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Abstract

Sentence segmentation is a linguistic task and001
is widely used as a pre-processing step in many002
NLP applications. The need for sentence seg-003
mentation is particularly pronounced in clinical004
notes, where ungrammatical and fragmented005
texts are common. We propose a straightfor-006
ward and effective sequence labeling classifier007
to predict sentence spans using a dynamic slid-008
ing window based on the prediction of each009
input sequence. This sliding window algo-010
rithm allows our approach to segment long011
text sequences on the fly. To evaluate our ap-012
proach, we annotated 90 clinical notes from013
the MIMIC-III dataset. Additionally, we tested014
our approach on five other datasets to assess015
its generalizability and compared its perfor-016
mance against state-of-the-art systems on these017
datasets. Our approach outperformed all the018
systems, achieving an F1 score that is 15%019
higher than the next best-performing system020
on the clinical dataset.021

1 Introduction022

Sentence segmentation is the task of automatically023

identifying the boundaries of sentences in a written024

document, where a sentence is commonly defined025

as a sequence of grammatically linked words end-026

ing with a punctuation mark (PM). It is often the027

first pre-processing step for other natural language028

processing (NLP) tasks such as sentiment analysis029

(Medhat et al., 2014), information extraction (An-030

geli et al., 2015), and machine translation (Liu et al.,031

2020). Even tasks that operate at the paragraph032

or document level, such as coreference resolution033

(Stylianou and Vlahavas, 2021) or summarization034

(Pilault et al., 2020), often make use of sentences035

internally. Detecting sentence boundaries is es-036

pecially crucial for processing and understanding037

clinical text, as most clinical NLP tasks depend on038

this information for annotation and model training039

(Fan et al., 2013; Gao et al., 2022).040

Despite its importance, sentence segmentation 041

has received much less attention in the last few 042

decades than other linguistic tasks. For non-clinical 043

text, high-performing baseline systems use simple 044

rule-based (Jurafsky and Martin, 2000; Manning 045

et al., 2014) or machine learning-based (Gillick, 046

2009; Schweter and Ahmed, 2019) approaches that 047

capture obvious and frequent sentence ending PMs 048

(EPMs) such as [.!?”]. Such baselines leave little 049

room for further improvement on traditional bench- 050

marks derived from formal news(wire) sources or 051

published articles. The focus on formal or edited 052

text assumes EPMs as sentence boundaries, which 053

is not directly applicable to real-world data such as 054

clinical text(Read et al., 2012) or web text. These 055

type of texts often contain fragmented and incom- 056

plete sentences, complex graphemic devices (e.g. 057

abbreviations, and acronyms), and markups, which 058

present challenges even for state-of-the-art sen- 059

tence segmentation approaches, e.g., 70-85% F1 060

score on English Web Treebank (Straka, 2018; Qi 061

et al., 2020).Another comprehensive evaluation 062

of sentence segmentation in the clinical domain 063

reveals that four standard sentence segmentation 064

tools perform 20-30% worse on clinical texts com- 065

pared to general-domain texts (Griffis et al., 2016). 066

Here, we present a sentence segmentation ap- 067

proach specifically tailored for real-world data, 068

particularly clinical notes. Our method uses a se- 069

quence labeling classifier to predict sentence spans 070

over a sliding window. During inference, we dy- 071

namically slide the window based on the predic- 072

tion of each input sequence, such that the window 073

always starts with a complete predicted sentence. 074

This allows our approach to segment long text se- 075

quences on the fly without needing to pre-split the 076

text. Moreover, the sequence labeling classifier 077

does not rely on PMs for segmentation. To evalu- 078

ate our approach on real-world clinical texts that 079

can be shared, we annotated 90 clinical notes from 080

MIMIC-III. Additionally, we extensively tested our 081
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method on five other datasets to assess its generaliz-082

ability. Unlike other studies (Wicks and Post, 2021;083

Udagawa et al., 2023) that have modified datasets084

for sentence segmentation, we retained the origi-085

nal raw text, preserving their form and document086

structure.087

Our work makes the following contributions:088

• We propose a sentence segmentation approach089

capable of handling texts from diverse genres090

and domains without relying on specific text091

formats or EPMs. Our sliding-window algo-092

rithm segments long sequence texts on the fly,093

eliminating the need for pre-processing.094

• We release a new sentence segmentation095

dataset based on MIMIC-III corpus. To the096

best of our knowledge, this is the first manu-097

ally annotated sentence segmentation dataset098

using clinical notes.099

• We comprehensively compare our approach100

against seven widely used off-the-shelf tools101

across six datasets. Our approach outperforms102

all these tools on five datasets, with particu-103

larly large margins on clinical datasets.104

The code for our proposed approach and the new105

dataset are available at github.106

2 Related Work107

Existing sentence segmentation approaches can108

be categorized into rule- and learning-based ap-109

proaches. Rule-based approaches (Aberdeen et al.,110

1995; Koehn et al., 2007; Dridan and Oepen, 2012;111

Sadvilkar and Neumann, 2020) utilize handcrafted112

rules, abbreviation lexicons, and linguistic features113

to decide whether a PM belongs to a token (an ab-114

breviation or a number), or indicate the end of a115

sentence. For instance, Stanford CoreNLP toolkit116

(Manning et al., 2014) utilizes rules such as sen-117

tence ending PMs, or two consecutive line breaks118

to segment text. However, one major limitation of119

rule-based approaches is that the handcrafted rules120

are language- or domain-specific, making them dif-121

ficult to maintain and adapt to new texts.122

As an alternative, other systems aim to automat-123

ically learn segmentation rules through machine124

learning algorithms. When working with unlabeled125

data, unsupervised approaches (Mikheev, 2002;126

Kiss and Strunk, 2006) automatically curate infor-127

mation about abbreviations and proper names from128

large corpora and use them to determine whether129

the token preceding a period is an abbreviation and130

whether the token following a period is a proper131

name. One representative algorithm of the ap- 132

proach is in the Punkt system (Kiss and Strunk, 133

2006), as it computes the likelihood ratio of the 134

truncated words and the following periods to iden- 135

tify abbreviations. An implementation of Punkt 136

is bundled with the NLTK tool (Bird and Loper, 137

2004). Although these unsupervised approaches 138

do not require extensive lexical resources or man- 139

ual annotations and are easily adaptable to new 140

domains, they can only segment sentential units 141

(SUs) that use periods as sentence boundaries. 142

With the increasing availability of annotated cor- 143

pora, supervised learning approaches have become 144

predominant. One type of supervised approach 145

combines a regular-expression-based detector to 146

generate candidate SUs with a binary classifier. For 147

generating candidate SUs, researchers have focused 148

on only periods (Riley, 1989; Gillick, 2009), multi- 149

ple EPMs (Reynar and Ratnaparkhi, 1997; Palmer 150

and Hearst, 1997; Schweter and Ahmed, 2019), 151

or more complex regular expressions (Wicks and 152

Post, 2021). For classifying candidate SUs, most 153

approaches employ binary classifiers with various 154

features, e.g., a feedforward neural network with 155

POS tags features (Palmer and Hearst, 1997), an 156

SVM classifier with features such as length and 157

the case of the words occurring before and after 158

the PMs (Gillick, 2009), deep neural models using 159

characters from the surrounding context (Schweter 160

and Ahmed, 2019) of candidate SUs, or a two-layer 161

Transformer encoder using the surrounding context 162

words (Wicks and Post, 2021). However, all these 163

approaches focus on proofread and edited docu- 164

ments, always assuming the existence of EPMs 165

in all SUs. This assumption does not hold for in- 166

formal, user-generated text or clinical notes with 167

minimal proofreading and post-editing. As a conse- 168

quence, several studies noted a substantial decline 169

in performance when these systems move to texts 170

with less formal language (Read et al., 2012; Rudra- 171

pal et al., 2015). 172

Another competing supervised approach treats 173

sentence segmentation as a sequence labeling task, 174

assigning a tag to each input unit to mark sentence 175

boundaries (Evang et al., 2013; Toleu et al., 2017; 176

Du et al., 2019; Geng, 2022). This approach has 177

the advantage of not relying on EPMs and can seg- 178

ment ungrammatical and fragmented texts. For 179

example, Elephant (Evang et al., 2013) uses a CRF 180

classifier to jointly segment tokens and sentences. 181

By tagging each character in the input sequence, 182

their classifier can identify SUs ending with var- 183
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Text Neuro : <\n> * <\n> Mental status : Sedated . <\n> No response to verbal stimuli .

B I O O O B I I

B I I I I O B I

B I I I I I

B I O O O B I I I I O B I I I I I

Sentence-1 Sentence-2 Sentence-3

Figure 1: Sliding window algorithm for sentence segmentation. We segment the text using three sliding windows
sequentially (SW-1, SW-2, and SW-3). The final sentence segmentation tags are at the top (Pred) of the diagram.

ious characters. Several works (Du et al., 2019;184

Rehbein et al., 2020; Udagawa et al., 2023) sim-185

ilar to our approach apply BERT-based sequence186

labeling classifiers for sentence segmentation. Due187

to the sequence length constraint of BERT models,188

these approaches split the original documents/texts189

into smaller sequences as inputs for BERT. This190

splitting is achieved either through domain knowl-191

edge, such as identifying pauses, speaker turns,192

or discourse markers from spoken language tran-193

scripts (Du et al., 2019), or by using an existing194

sentence segmentation tool (Udagawa et al., 2023).195

In contrast, our approach employs a sliding window196

to segment long sequence text on the fly, requiring197

no domain knowledge or off-the-shelf tools for pre-198

processing, which makes it easily applicable to199

texts from different domains and genres.200

3 Methods201

We approach sentence segmentation as a sequence202

labeling task using a BIO tagging scheme (shown203

in Figure 1). In this scheme, each token in an input204

sequence is assigned a tag to mark sentence bound-205

aries: B indicates the Beginning of a sentence, I206

represents Inside of a sentence, and O denotes Out-207

side of a sentence. We chose this tagging schema as208

it allows not only to segment sentences from a doc-209

ument but also to differentiate SUs (labelled as B210

and I) from non-SUs (labelled as O), also known as211

sentence identification task (Udagawa et al., 2023).212

Non-SUs typically include metadata from email213

attachments, markups in web text, irregular series214

of nouns, repetition of symbols for separating texts,215

and plain text tables in clinical notes, among other216

examples. All these non-SUs require additional217

text cleaning for downstream tasks. Unless oth-218

erwise specified, we do not differentiate between219

sentence identification and sentence segmentation220

in the following sections.221

Formally, let T = [t0, t1, ..., tn−1] represent an222

Algorithm 1 Sliding window algorithm for sen-
tence segmentation.

1: function SEGMENT_TEXT(T , l)
2: S ← [], wi ← 0
3: repeat
4: Y ← [], ei ← None, bi+1 ← None
5: while not_found(ei, bi+1) do
6: Tw ← T [wi : wi + L]
7: Yw ← Sequence_Labeller(Tw)
8: Concatenate Yw to Y
9: bi ← find_start_index(Y,B, 0)

10: bi+1 ← find_start_index(Y,B, 1)
11: ei ← find_end_index(Y, I, bi+1)
12: wi ← wi + l

13: wi ← bi+1

14: Append (bi, ei) to S
15: until wi + L ≥ len(T )
16: return S

input sequence that consists of n tokens; Y = 223

[y0, y1, ..., yn−1] represent a sequence of BIO la- 224

bels. So the goal of sentence segmentation task is 225

to find a label sequence Y which satisfies: 226

• yi = B, when ti is the first token of a SU. 227

• yi = I , when ti is any token within a SU 228

except for the first token. 229

• yi = O, when ti is any token outside of a SU. 230

Pre-trained language models (PLM) (Edunov 231

et al., 2019) have shown great improvements 232

in NLP tasks, encompassing text classification, 233

named entity recognition, or question answering, 234

among others. Here, we use BERT (Devlin et al., 235

2019) in a sequence labelling configuration, where 236

we feed a list of input tokens T to BERT, followed 237

by a Softmax classification layer to predict the con- 238

ditional probability of P (Y |T ). 239

3.1 Sliding window algorithm 240

Because of the quadratic computational cost along 241

with the sequence length of the self-attention in 242
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transformer architecture (Vaswani et al., 2017), and243

the pre-training configuration of BERT-style PLMs,244

BERT models can only take input sequences with245

up to 512 tokens. Although the development of246

sparse attention mechanisms in transformer net-247

works has improved the capability of PLMs for248

long sequence text (Beltagy et al., 2020), it is still249

challenging to take an entire clinical note as one250

input sequence. To segment long sequence text251

using BERT models, we propose a sliding window252

algorithm to process the input text, and then repeti-253

tively tag the text within a smaller sliding window254

(shown in Figure 1).255

Let l be the maximal sequence length of any256

PLMs, and Tw be a sliding window of l tokens257

from the text input. The main idea of our algo-258

rithm is to tag each token within a sliding window,259

and then slide the text window based on the pre-260

dicted sentence boundary. Specifically, for each261

sliding window, we find the start and end indices of262

the first sentence bi and ei (lines 9 and 11 of algo-263

rithm 1), and the start index of the second sentence264

bi+1 within the sliding window (line 10). We then265

slide the input window to the start of the second266

sentence. If there is no second sentence from the267

current sliding window, we slide the window by l268

tokens, and predict the labels for the new sliding269

window. We then concatenate the labels of two text270

windows to find the second sentence. During the271

training, since we already know all the sentence272

boundary indices beforehand, we generate the train-273

ing instance by directly moving the sliding window274

along each sentence, where each text window al-275

ways starts with the first token of a sentence, and276

has a length of l tokens.277

4 Datasets278

4.1 MIMIC-III dataset annotation279

To the best of our knowledge, there is no manu-280

ally annotated sentence segmentation dateset in281

clinical domain. Zhang et al. (2021) created a282

silver-standard treebank from clinical notes in the283

MIMIC-III using the default CoreNLP tokenizer284

(Manning et al., 2014), and later train and evaluate285

the Stanza (Qi et al., 2020) on such treebank for286

syntactic analysis. However, their treebank dataset287

was not reviewed by domain experts, and the eval-288

uation on their treebank basically reflects how well289

other sentence segmentation approaches master the290

segmentation rules in Stanford CoreNLP library.291

There are also other clinical datasets (Uzuner et al.,292

BNeuro:E<\n>
* <\n>
BMental status: Sedated.E_BNo response to verbal
stimuli.E_BGrimaces<\n>
to noxious.E_BNo speech output.E_BNot following
commands.E<\n>
<\n>
BCranial Nerves:E<\n>
BI.: Not testedE<\n>
BII.: Pupils equally round and minimally reactive to light, 3
to<\n>
2 mm bilaterally.E_BBlinks to threat on right.E_BUnable to
appreciate<\n>
fundiE<\n>
BIII, IV, VI: Assessment of oculocephlic limited by neck<\n>
stiffness.E<\n>
BV, VII: Obscurred by ETT.E<\n>
BVIII: Unable to assess.E<\n>
BIX, X: +Gag.E<\n>
B[**Doctor First Name 81**]: Unable to assess.E<\n>
BXII: ETT.E<\n>

Figure 2: Sentence boundary annotation from a small
portion of a discharge summary note. We use B and E to
mark the beginning and end of a sentence, respectively;
“_” to mark an empty space between sentences; “<\n>”
to mark a newline character from the original note.

2007, 2011, 2012; Sun et al., 2013) containing 293

sentence boundary information, where the clini- 294

cal notes have already been pre-processed with 295

each sentence placed on a separate line. How- 296

ever, this modified structure does not reflect the 297

format of real-world clinical notes. To address this 298

gap, we collected a subset of clinical notes from 299

the MIMIC-III corpus (Johnson et al., 2016), and 300

manually annotated sentence boundaries without 301

changing the original structure of clinical notes. 302

MIMIC-III contains de-identified clinical notes 303

from 38,597 distinct patients admitted to a Beth Is- 304

rael Deaconess Medical Center between 2001 and 305

2012. It covers 15 note types including discharge 306

summary, physician note, radiology report, social 307

work, among others. We randomly sampled 6 notes 308

for each note type for annotation, yielding 90 notes 309

in total. We stratified the notes into training, devel- 310

opment, and test sets (57/15/18), respectively. 311

Clinical text presents unique challenges for syn- 312

tactic annotation due to the irregular usage of punc- 313

tuation, incomplete or fragmented sentences, and 314

a blend of structured and narrative text formats, as 315

illustrated in Figure 2. Guidelines designed for syn- 316

tactic annotation in texts following typical struc- 317

tural and writing conventions might not be suit- 318

able for detecting sentence boundaries within the 319

clinical domain. To mitigate these challenges, we 320

developed a detailed annotation guideline and sum- 321

marized what constitutes a sentence in the clinical 322
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note genre (more details in appendix A.1):323

• Grammatically linked words written in an un-324

interrupted sequence that follow the conven-325

tional rules of a sentence in English, with or326

without an appropriate EPM.327

• A text fragment that conveys a complete328

thought, e.g., a section header, or each item329

in a form or bulleted list, such as "Lab Test",330

"Results", or "Diagnosis", among many oth-331

ers.332

One major challenge in our annotation is to distin-333

guish a table from a list in clinical notes. Table334

text typically contains column headers, row labels,335

and texts from individual cells. We can not sim-336

ply separate table text into multiple sentences by337

rows or cells because interpreting each cell requires338

an understanding of the original tabular structure,339

which is not typically included (and usually cannot340

be included due to technical limitations) in a data341

export from electronic health record systems such342

as EPIC. Thus, we assign O labels to the entire ta-343

ble text and leave parsing table text into sentences344

for future work.345

Two annotators independently annotated each346

note, with the lead annotator being an expert in347

annotating clinical notes. At the first iteration, the348

annotators independently annotated the entire 90349

notes, and notes without complete agreement were350

discussed until resolution during the second itera-351

tion. During the first iteration (on 15 notes), it took352

an average of 5.7 minutes to annotate each note.353

Before resolution, the inter-annotator agreement354

was 0.89 F1 (Hripcsak and Rothschild, 2005) on355

sentence boundary annotation which is considered356

moderate to strong agreement (McHugh, 2012).357

4.2 Other datasets358

To check whether our proposed approach is data-359

agnostic, we extensively evaluated our approach360

on other standard corpora from different domains361

and genres, including 1) biomedical domain with362

clinical notes (i2b2-2010), and abstracts of biomed-363

ical articles (Genia); and 2) the general domain,364

including various sources of English texts (Brown365

and WSJ) and web text (EWT). We summarize366

the dataset statistics in Table 1. Specifically, we367

examined whether the dataset format had any mod-368

ifications during pre-processing or remained in its369

original form. We also analyzed statistics related370

to different sentence structures, such as sentences371

ending with EPMs, alphanumeric characters, or372

PMs other than EPMs (OPM). These sentence char-373

acteristics contribute to the complexity faced by 374

different sentence segmentation approaches. 375

i2b2-2010 The i2b2-2010 corpus (Uzuner et al., 376

2011) consists of 426 labeled clinical notes 377

(43,940 sentences). The corpus was released in 378

2010 i2b2 shared task focused on identifying con- 379

cepts, assertions, and relations in discharge sum- 380

maries and progress reports. This corpus had 381

already been pre-processed, with each sentence 382

placed on a separate line for each note. This pre- 383

processing step simplifies both the original i2b2 384

shared task and the sentence segmentation task, 385

as original clinical texts typically contain multiple 386

newline characters within a sentence and multiple 387

sentences within a single line. For our experi- 388

ments, we maintain the same train/dev/test splits 389

as in the 2010 i2b2 challenge. 390

Genia The Genia corpus (Kim et al., 2003) is a col- 391

lection of 1,999 MEDLINE abstracts with 16,479 392

sentences related to transcription factors in human 393

blood cells. These abstracts are unstructured text, 394

and meticulously edited to include complete sen- 395

tences. We use the split in Griffis et al. (2016) and 396

randomly sample 400 and 200 documents for the 397

development and test sets, respectively. 398

EWT The English Web Treebank (Silveira et al., 399

2014) comprises 1174 samples of web text 400

sourced from five distinct genres: blog posts, 401

newsgroup threads, emails, product reviews and 402

answers from question-answer websites. Simi- 403

lar to the clinical corpus, EWT contains incom- 404

plete and fragmented sentences, but in general 405

domain English language. We use the standard 406

train/dev/test splits. 407

Brown The Brown corpus (Francis and Kucera, 408

1979) contains 500 samples of running text of 409

edited American-English prose. Each sample be- 410

gins at the beginning of a sentence but not nec- 411

essarily of a paragraph or other larger division, 412

and it ends at the first sentence ending after 2000 413

words. The text is drawn from a variety of sources 414

such as books, newspapers, magazines, and tran- 415

scripts of spoken language. Thus, this corpus 416

have much formal sentence units. In our experi- 417

ments, we load the corpus from the NLTK library 418

(Bird and Loper, 2004), where sentences from 419

each document are separated by empty spaces. 420

We randomly sample 10% and 20% files for the 421

development and test sets, respectively. 422

WSJ The WSJ corpus (Paul and Baker, 1992) 423

contains 2312 samples of running text primarily 424
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Biomedical Domain General Domain

MIMIC-III i2b2-2010 Genia EWT Brown WSJ

Documents 57/15/18 120/50/256 1,399/400/200 540/318/316 350/50/100 1,876/55/381
Original Y N Y Y N Y
Sentence 4,142 43,940 16,479 16,621 57,340 49,208
Sentence-EPM 39.0% 52.0% 99.8% 77.3% 91.6% 92.4%
Sentence-Alphanum 44.4% 23.8% 0.0% 14.9% 2.0% 0.9%
Sentence-OPM 16.6% 24.2% 0.2% 8.1% 6.4% 6.7%
Sentence-Sep-Nl 70.2% 99.0% 0.0% 22.3% 0.0% 86.3%

Table 1: Dataset statistics. Original indicates that a dataset has its original format (Y=Yes). Sentence-EPM indicates
the percentage of sentences ending with a EPM. Sentence-Alphanum indicates the percentage of sentences ending
with an alphanumeric character. Sentence-OPM indicates the percentage of sentences ending with a PM other than
an EPM. Sentence-Sep-Nl indicates the percentage of sentences separated by at least one newline character.

sourced from the Wall Street Journal newspaper,425

covering a wide range of topics related to business,426

finance, economics, and current affairs. We pre-427

process this corpus to keep the original format of428

each running text based on their raw text file. We429

follow the configuration in Bird and Loper (2004)430

to keep section 24 for validation, and sections431

03-06 for test.432

A major difference between these datasets is433

their sentence structure. For clinical notes, MIMIC-434

III and i2b2-2010 have only around 39% and 52%435

of sentences end with EPMs (Sentence-EPM), re-436

spectively, compared against around 90% of sen-437

tences with EPMs in Brown and WSJ, and 99% of438

sentences in Genia. For approaches that purely rely439

on EPMs for sentence segmentation, they could440

only detect up to 52% of sentences for clinical441

notes, while 90% for general domain texts. This in-442

dicates the limitation of purely using EPM informa-443

tion for sentence segmentation. Clinical notes and444

web texts (EWT) have more sentences ending with445

alphanumeric characters (Sentence-Alphanum) or446

non-sentence ending PMs (Sentence-OPM) than447

the general domain texts or biomedical articles;448

they also often use newline characters to separate449

sentence. This indicates the importance of under-450

standing text contents and text formats for sentence451

segmentation, especially for clinical notes and web452

texts.453

5 Experiments454

5.1 Comparisons with related approaches455

We compared our proposed approach against456

seven off-the-shelf sentence segmentation systems:457

NLTK (Bird and Loper, 2004), CoreNLP (Man-458

ning et al., 2014), cTAKES (Savova et al., 2010),459

Syntok1, spaCy2, Stanza (Qi et al., 2020), Trankit 460

(Nguyen et al., 2021). We selected these seg- 461

menters because they are state-of-the-art and easy- 462

to-run standard NLP tools, and therefore widely 463

used "as is" by the community when processing 464

text data. We provide a detailed description of each 465

tool in appendix A.2. 466

5.2 Experiment details 467

As our MIMIC-III dataset contains non-sentential 468

tokens (tagged as O) such as table text, for a fair 469

comparison between these tools and our approach 470

on the MIMIC-III dataset, we created an alterna- 471

tive evaluation, MIMIC-IIIp (shown in table 2). 472

Specifically, we post-process the segmented out- 473

put from off-the-shelf tools with six rules that take 474

into account the text structures, such as removing 475

multiple empty spaces or newline characters from 476

the sentence boundary if they are at the end of a 477

sentence. We also remove non-sentential tokens 478

before segmentation during evaluation. 479

For clinical notes (MIMIC-III and i2b2-2010), 480

and biomedical articles (Genia), we chose PubMed- 481

BERT (Gu et al., 2021) for our sequence label- 482

ing classifier. PubMed-BERT is a domain-specific 483

language model pre-trained on biomedical text 484

from scratch; it has achieved state-of-the-art perfor- 485

mances on multiple biomedical NLP tasks. While 486

for the general domain corpus (EWT, Brown, and 487

WSJ), we chose RoBERTa-base (Liu et al., 2019). 488

One limitation of BERT-style PLMs is that their 489

tokenizers remove newline characters from input, 490

which makes it challenging to segment text when 491

newline characters are the only sentence separators. 492

To mitigate this issue, we insert the newline char- 493

acter as a special token in the tokenizer to keep the 494

1https://github.com/fnl/syntok
2https://spacy.io/
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Approach MIMIC-III MIMIC-IIIp i2b2-2010 Genia EWT Brown WSJ Avg. Rank

NLTK 39.14 70.84 39.59 97.31 66.48 64.75 81.57 6.83
CoreNLP 39.08 70.75 42.94 98.47 66.59 84.64 93.14 5.67
cTAKES 21.66 26.81 92.99 70.35 32.64 69.5 76.65 7.5
Syntok 37.81 70.67 45.51 96.93 66.65 82.18 90.79 6.5
Spacy 16.74 47.87 23.69 98.92 60.86 88.22 16.00 6.83
Stanza 40.0 72.20 53.59 97.04 89.31 86.43 93.78 4.5
Trankit 51.87 60.20 58.68 97.18 91.00 88.01 97.18 3.5

Our Segmenter-Data 87.86 88.34 97.89 99.82 92.42 98.60 93.43 1.67
Our Segmenter-Domain 85.41 87.03 97.71 99.91 91.1 98.39 93.55 2

Table 2: Comparison of our proposed approach against off-the-shelf sentence segmenters. MIMIC-IIIp is an
alternative evaluation on MIMIC-III dataset, where we post-processed the segmented outputs from all the off-the-
shelf tools, and removed non-sentential tokens for a fair comparison. The last column Avg. Rank shows the average
rank of each segmentation system across the datasets. The system with the best average rank is highlighted in grey;
the best F1 scores on each dataset are bolded.

text format signal. Training details are illustrated495

in appendix A.2496

We trained two types of models: 1) Segmenter-497

Data, where we trained one model on each dataset498

(six models in total); 2) Segmenter-Domain,499

where we combined datasets from each domain,500

and train one model on the biomedical domain, and501

one model on the general domain.502

5.3 Evaluation503

We evaluated each system by comparing the pre-504

dicted sentence spans against the gold annotations505

in the test sets. We measured the performance us-506

ing the standard F1 evaluation metric, consistent507

with the evaluation adopted in the 2018 UD Shared508

Task for sentence boundary detection (Zeman et al.,509

2018). A sentence span is defined as a pair of off-510

sets representing the first and last characters of a511

sentence. A predicted sentence span is considered512

accurate only if both offsets in the predicted pair513

match those in the gold annotation pair.514

6 Results515

On the MIMIC-III dataset, table 2 shows that516

our models outperform off-the-shelf tools by large517

margins, ranging from 35.99% to 71.12% of F1.518

For a fair comparison, after post-processing the519

segmented outputs from all the tools and remov-520

ing non-sentential tokens, we improve the perfor-521

mances of each tool by up to 32.86% of F1 (see522

column MIMICp), but it is still lower than our best523

model (Segmenter-Data) with 88.34% of F1.524

Across five other standard benchmark datasets,525

table 2 also shows that our two type of models,526

Segmenter-Data and Segmenter-Domain, consis-527

tently achieve the best F1 on four datasets (except528

the WSJ dataset), for an average rank of 1.6 and 2, 529

respectively. Trankit achieves the best performance 530

on the WSJ dataset, with an average rank of 3.5. 531

Compared against Segmenter-Data models that are 532

trained on each individual datasets, Segmenter- 533

Domain models that are trained on the combination 534

of datasets from each domain, achieves nearly iden- 535

tical performances. This suggests that instead of 536

maintaining six separate models, we can effectively 537

use just two models for the segmentation task. 538

On another clinical dataset – i2b2-2010, all tools 539

except cTAKES achieve less than 58.68% of F1; 540

while on a well-formed dataset – Genia, all tools 541

except cTAKES achieve more than 96.93% of F1. 542

Along with the evaluation on MIMIC-III dataset, 543

we find that tools developed on the general domain 544

texts struggle with clinical texts; however, they 545

still achieve great performances on biomedical arti- 546

cles. This indicates that sentence segmentation is 547

influenced not only by domain-specific language, 548

such as terminology and abbreviations, but also 549

by sentence structure and text form. Surprisingly, 550

comparing the performances of cTAKES on i2b2- 551

2010 and MIMIC-III, we see a big performance 552

drop. This is probably because the training data 553

used in cTAKES is more similar to the i2b2-2010 554

corpus. 555

Following the rankings of our models, only 556

Trankit and Stanza achieve competitive perfor- 557

mances on all three general domain datasets, with 558

results exceeding 89.31% on EWT, 86.43% on 559

Brown, and 93.78% on WSJ. Both CoreNLP and 560

Syntok achieve slightly worse on Brown and WSJ, 561

while much worse performances on EWT (around 562

66%). This is likely because both CoreNLP and 563

Syntok fail to account for characteristics of web 564

7
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Figure 3: Cross-domain evaluation of our two Segmenter-Domain models.

Approach EPM Alphanum Nl

CoreNLP 75.78 0.97 45.67
Syntok 76.51 1.25 46.55
Stanza 82.63 9.73 53.22
Trankit 87.49 30.31 63.08

Segmenter-Domain 97.73 95.93 98

Table 3: Comparison of our Segmenter-Domain models
against top 4 off-the-shelf-tools on different forms of
sentences: Sentence-EPM, Sentence-Alphanum, and
Sentence-Sep-Nl.

language, such as fragmented text and the absence565

of EPMs. Besides cTAKES, which is designed566

specifically for the clinical domain, both NLTK567

and Spacy achieve the worst performance on one568

of the three general domain datasets.569

7 Discussion570

From the evaluation of off-the-shelf tools, we can571

see inconsistent performances on different datasets.572

This is expected because of language variation, sen-573

tence structures, and text form. To check whether574

such a phenomenon also exists in our approach,575

we conducted a cross-domain evaluation for our576

Segmenter-Domain models, i.e., evaluating mod-577

els trained on biomedical domain datasets on the578

general domain datasets, and vice versa. Figure 3579

shows similar findings as other tools: except on Ge-580

nia and WSJ, there are around 27% of F1 drop on581

biomedical datasets, and around 20% of F1 drop582

on general domain datasets. We also performed583

cross-dataset evaluation (models that are trained on584

one dataset and then evaluated on other datasets)585

for Segmenter-Data models, but the decline in per-586

formance was even more pronounced. We posit587

that Segmenter-Domain models hold better appli-588

cability in real-world scenarios due to their ability589

to generalize across multiple datasets. 590

To understand how each tool and our approach 591

work on different text form, we compute the recall 592

of top 4 off-the-shelf tools (based on their average 593

rank in table 2) and our domain models on different 594

forms of sentences (see table 1). We combine texts 595

from multiple datasets including MIMIC-III, i2b2- 596

2010, EWT, and WSJ to balance the amount of 597

sentences in each subset. Table 3 shows the perfor- 598

mances on each sentence subset. Firstly, sentences 599

ending with alphanumerics are the most challeng- 600

ing for off-the-shelf tools, while our models suc- 601

cessfully detect more than 95% of them. Although 602

most tools particularly target on sentence ending 603

with PMs, but they still miss 10% to 25% of such 604

sentences. Lastly, as a notable feature for sentence 605

segmentation task, we can see newline characters 606

are not effectively utilized in off-the-shelf tools. 607

8 Conclusion 608

In conclusion, our proposed sentence segmentation 609

approach addresses the challenges posed by real- 610

world, ungrammatical, and fragmented text used 611

in the daily, often harried and hectic hospital en- 612

vironment when typing clinical notes. Utilizing a 613

sequence labeling classifier with a dynamic sliding 614

window, our approach effectively segments long 615

text sequences on the fly without requiring pre- 616

splitting or relying on PMs. Additionally, we con- 617

tribute a new sentence segmentation dataset derived 618

from the MIMIC-III corpus, providing a valuable 619

resource for future research in this domain. The 620

evaluation on 90 annotated clinical notes, along 621

with extensive testing on five additional datasets, 622

demonstrated the generalizability and effectiveness 623

of our approach over seven commonly used tools. 624

8



9 Limitations and future work625

Similar to other sentence segmentation approaches626

using BERT-style PLMs (Nguyen et al., 2021; Uda-627

gawa et al., 2023), our method faces the limitation628

of high computational cost. The primary reason629

for this is the self-attention mechanism in BERT630

models, which causes the computational cost to in-631

crease quadratically with the input sequence length.632

Additionally, the inference time scales linearly with633

the number of times we slide the input window over634

the sequence. To address these challenges, future635

work could explore more efficient PLMs. Potential636

alternatives include ALBERT (Lan et al., 2019),637

which reduces model size and improves efficiency638

through parameter-sharing techniques; and Distil-639

BERT (Sanh et al., 2020), which is a smaller, faster,640

and lighter version of BERT achieved through641

knowledge distillation.642
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A Appendix953

A.1 Comprehensive guidelines for annotating954

sentences in clinical notes955

The guidelines for annotating sentences within sec-956

tion headers, text forms, text lists, and text tables957

in clinical notes are as follows.958

A.1.1 Section header959

Section headers may be in all capital letters and960

may be followed by a colon or hyphen. If a header961

is followed by a colon or hyphen and is immedi-962

ately followed by text that directly relates to the963

header, both the header and its corresponding text964

should be considered part of the same sentence.965

These elements may span across separate lines but966

should remain within the same sentence annotation.967

However, if a header followed by a colon or hy-968

phen is succeeded by a different structure, such as969

a form, the header itself should be annotated as a970

separate sentence.971

A.1.2 Text form972

Text forms should appear within a sentence that in-973

cludes only the label and its response (if provided).974

These forms can be identified as phrases that are975

not entirely capitalized and are always immediately976

followed by a colon. Both the label and its cor-977

responding response should be part of the same978

sentence. If there is no response and another form979

begins immediately after the colon or on a new980

line, the label and colon should form a separate981

sentence.982

When there is no clear indication of the end of a983

label/response (such as a period, new line, or semi-984

colon), annotators should extend the sentence until985

the next distinct idea, fragment, or text structure. A986

label without a response may resemble an uncap-987

italized section header; however, both structures988

should be annotated similarly.989

Nested forms can occur if the response to a label990

includes a list separated by commas or semicolons.991

In such cases, only the outer label and its direct992

response should be considered part of the annotated993

sentence, encompassing all nested forms within it.994

Forms separated by different characters, such as995

new lines, should not be treated as nested.996

A.1.3 Text list 997

Numbered or bulleted lists should be annotated so 998

that each list item, including its number or bullet, 999

is treated as a separate sentence. List items may 1000

appear on a single line or be separated by newline 1001

characters. In cases where a list item’s number or 1002

bullet is on one line and its text on the next, both 1003

should be included in the same sentence annota- 1004

tion. If a list item contains multiple sentences, the 1005

bullet or number should be associated with the first 1006

sentence, while subsequent sentences are annotated 1007

normally. 1008

Bullets can consist of various symbols such as 1009

‘-’, ‘#’, or ‘*’. Some lists, like those detailing drugs 1010

or tests performed, may not be explicitly bulleted 1011

or numbered. However, when annotating, these 1012

should be treated similarly to standard bulleted or 1013

numbered lists, with each item in the list annotated 1014

as a separate sentence. 1015

A.1.4 Text table 1016

Text formatted in a table typically cannot be seg- 1017

mented into individual sentences. Therefore, the 1018

entire contents of the table should be labeled as 1019

Non-SUs. If there is a section header that marks 1020

the beginning of the table, the header should also 1021

be included in the Non-SU annotation. 1022

A.2 Off-the-shelf NLP tools 1023

NLTK The Natural Language Toolkit contains the 1024

Punkt sentence tokenizer (Kiss and Strunk, 2006) 1025

for sentence segmentation – an unsupervised sys- 1026

tem that uses frequency of occurrences of input 1027

features such as casing, punctuation, and length, 1028

to identify whether a period is from an abbrevia- 1029

tion or a sentence ending PM. Punkt was trained 1030

on the WSJ corpus. 1031

CoreNLP The Stanford CoreNLP toolkit uses a 1032

rule-based splitter: it first tokenizes the entire doc- 1033

ument into tokens, and then identifies whether a 1034

sentence-ending PM serves as sentence bound- 1035

aries. The rules of the system were developed 1036

using WSJ, GENIA, and other general domain 1037

English text. We evaluated the same system on all 1038

our datasets. 1039

cTAKES The Apache cTAKES, a toolkit for ana- 1040

lyzing electronic medical record clinical free-text, 1041

contains a sentence segmentation component that 1042

extends the OpenNLP’s supervised ME sentence 1043

detector tool. It predicts whether a period, ques- 1044

tion mark, or exclamation mark ends a sentence. 1045

This model was trained on three corpora: Penn 1046
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Treebank, Genia, and a corpus of clinical notes1047

sampled from Mayo Clinic EMR.1048

Syntok The syntok package provides rule-based1049

modules for tokenization and sentence segmenta-1050

tion. Similar to CoreNLP, the sentence segmen-1051

tation module takes a token stream from the to-1052

kenizer as input, and split the token stream into1053

sentences by checking whether a token is a sen-1054

tence terminal marker.1055

spaCy The current version of spaCy library3 fea-1056

tures transformer-based models for sentence seg-1057

mentation, where it uses a sequence labeller to1058

identify the first token of each sentence. In our1059

experiments, we evaluated on the EWT, Brown,1060

and WSJ, the default labeller of the pipeline, a1061

RoBERTa-based model trained on blogs, news1062

and comments. We evaluated on the MIMIC-III,1063

i2b2-2010, and Genia corpora the labeller of the1064

biomedical pipeline, a scibert-base model trained1065

on biomedical text.1066

Stanza Stanza combines tokenization and sen-1067

tence segmentation from raw text into a single1068

module. It provides trained neural network mod-1069

els to perform tagging tasks over character se-1070

quences, where the models predict whether a1071

given character is the end of a token, end of a1072

sentence, or end of a multi-word token. Similar to1073

spaCy, we evaluated three different Stanza mod-1074

els on our corpora: on EWT, Brown, and WSJ,1075

the default English model trained on the English1076

portion of the Universal Dependencies v2.5 tree-1077

banks; on Genia, the default biomedical model1078

trained on the Genia treebank; on MIMIC-III and1079

i2b2-2010, the default clinical model trained on1080

EWT and a silver-standard corpus collected from1081

the MIMIC-III database.1082

Trankit Trankit is a light-weight transformer-1083

based toolkit for multilingual NLP. It provides1084

a trainable pipeline that jointly perform tokeniza-1085

tion and sentence segmentation over word-piece1086

based input, where the model predict whether1087

a wordpiece is the end of a single-word token,1088

end of a sentence, or end of a multi-word token.1089

Trankit utilizes the state-of-the-art multilingual1090

pretrained transformer XLM-Robert (Conneau1091

et al., 2020), and is further trained on 90 Uni-1092

versal Dependencies treebanks. We evaluated the1093

multilingual model on all our datasets.1094

3spaCy v3.6

A.3 Training details 1095

Unless specifically noted otherwise, we kept the 1096

default hyper-parameters as in huggingface’s py- 1097

torch implementation across all datasets. For all the 1098

datasets, we kept the same hyper-parameters: learn- 1099

ing rate = 3e-5, sequence length = 512, the batch 1100

size = 32, epoch size = 10. We selected the best 1101

models based on the performances on the develop- 1102

ment set in a single run. We trained our models on 1103

one A100 GPU. 1104
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