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Abstract— Reliable and robust navigation of autonomous
mobile robots in indoor environments faces significant chal-
lenges due to the absence of GPS, visual degradation, repetitive
structures, illumination variations, and low texture. These
factors adversely affect localization systems. Current robots
often use a uniform navigation approach, regardless of the
varying localization uncertainties within different indoor en-
vironments. In this paper, we propose a holistic, active vision-
based path planning method that produces efficient trajectories,
aiming to minimize localization error and enhance navigation
performance. Specifically, we utilize a 3D model of an indoor
environment to derive an Artificial Potential Field (APF) with
its associated localizability scores that encapsulate both visual
features’ richness and fiducial markers’ placement. APF is
employed to direct a Kinematically Constrained Bi-directional
Rapidly Exploring Random Tree (KB-RRT) planner towards
the calculation of optimal paths, prioritizing high localization
areas. Subsequently, we use an online weight-adaptive MPC-
based approach that, apart from robust path planning and
obstacle avoidance, guides the robot towards areas with the
most robust visual features in order to further refine the lo-
calization error. The proposed framework has been extensively
tested in both simulation and real-world experiments with a
mobile robot in a visually challenging indoor environment.

I. INTRODUCTION

Autonomous mobile robots tailored for hazardous envi-
ronments, such as construction sites [1] or subterranean
regions [2], offer the potential to automate laborious tasks
that are currently performed by humans. Accurate esti-
mation of the robot’s position is essential for ensuring
navigation robustness and operational effectiveness. Visual
localization methodologies have seen widespread adoption in
autonomous mobile robotic systems due to the affordability
of camera sensors combined with the richness of informa-
tion that can be obtained from image data [3]. However,
visual localization retains severe challenges, especially in
indoor unstructured, featureless or repetitive environments.
The utilization of fiducial markers [4] achieves the reduction
of visual ambiguity in space, while more recent active
localization techniques [5] aim to select the appropriate
navigation actions that maximize the SLAM capabilities.
Typical path planning methods [6] are still widely used in
robotic applications and occupancy grid representations suffi-
ciently cover the needs for complex navigation requirements
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Fig. 1: Holistic view of proposed components: The input 3D
model is featured in (1), while the corresponding localiz-
ability scores are shown in (2). The arrows in (3) delineate
repulsive forces of the APF, whereas the RRT-based global
path planning is showcased in (4).

in stationary areas with adequate geometrical and visual
features. However, changing environments with dynamic
actors alleviate the performance of such approaches, enabling
active and perception-aware methodologies [7] [8] to have a
critical role in the operation of robotic platforms.

Apart from dynamic scene elements, visual environmental
features can directly affect real-time navigation efficiency,
through the degradation of localization accuracy. To this
end, additional contextual information should be taken into
account for the optimization of path planning methods, such
as the areas where the robot’s field of view lacks descriptive
visual features or the placement of fiducial markers. The
generation of virtual replicas for physical entities, commonly
mentioned as Digital Twins, has undergone great advance-
ments [9] and offer a holistic representation of an environ-
ment. Their analysis can provide the necessary contextual
information required. Recently, Huang et al. [10] presented
the first framework that utilizes a 3D scene model for the
extraction of optimal marker poses and the calculation of
localizability scores within the operating environment.

Our method extends the outcomes of the above work
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through the utilization of the localizability analysis for path
planning purposes of a mobile robotic platform in a known
environment, as shown in Fig. 1. Specifically, we investigate
the conversion of localizability scores calculated by [10]
into an APF that can facilitate a kinematically constrained,
bi-directional RRT-based path planning algorithm. The lo-
calizability analysis provides insights on robot localization
capabilities related to the static environment’s visual features
and fiducial markers’ placement, however the dynamic nature
of the environments must also be taken into consideration.
For this reason, we apply real-time corrections to the initial
plan via an adaptive MPC-based local planner. This module
dynamically adjusts its weights depending on the presence
and consistency of visually trackable features. The objective
is to facilitate precise robot navigation within regions char-
acterized by minimal visual localization uncertainty, while
simultaneously following the initial plan and avoiding any
potential obstacles.

The contributions of this paper are summarized as follows:
• A kinematically constrained, bi-directional RRT-based

algorithm that utilizes the localizability scores of a
known environment in an APF format.

• An MPC-based local planner, enhanced by an active
robust feature tracking mechanism for localization en-
hancement.

The rest of the paper is organized as follows: In Section II,
the current state-of-the-art on active robot path planning is
presented. Section III provides a comprehensive description
of the proposed method, while Section IV showcases the
effectiveness of our approach with real-world and simulation
experiments. Finally, Section V draws the conclusions of the
present work.

II. RELATED WORK

Typical sampling-based robot path planning approaches
[11] have met significant improvement in recent years, par-
ticularly regarding kinematic constraints [12], computational
efficiency [13], and optimized obstacle avoidance capabili-
ties [14]. Yet, the overall operation of autonomous mobile
robots, and specifically the precise execution of computed
paths requires robust localization performance. To this end,
active vision-based path planning methodologies for boosting
localization efficiency emerge to address this challenge [5].

Several works integrate classical path planning approaches
with active vision mechanisms for localization enhancement
[15]. Specifically, in [3] the authors propose an RRT*-based
path planner that utilizes online-computed visual feature
points and map points in order to generate optimal paths
that minimize tracking failure for visual SLAM systems. The
authors in [16] developed an APF-based local planner that
conducts an active visual navigation scheme, based on visual
feature extraction, that improves the localization accuracy.
Dabin et al. [17] presented a topology-guided path plan-
ning method that enhances localization performance, thereby
improving navigation precision. Each path is evaluated in
respect to path length and visual information richness, re-
quiring a pre-generated global map. A real-time perception-

aware motion planning method is proposed in [18], which
aims to improve robot navigation through the utilization
of the localization uncertainty in the environment. In [19]
an active localization approach that utilizes a topometric
graph is developed. Moreover, the authors in [20] establish
an MPC-based framework that simultaneously minimizes
SLAM uncertainty and creates collision-free trajectories. In
[21] the planning strategy comprises of a global planner, that
generates target viewpoints that adequately observe visual
features, alongside with a greedy local planner, which aims
to maximize information acquisition from visual features
within 3D deformable environments. Similarly, the authors
in [22] implement an adaptive heading mechanism as part
of a perception-aware local planner to improve feature
tracking, thus localization accuracy. Finally, in [23], a dual-
layer planning approach with a utility function to balance
between exploration efficiency and localization performance
is employed for trajectory generation.

Regarding deep learning-based approaches, [24] uses deep
reinforcement learning to distinguish perception-informative
regions within a scene, facilitating the development of a
perception-aware navigation strategy aimed at improving
localization accuracy for a UAV. Similarly, the authors in [25]
propose a reinforcement learning-based navigation strategy
to prevent localization failures. Supplementary, in [26], the
authors propose an end-to-end differentiable and trainable
method for selecting informative actions that maximize pose
disambiguation on a reference map.

A new map representation, denoted as Fisher Informa-
tion Fields (FIFs) and adapted for active vision-based path
planning to enhance localization accuracy, was introduced
in [27] and [28]. On that basis, in [29] an active vision-
based path planning method is proposed that utilizes FIFs to
plan trajectories that minimize 3D reconstruction uncertainty.
Despite the efficiency of FIFs in providing a robust map rep-
resentation that reflects localization capability, the influence
of fiducial marker placement on localization performance
is neglected. This aspect holds significant importance in
addressing the indoor SLAM problem [10].

To the best of our knowledge, our work is the first one
that utilizes the localizability scores [10] in the format
of an APF, with the overall aim to facilitate an efficient
RTT-based path planning that maximizes localization perfor-
mance. Localizability scores encapsulate not only the rich-
ness of visual features within the environment, but also the
influence of fiducial markers existence, and require as input
solely a 3D model of the environment. In order to satisfy
the requirements of constantly changing environments, we
use the above extracted path as a basis, but we utilize an
active vision, MPC-based, local planner that is capable of
tracking areas with prominent and consistent visual features
without diverging from the target goal to diminish further
localization uncertainty. To this end, we propose a holistic
active vision-based path planning framework consisting of
both a global and a local planner, for generating efficient
trajectories towards a given target and simultaneously mini-
mizing localization uncertainty.
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Fig. 2: Architecture of the proposed pipeline. An APF is generated based on the computed localizability scores that directs
a KB-RRT path planner, while consistent and trackable visual features are extracted. Both modules serve as an input to an
MPC-based local planner that generates control commands, decreasing localization uncertainty.

III. PROPOSED METHOD

The proposed method mainly consists of four separate
components, with their interoperability being depicted in
Fig. 2. The pipeline initiates with the creation of an APF
using low localizability scores and obstacles, which acts as
guidance for the KB-RRT planner, directing the expansion of
the tree towards areas with high localizability and away from
obstacles. Finally, the adaptive MPC-based local planner is
responsible for path tracking and dynamic obstacle avoidance
while taking into account the distribution of robust features
during visual SLAM.

A. Artificial Potential Field Generation

Typically, the APF method consists of an attractive field
that pulls robot motion towards the goal, and a repulsive field
that drives the robot away from obstacles. For a given point
q, the target point qt creates an attractive field:

Uatt(q) =
1

2
kt ∥q − qt∥2 (1)

where kt is a weight coefficient.
Each obstacle point qi creates a repulsive field at point q:

Urep
oi (q) =

{
1
2ko

(
1

∥q−qi∥ −
1
ρo

)2

, ∥q − qi∥ ≤ ρo

0, ∥q − qi∥ > ρo
(2)

where ko is a weight coefficient and ρo is the range of
action for the obstacle field.

In our approach, we introduce a third field Urep
l (q) that is

generated by low localization regions. To compute the local-
izability scores of the operating environment, we rely on the
work done in [10]. This step requires a precise and textured
3D model of the scene, in order to predict the optimal mark-
ers’ placement positions, as well as the localizability scores
for each position. This work is conducted offline, but [10]
can be extended to dynamically update localizability scores,

combined with online 3D mapping techniques. Hence, the
pipeline can operate near real-time. These scores serve as
an indicator of the localization uncertainty in a specific
region, depending on the reliability of the visual features
and the position of fiducial markers. Darker pixels indicate
low localizability scores, while brighter ones represent high
scores, as shown in Fig 3a.

(a) (b)

Fig. 3: (a) Raw (b) Filtered Localization Scores

Within the navigation context, we established a threshold
to filter out cells with localization scores surpassing it,
retaining only those with lower scores, as depicted in Fig. 3b.
This approach is favored as straightforward and intuitive.
Each score for position qj contributes to the generation of the
APF by generating a repulsive force analogous to Urep

oi (q):

Urep
lj

(q) =

{
1
2kl

(
1

∥q−qj∥ −
1
ρl

)2

, ∥q − qj∥ ≤ ρl

0, ∥q − qj∥ > ρl
(3)

where kl is a weight coefficient and ρl is the range of
action for the localization field.

The total potential is the sum of the potentials generated
by the target point, M obstacle points, and K low localization
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areas.

Utotal(q) = Uatt(q) +

M∑
i=1

Urep
oi (q) +

K∑
j=1

Urep
lj

(q) (4)

The negative gradient of the total potential −∇Utotal indi-
cates the most gainful direction of motion, which guides the
expansion of the RRT.

B. Localization Aware KB-RRT Path Planner

Our path planning algorithm builds upon iKB-RRT [14], a
kinematically constrained, bi-directional RRT method guided
by an APF. As presented in [14], the APF guidance results
in feasible path generation, reducing the number of sampled
nodes and unnecessary space exploration. We extend this
method by incorporating our localization-derived field. This
extension serves the purpose of guiding the robot away from
regions characterized by inaccurate localization estimates,
thereby ensuring robust navigation while maintaining optimal
path planning efficiency. The algorithm is presented below:

Algorithm 1: Localization Aware KB-RRT

1 Initialize trees Tstart, Tgoal with nodes Xstart, Xgoal

2 Get obstacles and localizability costmaps Cobst, Cloc

3 Tselected := Tstart

4 for i← 1 to N do
5 Xrand ← Sample() the configuration space
6 Xnear ← FindNearest(Xrand, Tselected)
7 Xguide ← APF(Xrand, Xnear,
8 Xnew ← Steer(Xguide, Xnear)
9 if Xnew is collision-free then

10 Add Xnew as a child node of Xnearest

11 if Tstart, Tgoal distance reached threshold
then

12 end
13 Swap Tstart and Tgoal

14 end
15 end

The APF guiding step is explained in detail below. Given
a node Xnear, the negative gradient of the APF generates
the magnitudes of the forces that act upon the particular
node from goal node (Eq. 5), sample node (Eq. 6), obstacles
(Eq. 7) and localization scores (Eq. 8).

|F⃗ att
goal(Xnear)| = kg ∥Xnear −Xgoal∥ (5)

|F⃗ att
rand(Xnear)| = ks ∥Xnear −Xrand∥ (6)

|F⃗ rep
oi (Xnear)| =

{
ko

(
1
di
− 1

ρo

)
1
d2
i
, di ≤ ρo

0, di > ρo
(7)

|F⃗ rep
lj

(Xnear)| =

{
kl

(
1
dj
− 1

ρl

)
1
d2
j
, dj ≤ ρl

0, dj > ρl
(8)

where di = ∥Xnear − qi∥, dj = ∥Xnear − qj∥ denote
the euclidean distance between node Xnear and obstacle at
position qi and low localization position qj respectively. The
total force F⃗total acting on the nearest node is computed by
aggregating all force vectors:

F⃗total = F⃗ att
rand + F⃗ att

goal +

M∑
i=1

F⃗ rep
oi +

K∑
j=1

F⃗ rep
lj

(9)

The guide node, Xguide is generated along the direction
of the F⃗total and its coordinates are calculated as follows:

Xguidex = Xnearx + s
Fx

|F⃗total|

Xguidey = Xneary + s
Fy

|F⃗total|

(10)

where Fx and Fy are the decomposed forces of F⃗total along
the X- and Y-axes of the global coordinate system, respec-
tively, and s is the extension distance. This approach ensures
that the tree expansion prioritises regions characterised by
more reliable localization information, thereby enhancing
overall navigation performance.

Xnear

Xrand

Xgoal
Fgoal
att

att
Frand

Xstart

Fl
rep

Fo
rep

Backward tree
Forward tree

Ftotal

Fig. 4: Repulsive forces from nearby obstacles (magenta line)
and localizability scores (magenta circles), and attractive
forces towards Xgoal and Xrand acting on Xnear. The
combined force F⃗total dictates the tree expansion direction.

C. Extraction of Consistent and Trackable Visual Features

Preventing failures in visual SLAM can be achieved by
extracting robust visual features within the current goal’s
region, maximizing the probability of retaining trackable
features, and enhancing SLAM performance. Incoming RGB
data from an image buffer, containing nbuff images, is
processed to extract ORB features, which are matched
between the current frame and previous frames. Matches
are filtered based on the Hamming distance, retaining only
those that satisfy a distance criterion. Next, we compute
the geometric homography transformation between images
to exclude outliers from the trackable feature set that do
not conform to this transformation. This filtering is applied
consecutively between the current frame and each buffer
image. Each matched image, of size (W,H) is split in
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nseg equal segments, forming a grid. For each segment, the
percentage of matched features is calculated.

The spatiotemporal distribution of matched features in the
previous frames and the image patches is encoded within a
2-dimensional matrix V of size nbuff×nseg . Each row of V
corresponds to a buffer’s frame, and each column represents
a specific patch within the frame’s grid layout, while V as
a whole provides insights on the reliability and consistency
of feature tracking. For all possible pairs of rows in V , the
euclidean distance is calculated and normalized using the
maximum distance within the Rnseg space. Subsequently, a
distance matrix D quantifies the similarity between consec-
utive image frames and its mean, D̄, reflects the robustness
of visual feature tracking in SLAM. Following the notion of
[3] and [16], a heuristic threshold t is defined and the active
localization mechanism is enabled when D̄ < t.

The above-mentioned mechanism entails mapping the
current target of the global path onto image coordinates by
leveraging stereo-derived depth estimation techniques. The
selection of trackable visual features is performed solely on
the vertical region that the current target belongs to. Within
this region, the patch demonstrating the highest distribution
of visual features is selected, and its corresponding average
pixel values are computed. This pixel location is converted
into a target position in 3D space, being the area with the
dominant visual feature distribution, and provided to the
MPC-based local planner. The image patches, the selected
region, and the dominant patch are depicted in Fig. 5.

Fig. 5: ORB features are denoted in yellow, while the image’s
3× 3 grid layout is shown in blue. The highlighted patches
represent the region where the local target belongs, and
the area with the dominant visual feature distribution is
annotated with green.

D. MPC-based Local Planner

The proposed module of the MPC-based local planner
utilizes four components as input; the global plan, the robot’s
position, a depth image for obstacle detection and the 3D
position of the consistent and trackable visual features.

MPC, as an optimal controller, calculates sequential con-
trol actions over a predefined finite horizon by solving an
optimal control problem. At each sampling time, only the
first control action is applied to the system’s actuators. The
process of generating sequential control actions takes place
at each sampling time until the terminal condition is met. The
feedback control system is then established using the concept

of the receding horizon strategy. MPC is able to control
nonlinear multi-input, multi-output (MIMO) systems while
accounting for states and actuator limitations, so we utilize
it to track the global path while maintaining the extracted
features in the field of view of the robot when needed. The
online optimal control problem can be formulated as follows:

J =min
u(k)

N∑
k=1

(Jtrack + Javoid + Jfeature) (11)

Subject to:

x(0) = x0

x(k + 1) = f(x(k),u(k))

xmin ≤ x(k) ≤ xmax

umin ≤ u(k) ≤ umax

(12)

where N is the prediction horizon, equal for both predic-
tion and control, x = [x, y, θ]T denotes the state vector, u =
[v, ω]T denotes the control vector and f denotes the robot’s
kinematics for a non-holonomic differential system. Jtrack,
Javoid, Jfeature are terms related to path tracking, obstacle
avoidance and visual features tracking respectively. More
specifically:

Jtrack = (∥x(k)− xr(k)∥2Q) + (∥u(k)− ur(k)∥2R) (13)

where, for n state variables and m control variables,
Q ∈ Rn×n and R ∈ Rm×m are positive definite symmet-
ric weighting matrices and xr(k), ur(k) are the reference
vectors for states and controls respectively.

Javoid = Qavoid

M∑
i=0

1

∥q(k)− qi∥2
(14)

where M in the number of obstacles, q(k) = [x(k),y(k)]
is the robot’s position at time k, qi = (xi, yi) is the position
of the i-th obstacle and Qavoid is the weight for obstacle
avoidance.

Finally, for visual features tracking, we introduce another
term in the objective function:

Jfeature = Qfeature(θk − θf )
2 (15)

where θk is the robot’s orientation at step k and θf is the
angle at which, the robot camera view is directly aligned with
the position of the most trackable visual feature distribution.
Qfeature is the weight for feature tracking, which is adapted
based on the following equation:

Qfeature =

{
a(1− D̄), D̄ ≤ t
0, D̄ > t

(16)

where a is a weighting factor that ensures balance between
path and feature tracking.

As described in Section III-C, lower values of D̄ im-
ply increased robustness of the visual features. The static
threshold t is selected heuristically, so as to provide a
valid indication regarding the possibility of features’ tracking
failure in localization. If D̄ < t, MPC feature tracking is
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activated, with a weight proportional to the trackability of the
extracted features, as described in Eq. 16. Otherwise, MPC
neglects features tracking and prioritizes only path tracking
and obstacle avoidance.

IV. EXPERIMENTS

In order to validate the efficiency of the proposed method,
we conducted experiments in simulation regarding the global
planner module, and real-world experiments for the overall
operation of our framework. All of our experiments refer to
an indoor parking lot area within the premises of CERTH
with repetitive features, variable lighting conditions and
featureless areas. The operating environment, which covers
an area of around 165m2, was scanned by Faro Focus S-
150 high resolution terrestrial laser scanner, to generate a 3D
model of the scene, as illustrated in Fig. 2. Additionally, we
employed the approach in [10], to place 12 fiducial markers
within the scene, adjusting the height of the markers in order
to be visible by the robot’s camera. The placement of markers
was adjusted to optimize their positioning within the real
scene, without altering the integrity of localizability scores
[10]. The fiducial marker placement is depicted in Fig. 9
and the corresponding localizability scores in Fig. 7. For our
experiments we set the threshold for the localization scores
filtering to 33, the global planner parameters to kl = 1.5,
ko = 1.5, kg = 10−2, ks = 10−4, ρo = 2m, ρl = 2m, s =
1m, the min and max node number of RRT to 20 and 600
respectively. Concerning the local planner parameters, they
are set to Q = diag(200, 200, 200), R = diag(10, 10, 10),
Qavoid = 5, a = 500, t = 0.03, umax = 0.15m/s and
ωmax = 0.1rad/s . Regarding the extraction of consistent
and trackable visual features module, we set the maximum
number of ORB features to 1000 and applied filtering with
a ratio of 0.75, to retain only the good matches. The buffer
stored nbuff = 10 frames, while for each matched image, a
3× 3 (nseg = 9) grid was designed, as depicted in Fig. 5.

Fig. 6: Performance comparison between [12], [14] and our
proposed global path planning module, in terms of path
length and the number of nodes.

The localization-aware KB-RRT path planner module is
directly compared with the work done in [12] and [14].
The former initially proposed the KB-RRT while the latter

enhanced it utilising an APF. Both represent state-of-art
optimization approaches for nonholonomic mobile robot path
planning. We performed 200 trials of each method, using
exactly the same start and goal positions in a common map,
while the metrics calculated in each run are the path length,
and the number of nodes. The results of this comparison
are shown in Fig. 6. Our method appears to have a higher
path length than [14] and [12], which is completely justified
due to the fact that our method, in order to satisfy the
localization requirements and direct the robot both away
from featureless regions and towards fiducial markers, needs
to generate longer paths. Regarding the number of nodes
generated by RRT, our method outperforms [12], with a
lower mean and deviation and achieves comparable results
with [14]. This is largely due to the fact that our algorithm
builds on [14], whose APF-guidance, promotes efficient
path finding and minimizes unnecessary node generation.
Indicative qualitative results of our method are also depicted
in Fig. 7, where the generated plans of our method are
compared directly with [14]. The shortest paths generated by
Ye et al. present a great divergence from our paths, which
tend to avoid the regions with low localizability scores.

Low
Localization

area

Fig. 7: Comparison of the generated global trajectories
between our method and [14]. Our global paths diverge from
the shortest route in order to avoid the low localizability
areas.

(a) (b)

Fig. 8: (a) The robot approaching its goal. In cyan, we denote
the evaluation marker (b) Special case scenario, where the
marker annotated in magenta is obscured by an obstacle.

The contribution of our active vision-based path planning
module to the localization accuracy of a robot was evalu-
ated through real-world experiments. A holononomic mobile
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platform was employed, equipped solely with a front-facing
ZED2 stereo camera, as depicted in Fig. 8a. The localization
system of the robot consists of an Extended Kalman Fil-
ter [30] integrating information from three distinct sources
to impartially showcase the performance of our proposed
pipeline: i) robot’s wheel odometry, ii) visual SLAM position
estimate using RTAB-Map [31], and iii) position estimate
from fiducial markers placed in the environment, according
to the analysis of [10]. In real applications, incorporating a
pre-built map would enhance localization performance.

Scenario 1

Scenario 2
Scenario 3
Scenario 4

Scenario 5

Markers Position

5 6

7 11

4

10

4

3

212 9

1

Evaluation Markers

Fig. 9: The 5 different scenarios used for evaluation.

We performed 5 different scenarios (S1 − S5) within the
operating environment and each one is shown in Fig. 9.
Additionally, we performed a special scenario S

′

5, where one
fiducial marker, namely marker 12, is obscured, as shown
in Fig. 8b, and the start and the goal positions correspond
to S5. The purpose of this scenario is to evaluate our
method when the localizability scores lose validity around
the aforementioned fiducial marker. The performance of our
method is measured in terms of localization accuracy when
the robot reaches some pre-determined goal positions. Since
ground truth position of the robot is not available, in order to
determine this error accurately, we placed a fiducial marker
near the goal position, as shown in Fig. 8a, for each
scenario, so that it remains visible when the robot reaches
close to the target. The evaluation markers’ placement is
depicted in Fig. 9. We computed the final displacement error
(Eq. 17) between the ground truth position of the marker,
m̄gt, and the estimated position of the marker mgt. For each
scenario, we calculated the average error for 10 runs of each
method. It must be noted that this fiducial marker does not
contribute to the localization system and is used solely for
error calculation.

FDE =
√

(mgt,x − m̄gt,x)2 + (mgt,y − m̄gt,y)2 (17)

An ablation study among the proposed components was
performed in order to verify the actual contribution of each
module in the complete proposed pipeline. The results of this
study are reported in detail in Table I. The combination of
the feature tracking module with the baseline path planner of

TABLE I: Ablation study: Module comparison with respect
to average FDE (reported in meters) across different scenar-
ios. * denotes methods using trackable features.

Method S1 S2 S3 S4 S5 S
′
5

Ye et al. 0.9352 1.7105 0.5846 0.3200 1.9379 1.9379
Ye et al.* 0.8802 1.4118 0.5587 0.2595 0.5063 0.5063

Ours 0.2863 0.9222 0.4456 0.1473 0.4001 0.4684
Ours* 0.2103 0.5336 0.3570 0.0992 0.3016 0.4308

[14] results in 24.12% average improvement of the localiza-
tion accuracy. Our path planning module, without the use of
trackable features, presents an 54.51% average improvement
compared to [14]. Finally, the combination of our path
planning module with the features tracking is on average
67.74% improved compared to the baseline path planning.
The integration of the trackable features extraction module
within the local planner yields performance improvements
for both path planners. An indicative qualitative depiction of
trackable features extraction module’s influence can be seen
in Fig. 10. Furthermore, our global planner consistently sur-
passes the baseline counterpart across all scenarios. Notably,
the synergetic combination of both modules yields optimal
results across all evaluated scenarios. In the specific scenario
S

′

5, both variants of our path planning method, with and
without the incorporation of detectable features, demonstrate
a decrease in performance, amounting to 42.89% and 17.07%
respectively. However, both implementations demonstrate
superior performance compared to the baseline path planner,
both with and without feature augmentation. Scenario S

′

5

highlights the efficacy of markers, but also the robustness of
our active path planner reducing reliance on them.

Fig. 10: Generated trajectories of our method with (orange)
and without (red) trackable features consideration in scenario
2. The color variations on the orange trajectories denote
the activation of trackable features consideration in the
MPC-based local planner, while the corresponding colormap
expresses the normalized adaptive weight, namely D̄.

V. CONCLUSIONS

In this work, a holistic framework for active localization-
aware path planning in indoor environments is presented.
Localizability scores which encode information regarding
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areas with rich visual features and fiducial markers’ place-
ment of a known environments, are converted into an APF
and are utilized by a kinematically constrained, bi-directional
RRT-based algorithm. Local planning is based on an online
weight-adaptive MPC algorithm that utilizes consistent and
trackable visual features to guide the robot in areas with
rich information, closely to the target position. The proposed
method has been evaluated both in simulation and with real-
world experiments, demonstrating its ability to reduce the
localization uncertainty during the operation of a robotic
mobile platform in an indoor environment.

Our method is constrained by the presence of an em-
pirically selected static threshold t, which determines the
possibility of features’ tracking failure in localization. Future
research will focus on a data-driven optimization technique
to automatically infer when localization failure occurs, re-
placing the above-mentioned threshold. Additionally, integra-
tion with temporal persistence modeling techniques towards
the online update of the localizability scores will be explored.
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