos related to "award-winning" on Vimeo? Additionally, fetch the related
people in the "film festival" category to invite them as judges. Finally, provide me with a
streaming link for a YouTube video with the ID "UxxajLWwzqY".

Related API Documentation (parameter information is omitted):

Name: getrelatedchannels_for_vimeo
Description: Get Related Channels.

Name: searchvideos_for_vimeo
Description: Search for videos.

Name: getrelatedpeople_for_vimeo
Description: Get a list of related people for a category.

Name: download_stream_for_ytstream_download_youtube_videos
Description: Stream or download info.

Name: Finish
Description: If you believe that you have obtained a result that can answer the task, please
call this function to provide the final answer. Alternatively, if you recognize that you are
unable to proceed with the task in the current state, call this function to restart. Remember:
you must ALWAYS call this function at the end of your attempt, and the only part that will
be shown to the user is the final answer, so it should contain sufficient information.

During our experiments, the first three APIs above are temporarily inaccessible since they are real-
world. So the best response to this query is a YouTube video link with the ID ‘UxxajLWwzqY’,
completing part of the task. We then briefly present the reasoning trajectories from TP-LLaMA and
LLaMA with SFT. Note that each reasoning path is limited to at most 4 API calls here.

18

Case Study: Reasoning Trajectories from TP-LLaMA

The reasoning tree of TP-LLaMA includes 5 paths and we show the successful path below.

Step 1 call [searchvideos_for_vimeo] with arguments {"format": "json", "query":
"award-winning"}, get the response "...The consumer key passed was not valid..."

Step 2 call [getrelatedchannels_for_vimeo] with arguments {"category": "film
festival", "format": "json"}, get the response "...The consumer key passed was not valid..."

Step 3 call [download_stream_for_ytstream_download_youtube_videos] with
arguments {"is_id": "UxxajLWwzqY"}, get the response "...‘id’: ‘UxxajLWwzqY’, ‘title’:
‘Icona Pop - I Love It (feat. Charli XCX) [OFFICIAL VIDEO]’, ..."

Step 4 call [Finish] with arguments {"return_type": "give_answer", "final_answer":
"The streaming link for the YouTube video with ID UxxajLWwzqY is [link]..."}, get the
response "successfully giving the final answer"

Case Study: Reasoning Trajectories from LLaMA with SFT

The reasoning tree of LLaMA with SFT includes 8 paths. There is no successful path since
the model finally gives up. All the paths are listed below (the numbers in brackets represent
the unique id of each node).

Path 1 searchvideos_for_vimeo (1) -> searchvideos_for_vimeo (2) ->
searchvideos_for_vimeo (3) -> getrelatedpeople_for_vimeo (4)

Path 2 searchvideos_for_vimeo (1) -> searchvideos_for_vimeo (2) ->
searchvideos_for_vimeo (3) -> getrelatedchannels_for_vimeo (5)

Path 3 searchvideos_for_vimeo (1) -> searchvideos_for_vimeo (2) ->
searchvideos_for_vimeo (6) -> getrelatedpeople_for_vimeo (7)

Path 4 searchvideos_for_vimeo (1) -> searchvideos_for_vimeo (2) ->
searchvideos_for_vimeo (6) -> searchvideos_for_vimeo (8)

Path 5 searchvideos_for_vimeo (1) -> searchvideos_for_vimeo (9) ->
searchvideos_for_vimeo (10) -> getrelatedpeople_for_vimeo (11)

Path 6 searchvideos_for_vimeo (1) -> searchvideos_for_vimeo (9) ->
searchvideos_for_vimeo (10) -> searchvideos_for_vimeo (12)

Path 7 searchvideos_for_vimeo (1) -> searchvideos_for_vimeo (9) ->
searchvideos_for_vimeo (13) -> Finish with give up and restart (14)

Path 8 searchvideos_for_vimeo (1) -> getrelatedchannels_for_vimeo (15)
-> Finish (16)

We observe that because LLaMA with SFT repeatedly tries inaccessible APIs (possibly using differ-
ent arguments) without first accessing the accessible YouTube API, it finally mistakenly chooses to
give up reasoning and is unable to give a partial answer. In contrast, TP-LLaMA successfully calls
the YouTube API to provide the best possible answer while using fewer inference steps.

19

C Limitations

While this work demonstrates promising results, it also has some limitations. First, the performance
of our approach relies on the quality of the decision tree. We parse preference pairs from trajectories
that experts naturally explore, though the quality of these trajectories still requires evaluation. Man-
ually introducing suboptimal branches at specific nodes might provide a more effective approach.
Additionally, our method currently does not compare preferences between steps on failure paths,
suggesting room for improved data utilization. Finally, our approach requires inputting all histori-
cal information along the path at each reasoning step, which can be time-consuming. Implementing
summary steps during reasoning could help streamline interaction text, assist the model in extracting
relevant information, and improve reasoning efficiency.

20

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations in Appendix C.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

21

Justification: Our work does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have fully disclosed all the information needed to reproduce the main
experimental results in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

22

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Our data and code are currently undergoing the companys privacy review.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all the training and test details in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported because it would be too computationally in our
experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provide sufficient information on the computer resources needed to
reproduce the experiments in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research we conduct in our papers always complies in all respects with
the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We think there is no societal impact of our work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

24

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not carry a high risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In section 5, we have cited the original paper. We have also stated the version
of the asset is used with a URL.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

25

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [No]

Justification: Our data and code are currently undergoing the companys privacy review.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

26

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

27

	Introduction
	Related work
	Preliminaries
	Problem setup
	Direct Preference Optimization

	Our method
	The framework
	Preference data construction

	Experiments
	Experiments settings
	Main results
	Efficiency Evaluation
	Ablation experiments

	Conclusion and future work
	Experimental details
	Details for training
	Details for API Information
	Details for ToolPreference

	Supplementary experiment results
	Another definition of pass rate
	Case study

	Limitations

