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ABSTRACT

Deep neural networks trained as image denoisers are widely used as priors for
solving imaging inverse problems. While Gaussian denoising is thought sufficient
for learning image priors, we show that priors from deep models pre-trained as
more general restoration operators can perform better. We introduce Stochastic
deep Restoration Priors (ShaRP), a novel method that leverages an ensemble of
such restoration models to regularize inverse problems. ShaRP improves upon
methods using Gaussian denoiser priors by better handling structured artifacts
and enabling self-supervised training even without fully sampled data. We prove
ShaRP minimizes an objective function involving a regularizer derived from the
score functions of minimum mean square error (MMSE) restoration operators,
and theoretically analyze its convergence. Empirically, ShaRP achieves state-
of-the-art performance on tasks such as magnetic resonance imaging reconstruc-
tion and single-image super-resolution, surpassing both denoiser- and diffusion-
model-based methods without requiring retraining.

1 INTRODUCTION

Many problems in computational imaging, biomedical imaging, and computer vision can be viewed
as inverse problems, where the goal is to recover an unknown image from its noisy and incomplete
measurements. Inverse problems are typically ill-posed, thus requiring additional prior information
for accurate image reconstruction. While many approaches have been proposed for implementing
image priors, the current research focuses on methods based on deep learning (DL) (McCann et al.,
2017; Ongie et al., 2020; Kamilov et al., 2023; Wen et al., 2023).

Deep neural networks trained as image denoisers are widely-used for specifying image priors for
solving general inverse problems (Romano et al., 2017; Kadkhodaie & Simoncelli, 2021; Zhang
et al., 2022). The combination of pre-trained Gaussian denoisers with measurement models has
been shown to be effective in many inverse problems, including image super-resolution, deblurring,
and medical imaging (Metzler et al., 2018; Zhang et al., 2017; Meinhardt et al., 2017; Dong et al.,
2019; Zhang et al., 2019; Wei et al., 2020; Zhang et al., 2022) (see also the recent reviews (Ahmad
et al., 2020; Kamilov et al., 2023)). This success has led to active research on novel methods based on
denoiser priors, their theoretical analyses, statistical interpretations, as well as connections to related
approaches such as score matching and diffusion models (Venkatakrishnan et al., 2013; Chan et al.,
2017; Romano et al., 2017; Buzzard et al., 2018; Reehorst & Schniter, 2019; Sun et al., 2019; Sun
et al., 2019; Ryu et al., 2019; Xu et al., 2020; Liu et al., 2021; Cohen et al., 2021a; Hurault et al.,
2022a;b; Laumont et al., 2022; Gan et al., 2023a; Renaud et al., 2024b).

The mathematical relationship between denoising and the score function (the gradient of the log
of the image distribution), known as the Tweedie’s formula (Robbins, 1956; Efron, 2011) seem-
ingly implies that Gaussian denoising alone might be sufficient for learning priors, independent
of the specific characteristics of an inverse problem. This view overlooks an important point that
Gaussian-denoiser networks are suboptimal when when used as priors to restore images degraded
by other, non-Gaussian artifacts. One potential approach to mitigate this issue is to explore a broader
class of restoration models that are better tailored to handle non-Gaussian artifacts inherent to in-
verse problems. However, there is limited research exploring whether priors based on pre-trained
restoration models can outperform those based on Gaussian denoisers. In this paper, we present ev-
idence that priors derived from deep models pre-trained as general restoration operators can surpass
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those trained exclusively for Gaussian denoising. We introduce a novel framework called Stochastic
deep Restoration Priors (ShaRP), which provides a principled approach to integrate an ensemble of
general restoration models as priors to regularize inverse problems. ShaRP is conceptually related
to several recent papers exploring priors specified using other types of image restoration operators,
such as, for example, image super-resolution models (Zhang et al., 2019; Liu et al., 2020; Gilton
et al., 2021b; Hu et al., 2024c). The key benefit of ShaRP relative to prior work (Hu et al., 2024c)
lies in its versatility, enabling seamless integration of a wide-range of restoration models trained
on multiple degradation types (e.g., various undersampling masks in MRI or blur kernels in image
deblurring). By using more versatile restoration models, ShaRP improves upon traditional methods
using Gaussian denoiser priors and restoration priors in two key ways: (a) ShaRP improved per-
formance by using restoration models better suited to mitigating the structured artifacts that arise
during inference, which are often linked to the characteristics of the underlying inverse problem. (b)
The restoration models in ShaRP can often be directly trained in a self-supervised manner without
fully sampled measurement data.

We present new theoretical and numerical results highlighting the potential of using an ensemble
of restoration models as image priors. Our first theoretical result introduces a novel notion of reg-
ularization for inverse problems corresponding to the average of likelihoods associated with the
degraded observations of an image. The proposed regularizer has an intuitive interpretation as pro-
moting solutions whose multiple degraded observations resemble realistic degraded images. We
show that ShaRP seeks to minimize an objective function containing this regularizer. Our second
theoretical result analyzes the convergence of ShaRP iterations when using both exact and inexact
minimum mean squared error (MMSE) restoration operators. Numerically, we show the practical
relevance of ShaRP by applying it to MRI reconstruction with varying undersampling patterns and
rates, using a fixed-rate pre-trained MRI reconstruction network as a prior. We also show that ShaRP
can use a pre-trained image deblurring model to perform single image super-resolution (SISR). Our
numerical experiments show that ShaRP effectively adapts the pre-trained restoration model as a
prior, outperforming existing methods based on image denoisers and diffusion models, and achiev-
ing state-of-the-art results. Our experiments additionally highlight the benefit of using restoration
models as priors by considering a setting where only undersampled and noisy MRI data is available
for pre-training the prior. In such cases, self-supervised training of a restoration model is feasible,
whereas training a Gaussian denoiser requires fully sampled data.

2 BACKGROUND

Inverse Problems. Many computational imaging tasks can be formulated as inverse problems,
where the goal is to reconstruct an unknown image x ∈ Rn from its corrupted measurement

y = Ax+ e, (1)

where A ∈ Rm×n is a measurement operator and e ∈ Rm is the noise. A common approach to
addressing inverse problems is to formulate them as an optimization problem

x̂ ∈ argmin
x∈Rn

f(x) with f(x) = g(x) + h(x) , (2)

where g is the data-fidelity term that quantifies the fit to the measurement y and h is a regularizer
that incorporates prior information on x. For instance, typical functions used in imaging inverse
problems are the least-squares term g(x) = 1

2 ‖Ax− y‖
2
2 and the total variation (TV) regularizer

h(x) = τ ‖Dx‖1, whereD is the image gradient and τ > 0 is a regularization parameter.

Deep Learning. DL has emerged as a powerful tool for addressing inverse problems (McCann
et al., 2017; Ongie et al., 2020; Wen et al., 2023). Instead of explicitly defining a regularizer, DL
methods use deep neural networks (DNNs) to map the measurements to the desired images (Wang
et al., 2016; Jin et al., 2017; Kang et al., 2017; Chen et al., 2017; Delbracio et al., 2021; Delbracio
& Milanfar, 2023). Model-based DL (MBDL) is a widely-used sub-family of DL algorithms that
integrate physical measurement models with priors specified using CNNs (see reviews by Ongie
et al. (2020); Monga et al. (2021)). The literature of MBDL is vast, but some well-known exam-
ples include plug-and-play priors (PnP), regularization by denoising (RED), deep unfolding (DU),
compressed sensing using generative models (CSGM), and deep equilibrium models (DEQ) (Bora
et al., 2017; Romano et al., 2017; Zhang & Ghanem, 2018; Hauptmann et al., 2018; Gilton et al.,
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2021a; Liu et al., 2022; Hu et al., 2024d). These approaches come with different trade-offs in terms
of imaging performance, computational and memory complexity, flexibility, need for supervision,
and theoretical understanding.

Denoisers as Priors. Score-based models (SBMs) are a powerful subset of DL methods for solving
inverse problems that use deep Gaussian denoisers as imaging priors. Plug-and-Play (PnP) methods
can be viewed as SBMs that incorporate denoisers within iterative optimization algorithms (see
recent reviews (Ahmad et al., 2020; Kamilov et al., 2023)). These approaches construct a cost
function by combining an explicit likelihood with a score function implicitly defined by the denoiser
prior. Over the past few years, numerous variants of PnP have been developed (Venkatakrishnan
et al., 2013; Romano et al., 2017; Metzler et al., 2018; Zhang et al., 2017; Meinhardt et al., 2017;
Dong et al., 2019; Zhang et al., 2019; Wei et al., 2020; Hurault et al., 2022a), which has motivated
an extensive research into their theoretical properties and empirical effectiveness (Chan et al., 2017;
Buzzard et al., 2018; Ryu et al., 2019; Sun et al., 2019; Tirer & Giryes, 2019; Teodoro et al., 2019;
Xu et al., 2020; Sun et al., 2021; Cohen et al., 2021b; Hu et al., 2022; Laumont et al., 2022; Hurault
et al., 2022b; Gan et al., 2023a; Cohen et al., 2021a; Fang et al., 2024; Renaud et al., 2024b; Hu et al.,
2024a; Renaud et al., 2024a; Terris et al., 2024). Diffusion Models (DMs) represent another category
of SBMs; they are trained to learn the score function of the underlying probability distribution
governed by stochastic differential equations (SDEs) (Ho et al., 2020; Song et al., 2021). Once
trained, these models can be used as powerful priors for inverse problems by leveraging their learned
score functions. Specifically, pre-trained DMs facilitate posterior sampling by guiding the denoising
process to generate data consistent with observed measurements. This approach enables DMs to
address inverse problems, often achieving impressive perceptual performance even for highly ill-
posed inverse problems (Chung et al., 2023; Zhu et al., 2023; Wang et al., 2023; Feng et al., 2023;
Sun et al., 2024; Wu et al., 2024; Song et al., 2024; Hu et al., 2024b; Alçalar & Akçakaya, 2024;
Zhao et al., 2024; Rout et al., 2024; Bai et al., 2024).

Restoration Networks as Priors. In addition to denoiser-based methods, recent work has also
considered using restoration models as implicit priors for solving inverse problems (Zhang et al.,
2019; Liu et al., 2020; Gilton et al., 2021b; Hu et al., 2024c). It has been observed that pre-
trained restoration models can be effective priors for addressing unseen inverse problems, some-
times surpassing traditional denoiser-based approaches (Hu et al., 2024c). However, existing meth-
ods present two main limitations. First, restoration models considered so far have relied on a fixed
prior tailored to a specific degradation. Although deep restoration models can be trained in various
settings—such as different blur kernels for image deblurring or diverse undersampling masks for
MRI reconstruction—current approaches do not leverage this capability, limiting their robustness
to diverse artifacts. Second, prior work has not explored the potential of learning restoration priors
directly from undersampled measurements, without access to fully sampled data. Unlike Gaussian
denoisers, training without fully sampled data is natural for restoration models (Yaman et al., 2020;
Liu et al., 2020; Tachella et al., 2022; Chen et al., 2022; Millard & Chiew, 2023; Gan et al., 2023b).
It is also worth highlighting the related work that has explored using corrupt measurements for
training Ambient DMs (Daras et al., 2023; Aali et al., 2024). Ambient DMs seek to sample from
px using DMs trained directly on undersampled measurements. Thus, during inference Ambient
DMs assume access to the image prior px, while ShaRP only assumes access to the ensemble of
likelihoods of multiple degraded observations.

Our contribution. (1) We propose ShaRP, a new framework for solving inverse problems leveraging
a set of priors implicit in a pre-trained deep restoration network. ShaRP generalizes Regularization
by Denoising (RED) (Romano et al., 2017) and Stochastic Denoising Regularization (SNORE) (Re-
naud et al., 2024b) by using more flexible restoration operators and extends Deep Restoration Priors
(DRP) (Hu et al., 2024c) by using multiple restoration priors instead of relying on a single one.
(2) We introduce a novel regularization concept for inverse problems that encourages solutions that
produce degraded versions closely resembling real degraded images. For example, our regularizer
favors an MR image solution only if its various degraded versions are consistent with the character-
istics of actual degraded MR images. (3) We show that ShaRP minimizes a composite objective that
incorporates our proposed regularizer. We provide a theoretical analysis of its convergence for both
exact and approximate MMSE restoration operators. (4) We implement ShaRP with both supervised
and self-supervised restoration models as priors and test it on two inverse problems: compressed
sensing MRI (CS-MRI) and single-image super-resolution (SISR). Our results highlight the capa-
bility of restoration models to achieve state-of-the-art performance. Notably, in the MRI context,
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Figure 1: A restoration network trained on a set of tasks {Hi} can be used as a prior within ShaRP
to address different target inverse problems without the need for retraining.

Algorithm 1 Stochastic deep Restoration Priors (ShaRP)

1: input: Initial value x0 ∈ Rn, γ > 0, σ > 0, and τ > 0
2: for k = 1, 2, 3, . . . do
3: Sample a degradation operator: H ∼ p(H)
4: s← Hxk−1 + n with n ∼ N (0, σ2I)

5: xk ← xk−1 − γ∇̂f(xk−1)

where ∇̂f(xk−1) := ∇g(xk−1) + (τ/σ2)HTH(xk−1 − R(s,H))
6: end for

we show that restoration networks trained directly on subsampled and noisy MRI data can serve as
effective priors, a scenario where training traditional Gaussian denoisers is infeasible.

3 STOCHASTIC DEEP RESTORATION PRIORS

ShaRP is presented in Algorithm 1. It considers a prior based on a deep restoration model R(s,H)
pre-trained using the family of degradation operators, such as blur kernels or MRI masks. More
specifically, the deep restoration model R is trained to solve the following set of restoration problems

s = Hx+ n with x ∼ px, H ∼ p(H), n ∼ N (0, σ2I), (3)

where n is the AWGN vector with variance σ2 and px denotes the probability distribution of the
target images, and p(H) is the probability density of considered degradation operators. Importantly,
the restoration problems (3) are used exclusively for training R and do not need to match the target
inverse problem (1), which involves the measurement operatorA.

Our analysis below shows that ∇̂f corresponds to a stochastic approximation of an objective func-
tion of form f = g + h. Similar to traditional stochastic gradient methods, ShaRP can be imple-
mented using various selection strategies for the degradation operators.

Each iteration of ShaRP has an intuitive interpretation, where the next solution is obtained by com-
bining the gradient of the data-fidelity term ∇g and the residual of restored image corresponding
to the selected degradation operator. When H = I, then the restoration prior reduces to the Gaus-
sian denoiser, and ShaRP can be viewed as an instance of the Regularization by Denoising (RED)
method (Romano et al., 2017) and Stochastic Denoising Regularization (SNORE) (Renaud et al.,
2024b). On the other hand, there is a single H, ShaRP can be viewed as the instance of the Deep
Restoration Priors (DRP) method (Hu et al., 2024c). Thus, ShaRP can be viewed as a generalization
of both that can account for a wide-range of degradation operators.

4 THEORETICAL ANALYSIS OF SHARP

We present two key theoretical results on ShaRP. The first introduces a closed-form regularizer mini-
mized by ShaRP. The second examines convergence of ShaRP when using inexact MMSE operators,
highlighting its stable convergence even with approximate MMSE estimators.
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Consider a restoration model that perform MMSE estimation of x ∈ Rn for problems (3)

R∗(s,H) = E [x|s,H] =

∫
x p(x|s,H) dx =

1

p(s|H)

∫
xGσ(s−Hx)px(x) dx. (4)

where we used the probability density of the observation s conditioned on the operator H

p(s|H) =

∫
Gσ(s−Hx)px(x) dx. (5)

The function Gσ in (5) denotes the Gaussian density function with the standard deviation σ > 0.

We propose the ShaRP regularizer

h(x) = τEs∼Gσ(s−Hx),H∼p(H) [−log p(s|H)] , (6)

where τ > 0 is the regularization parameter and p(H) is the distribution of considered degradations.
The regularizer h is minimized if degraded versions of x are highly probable in the distribution
p(s|H), where H is sampled from p(H). In other words, a solution x̂ is considered good if its
degraded versions Hx̂match the degraded versions Hx of clean images x ∼ px, for all H ∼ p(H).
The key benefit of the proposed regularizer in (6) lies in its versatility, enabling seamless integration
of a wide-range of degradation operators within a unified formulation. In particular, this formulation
remains compatible with Gaussian denoisers, as H = I can always be incorporated into p(H).

We are now ready to state our first theoretical result.
Theorem 1. Assume that the prior density px is non-degenerate over Rn and let R∗ be the MMSE
restoration operator (4) corresponding to the restoration problems (3). Then, we have that

∇h(x) =
τ

σ2

(
Es∼Gσ(s−Hx),H∼pH

[
HTH(x− R∗(s,H))

])
, (7)

where h is the ShaRP regularizer in (6).

The proof is provided in the appendix. Note that the expression within the square parenthesis in (7)
matches the ShaRP update in Line 4 of Algorithm 1, which directly implies that ShaRP using the
exact MMSE restoration operator R∗ is a stochastic gradient method for minimizing f = g + h,
where g is the data-fidelity term and h is the ShaRP regularizer in (6).

In practical scenarios, the learned restoration model may be imperfect, meaning it cannot be consid-
ered a perfect MMSE estimator. To demonstrate that ShaRP can effectively integrate such non-ideal
restoration models into its framework as priors while still ensuring stable convergence, we provide
the following proof. We now present the convergence analysis of ShaRP under a restoration opera-
tor R that approximates the true MMSE restoration operator R∗. For a given degraded observation
s = Hx+ n with H ∼ pH and n ∼ N (0, σ2I), we define the stochastic gradient used by ShaRP

∇̂f(x) = ∇g(x) + ∇̂h(x) with ∇̂h(x) :=
τ

σ2
HTH(x− R(s,H)). (8)

Since R is an inexact MMSE restoration operator, we also define the bias vector

b(x) =
τ

σ2
Es∼Gσ(s−Hx),H∼pH

[
HTH(R∗(s,H)− R(s,H))

]
, (9)

which quantifies the average difference between the exact and inexact MMSE restoration operators.
Our analysis requires three assumptions that jointly serve as sufficient conditions for our theorem.
Assumption 1. The function f has a finite minimum f∗ > −∞ and the gradient ∇f is Lipschitz
continuous with constant L > 0.

This is a standard assumption used in the analysis of gradient-based algorithms (see (Nesterov,
2004), for example). It is satisfied by a large number of functions, including the traditional least-
squares data-fidelity function.
Assumption 2. The stochastic gradient has a bounded variance for all x ∈ Rn, which means that
there exists a constant ν > 0 such that

E
[∥∥∥∇̂f(x)− E

[
∇̂f(x)

]∥∥∥2
2

]
≤ ν2,

where expectations are with respect to H ∼ pH and s ∼ Gσ(s−Hx).
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Figure 2: Convergence of ShaRP for 4× accelerated MRI reconstruction on the fastMRI dataset.
(a)-(b) depict the convergence behavior of ShaRP using restoration operators trained in a supervised
manner, while (c)-(d) correspond to those trained in a self-supervised manner. The plots illustrate the
average distance ‖xk −xk−1‖22 and PSNR relative to the ground truth, as a function of the iteration
number, with shaded regions representing the standard deviation. Note the stable convergence of
ShaRP with both types of priors.

This is another standard assumption extensively used in the analysis of online or stochastic opti-
mization algorithms (Bertsekas, 2011; Ghadimi & Lan, 2016).

Assumption 3. The bias b(x), as defined in (9), is bounded, which means that there exists ε > 0
such that for all x ∈ Rn

‖b(x)‖2 ≤ ε.

Note that our only assumption on the bias is that it is bounded, which is a relatively mild assumption
in the context of biased stochastic gradient methods (Demidovich et al., 2023).

Theorem 2. Run ShaRP for t ≥ 1 iterations using the step-size 0 < γ ≤ 1/L under Assumptions 1-
3. Then, the sequence xk generated by ShaRP satisfies

E

[
1

t

t∑
k=1

‖∇f(xk−1)‖22

]
≤ 2

γt
(f(x0)− f∗) + γLν2 + ε2.

The proof is provided in the appendix. This theorem shows that in expectation, ShaRP minimizes
the norm of the gradient ∇f up to an error term that has two components, γLν2 and ε2. Since
the first component depends on γ, it can be made as small as desired by controlling the step-size
γ. The second component only depends on the magnitude of the bias ε, which, in turn, directly
depends on the accuracy of the restoration operator relative to the true MMSE restoration operator
R∗. Note that the goal of Theorem 2 is not to provide the general analysis of biased SGD, which has
been extensively studied elsewhere (see for example (Demidovich et al., 2023)), but rather show the
stability of ShaRP using restoration networks that do not correspond to ideal MMSE estimators.

5 NUMERICAL RESULTS

We numerically validate ShaRP on two inverse problems of the form y = Ax + e: (Compressive
Sensing MRI (CS-MRI) and (b) Single Image Super Resolution (SISR). In both cases, e represents
additive white Gaussian noise (AWGN). For the data-fidelity term in eq. (2), we use the `2-norm
loss for both problems. Quantitative performance is evaluated using Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM). Additionally, for the SISR task, we include the
Learned Perceptual Image Patch Similarity (LPIPS) metric to evaluate perceptual quality. Additional
numerical results are provided in the supplementary material.

5.1 CS-MRI SETTING

The measurement of CS-PMRI can be modeled as y = PFSx+e, whereP is the k-space subsam-
pling pattern, F is the Fourier transform operator, S = (S1, · · · ,Snc) are the multi-coil sensitivity
maps, and e is the noise vector.

Dataset. We simulated multi-coil subsampled measurements using T2-weighted human brain MRI
data from the open-access fastMRI dataset, which comprises 4,912 fully sampled multi-coil slices

6
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for training and 470 slices for testing. Each slice has been cropped into a complex-valued image with
dimensions 320× 320. The coil sensitivity maps for each slice are precomputed using the ESPIRiT
algorithm (Uecker et al., 2014). We simulated a Cartesian sampling pattern that subsamples along
the ky dimension while fully sampling along the kx dimension.

Ensemble of Restoration Priors for CS-MRI. Recent methods, such as InDI (Delbracio & Milan-
far, 2023) and I2SB (Liu et al., 2023), introduce controllable processes for training an ensemble of
restoration priors, where each prior functions as an MMSE restoration operator tailored to a specific
setting. Building on this approach, we trained an 8× uniform subsampling CS-MRI model with 8
distinct masks as our restoration prior. Similar to InDI, we decompose the original MRI degradation
operator M into several convex combinations of the original task M and the identity mapping I,
represented by the new degradation operator Hα = (1− α)I + αM , with α controlling the degra-
dation level. By selecting a range of α values, we create an ensemble of restoration tasks. Training
the restoration network R to handle all these tasks allows it to function as an ensemble of MMSE
restoration operators, R(s,Hα) = E [x|s,Hα]. We used the MSE loss to train the restoration model.

Training restoration priors without groundtruth. When fully-sampled ground truth images are
not available for training restoration priors, MRI restoration priors can be trained in self-supervised
manner (Yaman et al., 2020; Millard & Chiew, 2023; Gan et al., 2023b; Hu et al., 2024d). In self-
supervised training, rather than using the ground-truth image as the label, a separate subsampled
measurement serves as the label. In such cases, we can train our priors using a weighted `2 loss
function, following the self-supervised approach in (Gan et al., 2023b). We thus train the 8× uniform
subsampling CS-MRI model to handle eight distinct restoration operators, each corresponding to a
different sampling mask.

Additional details on supervised and self-supervised restoration network training and our CS-MRI
sampling masks are in Section B.1 of the appendix.

With the pre-trained 8× models as ensembles of restoration priors, we evaluate ShaRP’s perfor-
mance across a variety of configurations, including two sub-sampling rates (4× and 6×), two mask
types (uniform and random), and three noise levels (σ = 0.005, 0.01, and 0.015).

4× Uniform 6× Uniform
Noise level σ = 0.005 σ = 0.010 σ = 0.015 σ = 0.005 σ = 0.010 σ = 0.015

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Zero-filled 26.93 0.848 26.92 0.847 26.90 0.848 22.62 0.728 22.60 0.726 22.59 0.721

TV 31.17 0.923 31.08 0.921 30.91 0.915 25.00 0.806 24.94 0.803 24.33 0.755
PnP-FISTA 35.88 0.938 31.14 0.894 30.32 0.846 26.30 0.822 25.97 0.786 25.46 0.747

PnP-ADMM 35.76 0.941 32.36 0.878 30.66 0.838 26.13 0.808 25.90 0.776 25.51 0.742
DRP 35.52 0.936 32.32 0.914 30.57 0.901 29.51 0.872 28.52 0.882 28.35 0.876
DPS 32.62 0.888 31.39 0.870 30.29 0.856 30.53 0.862 29.41 0.843 28.63 0.830
DDS 35.21 0.937 35.03 0.935 34.51 0.925 31.02 0.889 30.84 0.888 30.79 0.888

ShaRP 37.59 0.963 35.81 0.951 34.92 0.942 33.42 0.940 32.86 0.932 32.09 0.922

Table 1: Quantitative comparison of ShaRP with several baselines for CS-MRI using uniform masks
at undersampling rates of 4 and 6 on fastMRI dataset. The best and second best results are high-
lighted. Notably, ShaRP outperforms SOTA methods based on denoisers and diffusion models.

Baselines. ShaRP was compared against several baseline methods, including denoiser-based ap-
proaches (PnP-FISTA (Kamilov et al., 2017), PnP-ADMM (Chan et al., 2017)) and diffusion model-
based methods (DPS (Chung et al., 2023), DDS (Chung et al., 2024)). To highlight the advantages of
using a stochastic set of restoration operators, we also compared ShaRP with the DRP method (Hu
et al., 2024c), which applies only a single restoration operator. Additional details related to the
baseline methods can be found in Section B.1 of the appendix.

Results with supervised MMSE Restoration operator. Figure 2 illustrates the convergence be-
havior of ShaRP on the test set with an acceleration factor of R = 6 and additional noise σ = 0.01.
Table 1 provides a quantitative comparison of reconstruction performance across different accel-
eration factors and noise levels using a uniform sub-sampling mask. In all configurations, ShaRP
consistently outperforms the baseline methods. The use of a set of restoration operators clearly

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

enhances ShaRP’s performance, highlighting the effectiveness of employing multiple operators to
maximize the regularization information provided by the restoration model. Figure 3 presents visual
reconstructions for two test scenarios, where ShaRP accurately recovers fine brain details, partic-
ularly in the zoomed-in regions, while baseline methods tend to oversmooth or introduce artifacts.
These results highlight ShaRP’s superior ability to manage structured artifacts and preserve fine
details, outperforming both denoiser-based and diffusion model-based methods.

Figure 3: Visual comparison of ShaRP with baseline methods on CS-MRI. The top row shows
results for a 4× random mask with noise σ = 0.005, and the bottom row for a 6× random mask
with noise σ = 0.015. PSNR and SSIM values are in the top-left corner of each image. Error
maps and zoomed-in areas highlight differences. Notably, ShaRP with stochastic priors outperforms
state-of-the-art methods using denoiser and diffusion model priors.

Results with self-supervised MMSE Restoration operator. We further evaluate ShaRP’s perfor-
mance using an restoration model, learned in a self-supervised manner, as introduced in (Gan et al.,
2023b). In this setting, we compare ShaRP against two classical methods for CS-MRI reconstruc-
tion without groundtruth: TV (Block et al., 2007) and GRAPPA (Griswold et al., 2002) and a recent
state-of-the-art self-supervised deep unrolling method: SPICER (Hu et al., 2024d). As shown in
Table 2, even in scenarios where only incomplete measurements (8× subsampled measurement)
are available, ShaRP can effectively apply a self-supervised trained restoration prior to various re-
construction tasks. ShaRP using self-supervised restoration prior even outperforms DPIR and DPS
that use Gaussian denoisers trained using fully-sampled ground truth images (see Table 4 in the
appendix). Note that given only undersampled measurements, training Gaussian denoisers is not
feasible.

5.2 SINGLE IMAGE SUPER RESOLUTION (SISR)

The measurement operator in SISR can be written as A = SK, where K represents convolution
with the blur kernel, and S performs standard d-fold down-sampling. In our experiments, we use
two Gaussian blur kernels k , each with distinct standard deviations (1.25 and 1.5), and with down-
sampling factor of 2. Both noisy and noise-free cases are considered to evaluate the noisy robustness
of ShaRP. We randomly selected 100 images from the ImageNet test set, as provided in DiffPIR1.

Ensemble of Restoration Priors for Image Deblurring. Following the approach used to train our
CS-MRI restoration prior, we decompose the original deblurring task represented by the Gaussian
blur operator K into convex combinations of the original task and the identity mapping I. This

1https://github.com/yuanzhi-zhu/DiffPIR/tree/main/testsets

8

https://github.com/yuanzhi-zhu/DiffPIR/tree/main/testsets


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4× Random 6× Random
Noise level σ = 0.005 σ = 0.010 σ = 0.015 σ = 0.005 σ = 0.010 σ = 0.015

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
PnP-ADMM 28.83 0.842 28.39 0.816 27.70 0.786 25.59 0.776 25.19 0.740 24.93 0.728
ADMM-TV 28.14 0.866 28.06 0.863 27.96 0.859 24.55 0.782 24.33 0.750 24.28 0.736

GRAPPA 28.09 0.792 25.39 0.699 23.94 0.649 25.67 0.737 23.72 0.646 22.51 0.595
SPICER 31.87 0.901 31.67 0.889 31.50 0.887 30.18 0.871 30.05 0.863 30.01 0.860

ShaRPself 33.87 0.909 33.64 0.900 33.21 0.892 30.87 0.899 30.36 0.890 30.21 0.875

Table 2: PSNR (dB) and SSIM values for ShaRP with a self-supervised pre-trained restoration
operator, compared to several baselines for CS-MRI with random undersampling masks at rates of
4 and 6 on the fastMRI dataset. The best and second best results are highlighted. For reference,
the highlighted row presents a PnP method using a Gaussian denoiser, which requires fully sampled
data for training. Note the excellent performance of ShaRP even using priors trained without fully-
sampled ground-truth data.

Figure 4: Visual comparison of ShaRP with several well-known methods on 2× SISR. The top row
shows results for SISR with gaussian blur kernel with σ = 1.25, while the bottom row shows results
for SISR with gaussian blur kernel with σ = 1.5. The quantities in the top-left corner of each image
provide PSNR and SSIM values for each method. The squares at the bottom of each image visualize
the zoomed area in the image.

results in a new degradation operator defined as Hα = (1 − α)I + αK, where α controls the
degradation level. By varying α, we generate multiple degradation operators, allowing us to train
the restoration network R to handle all these operators. This training enables R to function as an
ensemble of MMSE restoration operators, expressed as R(s,Hα) = E[x | s,Hα], where s is the
degraded image and x is the original image. The original deblurring operator K corresponds to
convolution with a Gaussian blur kernel of size 31 × 31 and standard deviation 3. More details on
the deblurring restoration network training are in Section B.2 of the Appendix.

Baselines. We compared ShaRP with several baseline methods, including DPIR (Zhang et al., 2022),
DPS (Chung et al., 2023), DDNM (Wang et al., 2023), DDRM (Kawar et al., 2022) and DiffPIR (Zhu
et al., 2023). DPIR represents the state-of-the-art (SOTA) PnP method that uses pre-trained denoisers
as priors to address SISR. In contrast, DPS, DDNM, and DiffPIR use different sampling strategies
to leverage pre-trained unconditional diffusion models for solving SISR. More baseline details can
be found in Section B.2 of the Appendix.

Results on SISR with deblurring prior. Figure 4 shows the visual reconstruction results for two
settings with different blur kernels. As demonstrated, ShaRP successfully recovers most features and
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maintains high data consistency with the available measurements. Table 3 provides a quantitative
comparison of ShaRP against other baseline methods, evaluated across various blur kernels and
noise levels. ShaRP achieves the highest PSNR and SSIM values but ranks second in perceptual
performance (LPIPS). This is consistent with the SOTA perceptual performance of DMs on SISR.
However, note how the use of a deblurring prior within ShaRP enables it to recover fine details,
ensuring overall competitiveness of the perceptual quality of the ShaRP solutions.

Noise level Noiseless σ = 0.01 Noiseless σ = 0.01
Metrics PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DPIR 28.10 0.809 0.305 28.05 0.807 0.308 27.90 0.803 0.314 27.87 0.800 0.314

DDNM 27.53 0.786 0.240 27.49 0.784 0.246 27.02 0.764 0.264 27.01 0.763 0.267
DPS 24.68 0.661 0.395 24.60 0.657 0.399 24.50 0.657 0.403 24.44 0.655 0.406

DiffPIR 28.92 0.852 0.152 28.63 0.839 0.169 28.59 0.834 0.172 28.02 0.819 0.185
DDRM 28.20 0.845 0.161 28.11 0.832 0.188 27.93 0.826 0.188 27.67 0.817 0.193

DRP 29.28 0.868 0.207 28.87 0.848 0.248 28.24 0.836 0.235 28.01 0.820 0.278
ShaRP 30.09 0.891 0.179 29.03 0.852 0.223 29.28 0.872 0.209 28.06 0.821 0.268

Table 3: Quantitative comparison of ShaRP with several baselines for SISR based on two different
blur kernels on ImageNet dataset. The best and second best results are highlighted. Notably, ShaRP
outperforms SOTA methods based on denoisers and diffusion models.

6 CONCLUSION

The work presented in this paper proposes a new ShaRP method for solving imaging inverse prob-
lems by using pre-trained restoration network as a prior, presents its theoretical analysis, and applies
the method to two well-known inverse problems. Unlike previous approaches that relied on Gaus-
sian denoisers or a single restoration prior, our method uses a set of restoration priors, each corre-
sponding to different degradation settings. The numerical validation shows that ShaRP benefits from
stochastically using multiple degradation priors, leading to better results. A key conclusion is the
potential effectiveness of exploring priors beyond those defined by traditional Gaussian denoisers
and a specific restoration operator.
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A THEORETICAL ANALYSIS OF SHARP

A.1 PROOF OF THEOREM 1

Theorem. Assume that the prior density px is non-degenerate over Rn and let R∗ be the MMSE
restoration operator (4) corresponding to the restoration problems (3). Then, we have that

∇h(x) =
τ

σ2

(
Es∼Gσ(s−Hx),H∼pH

[
HTH(x− R∗(s,H))

])
,

where h is the ShaRP regularizer in (6).

Proof. The ShaRP regularizer h(x) is defined as

h(x) = τEs∼Gσ(s−Hx),H∼pH [−logp(s|H)]

= −τ
∫
p(H)

[∫
Gσ(s−Hx)logp(s|H) ds

]
dH, (10)

whereGσ is the Gaussian probability density with variance σ2 and p(s|H) is the likelihood function
for the degraded observation given the operator H. The expectation over p(H) accounts for the
randomness of the restoration operator H.

We start by relating the MMSE restoration operator to the score of the degraded observation

∇p(s|H) =
1

σ2

∫
(Hx− s)Gσ(s−Hx)px(x) dx,

where px is the prior. By using the definition of the MMSE estimator, we obtain the relationship

∇logp(s|H) =
1

σ2
(HR∗(s,H)− s) . (11)

Consider the function inside the parenthesis in the expression for the ShaRP regularizer (10)

ρ(z) := (Gσ ∗ logps|H)(z) =

∫
Gσ(z − s) logp(s|H) ds,

where z has the same dimensions as s and ∗ denotes convolution. The gradient of ρ is given by

∇ρ(z) = (∇Gσ ∗ logps|H)(z) = (Gσ ∗ ∇logps|H)(z)

=
1

σ2

∫
Gσ(z − s) [HR∗(s,H)− s] ds

=
1

σ2

(
H

∫
R∗(s,H)Gσ(z − s) ds− z

)
where we used (11). By using z = Hx, we write the gradient with respect to x

∇xρ(Hx) =
1

σ2
HTH

(∫
R∗(s,H)Gσ(s−Hx) ds− x

)
By using this expression in (10), we obtain the desired result

∇h(x) = − τ

σ2

[∫
p(H)

∫
Gσ(s−Hx)

(
HTH(R∗(s,H)− x)

)
ds dH

]
=

τ

σ2
Es∼Gσ(s−Hx),H∼pH

[
HTH(x− R∗(s,H))

]
.

A.2 PROOF OF THEOREM 2

Theorem. Run ShaRP for t ≥ 1 iterations using the step-size 0 < γ ≤ 1/L under Assumptions 1-3.
Then, the sequence xk generated by ShaRP satisfies

E

[
1

t

t∑
k=1

‖∇f(xk−1)‖22

]
≤ 2

t
(f(x0)− f∗) + γLν2 + ε2.
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Proof. First note that from the definition of the bias in eq. (9), we have that

E
[
∇̂f(xk−1) |xk−1

]
= ∇f(xk−1) + b(xk−1), (12)

where the expectation is with respect to s ∼ Gσ(s−Hxk−1) and H ∼ pH. In order to simplify the
notation, we will drop these subscripts from the expectations in the analysis below.

Consider the iteration k ≥ 1 of ShaRP with inexact MMSE operator

f(xk) ≤ f(xk−1) +∇f(xk−1)T(xk − xk−1) +
L

2
‖xk − xk−1‖22

= f(xk−1)− γ∇f(xk−1)T∇̂f(xk−1) +
Lγ2

2
‖∇̂f(xk−1)‖2,

where in the first line we used the Lipschitz continuity of∇f . By taking the expectation with respect
to s ∼ Gσ(s−Hxk−1) and H ∼ pH on both sides of this expression, we get

E[f(xk)|xk−1] ≤ f(xk−1)− γ∇f(xk−1)T(∇f(xk−1) + b(xk−1)) +
Lγ2

2
E
[
‖∇̂f(xk−1)‖22|xk−1

]
≤ f(xk−1)− γ

2
‖∇f(xk−1)‖22 +

γ

2
‖b(xk−1)‖22

+
Lγ2

2

(
E
[
‖∇̂f(xk−1)‖22|xk−1

]
−
(
E[∇̂f(xk−1)|xk−1]

)2)
≤ f(xk−1)− γ

2
‖∇f(xk−1)‖22 +

γε2

2
+
Lγ2ν2

2
.

In the second row, we completed the square, applied eq. (12), and used the assumption that γ ≤ 1/L.
In the third row, we used the variance and bias bounds in Assumptions 2 and 3. By rearranging the
expression, we get the following bound

‖∇f(xk−1)‖22 ≤
2

γ

(
f(xk−1)− E[f(xk)|xk−1]

)
+ Lγν2 + ε2

By taking the total expectation, averaging over t iterations, and using the lower bound f∗, we get
the desired result

E

[
1

t

t∑
k=1

‖∇f(xk−1)‖22

]
≤ 2

γt
(f(x0)− f∗) + Lγν2 + ε2.

A.3 PROOF OF THEOREM 3:

In this section, we present a theorem that establishes the feasibility of learning an MMSE estimator
from undersampled MRI measurements. The measurement model for CS-PMRI can be expressed
as: y = PFSx + e, where P is the k-space subsampling pattern, F is the Fourier transform
operator, S = (S1, · · · ,Snc) are the multi-coil sensitivity maps, and e is the noise vector.

To show that an MMSE estimator can be learned from undersampled MRI data, we need the follow-
ing assumption.

Assumption 4. EP [P TP ] has a full rank and FS is an orthogonal matrix, where the expectation
is taken over pP .

This assumption implies that the union of all sampling matrices P spans the complete measurement
domain, even though each individual P may remain undersampled. This property can be achieved
by incorporating an additional weight W into the loss function, where: W = P ′W (P ′W )

T ∈
Rm×m denotes a subsampled variant of W given P ′. It is worth noting that normalizing the coil
sensitivities, such that STS = I, is a standard practice. This assumption is the same as provided in
previous work (Gan et al., 2023b).
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Proposition 1. When Assumption 2 is satisfited,

E
[
M ′TWM ′] = I ,

where M ′ = P ′FS and the expectation is with respect to pM . This proof is the same as provided
in previous work (Gan et al., 2023b).

Theorem 3. Under Assumption 4, the MMSE estimator R learned using the weighted self-
supervised loss (`self ) is equivalent to its supervised counterpart (`sup). Specifically, we have:

R`self (θ) = R`sup(θ) . (13)

where

`sup = E
[

1

2
‖x− x‖22

]
(14)

and

`self = E
[

1

2
‖M ′x− y′‖2W

]
. (15)

The vector x = R(y) is MMSE estimation of R for y.

Proof. For simplicity, we defineM ′ = P ′FS. Note that the self-supervised loss involves the term
M ′x̄− y′, where y′ = M ′x+ e′

M ′x̄− y′ = M ′(x̄− x)− e′. (16)

Thus, the self-supervised loss becomes:

`self = E
[

1

2
‖M ′(x̄− x)− e′‖2W

]
. (17)

Expanding the squared term:

‖M ′(x̄− x)− e′‖2W = ‖M ′(x̄− x)‖2W − 2(M ′(x̄− x))TWe′ + ‖e′‖2W
= (x̄− x)TM ′TWM ′(x̄− x)− 2(M ′(x̄− x))TWe′ + ‖e′‖2W .

So that

E
[
‖M ′(x̄− x)− e′‖2W

]
= E

[
(x̄− x)TM ′TWM ′(x̄− x)

]
− E

[
2(M ′(x̄− x))TWe′

]
+ E

[
‖e′‖2W

]
.

= E
[
‖x− x[‖22

]
+ constant,

where the first term equals to E
[
‖x− x[‖22

]
due to the Proposition 1 that E

[
M ′TWM ′] = I; the

second term equals to zero because e′ is zero-mean and independent of M ′ and x; The third term,
‖e′‖2W , does not depend on x and contributes a constant that does not affect the optimization for
training the MMSE estimator R.
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B EXPERIMENT DETAILS

B.1 IMPLEMENTATION DETAILS OF CS-MRI TASKS

Subsampling pattern for CS-MRI. In this paper, we explored two types of subsampling patterns
for MRI reconstruction tasks. All undersampling masks were generated by first including a set
number of auto-calibration signal (ACS) lines, ensuring a fully-sampled central k-space region.

Figure 5 illustrates the k-space trajectories for both random and uniform (equidistant) subsampling
at acceleration factors of 4, 6, and 8. Notably, different patterns were used for training and testing.
During training, our restoration prior was only trained on a uniform mask with a subsampling rate
of 6. However, for inference, we employed both uniform and random masks at subsampling rates of
4 and 6, creating a mismatch between the pre-trained restoration prior and the test configurations.

Figure 5: Illustration of the undersampling masks used for CS-MRI in this work. (a) The eight dif-
ferent 8× uniform masks used for training the restoration prior. (b) The inference setting for ShaRP,
demonstrating how the prior trained on the masks in (a) can be applied to solve other problems
without retraining.

Algorithm 2 Supervised Training of CS-MRI Restoration Network

Require: dataset: p(x), sampling operator set: {M1,M1, · · · ,M1}, Restoration model: Rθ(·, α)
repeat:
x ∼ p(x),M ∼ {M1,M2, · · · ,M8}, e ∼ N (0, σ2I), α ∼ U([0, 1])
y = Mx+ e

minθ
∥∥Rθ ((1− α)x+ αMTy;α

)
− x

∥∥2
2

until converge

B.1.1 IMPLEMENTATION OF SUPERVISED PRIOR FOR CS-MRI

Models training for supervised case. We use the same U-Net architecture as employed in the
official implementation of DDS2 for R(·;α). For the supervised learning case, we select 1,000
different α values to train the model, following the α schedule outlined by I2SB (Liu et al., 2023).
The model is trained with Adam optimizer with a learning rate of 5×10−5. As shown in Algorithm 2,
we train our supervised learning model using eight different masks for 8× uniform sampling CS-
MRI reconstruction. In the pseudocode, {M1,M2, · · · ,M8} represent the eight different MRI
degradation operators, each defined by a unique sampling pattern, as shown in Figure 5 (a). This
results in a total of 8,000 possible combinations of α values and sampling masks, effectively creating
an ensemble of restoration priors during training.

Inference with a Subset of the Ensemble (Supervised Case). During inference, to simplify com-
putation and focus on the most effective priors, we use only a subset of the supervised trained en-
semble. Specifically, we fix the α value to a particular choice (e.g., α = 0.5) and use the 8 different
sampling masks {M1,M2, · · · ,M8}, resulting in 8 restoration priors.

Step size and regularization parameter. To ensure fairness, for each problem setting, each
method—both proposed and baseline—is fine-tuned for optimal PSNR using 10 slices from a vali-
dation set separate from the test set. The same step size γ and regularization parameter τ are then
applied consistently across the entire test set.

2https://github.com/HJ-harry/DDS
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Baseline details. We compare ShaRP with several variants of denoiser- and diffusion model-based
methods. For denoiser-based approaches, we include PnP-FISTA (Kamilov et al., 2023), PnP-
ADMM (Chan et al., 2017). PnP-FISTA and PnP-ADMM correspond to the FISTA and ADMM
variants of PnP, both utilizing AWGN denoisers built on DRUNet (Zhang et al., 2022). For diffusion
model-based methods, we compare with DPS (Chung et al., 2023) and DDS (Chung et al., 2024),
which use pre-trained diffusion models as priors and apply different posterior sampling strategies
to address general inverse problems. We use the same pre-trained diffusion model configuration as
outlined in the DDS paper. For all baseline methods, we fine-tuned their parameters to maximize
the PSNR value. Notably, both the DRUNet denoiser and the diffusion model were trained using
the same dataset employed for training our restoration prior. For a fair comparison, the diffusion
model pre-trained for DDS and DPS use the same network architecture as our restoration network
. All models are trained from scratch on the fastMRI training set, following the architecture set-
tings provided in DDS3. We also compared with method that also use the deep restoration prior to
solve general inverse problem: DRP (Hu et al., 2024c). For DRP, we utilize the same pre-trained
restoration network as in ShaRP. However, instead of employing a set of degradation priors, DRP
uses a single fixed prior. For a fair comparison, we selected the optimal fixed prior—defined by a
fixed α and subsampling mask—based on PSNR performance on the validation set, and applied it
accordingly.

B.1.2 IMPLEMENTATION OF SELF-SUPERVISED PRIOR FOR CS-MRI

Algorithm 3 Self-Supervised Training of CS-MRI Restoration Network

Require: dataset: p(yi,Mi,yj ,Mj), Restoration model: Rθ(·)
repeat:
yi,Mi,yj ,Mj ∼ p(yi,Mi,yj ,Mj), e ∼ N (0, σ2I)

minθ
∥∥MjRθ

(
MT

i (yi + e)
)
− yj

∥∥2
W

until converge

Models training for (Self-Supervised Case). For self-supervised training, the ground truth ref-
erence x is not available as a label. Instead, as shown in Algorithm 3, we work with pairs of
subsampled measurements, yi and yj , along with their corresponding sampling operators, Mi and
Mj . These paired measurements exhibit significant overlap within the shared auto-calibration sig-
nal (ACS) region, which increases the weighting of these overlapping k-space regions. Following
the approach proposed by SSDEQ (Gan et al., 2023b), we introduce a diagonal weighting matrix
W to account for the oversampled regions in the loss function. By incorporating this weighted loss,
we are able to train our MMSE restoration operator using incomplete measurements alone. Further-
more, unlike the supervised case where we use the combination of α values to form an ensemble,
in the self-supervised setting, we construct the ensemble using only eight different sampling masks
across the entire dataset.

Inference Using All Restoration Priors (Self-Supervised Case). During inference in the self-
supervised setting, we utilize all 8 restoration priors corresponding to the different sampling masks.
By incorporating the entire ensemble, we fully leverage its capacity to remove the artifacts and
enhance reconstruction performance.

Step size and regularization parameter. To ensure fairness, for each problem setting, each
method—both proposed and baseline—is fine-tuned for optimal PSNR using 10 slices from a vali-
dation set separate from the test set. The same step size γ and regularization parameter τ are then
applied consistently across the entire test set.

Baseline details. In the self-supervised setting, we compared ShaRP with two widely used tradi-
tional methods: TV (Block et al., 2007) and GRAPPA (Griswold et al., 2002), both of which ad-
dress the restoration problem without requiring fully-sampled references. Additionally, we included
SPICER (Hu et al., 2024d), a recent state-of-the-art self-supervised deep unrolling method designed
for MRI reconstruction using only pairs of undersampled measurements. To ensure consistency, we
trained the SPICER model on the same amount of paired data used for training our restoration prior
in the 8× uniform CS-MRI setting and applied it to other CS-MRI configurations.

3https://github.com/HJ-harry/DDS
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B.2 IMPLEMENTATION DETAILS OF SISR TASKS

Algorithm 4 Gaussian Deblurring Restoration network training

Require: dataset:p(x,y), Gaussian blur operator: K, Rθ(·, α)
repeat:
x ∼ p(x), e ∼ N (0, σ2I), α ∼ U([0, 1])

minθ ‖Rθ ((1− α)x+ αKx;α)− x‖22
until converge

Restoration Model training. We use the same U-Net architecture as the Gaussian deblurring model
provided by I2SB4. Utilizing the pre-trained checkpoints from their repository, we fine-tune our
model accordingly. Specifically, we align with their codebase and configure the model type to OT-
ODE to satisfy our MMSE restoration operator assumption.

To create an ensemble of restoration priors, we consider a family of degradation operators that are
convex combinations of the identity mapping I and the Gaussian blur operator K. The blurring
operator K corresponds to convolution with a Gaussian blur kernel of size 31 × 31 and standard
deviation 3. Specifically, we define the degradation operator as Hα = (1 − α)I + αK, where
α ∈ [0, 1] controls the degradation level. By varying α, we generate multiple degradation operators,
allowing us to train the restoration network R to handle all these operators, expressed as R(s,Hα) =
E [x|s,Hα], where s is the degraded image and x is the original image.

We select 1,000 different α values from the interval [0, 1], following the α schedule outlined by
I2SB (Liu et al., 2023). This results in 1,000 different degradation operators Hα, effectively creating
an ensemble of restoration priors during training. The model is trained using the Adam optimizer
with a learning rate of 5× 10−5.

Inference with a Subset of the Ensemble. During inference, to simplify computation and focus on
the most effective priors, we use only a subset of the supervised trained ensemble. Specifically, we
select 6 α values, resulting in 6 restoration priors.

Step size and regularization parameter. To ensure fairness, for each problem setting, each
method—both proposed and baseline—is fine-tuned for optimal PSNR using 5 images from a val-
idation set separate from the test set. The same step size γ and regularization parameter τ are then
applied consistently across the entire test set.

Baseline details. We compare ShaRP against several denoiser- and diffusion model-based meth-
ods. For denoiser-based approaches, we evaluate DPIR (Zhang et al., 2022), which relies on half-
quadratic splitting (HQS) iterations with DRUNet denoisers. For diffusion model-based methods,
we compare with DPS (Chung et al., 2023), DDNM (Wang et al., 2023), and DiffPIR (Zhu et al.,
2023). These methods all use the same pre-trained diffusion models as priors, but each employs
a distinct posterior sampling strategy to solve general inverse problems. We specifically use the
pre-trained diffusion model from DiffPIR. We also compared with method that also use the deep
restoration prior to solve general inverse problem: DRP (Hu et al., 2024c). For DRP, we utilize the
same pre-trained deblurring network as in ShaRP. However, instead of employing a set of degra-
dation priors, DRP uses a single fixed prior. For a fair comparison, we selected the optimal fixed
prior—defined by a fixed α based on PSNR performance on the validation set, and applied it accord-
ingly. For all baselines, we fine-tuned their parameters to maximize PSNR performance. Notably,
the diffusion model backbone for all diffusion-based baselines was trained on the same dataset used
to train our restoration prior.

4https://github.com/NVlabs/I2SB
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C ADDITIONAL RESULTS FOR CS-MRI

C.1 PERFORMANCE OF SHARP FOR RANDOM SUBSAMPLING SETTING

Due to space constraints, we present only the quantitative performance for the uniform subsampling
setting in the main paper. In this section, we further evaluate ShaRP’s performance on random
subsampling setting, with two sub-sampling rates (4× and 6×), and three noise levels (σ = 0.005,
0.01, and 0.015).

Table 4 provides a quantitative comparison of reconstruction performance across different accel-
eration factors and noise levels using a uniform sub-sampling mask. In all configurations, ShaRP
consistently outperforms the baseline methods. The use of a set of restoration operators clearly
enhances ShaRP’s performance, highlighting the effectiveness of employing multiple operators to
maximize the regularization information provided by the restoration model. Figure 6 presents visual
reconstructions for two test scenarios, where ShaRP accurately recovers fine brain details, partic-
ularly in the zoomed-in regions, while baseline methods tend to oversmooth or introduce artifacts.
These results highlight ShaRP’s superior ability to manage structured artifacts and preserve fine
details, outperforming both denoiser-based and diffusion model-based methods.

Figure 6: Visual comparison of ShaRP with baseline methods on CS-MRI for 6× random sampling
mask with noise σ = 0.015. PSNR and SSIM values are in the top-left corner of each image. Error
maps and zoomed-in areas highlight differences. Notably, ShaRP with stochastic priors outperforms
state-of-the-art methods using denoiser and diffusion model priors.
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4× Random 6× Random
Noise level σ = 0.005 σ = 0.010 σ = 0.015 σ = 0.005 σ = 0.010 σ = 0.015

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Zero-filled 25.83 0.815 25.81 0.812 25.76 0.807 22.68 0.724 22.67 0.722 22.67 0.719

TV 28.14 0.866 28.06 0.863 27.96 0.859 24.55 0.782 24.33 0.750 24.28 0.736
PnP-FISTA 29.31 0.863 28.40 0.817 27.49 0.799 26.01 0.797 25.63 0.756 24.94 0.717

PnP-ADMM 28.83 0.842 28.39 0.816 27.70 0.786 25.59 0.776 25.19 0.740 24.93 0.728
DRP 29.97 0.880 29.37 0.839 28.31 0.794 26.98 0.866 26.78 0.853 26.49 0.821
DPS 31.72 0.874 30.45 0.857 29.50 0.843 30.32 0.856 29.36 0.824 27.99 0.810
DDS 32.41 0.910 32.37 0.906 32.25 0.901 30.59 0.876 30.35 0.874 30.31 0.879

ShaRP 34.66 0.949 33.57 0.920 33.18 0.931 31.53 0.924 31.46 0.918 31.45 0.914

Table 4: Quantitative comparison of ShaRP with several baselines for CS-MRI using random masks
at undersampling rates of 4 and 6 on fastMRI dataset. The best and second best results are high-
lighted. Notably, ShaRP outperforms SOTA methods based on denoisers and diffusion models.
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C.2 PERFORMANCE OF ADDITIONAL BASELINE METHODS ON MATCHED AND MISMATCHED
SETTINGS

In this section, we highlight an important observation: pre-trained restoration networks typi-
cally exhibit poor generalization to mismatched settings. We chose two commonly used methods
(SwinIR (Liang et al., 2021) and E2E-VarNet (Sriram et al., 2020)) for the specific setting of CS-
MRI. We trained them on the same 8× uniform subsampling setting as our restoration prior and
directly applied them to solve both matched and mismatched problems, as ShaRP did. As shown
in the Table 5, the baseline method’s performance drops significantly under mismatched condi-
tions, whereas ShaRP maintains stable performance and convergence guarantees. This demonstrates
ShaRP’s ability to adapt pre-trained restoration models as priors and use it to solve problems under
mismatched settings. As shown in the Figure 7, due to the mismatched settings, the two baseline
methods suffer from over-smoothing, lack important details, and exhibit artifacts, whereas ShaRP
still provides high-quality reconstruction performance. This indicates that ShaRP can balance data
fidelity and the artifact removal capabilities of the prior model, leading to an artifact-free reconstruc-
tion that preserves important details.

Settings 4× Uniform 4× Random 6× Uniform 6× Random 8× Uniform

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
SwinIR 24.78 0.849 25.09 0.841 29.55 0.907 27.98 0.819 29.37 0.898

E2E-VarNet 35.40 0.957 33.48 0.945 32.79 0.936 31.02 0.913 32.59 0.919

ShaRP 37.59 0.963 34.66 0.949 33.42 0.940 31.53 0.924 32.37 0.907

Table 5: Quantitative comparison of ShaRP with task-specific baselines trained on the 8× uniform
mask. Baselines perform well in matched settings (highlighted in the table) but show a significant
drop under mismatched conditions. In contrast, ShaRP remains robust, handling both matched and
mismatched scenarios effectively.

Figure 7: Visual comparison of ShaRP with task-specific baseline methods on CS-MRI for 6×
random sampling mask with noise σ = 0.015. PSNR and SSIM values are in the top-left corner of
each image. Error maps and zoomed-in areas highlight differences. Notably, ShaRP with stochastic
priors outperforms state-of-the-art methods using denoiser and diffusion model priors.
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D ADDITIONAL VISUAL RESULTS FOR SISR

In this section, we present additional visual results to numerical comparisons for the SISR task.

D.1 ADDITIONAL VISUAL RESULTS AGAINST BASELINES

As illustrated in Figure 8 and Figure 9, ShaRP outperforms all baseline approaches under both
blur kernel settings, achieving higher PSNR and SSIM values. Moreover, we maintain superior
data consistency with the measurements while achieving enhanced perceptual quality. The use of
an ensemble of deblurring priors enables our method to recover fine details at varying corruption
levels, contributing to the improved performance.

Figure 8: Visual comparison of ShaRP with several well-known methods on 2× SISR with gaussian
blur kernel with σ = 1.5. The quantities in the top-left corner of each image provide PSNR and
SSIM values for each method. The squares at the bottom of each image visualize the zoomed area
in the image.

Figure 9: Visual comparison of ShaRP with several well-known methods on 2× SISR with gaussian
blur kernel with σ = 1.5. The quantities in the top-left corner of each image provide PSNR and
SSIM values for each method. The squares at the bottom of each image visualize the zoomed area
in the image.
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D.2 ADDITIONAL VISUAL RESULTS AGAINST DRP

To further emphasize the necessity and advantages of using an ensemble of deblurring priors, as
opposed to a fixed prior like in DRP (Hu et al., 2024c), we provide additional visual comparison
results. As shown in Figure 10, ShaRP consistently recovers finer details, resulting in improved
PSNR and SSIM scores, along with enhanced perceptual performance.

Figure 10: Visual comparison of ShaRP with DRP on 2× SISR with gaussian blur kernel with
σ = 1.5. The quantities in the bottom-left corner of each image provide PSNR and SSIM values for
each method. The squares at the bottom of each image visualize the zoomed area in the image.
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D.3 ADDITIONAL COMPARISON AGAINST DDRM AND DIFFIR

To further evaluate ShaRP’s performance against state-of-the-art diffusion-based methods, we in-
cluded two additional baselines for comparison: DDRM (Kawar et al., 2022) and DiffIR (Xia et al.,
2023). The experiment setting is 2× SISR task with gaussian blur kernel with σ = 1.25 on Ima-
geNet dataset. For DDRM, we utilized the same pre-trained unconditional diffusion backbone as
DiffPIR, DDNM, and DDS, but followed the sampling procedure outlined in their original paper.
For DiffIR, we directly used the provided checkpoint from the authors.

Metrics PSNR SSIM LPIPS
DPIR 28.10 0.809 0.305

DDNM 27.53 0.786 0.240
DPS 24.68 0.661 0.395

DiffPIR 28.92 0.852 0.152
DiffIR 25.79 0.812 0.180
DDRM 28.20 0.845 0.161

DRP 29.28 0.868 0.207
ShaRP 30.09 0.891 0.179

Table 6: Quantitative comparison of ShaRP with several additional baselines for 2× SISR with
gaussian blur kernel with σ = 1.25 on ImageNet dataset. The best and second best results are
highlighted. Notably, ShaRP outperforms SOTA methods based on denoisers and diffusion models.

Figure 11: Visual comparison of ShaRP with additional baselines on 2× SISR with gaussian blur
kernel with σ = 1.25. The quantities in the bottom-left corner of each image provide PSNR and
SSIM values for each method. The squares at the bottom of each image visualize the zoomed area
in the image.
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E ADDITIONAL EXPERIMENTS

In this section, we include two additional ablation studies to further highlights ShaRP’s capability
to leverage restoration priors for solving general inverse problems, as well as to evaluate its perfor-
mance under different hyperparameter settings.

E.1 ABLATION STUDY ON USING SR PRIOR FOR CS-MRI TASK

To demonstrate the flexibility of our approach in integrating diverse restoration models to address
general inverse problems, we conducted an additional ablation study using a pre-trained super-
resolution network as a prior for solving the CS-MRI problem.

Algorithm 5 MRI Super Resolution network training

Require: dataset:p(x,y), 4× bicubic downsampling operator: K, Rθ(·, α)
repeat:
x ∼ p(x), e ∼ N (0, σ2I), α ∼ U([0, 1])

minθ
∥∥Rθ ((1− α)x+ αDTDx;α

)
− x

∥∥2
2

until converge

Models training for MRI-SR We use the same U-Net architecture as employed in the official im-
plementation of DDS5 for R(·;α). To create an ensemble of restoration priors, we consider a family
of degradation operators that are convex combinations of the identity mapping I and the Gaussian
blur operator D. The 4× bicubic downsampling operator D corresponds to bicubic downsample
with factor equals to 4. Specifically, we define the degradation operator as Hα = (1−α)I+αDTD,
where α ∈ [0, 1] controls the degradation level. By varying α, we generate multiple degradation op-
erators, allowing us to train the restoration network R to handle all these operators, expressed as
R(s,Hα) = E [x|s,Hα], where s is the degraded image and x is the original image.

We select 1,000 different α values from the interval [0, 1], following the α schedule outlined by
I2SB (Liu et al., 2023). This results in 1,000 different degradation operators Hα, effectively creating
an ensemble of restoration priors during training. The model is trained using the Adam optimizer
with a learning rate of 5× 10−5.

Using MRI-SR model as prior for CS-MRI task. During inference, to simplify computation and
focus on the most effective priors, we use only a subset of the ensemble. Specifically, we select 6 α
values, resulting in 6 restoration priors.

As shown in Table 7, under the 4× uniform mask setting, employing the pre-trained MRI-SR model
as prior allows ShaRP to outperform denoiser- and diffusion-based approaches. However, its perfor-
mance remains inferior to ShaRP with a mismatched CS-MRI-specific prior. In the 4× random mask
setting, ShaRP with the pre-trained MRI-SR model as prior continues to surpass PnP-based methods
that utilize a denoiser prior but performs worse than approaches based on diffusion models. Notably,
ShaRP with a mismatched CS-MRI-specific prior consistently delivers the best performance.

Tasks Metrics PnP-FISTA PnP-ADMM DPS DDS ShaRPCS ShaRPSR

4x Uniform PSNR 35.88 35.76 32.62 35.21 37.59 35.91
SSIM 0.938 0.941 0.888 0.937 0.961 0.943

4x Random PSNR 29.31 28.83 31.72 32.41 34.66 30.91
SSIM 0.863 0.842 0.874 0.910 0.949 0.905

Table 7: Quantitative comparison of ShaRP against baselines for CS-MRI reconstruction using 8×
CS-MRI and 4× super-resolution priors, evaluated on the fastMRI dataset. Results are reported
for both uniform and random undersampling masks at a 4x undersampling rate. The best and
second best results are highlighted.

5https://github.com/HJ-harry/DDS
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E.2 ABLATION STUDY ON THE INFLUENCE OF HYPERPARAMETERS

To investigate the impact of the hyperparameters α and b on ShaRP’s performance, we conducted
an ablation study under the 4× CS-MRI setting with random sampling masks. The parameter α
determines the selection of the specific restoration prior, while b controls the number of restoration
priors used in the ensemble. Details about these hyperparameters can be found in Section B.1.
Specifically, we analyzed how varying the values of α and b influenced reconstruction performance.
This analysis provides valuable insights into ShaRP’s sensitivity to these parameters and their roles
in achieving optimal results.

As shown in Figure 12 and Figure 13, increasing the value of b, which corresponds to using more
restoration priors in the ensemble, generally improves ShaRP’s reconstruction performance. Simi-
larly, Figure 14 demonstrates the influence of α on performance. A very small α fails to provide
sufficient regularization to constrain the solution, while an excessively large α overly restricts the
model, leading to a decline in performance. These findings highlight the importance of appropriately
tuning α and b to balance flexibility and regularization for optimal results.

Figure 12: Performance comparison of ShaRP’s CS-MRI reconstruction at 4× acceleration with
varying numbers of restoration priors, b. Left: PSNR vs. b; Right: SSIM vs. b. ADOBI with
b = 8 consistently achieves superior results, highlighting the performance improvements gained by
incorporating more restoration priors into ShaRP.

Figure 13: Visual comparison of ShaRP with varying amounts of restoration priors, denoted by b, in
the ensemble. The PSNR and SSIM values for each method are shown in the top-left corner of each
image. Zoomed-in regions, highlighted as squares at the bottom of each image, provide a closer
look at key details. Notably, increasing the number of restoration priors in the ensemble enhances
visual performance by effectively reducing artifacts and capturing finer details.
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Figure 14: Performance comparison of ShaRP’s CS-MRI reconstruction at 4× acceleration with
varying α. Left: PSNR vs. α; Right: SSIM vs. α.
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