
Published in Transactions on Machine Learning Research (07/2024)

Federated Learning with Reduced Information Leakage and
Computation

Tongxin Yin* tyin@umich.edu
Department of Electrical and Computer Engineering
University of Michigan

Xuwei Tan* tan.1206@osu.edu
Department of Computer Science and Engineering
The Ohio State University

Xueru Zhang* zhang.12807@osu.edu
Department of Computer Science and Engineering
The Ohio State University

Mohammad Mahdi Khalili khalili.17@osu.edu
Department of Computer Science and Engineering
The Ohio State University

Mingyan Liu mingyan@umich.edu
Department of Electrical and Computer Engineering
University of Michigan

Reviewed on OpenReview: ht tp s: // op en re vi ew .n et /f or um ?i d= ZJ 4A 3x hA DV

*These authors contributed equally to this work.

Abstract

Federated learning (FL) is a distributed learning paradigm that allows multiple decentralized
clients to collaboratively learn a common model without sharing local data. Although
local data is not exposed directly, privacy concerns nonetheless exist as clients’ sensitive
information can be inferred from intermediate computations. Moreover, such information
leakage accumulates substantially over time as the same data is repeatedly used during
the iterative learning process. As a result, it can be particularly difficult to balance the
privacy-accuracy trade-off when designing privacy-preserving FL algorithms. This paper
introduces Upcycled-FL, a simple yet effective strategy that applies first-order approximation
at every even round of model update. Under this strategy, half of the FL updates incur no
information leakage and require much less computational and transmission costs. We first
conduct the theoretical analysis on the convergence (rate) of Upcycled-FL and then apply
two perturbation mechanisms to preserve privacy. Extensive experiments on both synthetic
and real-world data show that the Upcycled-FL strategy can be adapted to many existing
FL frameworks and consistently improve the privacy-accuracy trade-off.1

1 Introduction

Federated learning (FL) has emerged as an important paradigm for learning models in a distributed fashion,
whereby data is distributed across different clients and the goal is to jointly learn a model from the distributed
data. This is facilitated by a central server and the model can be learned through iterative interactions

1Code available at https://github.com/osu-srml/Upcycled-FL.

1

https://openreview.net/forum?id=ZJ4A3xhADV
https://github.com/osu-srml/Upcycled-FL

Published in Transactions on Machine Learning Research (07/2024)

between the central server and clients: at each iteration, each client performs certain computation using its
local data; the updated local models are collected and aggregated by the server; the aggregated model is then
sent back to clients for them to update local models; and so on till the learning task is deemed accomplished.

Although each client’s data is not shared directly with the central server, there is a risk of information leakage
that a third party may infer individual sensitive information from (intermediate) computational outcomes.
Information leakage occurs whenever the client’s local gradients are shared with third parties. Importantly,
the information leakage (or privacy loss) accumulates as data is repeatedly used during the iterative learning
process: with more computational outcomes derived from individual data, third parties have more information
to infer sensitive data and it poses higher privacy risks for individuals. An example is Huang et al. (2021),
which shows that eavesdroppers can conduct gradient inversion attacks to recover clients’ data from the
gradients. In this paper, we use differential privacy (DP) proposed by Dwork (2006), a de facto standard for
preserving individual data privacy in data analysis, ranging from simple tasks such as data collection and
statistical analysis (Zhang et al., 2022b; Ghosh & Roth, 2011; Khalili & Vakilinia, 2021; Amin et al., 2019;
Liu et al., 2021; Khalili et al., 2021c; 2019) to complex machine learning and optimization tasks (Cai et al.,
2024; Khalili et al., 2021b;a; Huang et al., 2020; Jagielski et al., 2019; Zhang et al., 2019b; 2018a;b; 2019c).
Compared to other privacy preservation techniques, it can (i) rigorously quantify the total privacy leakage
for complex algorithms such as FL; (ii) defend against attackers regardless of their background knowledge;
(iii) provide heterogeneous privacy guarantees for different clients. To achieve a certain DP guarantee, we
need to perturb FL algorithms (e.g., adding noise to the output, objective, or gradient of local clients) and
the perturbation needed for achieving the privacy requirement of each client grows as the total information
leakage increases. Because the added perturbation inevitably reduces algorithm accuracy, it can be difficult
to balance the privacy and accuracy trade-off in FL.

This paper proposes a novel strategy for FL called Upcycled Federated Learning (Upcycled-FL)2, in which
clients’ information leakage can be reduced such that it only occurs during half of the updates. This is
attained by modifying the even iterations of a baseline FL algorithm with first-order approximation, which
allows us to update the model using existing model parameters from previous iterations without using the
client’s data. Moreover, the updates in even iterations only involve addition/subtraction operations on
existing model parameters at the central server. Because Upcycled-FL doesn’t require local training and
transmission in half of iterations, the transmission costs and the training time can be reduced significantly. It
turns out that Upcycled-FL, by reducing the total information leakage, requires less perturbation to attain a
certain level of privacy and can enhance the privacy-accuracy trade-off significantly.

We emphasize that the idea of “upcycling information” is orthogonal to both the baseline FL algorithm and
the DP perturbation method. It can be applied to any FL algorithms that involve local optimization at
the clients. In this paper, we apply Upcycled-FL strategy to multiple existing FL algorithms and evaluate
them on both synthetic and real-world datasets. For DP perturbation methods, we consider both output and
objective perturbation as examples to quantify the privacy loss, while other DP methods can also be used.

It is worth noting that although differentially private federated learning has been extensively studied in the
literature, e.g., (Asoodeh et al., 2021; Chuanxin et al., 2020; Zhang et al., 2022a; Zheng et al., 2021; Wang
et al., 2020b; Kim et al., 2021; Zhang et al., 2019a; Baek et al., 2021; Wu et al., 2022; Girgis et al., 2021;
Truex et al., 2020; Hu et al., 2020; Seif et al., 2020; Zhao et al., 2020; Wei et al., 2020; Triastcyn & Faltings,
2019), all these algorithms need client’s local data to update the model and the information leakage inevitably
occurs at every iteration. This is fundamentally different from this work, where we propose a novel strategy
that effectively reduces information leakage in FL.

In addition to private federated learning, several approaches were proposed in the DP literature to improve
the privacy-accuracy trade-off, e.g., privacy amplification by sampling (Balle et al., 2018; Beimel et al., 2014;
Hu et al., 2021; Wang et al., 2019; Kasiviswanathan et al., 2011; Wang et al., 2015; Abadi et al., 2016),
leveraging non-private public data (Avent et al., 2017; Papernot et al., 2016), shuffling (Úlfar Erlingsson et al.,
2019), using weaker privacy notion (Bun & Steinke, 2016), using tighter privacy composition analysis tool
(Abadi et al., 2016). However, none of these strategies affect the algorithmic properties of learning algorithms.
By contrast, our method improves the privacy-accuracy trade-off by modifying the property of FL algorithm

2The word “upcycle” refers to reusing material so as to create higher-quality things than the original.

2

Published in Transactions on Machine Learning Research (07/2024)

(i.e., reducing the total information leakage); this improvement on the algorithmic property is independent of
the privacy notion/mechanism or the analysis method.

Our main contributions are summarized as follows.

• We propose Upcycled-FL (Algorithm 1), a novel strategy with reduced information leakage and computation
that is broadly applicable to many existing FL algorithms.

• As an example, we apply our strategy to FedProx (Li et al., 2020) and conduct convergence (rate) analysis
(Section 5, Theorem 5.6) where we identify a sufficient condition for the convergence of Upcycled-FL.

• As an example, we apply two differential privacy mechanisms (i.e., output perturbation and objective
perturbation) to Upcycled-FL and conduct privacy analysis (Section 6, Theorem 6.2).

• We evaluate the effectiveness of Upcycled-FL on both synthetic and real data (Section 7). Extensive
experiments show that Upcycled-FL can be adapted to many existing federated algorithms to achieve
better performance; it effectively improves the accuracy-privacy trade-off by reducing information leakage.

2 Related Work

Differential privacy in federated learning. Differential privacy has been widely used in federated
learning to provide privacy guarantees (Asoodeh et al., 2021; Chuanxin et al., 2020; Zhang et al., 2022a;
Zheng et al., 2021; Wang et al., 2020b; Kim et al., 2021; Zhang et al., 2019a; Baek et al., 2021; Wu et al.,
2022; Girgis et al., 2021; Truex et al., 2020; Hu et al., 2020; Seif et al., 2020; Zhao et al., 2020; Wei et al.,
2020; Triastcyn & Faltings, 2019). For example, Zhang et al. (2022a) uses the Gaussian mechanism for
a federated learning problem and propose an incentive mechanism to encourage users to share their data
and participate in the training process. Zheng et al. (2021) introduces f -differential privacy, a generalized
version of Gaussian differential privacy, and propose a federated learning algorithm satisfying this new notion.
Wang et al. (2020b) proposes a new mechanism called Random Response with Priori (RRP) to achieve local
differential privacy and apply this mechanism to the text data by training a Latent Dirichlet Allocation
(LDA) model using a federated learning algorithm. Triastcyn & Faltings (2019) adapts the Bayesian privacy
accounting method to the federated setting and propose joint accounting method for estimating client-level
and instance-level privacy simultaneously and securely. Wei et al. (2020) presents a private scheme that adds
noise to parameters at the random selected devices before aggregating and provides a convergence bound.
Kim et al. (2021) combines the Gaussian mechanism with gradient clipping in federated learning to improve
the privacy-accuracy tradeoff. Asoodeh et al. (2021) considers a different setting where only the last update
is publicly released and the central server and other devices are assumed to be trustworthy. However, all
these algorithms need client’s local data to update the model and the information leakage inevitably occurs
at every iteration. This is fundamentally different from Upcycled-FL, which reuses existing results to update
half of iterations and significantly reduces information leakage and computation.

Tackling heterogeneity in federated learning. It’s worth mentioning that, Upcycled-FL also empirically
outperforms existing baseline algorithms under device and statistical heterogeneity. In real-world scenarios,
local data are often non-identically distributed across different devices; different devices are also often equipped
with different specifications and computation capabilities. Such heterogeneity often causes instability in the
model performance and leads to divergence. Many approaches have been proposed to tackle this issue in FL.
For example, FedAvg (McMahan et al., 2017) uses a random selection of devices at each iteration to reduce
the negative impact of statistical heterogeneity; however, it may fail to converge when heterogeneity increases.
Other methods include FedProx (Li et al., 2020), a generalization and re-parameterization of FedAvg that
adds a proximal term to the objective function to penalize deviations in the local model from the previous
aggregation, and FedNova (Wang et al., 2020a) that re-normalizes local updates before updating to eliminate
objective inconsistency. It turns out that Upcycled-FL exhibits superior performance in the presence of
heterogeneity because gradients encapsulate information on data heterogeneity, the reusing of which leads to
a boost in performance.

3

Published in Transactions on Machine Learning Research (07/2024)

3 Problem Formulation

Consider an FL system consisting of a central server and a set I of clients. Each client i has its local dataset
Di and these datasets can be non-i.i.d across the clients. The goal of FL is to learn a model ω ∈ Rd from
data ∪i∈IDi by solving the following optimization:

minω f(ω) :=
∑

i∈I piFi(ω; Di) = E [Fi(ω; Di)] , (1)

where pi = |Di|∑
j∈I

|Dj |
is the size of client i’s data as a fraction of the total data samples, E[·] is defined as

the expectation over clients, Fi(ω; Di) is the local loss function associated with client i and depends on local
dataset Di. In this work, we allow Fi(ω; Di) to be possibly non-convex.

FL Algorithm. Let ωt
i be client i’s local model parameter at time t. In FL, the model is learned through

an iterative process: at each time step t, 1) local computations: each active client updates its local model
ωt

i using its local data Di; 2) local models broadcasts: local models (or gradients) are then uploaded to the
central server; 3) model aggregation: the central server aggregates results received from clients to update the
global model parameter ωt =

∑
i∈I piω

t
i ; 4) model updating: the aggregated model is sent back to clients and

is used for updating local models at t + 1.

During the learning process, each client’s local computation is exposed to third parties at every iteration: its
models/gradients need to be uploaded to the central server, and the global models calculated based on them
are shared with all clients. It is thus critical to ensure the FL is privacy-preserving. In this work, we consider
differential privacy as the notion of privacy.

Differential Privacy (Dwork, 2006). Differential privacy (DP) centers around the idea that the output of
a certain computational procedure should be statistically similar given singular changes to the input, thereby
preventing meaningful inference from observing the output.

In FL, the information exposed by each client i includes all intermediate computations {ωt
i}T

t=1. Consider
a randomized FL algorithm A(·) that generates a sequence of private local models {ω̂t

i}T
t=1, we say it

satisfies (ε, δ)-differential privacy for client i over T iterations if the following holds for any possible output
O ∈ Rd × · · · × Rd, and for any two neighboring local datasets Di, D′

i:

Pr({ω̂t
i}T

t=0 ∈ O|Di) ≤ exp (ε) · Pr({ω̂t
i}T

t=0 ∈ O|D′
i) + δ.

where ε ∈ [0, ∞) bounds the privacy loss, and δ ∈ [0, 1] loosely corresponds to the probability that algorithm
fails to bound the privacy loss by ε. Two datasets are neighboring datasets if they are different in at most
one data point.

4 Proposed Method: Upcycled-FL

Main idea. Fundamentally, the accumulation of information leakage over iterations stems from the fact
that the client’s data Di is used in every update. If the updates can be made without directly using this
original data, but only from computational results that already exist, then the information leakage originating
from these updates will be zero, and meanwhile, the computational cost may be reduced significantly. Based
on this idea, we propose Upcycled-FL, which considers reusing the earlier computations in a new update
and significantly reduces total information leakage and computational cost. Note that Upcycled-FL is not a
specific algorithm but an effective strategy that can be used for any existing FL algorithms.

Upcycling model update. Next, we present Upcycled-FL and illustrate how the client’s total information
leakage is reduced under this method.

For an FL system with the objective shown in Eqn. (1), the client i’s local objective function is given by
Fi(ω; Di). Under Upcycled-FL, we apply first-order approximation to Fi(ω; Di) at even iterations during
federated training (while odd updates remain fixed). Specifically, at 2m-th iteration, we expand Fi(ω; Di) at

4

Published in Transactions on Machine Learning Research (07/2024)

ω2m−1
i (local model in the previous iteration). Based on the Taylor series expansion, we have:

Fi(ω; Di) = Fi(ω2m−1
i ; Di) + ∇Fi(ω2m−1

i ; Di)T (ω − ω2m−1
i) + O(||ω − ω2m−1

i ||2)

≈ Fi(ω2m−1
i ; Di) + ∇Fi(ω2m−1

i ; Di)T (ω − ω2m−1
i) + λm

2 ||ω − ω2m−1
i ||2 (2)

for some constant λm ≥ 0 which may differ for different iteration 2m. Then for an FL algorithm, its model
update at 2m-th iteration under Upcycled-FL strategy can be attained by replacing Fi(ω; Di) with its
approximation in Eqn. (2) while the updates at odd iterations remain the same. We illustrate this using the
following two examples.
Example 4.1 (FedAvg (McMahan et al., 2017) under Upcycled-FL strategy). In FedAvg, client i at each
iteration updates the local model by optimizing its local objective function, i.e., ωt

i = arg minω Fi(ω; Di), ∀t.
Under Upcycled-FL strategy, the client i’s updates become:

ωt
i =

{
arg minω ∇Fi(ω2m−1

i ; Di)T ω + λm

2 ||ω − ω2m−1
i ||2, if t = 2m

arg minω Fi(ω; Di), if t = 2m − 1

Example 4.2 (FedProx (Li et al., 2020) under Upcycled-FL strategy). In FedProx, a proximal term is
added to the local objective function to stabilize the algorithm under heterogeneous clients (Algorithm 2),
i.e., client i at each iteration updates the local model ωt

i = arg minω Fi(ω; Di) + µ
2 ||ω − ωt−1||2, ∀t. Under

Upcycled-FL strategy, the client i’s updates become:

ωt
i =

{
arg minω ∇Fi(ω2m−1

i ; Di)T ω + λm

2 ||ω − ω2m−1
i ||2 + µ

2 ||ω − ω2m−1||2, if t = 2m

arg minω Fi(ω; Di) + µ
2 ||ω − ω2m−2||2, if t = 2m − 1

(3)

Next, we demonstrate how the information is upcycled under the above idea. As an illustrating example, we
focus on FedProx given in Example 4.2.

Note that in the even update of Eqn. (3), the only term that depends on dataset Di is ∇Fi(ω2m−1
i ; Di), which

can be derived directly from the previous odd iteration. Specifically, according to the first-order condition,
the following holds at odd iterations:

ω2m−1
i = arg min

ω
Fi(ω; Di) + µ

2 ||ω − ω2m−2||2 imply====⇒ ∇Fi(ω2m−1
i ; Di) + µ(ω2m−1

i − ω2m−2) = 0. (4)

Plug ∇Fi(ω2m−1
i ; Di) into even update of (3), we have the estimated update from the odd update:

ω2m
i ≈ arg min

ω
µ(ω2m−2 − ω2m−1

i)T ω + λm

2 ||ω − ω2m−1
i ||2 + µ

2 ||ω − ω2m−1||2. (5)

where the approximately equals sign "≈" is due to the approximation in Eqn. (2). By first-order condition,
even update (5) can be reduced to:

ω2m
i ≈ ω2m−1

i + µ

µ + λm

(
ω2m−1 − ω2m−2)

. (6)

It turns out that with first-order approximation, dataset Di is not used in the even updates. Because these
updates do not require access to the client’s data, these updates can be conducted at the central server
directly. That is, the central server updates the global model by aggregating:

ω2m =
∑
i∈I

piω
2m
i ≈

∑
i∈I

piω
2m−1
i + µ

µ + λm

(
ω2m−1 − ω2m−2)

= ω2m−1 + µ

µ + λm

(
ω2m−1 − ω2m−2)

Therefore, under Upcycled-FL strategy, even updates only involve addition/subtraction operations on the
existing global models from previous iterations (i.e., ω2m−1, ω2m−2) without the need for a local training
epoch: both the computational cost and transmission cost are reduced significantly. Note that the first-order

5

Published in Transactions on Machine Learning Research (07/2024)

approximation is only applied to even iterations, while the odd iterations should remain as the origin to
ensure Eqn. (4) holds. The entire updating procedure of Upcycled-FL is summarized in Algorithm 1.

Because Di is only used in odd iterations, information leakage only happens during odd updates. Intuitively,
the reduced information leakage would require less perturbation to attain a certain level of privacy guarantee,
which further results in higher accuracy and improved privacy-accuracy trade-off. In the following sections,
we first analyze the convergence property of Upcycled-FL and then apply privacy mechanisms to satisfy
differential privacy.

Upcycled-FL

Server

...

Client

...

FL

Server

...

Client

...

(a) Upcycled-FL reuses the intermediate updates

Upcycled-FL

...

Global
Aggregation

...

FL

Global
Aggregation

(b) Upcycled-FL uses different aggregation rule

Figure 1: Upcycled-FL can be considered from two perspectives: (i) it can be regarded as reusing the
intermediate updates of local models to reduce the total information leakage; or (ii) it can be regarded as a
global aggregation method with larger global update, which accelerates the learning process with the same
information leakage under the same training iterations.

Discussion. Indeed, if we view two consecutive steps (odd 2m − 1 followed by even 2m) of Upcycled-FL
as a single iteration t, then Upcycled-FedProx and FedProx will incur the same information leakage but
will differ at the phase of global model aggregation, as shown in Figure 1(b). Specifically, instead of simply
aggregating the global model by averaging over local updates (i.e.,

∑
i∈I piω

t
i), Upcycled-FL not only takes

the average of local updates but also pushes the aggregation moving more toward the updating direction (i.e.,∑
i∈I piω

t
i − ωt−1). We present the difference between Upcycled-FL update strategy and regular aggregation

strategy from these two perspectives in Figure 1. As Upcycled-FL only accesses client data at even iterations,
it halves the communication cost compared to standard FL methods with the same number of iterations.

Algorithm 1 Proposed aggregation strategy: Upcycled-FL
1: Input: λm > 0, µ > 0, {Di}i∈I , ω0

2: for m = 1 to M do
3: The central server sends the global model parameters ω2m−2 to all the clients.
4: A subset of clients are selected to be active and each active client updates its local model by finding an

(approximate) minimizer of the local objective function:

ω2m−1
i ← arg min

ω
Fi(ω;Di) or other local objective functions

5: Clients send local models to the central server.
6: The central server updates the global model by aggregating all local models:

ω2m−1 =
∑

i∈I piω
2m−1
i

ω2m = ω2m−1 + λm

2
(
ω2m−1 − ω2m−2)

7: end for

6

Published in Transactions on Machine Learning Research (07/2024)

5 Convergence Analysis

In this section, we analyze the convergence of Upcycled-FL. For illustrating purposes, we focus on analyzing
the convergence of Upcycled-FedProx. Note that we do not require local functions Fi(·) to be convex.
Moreover, we consider practical settings where data are non-i.i.d across different clients. Similar to Li et al.
(2020), we introduce a measure below to quantify the dissimilarity between clients in the federated network.
Definition 5.1 (B-Dissimilarity (Li et al., 2020)). The local loss function Fi is B-dissimilar if ∀ω, we have
E[||∇Fi(ω)||2] ≤ ||∇f(ω)||2B2.

where E[·] denotes the expectation over clients (see Eqn. (1)). Parameter B ≥ 1 captures the statistical
heterogeneity across different clients: when all clients are homogeneous with i.i.d. data, we have B = 1 for all
local functions; the larger value of B, the more dissimilarity among clients.
Assumption 5.2. Local loss functions Fi are B-dissimilar and L-Lipschitz smooth.

Note that B-dissimilarity can be satisfied if the divergence between the gradient of the local loss function and
that of the aggregated global function is bounded, as stated below.
Lemma 5.3. ∀i, there exists B such that Fi is B-dissimilar if ||∇Fi(ω) − ∇f(ω)|| ≤ κi, ∀ω for some κi.
Assumption 5.4. ∀i, hi(ω; ωt) := Fi(ω; Di) + µ

2 ||ω − ωt||2 are ρ-strongly convex.

The above assumptions are fairly standard. They first appeared in Li et al. (2020) and are adopted
in subsequent works such as T Dinh et al. (2020); Khaled et al. (2020); Pathak & Wainwright (2020).
Note that strongly convex assumption is not on local objective Fi(ω; Di), but the regularized function
Fi(ω; Di) + µ

2 ||ω − ωt||2, i.e., the assumption can be satisfied by selecting a sufficiently large µ > 0. Indeed,
as shown in Section 7, our algorithm still converges even when Assumption 5.2 and 5.4 do not hold (e.g.,
DNN). Next, we conduct the theoretical analysis on the convergence rate.
Lemma 5.5. Let Sm be a set of K randomly selected clients which got updated (i.e., active clients) at
iterations 2m − 1 and 2m, and ESm

[·] be the expectation with respect to the choice of clients. Then under
Assumption 5.2 and 5.4, we have

ESm [f(ω2m+1)] ≤ f(ω2m−1) − C1C1C1||∇f(ω2m−1)||2 + C2C2C2 · h1
m + C3C3C3 · h2

m,

where

h1
m := ||∇f(ω2m−1)|| · ||ω2m−1 − ω2m−2||;

h2
m := ||ω2m−1 − ω2m−2||2.

The details of term C1C1C1, C2C2C2, C3C3C3 (expressed as functions of L, B, 1
µ , 1

ρ , 1
K , µ

λm
) are in Appendix C, Eqn. (11)-(13).

Lemma 5.5 characterizes the relation of the values of global objective function over two consecutive odd
iterations. It is easy to verify C2C2C2,C3C3C3 ≥ 0. By rearranging and telescoping, we get the following convergence
rate of Upcycled-FedProx.
Theorem 5.6 (Convergence rate of Upcycled-FedProx). Under Assumption 5.2 and 5.4, if C1C1C1 > 0, we have

min
m∈[M]

E
[
||∇f(ω2m−1)||2

]
≤ 1

M

M∑
m=0

E
[
||∇f(ω2m−1)||2

]
≤ f(ω0) − f(ω∗)

MC1C1C1
+

∑M
m=0 C2C2C2h1

m

MC1C1C1
+

∑M
m=0 C3C3C3h2

m

MC1C1C1
,

where ω0 and ω∗ denote the initial and the optimal global model parameters, respectively. Both terms C2C2C2 and
C3C3C3 are decreasing in λm

µ .

Theorem 5.6 implies that tunable µ and λm are key hyper-parameters that control the convergence (rate)
and robustness of Upcycled-FedProx. Recall that µ penalizes the deviation of local model ω2m

i from global
aggregated model ω2m−1, while λm penalizes the update of local model ω2m

i from its previous update ω2m−1
i .

7

Published in Transactions on Machine Learning Research (07/2024)

Because C1C1C1 := C1

(
L, B, 1

µ , 1
ρ , 1

K

)
does not depend on λm (by Eqn. (11)), for proper µ and local functions

Fi, the condition C1C1C1 > 0 in Theorem 5.6 can hold for any λm. However, λm could affect the convergence
rate via terms C2C2C2 := C2

(
L, B, 1

µ , 1
ρ , 1

K , µ
µ+λm

)
and C3C3C3 := C3

(
L, 1

µ , 1
ρ , 1

K , µ
µ+λm

)
. Specifically, as the ratio

λm

µ increases, both C2C2C2 and C3C3C3 decrease (by Eqn. (12)-(13)) which results in a tighter convergence rate bound.
We empirically examine the impacts of µ and λm in Section 7.

It is worth noting that the convergence rate also depends on data heterogeneity, captured by dissimilarity B.
According to Eqn. (11), C1C1C1 > 0 must hold when B = 0 (i.i.d. clients). Although C1C1C1 may become negative
as B increases, the experiments in Section 7 show that Upcycled-FedProx can still converge when data is
highly heterogeneous.
Assumption 5.7. ||ω2m−1 − ω2m−2|| ≤ h, ∀m and ||∇f(ω)|| ≤ d, ∀ω.

Assumption 5.7 is standard and has been used when proving the convergence of FL algorithms (Li et al., 2019;
Yang et al., 2022); it requires that the difference of aggregated weights between two consecutive iterations
and the gradient ||∇f(ω)|| are bounded. Under this assumption, we have the following corollary.
Corollary 5.8 (Convergence to the stationary point). Under Assumption 5.2, 5.4, and 5.7, for fixed µ, K, if
λm is taken such that µ

µ+λm
= O

(
1√
M

)
, then the convergence rate of Upcycled-FedProx reduces to O(1√

M
).

Corollary 5.8 provides guidance on selecting the value of λm properly to guarantee the convergence of
Upcycled-FedProx, i.e., by taking an increasing sequence of {λm}M

m=1. Intuitively, increasing λm during the
training helps stabilize the algorithm, because the deviation of local models from the previous update gets
penalized more under a larger λm.

6 Private Upcycled-FL

In this section, we present a privacy-preserving version of Upcycled-FL. Many perturbation mechanisms
can be adopted to achieve differential privacy such as objective perturbation (Chaudhuri et al., 2011; Kifer
et al., 2012), output perturbation (Chaudhuri et al., 2011; Zhang et al., 2017), gradient perturbation (Bassily
et al., 2014; Wang et al., 2017), etc. In this section, we use output and objective perturbation as examples
to illustrate that FL algorithms combined with Upcycled-FL strategy, by reducing the total information
leakage, can attain a better privacy-accuracy trade-off. Note that both output and objective perturbation
methods are used to generate private updates at odd iterations, which can be used directly for even updates.

Output perturbation: the private odd updates ω̂2m−1
i are generated by first clipping the local models ω2m−1

i

and then adding a noise random vector nm
i to the clipped model:

Clip odd update: ξ(ω2m−1
i) = ω2m−1

i

max
(

1,
||ω2m−1

i
||2

τ

)
Perturb with noise: ω̂2m−1

i = ξ(ω2m−1
i) + nm

i

where parameter τ > 0 is the clipping threshold; the clipping ensures that if ||ω2m−1
i ||2 ≤ τ , then update

remains the same, otherwise it is scaled to be of norm τ .

Objective perturbation: a random linear term ⟨nm
i , ω⟩ is added to the objective function in odd (2m + 1)-th

iteration, and the private local model ω̂2m+1
i is found by solving a perturbed optimization.

Taking Upcycled-FedProx as the example, we have:

ω̂2m+1
i = arg min

ω
Fi(ω; Di) + µ

2 ||ω − ω2m||2 + ⟨nm
i , ω⟩,

Given noisy ω̂2m−1
i generated by either method, the private even updates ω̂2m

i can be computed directly at
the central server using the noisy aggregation

∑
i∈I piω̂

2m−1
i .

Privacy Analysis. Next, we conduct privacy analysis and theoretically quantify the total privacy loss of
private Upcycled-FL. Because even updates are computed directly using already private intermediate results

8

Published in Transactions on Machine Learning Research (07/2024)

without using dataset Di, no privacy leakage occurs at even iterations. This can be formally stated as the
following lemma.
Lemma 6.1. For any m = 1, 2, · · · , if the total privacy loss up to 2m − 1 can be bounded by εm, then the
total privacy loss up to the 2m-th iteration can also be bounded by εm.

Lemma 6.1 is straightforward; it can be derived directly by leveraging a property of differential privacy
called immunity to post-processing (Dwork et al., 2014), i.e., a differentially private output followed by any
data-independent computation remains satisfying differential privacy.

Based on Lemma 6.1, we can quantify the total privacy loss of private Upcycled-FL. We shall adopt moments
accountant method (Abadi et al., 2016) for output perturbation, and the analysis method in (Chaudhuri
et al., 2011; Zhang & Zhu, 2016; Zhang et al., 2018b) for objective perturbation.

Here, we focus on settings where local loss function Fi(ωi, Di) := 1
|Di|

∑
d∈Di

F̂i(ωi, d) for some F̂i, and the
guarantee of privacy is presented in Theorem 6.2 (output perturbation) and 6.3 (objective perturbation)
below. The total privacy loss in the following theorem is composed using moments accountant method (Abadi
et al., 2016).
Theorem 6.2. Consider the private Upcycled-FL over 2M iterations under output perturbation with noise
nm

i ∼ N (0, σ2I), then for any ε ≥ Mτ2

2σ2|Di|2 , the algorithm is (ε, δ)-DP for agent i for

δ = exp
(

− Mτ2

2σ2|Di|2
(εσ2|Di|2

Mτ2 − 1
2

)2
)

.

Equivalently, for any δ ∈ [0, 1], the algorithm is (ε, δ)-DP for agent i for

ε = 2

√
Mτ2

2σ2|Di|2
log(1

δ
) + Mτ2

2σ2|Di|2
.

Theorem 6.3. Consider the private Upcycled-FL over 2M iterations under objective perturbation with
noise nm

i ∼ exp (−αm
i ||nm

i ||2). Suppose F̂i is generalized linear model (Iyengar et al., 2019; Bassily et al.,
2014)3 that satisfies ||∇F̂i(ω; d)|| < u1, |F̂ ′′

i | ≤ u2. Let feature vectors be normalized such that its norm is no
greater than 1, and suppose u2 ≤ 0.5|Di|µ holds. Then the algorithm satisfies (ε, 0)-DP for agent i where
ε =

∑M
m=0

2αm
i u1µ+2.8u2

|Di|µ .

The assumptions on F̂i are again fairly standard in the literature, see e.g., (Chaudhuri et al., 2011; Zhang
& Zhu, 2016; Zhang et al., 2018b). Theorem 6.2 and 6.3 show that the total privacy loss experienced by
each agent accumulates over iterations and privacy loss only comes from odd iterations. In contrast, if
consider differentially private FedProx, accumulated privacy loss would come from all iterations. Therefore,
to achieve the same privacy guarantee, private Upcycled-FL requires much less perturbation per iteration
than private FedProx. As a result, accuracy can be improved significantly. Experiments in Section 7 show
that Upcycled-FL significantly improves privacy-accuracy trade-off compared to other methods.

7 Experiments

In this section, we empirically evaluate the performance of Upcycled-FL by combining it with several popular
FL methods. We first consider non-private algorithms to examine the convergence (rate) and robustness of
Upcycled-FL against statistical/device heterogeneity. Then, we adopt both output and objective perturbation
to evaluate the private Upcycled-FL.

7.1 Datasets and Networks

We conduct experiments on both synthetic and real data, as detailed below. More details of each dataset are
given in Appendix F.1.

3In supervised learning, the sample d = (x, y) corresponds to the feature and label pair. Function F̂i(ω, d) is generalized
linear model if it can be written as a function of ωT x and y.

9

Published in Transactions on Machine Learning Research (07/2024)

Synthetic data. Using the method in Li et al. (2020), we generate Syn(iid), Syn(0,0), Syn(0.5,0.5), Syn(1,1),
four synthetic datasets with increasing statistical heterogeneity. We use logistic regression for synthetic data.

Real data. We adopt two real datasets: 1) FEMNIST, a federated version of EMNIST (Cohen et al., 2017).
Here, A multilayer perceptron (MLP) consisting of two linear layers with a hidden dimension of 14x14,
interconnected by ReLU activation functions, is used to learn from FEMNIST; 2) Sentiment140 (Sent140),
a text sentiment analysis task on tweets (Go et al., 2009). In this context, a bidirectional LSTM with 256
hidden dimensions and 300 embedding dimensions is used to train on Sent140 dataset.

7.2 Experimental setup

All experiments are conducted on a server equipped with multiple NVIDIA A5000 GPUs, two AMD EPYC
7313 CPUs, and 256GB memory. The code is implemented with Python 3.8 and PyTorch 1.13.0 on Ubuntu
20.04. We employ SGD as the local optimizer, with a momentum of 0.5, and set the number of local update
epochs E to 10 at each iteration m. Note that without privacy concerns, any classifier and loss function can
be plugged into Upcycled-FL. However, if we adopt objective perturbation as privacy protection, the loss
function should also satisfy assumptions in Theorem 6.3. We take the cross-entropy loss as our loss function
throughout all experiments.

To simulate device heterogeneity, we randomly select a fraction of devices to train at each round, and assume
there are stragglers that cannot train for full rounds; both devices and stragglers are selected by random seed
to ensure they are the same for all algorithms.

Baselines. To evaluate the effectiveness of our strategy, we apply our Upcycled-FL method to seven
representative methods in federated learning. We use the grid search to find the optimal hyperparameters for
all methods to make a fair comparison. These methods include:

• FedAvg (McMahan et al., 2017): FedAvg learns the global model by averaging the client’s local model.
• FedAvgM (Hsu et al., 2019): FedAvgM introduces momentum while averaging local models to improve

convergence rates and model performance, especially in non-i.i.d. settings.
• FedProx (Li et al., 2020): FedProx adds a proximal term to the local objective function, which enables

more robust convergence when data is non-i.i.d. across different clients.
• Scaffold (Karimireddy et al., 2020): Scaffold uses control variates to correct the local updates, which helps

in dealing with non-i.i.d. data and accelerates convergence.
• FedDyn (Acar et al., 2021): FedDyn considers a dynamic regularization term to align the local model

updates more closely with the global model.
• pFedMe (T Dinh et al., 2020): pFedMe is a personalization method to handle client heterogeneity. We set

the hyperparameter k in pFedMe as 5 to accelerate the training.
• FedYogi (Reddi et al., 2021): FedYogi considers the adaptive optimization for the global model aggregation.

Unless explicitly stated, the results we report are averaged outcomes over all devices. More details of
experimental setup are in Appendix F.1.

7.3 Results

Convergence and Heterogeneity. Because even iterations of Upcycled-FL only involve addi-
tion/subtraction operations with no transmission overhead and almost no computational cost, we train the
Upcycled version of FL algorithms with double iterations compared to baselines in approximately same
training time in this experiment. We evaluate the convergence rate and accuracy of Upcycled-FL under
different dataset and heterogeneity settings. In each iteration, 30% of devices are selected with 90% stragglers.
Table 1 compares the average accuracy of different algorithms when the device heterogeneity is high (90%
stragglers). The results show that all baselines can be enhanced by our methods. Notably, while FedAvg
achieves good performance on Syn(iid), it is not robust on heterogeneous data, e.g. Syn(0,0), Syn(0.5,0.5), and
Syn(1,1). Nonetheless, Upcycled-FedAvg makes it comparable with the regular FedProx algorithm, which
shows that our strategy can also mitigate performance deterioration induced by data heterogeneity. When

10

Published in Transactions on Machine Learning Research (07/2024)

Table 1: Average accuracy and standard deviation with 90% straggler on the testing dataset over four runs:
models are trained over synthetic data (Syn) for 80 iterations (160 for upcycled version), trained over Femnist
for 150 iterations (300 for upcycled version), and trained over Sent140 for 80 iterations (160 for upcycled
version). We use the grid search to find the optimal results for all methods.

Method
Dataset

Syn(iid) Syn(0,0) Syn(0.5,0.5) Syn(1,1) FEMNIST Sent140

FedAvg 98.06±0.07 79.28±0.61 81.58±0.43 80.40±1.28 81.38±3.54 76.11±0.11

Upcycled-FedAvg 98.83±0.29 81.46±0.48 82.89±0.17 81.49±0.53 82.10±1.11 76.32±0.45

FedAvgM 98.43±0.07 80.29±0.83 82.60±0.37 80.59±1.28 80.15±3.72 75.7±0.85

Upcycled-FedAvgM 98.72±0.47 81.74±0.42 83.13±0.12 81.37±0.82 81.30±5.23 74.88±2.29

FedProx 96.52±0.07 80.72±0.77 81.99±0.55 81.19±0.19 79.35±0.65 73.94±0.13

Upcycled-FedProx 97.62±0.32 80.88±0.97 83.10±0.83 81.94±0.57 80.33±3.43 74.25±0.34

Scaffold 97.51±0.24 80.26±1.54 82.44±1.66 74.91±2.67 76.83±2.97 76.34±0.56

Upcycled-Scaffold 98.68±0.12 81.10±0.57 82.64±1.39 76.14±1.28 77.88±5.36 77.34±0.22

FedDyn 97.00±0.19 81.62±0.97 80.64±0.81 77.27±2.95 81.76±0.98 75.97±0.35

Upcycled-FedDyn 98.32±0.08 82.41±1.04 82.89±0.80 80.03±3.02 83.33±0.71 76.03±0.58

pFedme 96.30±0.14 89.15±0.24 89.43±0.67 93.06±0.27 71.73±4.30 72.81±0.85

Upcycled-pFedme 96.77±0.12 89.08±0.22 89.55±0.62 93.12±0.23 76.66±3.37 74.07±0.74

FedYogi 99.30±0.35 81.20±2.64 79.49±1.30 78.95±1.98 73.53±7.73 77.02±0.07

Upcycled-FedYogi 99.41±0.32 81.65±2.44 80.84±1.30 80.17±0.84 75.64±3.17 77.59±0.26

data is i.i.d., FedProx with the proximal term µ
2 ||ω − ωt||2 may hurt the performance compared with FedAvg.

However, the proximal term can help stabilize the algorithm and significantly improve the performance
in practical settings when data is heterogeneous; these observations are consistent with (Li et al., 2020).
Importantly, Upcycled-FL strategy further makes it more robust to statistical heterogeneity than regular
FedProx as it could attain consistent improvements for all settings.

0 10 20 30 40 50 60 70 80
training time

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(a) Syn(iid)

0 10 20 30 40 50 60 70 80
training time

0.4

0.5

0.6

0.7

0.8

0.9

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(b) Syn(0.5,0.5)

0 20 40 60 80 100 120 140
training time

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(c) FEMNIST

Figure 2: Comparison on average loss and standard deviation between Upcycled-FL methods and original
FL algorithms under the approximate same training time. The training time refers to the time needed
for a given number of iterations. Upcycled-FL does not require an update in the even iterations, allowing
Upcycled-FL to train with doubled iterations.

Figure 2(a), 2(b) and 2(c) compare the convergence property on Syn(iid), Syn(0.5,0.5) and FEMNIST. Note
that, by using the aggregation rule in Figure 1(b), the training time of Upcycled-FL is almost the same as
the baselines without introducing extra cost. We observe that under the same training time (the number

11

Published in Transactions on Machine Learning Research (07/2024)

of iterations for baselines), Upcycled-FL strategy brings benefits (achieving lower loss along training) for
baselines in most cases. And this improvement is significant when the dataset is i.i.d. The loss trends are
consistent with results in Table 1. We provide more results on the other three datasets in Appendix F.3.

0 10 20 30 40 50 60 70 80
iteration

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(a) Syn(iid)

0 10 20 30 40 50 60 70 80
iteration

0.4

0.5

0.6

0.7

0.8

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(b) Syn(0,0)

0 10 20 30 40 50 60 70 80
iteration

0.4

0.5

0.6

0.7

0.8

0.9

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(c) Syn(0.5,0.5)

0 10 20 30 40 50 60 70 80
iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(d) Syn(1,1)

Figure 3: Comparison on average loss and standard deviation of private Upcycled-FL and private FL methods
using output perturbation. The noise parameter σ is 1.0 for all baselines, while σ of the Upcycled version
is set to 0.8. Taking the iid dataset as an example, ϵ̄ = 1.40 for the Upcycled version, which ensures stronger
privacy than the original method with ϵ̄ = 1.59.

Privacy-Accuracy Trade-off. We next inspect the accuracy-privacy trade-off of private Upcycled-FL
and compare it with private baselines. Although we adopt both objective and output perturbation to
achieve differential privacy, other techniques can also be used. For each parameter setting, we still conduct a
grid search and perform 4 independent runs of experiments. To precisely quantify privacy, no straggler is
considered in this experiment. We reported the results using output perturbation and objective perturbation.
Figure 3 and 4 demonstrate the performance of private Upcylced-FL and private baselines on synthetic data
using two types of perturbation respectively. We also report the results on real data in Appendix F.4.

Here we carefully set the perturbation strength of each algorithm such that the privacy loss ϵ for private
Upcycled-FL is strictly less than the original methods. As expected, private Upcycled-FL is more stable
than baselines and attains a lower loss value under smaller ϵ. This is because the private Upcycled-FL with
less information leakage requires much less perturbation to attain the same privacy guarantee as FL methods
under privacy constraints. We also observe that in general Upcycled-FL can be used to augment all baseline
methods with or without client local heterogeneity.

12

Published in Transactions on Machine Learning Research (07/2024)

0 10 20 30 40 50 60 70 80
iteration

0.4

0.5

0.6

0.7

0.8

0.9
lo

ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(a) Syn(iid)

0 10 20 30 40 50 60 70 80
iteration

0.5

0.6

0.7

0.8

0.9

1.0

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(b) Syn(0,0)

0 10 20 30 40 50 60 70 80
iteration

0.5

0.6

0.7

0.8

0.9

1.0

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(c) Syn(0.5,0.5)

0 10 20 30 40 50 60 70 80
iteration

0.5

0.6

0.7

0.8

0.9

1.0

1.1

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(d) Syn(1,1)

Figure 4: Comparison on average loss and standard deviation of private Upcycled-FL and private FL methods
using objective perturbation. Under objective perturbation, noise parameter α is 10 for all baselines,
while α of the Upcycled version is set to 20 to ensure stronger privacy than the original versions. Taking
the iid dataset as an example, ϵ̄ associated with these noise parameters is 7.36 for FedProx and 7.25 for
Upcycled-FedProx (when µ = 0.5).

8 Conclusion

This paper proposes Upcycled-FL, a novel plug-in federated learning strategy under which information
leakage and computation costs can be reduced significantly. We theoretically examined the convergence (rate)
of Upcycled-FedProx, a special case when Upcycled-FL strategy is applied to a well-known FL algorithm
named FedProx. Extensive experiments on synthetic and read data further show that Upcycled-FL can be
combined with common FL algorithms and enhance their robustness on heterogeneous data while attaining
much better privacy-accuracy trade-off under common differential privacy mechanisms.

Acknowledgments

This material is based upon work supported by the U.S. National Science Foundation under awards IIS-2040800,
IIS-2112471, IIS-2202699, IIS-2301599, and CMMI-2301601, by grants from the Ohio State University’s
Translational Data Analytics Institute and College of Engineering Strategic Research Initiative.

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.

Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer

13

Published in Transactions on Machine Learning Research (07/2024)

and communications security, pp. 308–318, 2016.

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough, and
Venkatesh Saligrama. Federated learning based on dynamic regularization. arXiv preprint arXiv:2111.04263,
2021.

Kareem Amin, Travis Dick, Alex Kulesza, Andres Munoz, and Sergei Vassilvitskii. Differentially private
covariance estimation. Advances in Neural Information Processing Systems, 32, 2019.

Shahab Asoodeh, Wei-Ning Chen, Flavio P Calmon, and Ayfer Özgür. Differentially private federated
learning: An information-theoretic perspective. In 2021 IEEE International Symposium on Information
Theory (ISIT), pp. 344–349. IEEE, 2021.

Brendan Avent, Aleksandra Korolova, David Zeber, Torgeir Hovden, and Benjamin Livshits. {BLENDER}:
Enabling local search with a hybrid differential privacy model. In 26th {USENIX} Security Symposium
({USENIX} Security 17), pp. 747–764, 2017.

Chunghun Baek, Sungwook Kim, Dongkyun Nam, and Jihoon Park. Enhancing differential privacy for
federated learning at scale. IEEE Access, 9:148090–148103, 2021.

Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by subsampling: tight analyses via
couplings and divergences. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pp. 6280–6290, 2018.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient algorithms
and tight error bounds. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pp.
464–473. IEEE, 2014.

Amos Beimel, Hai Brenner, Shiva Prasad Kasiviswanathan, and Kobbi Nissim. Bounds on the sample
complexity for private learning and private data release. Machine learning, 94(3):401–437, 2014.

Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions, and lower
bounds. In Theory of Cryptography Conference, pp. 635–658. Springer, 2016.

Zhongteng Cai, Xueru Zhang, and Mohammad Mahdi Khalili. Privacy-aware randomized quantization
via linear programming. In The 40th Conference on Uncertainty in Artificial Intelligence, 2024. URL
https://openreview.net/forum?id=vWsf4L7rHq.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private empirical risk
minimization. Journal of Machine Learning Research, 12(3), 2011.

Zhou Chuanxin, Sun Yi, and Wang Degang. Federated learning with gaussian differential privacy. In
Proceedings of the 2020 2nd International Conference on Robotics, Intelligent Control and Artificial
Intelligence, pp. 296–301, 2020.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist to
handwritten letters. In 2017 international joint conference on neural networks (IJCNN), pp. 2921–2926.
IEEE, 2017.

Cynthia Dwork. Differential privacy. In International Colloquium on Automata, Languages, and
Programming, pp. 1–12. Springer, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Found. Trends Theor.
Comput. Sci., 9(3-4):211–407, 2014.

Arpita Ghosh and Aaron Roth. Selling privacy at auction. In Proceedings of the 12th ACM Conference
on Electronic Commerce, EC ’11, pp. 199–208, New York, NY, USA, 2011. Association for Computing
Machinery. ISBN 9781450302616. doi: 10.1145/1993574.1993605. URL https://doi.org/10.1145/1993
574.1993605.

14

https://openreview.net/forum?id=vWsf4L7rHq
https://doi.org/10.1145/1993574.1993605
https://doi.org/10.1145/1993574.1993605

Published in Transactions on Machine Learning Research (07/2024)

Antonious Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and Ananda Theertha Suresh. Shuffled
model of differential privacy in federated learning. In International Conference on Artificial Intelligence
and Statistics, pp. 2521–2529. PMLR, 2021.

Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using distant supervision. CS224N
project report, Stanford, 1(12):2009, 2009.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data distribution
for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Jingchen Hu, Joerg Drechsler, and Hang J Kim. Accuracy gains from privacy amplification through sampling
for differential privacy. arXiv preprint arXiv:2103.09705, 2021.

Rui Hu, Yuanxiong Guo, Hongning Li, Qingqi Pei, and Yanmin Gong. Personalized federated learning with
differential privacy. IEEE Internet of Things Journal, 7(10):9530–9539, 2020.

Chunan Huang, Xueru Zhang, Rasoul Salehi, Tulga Ersal, and Anna G. Stefanopoulou. A robust energy and
emissions conscious cruise controller for connected vehicles with privacy considerations. In 2020 American
Control Conference (ACC), pp. 4881–4886, 2020. doi: 10.23919/ACC45564.2020.9147406.

Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and Sanjeev Arora. Evaluating gradient inversion attacks
and defenses in federated learning. Advances in Neural Information Processing Systems, 34:7232–7241,
2021.

Roger Iyengar, Joseph P Near, Dawn Song, Om Thakkar, Abhradeep Thakurta, and Lun Wang. Towards
practical differentially private convex optimization. In 2019 IEEE Symposium on Security and Privacy
(SP), pp. 299–316. IEEE, 2019.

Matthew Jagielski, Michael Kearns, Jieming Mao, Alina Oprea, Aaron Roth, Saeed Sharifi-Malvajerdi, and
Jonathan Ullman. Differentially private fair learning. In International Conference on Machine Learning,
pp. 3000–3008. PMLR, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In International
conference on machine learning, pp. 5132–5143. PMLR, 2020.

Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. What
can we learn privately? SIAM Journal on Computing, 40(3):793–826, 2011.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on identical and
heterogeneous data. In International Conference on Artificial Intelligence and Statistics, pp. 4519–4529.
PMLR, 2020.

Mohammad Mahdi Khalili and Iman Vakilinia. Trading privacy through randomized response. In IEEE
INFOCOM 2021-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp.
1–6. IEEE, 2021.

Mohammad Mahdi Khalili, Xueru Zhang, and Mingyan Liu. Contract design for purchasing private data
using a biased differentially private algorithm. In Proceedings of the 14th Workshop on the Economics of
Networks, Systems and Computation, pp. 1–6, 2019.

Mohammad Mahdi Khalili, Xueru Zhang, and Mahed Abroshan. Fair sequential selection using supervised
learning models. Advances in Neural Information Processing Systems, 34:28144–28155, 2021a.

Mohammad Mahdi Khalili, Xueru Zhang, Mahed Abroshan, and Somayeh Sojoudi. Improving fairness and
privacy in selection problems. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 8092–8100, 2021b.

Mohammad Mahdi Khalili, Xueru Zhang, and Mingyan Liu. Designing contracts for trading private and
heterogeneous data using a biased differentially private algorithm. IEEE Access, 9:70732–70745, 2021c.

15

Published in Transactions on Machine Learning Research (07/2024)

Daniel Kifer, Adam Smith, and Abhradeep Thakurta. Private convex empirical risk minimization and high-
dimensional regression. In Conference on Learning Theory, pp. 25–1. JMLR Workshop and Conference
Proceedings, 2012.

Muah Kim, Onur Günlü, and Rafael F Schaefer. Federated learning with local differential privacy: Trade-offs
between privacy, utility, and communication. In ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 2650–2654. IEEE, 2021.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. Proceedings of Machine Learning and Systems, 2:429–450, 2020.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of fedavg on
non-iid data. In International Conference on Learning Representations, 2019.

Xiyang Liu, Weihao Kong, Sham Kakade, and Sewoong Oh. Robust and differentially private mean estimation.
Advances in neural information processing systems, 34:3887–3901, 2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pp.
1273–1282. PMLR, 2017.

Nicolas Papernot, Martín Abadi, Ulfar Erlingsson, Ian Goodfellow, and Kunal Talwar. Semi-supervised
knowledge transfer for deep learning from private training data. arXiv preprint arXiv:1610.05755, 2016.

Reese Pathak and Martin J Wainwright. Fedsplit: An algorithmic framework for fast federated optimization.
Advances in Neural Information Processing Systems, 33:7057–7066, 2020.

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný, Sanjiv
Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International Conference on
Learning Representations, 2021. URL https://openreview.net/forum?id=LkFG3lB13U5.

Mohamed Seif, Ravi Tandon, and Ming Li. Wireless federated learning with local differential privacy. In
2020 IEEE International Symposium on Information Theory (ISIT), pp. 2604–2609. IEEE, 2020.

Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau envelopes.
Advances in Neural Information Processing Systems, 33:21394–21405, 2020.

Aleksei Triastcyn and Boi Faltings. Federated learning with bayesian differential privacy. In 2019 IEEE
International Conference on Big Data (Big Data), pp. 2587–2596. IEEE, 2019.

Stacey Truex, Ling Liu, Ka-Ho Chow, Mehmet Emre Gursoy, and Wenqi Wei. Ldp-fed: Federated learning
with local differential privacy. In Proceedings of the Third ACM International Workshop on Edge Systems,
Analytics and Networking, pp. 61–66, 2020.

Di Wang, Minwei Ye, and Jinhui Xu. Differentially private empirical risk minimization revisited: Faster and
more general. Advances in Neural Information Processing Systems, 30, 2017.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective inconsistency
problem in heterogeneous federated optimization. Advances in neural information processing systems, 33:
7611–7623, 2020a.

Yansheng Wang, Yongxin Tong, and Dingyuan Shi. Federated latent dirichlet allocation: A local differential
privacy based framework. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp. 6283–6290, 2020b.

Yu-Xiang Wang, Stephen Fienberg, and Alex Smola. Privacy for free: Posterior sampling and stochastic
gradient monte carlo. In International Conference on Machine Learning, pp. 2493–2502. PMLR, 2015.

Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. Subsampled rényi differential privacy
and analytical moments accountant. In The 22nd International Conference on Artificial Intelligence and
Statistics, pp. 1226–1235. PMLR, 2019.

16

https://openreview.net/forum?id=LkFG3lB13U5

Published in Transactions on Machine Learning Research (07/2024)

Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS Quek, and
H Vincent Poor. Federated learning with differential privacy: Algorithms and performance analysis. IEEE
Transactions on Information Forensics and Security, 15:3454–3469, 2020.

Xiang Wu, Yongting Zhang, Minyu Shi, Pei Li, Ruirui Li, and Neal N Xiong. An adaptive federated learning
scheme with differential privacy preserving. Future Generation Computer Systems, 127:362–372, 2022.

Haibo Yang, Xin Zhang, Prashant Khanduri, and Jia Liu. Anarchic federated learning. In International
Conference on Machine Learning, pp. 25331–25363. PMLR, 2022.

Jiale Zhang, Junyu Wang, Yanchao Zhao, and Bing Chen. An efficient federated learning scheme with
differential privacy in mobile edge computing. In International Conference on Machine Learning and
Intelligent Communications, pp. 538–550. Springer, 2019a.

Jiaqi Zhang, Kai Zheng, Wenlong Mou, and Liwei Wang. Efficient private erm for smooth objectives. In
Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 3922–3928, 2017.

Lefeng Zhang, Tianqing Zhu, Ping Xiong, Wanlei Zhou, and Philip Yu. A robust game-theoretical federated
learning framework with joint differential privacy. IEEE Transactions on Knowledge and Data Engineering,
2022a.

Tao Zhang and Quanyan Zhu. Dynamic differential privacy for admm-based distributed classification learning.
IEEE Transactions on Information Forensics and Security, 12(1):172–187, 2016.

Xueru Zhang, Mohammad Mahdi Khalili, and Mingyan Liu. Improving the privacy and accuracy of admm-
based distributed algorithms. In International Conference on Machine Learning, pp. 5796–5805. PMLR,
2018a.

Xueru Zhang, Mohammad Mahdi Khalili, and Mingyan Liu. Recycled admm: Improve privacy and ac-
curacy with less computation in distributed algorithms. In 2018 56th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pp. 959–965. IEEE, 2018b.

Xueru Zhang, Chunan Huang, Mingyan Liu, Anna Stefanopoulou, and Tulga Ersal. Predictive cruise
control with private vehicle-to-vehicle communication for improving fuel consumption and emissions. IEEE
Communications Magazine, 57(10):91–97, 2019b.

Xueru Zhang, Mohammad Mahdi Khalili, and Mingyan Liu. Recycled admm: Improving the privacy
and accuracy of distributed algorithms. IEEE Transactions on Information Forensics and Security, 15:
1723–1734, 2019c.

Xueru Zhang, Mohammad Mahdi Khalili, and Mingyan Liu. Differentially private real-time release of
sequential data. ACM Transactions on Privacy and Security, 26(1):1–29, 2022b.

Yang Zhao, Jun Zhao, Mengmeng Yang, Teng Wang, Ning Wang, Lingjuan Lyu, Dusit Niyato, and Kwok-Yan
Lam. Local differential privacy-based federated learning for internet of things. IEEE Internet of Things
Journal, 8(11):8836–8853, 2020.

Qinqing Zheng, Shuxiao Chen, Qi Long, and Weijie Su. Federated f-differential privacy. In International
Conference on Artificial Intelligence and Statistics, pp. 2251–2259. PMLR, 2021.

Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Abhradeep
Thakurta. Amplification by shuffling: From local to central differential privacy via anonymity. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2019. URL https://arxiv.org/abs/1811.1
2469.

17

https://arxiv.org/abs/1811.12469
https://arxiv.org/abs/1811.12469

Published in Transactions on Machine Learning Research (07/2024)

A Notation Table

I set of agents
Di dataset of agent i

pi size of agent i’s data as a fraction of total data samples
ωt

i agent i’s local model parameter at time t

ωt aggregated model at central server at t

ω̂t
i differentially private version of ωt

i

Fi local objective function of agent i

f overall objective function
nt

i random noise added to agent i at time t

µ hyper-parameter for proximal term in FedProx and Upcycled FedProx
λm hyper-parameter for first-order approximation at even iteration 2m in Upcycled-FL
τ the clipping threshold for output perturbation

B Lemmas

Lemma B.1. Define ω̃t = Ei(ωt
i). Suppose conditions in Theorem 5.6 hold, then the following holds ∀m:

f(ω̃2m+1) ≤ f(ω2m−1) − Ĉ1

(
L, B,

1
µ

,
1
ρ

)
||∇f(ω2m−1)||2

+Ĉ2

(
L, B,

1
µ

,
1
ρ

,
µ

µ + λm

)
||∇f(ω2m−1)|| · ||ω2m−1 − ω2m−2||

+Ĉ3

(
L, B,

1
µ

,
1
ρ

,
µ

µ + λm

)
||ω2m−1 − ω2m−2||2

where coefficients satisfy

Ĉ1

(
L, B,

1
µ

,
1
ρ

)
= 1

µ
− LB

µ2ρ
− LB2

2ρ2

Ĉ2

(
L, B,

1
µ

,
1
ρ

,
µ

µ + λm

)
=

(L2

µ2ρ
+ L + µ

µ2 + L(L + ρ)B
ρ2

) µ

µ + λm

Ĉ3

(
L, B,

1
µ

,
1
ρ

,
µ

µ + λm

)
= L(L + ρ)2

2ρ2
µ2

(µ + λm)2

Lemma B.2. Let Sm be the set of K randomly selected local devices got updated at iterations 2m − 1 and
2m, and ESm

[·] be the expectation with respect to the choice of devices. Then we have

ESm
[f(ω2m+1)] ≤ f(ω̃2m+1) + C̃1

(
B, L,

1
K

,
1
ρ

)
||∇f(ω2m−1)||2

+C̃2

(
B, L,

1
K

,
1
ρ

,
µ

µ + λm

)
||∇f(ω2m−1)|| · ||ω2m−1 − ω2m−2||

+C̃3

(
B, L,

1
K

,
1
ρ

,
µ

µ + λm

)
||ω2m−1 − ω2m−2||2

where coefficients satisfy

C̃1

(
B, L,

1
K

,
1
ρ

)
= 2B2

Kρ2 + 2LB + ρ

ρ

√
2
K

B

ρ

C̃2

(
B, L,

1
K

,
1
ρ

,
µ

µ + λm

)
=

(4LB

Kρ2 + 2LB + ρ

ρ

√
2
K

L

ρ
+ 2L

L + ρ

ρ

√
2
K

B

ρ

)
· µ

µ + λm

C̃3

(
B, L,

1
K

,
1
ρ

,
µ

µ + λm

)
=

(2
K

L2

ρ2 + 2L
L + ρ

ρ

√
2
K

L

ρ

)
·
(µ

µ + λm

)2

18

Published in Transactions on Machine Learning Research (07/2024)

C Proofs

Proof of Lemma B.1

Proof. Since local functions Fi are L-Lipschitz smooth, at iteration 2m − 1, we have

f(ω̃2m+1)

≤ f(ω2m−1) + ⟨∇f(ω2m−1), ω̃2m+1 − ω2m−1⟩ + L

2 ||ω̃2m+1 − ω2m−1||2

= f(ω2m−1) + ⟨∇f(ω2m−1), − 1
µ

∇f(ω2m−1) + Φ2m+1⟩ + L

2 ||ω̃2m+1 − ω2m−1||2

≤ f(ω2m−1) − 1
µ

||∇f(ω2m−1)||2 + 1
µ

||∇f(ω2m−1)|| · ||Φ2m+1|| + L

2 ||ω̃2m+1 − ω2m−1||2

where

Φ2m+1 = 1
µ

∇f(ω2m−1) + ω̃2m+1 − ω2m−1 = Ei

[1
µ

∇Fi(ω2m−1) + ω2m+1
i − ω2m−1

]
(7)

By first-order condition, the following holds at (2m + 1)-th iteration:

ω2m+1
i − ω2m−1 = − 1

µ
∇Fi(ω2m+1

i) + ω2m − ω2m−1

Plug into Eqn. (7), we have

Φ2m+1 = Ei

[1
µ

(
∇Fi(ω2m−1) − ∇Fi(ω2m+1

i)
)

+ ω2m − ω2m−1
]

By L-Lipschitz smoothness and Jensen’s inequality, we have

||Φ2m+1|| ≤ Ei

[1
µ

||∇Fi(ω2m−1) − ∇Fi(ω2m+1
i)||

]
+ ||ω2m − ω2m−1|| (8)

≤ Ei

[L

µ
||ω2m−1 − ω2m+1

i ||
]

+ ||ω2m − ω2m−1||

≤ Ei

[L

µ
||ω2m+1

i − ω2m||
]

+ L + µ

µ
||ω2m − ω2m−1||

Since hi are ρ-strongly convex, Fi is L-Lipschitz smooth, and ω2m+1
i = arg minω hi(ω; ω2m) we have

||ω2m+1
i − ω2m|| ≤ 1

ρ
||∇hi(ω2m+1

i ; ω2m) − ∇hi(ω2m; ω2m)|| = 1
ρ

||0 − ∇Fi(ω2m)||

≤ L

ρ
||ω2m − ω2m−1|| + 1

ρ
||∇Fi(ω2m−1)|| (9)

Plug in Eqn. (8),

||Φ2m+1|| ≤ L

µρ
Ei[||∇Fi(ω2m−1)||] +

(L2

µρ
+ L + µ

µ

)
||ω2m − ω2m−1||

Consider the following term

||ω̃2m+1 − ω2m−1|| = ||Ei[ω2m+1
i] − ω2m−1|| ≤ Ei[||ω2m+1

i − ω2m−1||] (10)
≤ Ei[||ω2m+1

i − ω2m|| + ||ω2m − ω2m−1||]

≤ L + ρ

ρ
||ω2m − ω2m−1|| + 1

ρ
Ei

[
||∇Fi(ω2m−1)||

]
19

Published in Transactions on Machine Learning Research (07/2024)

Because Fi is B-dissimilar, we have

Ei

[
||∇Fi(ω2m−1)||

]
≤ B||∇f(ω2m−1)||

Therefore,

f(ω̃2m+1)

≤ f(ω2m−1) − 1
µ

||∇f(ω2m−1)||2 + 1
µ

||∇f(ω2m−1)|| · ||Φ2m+1|| + L

2 ||ω̃2m+1 − ω2m−1||2

≤ f(ω2m−1) −
(1

µ
− LB

µ2ρ
− LB2

2ρ2

)
||∇f(ω2m−1)||2

+
(L2

µ2ρ
+ L + µ

µ2 + L(L + ρ)B
ρ2

)
||∇f(ω2m−1)|| · ||ω2m − ω2m−1||

+ L(L + ρ)2

2ρ2 ||ω2m − ω2m−1||2

After applying first-order approximation in even iterations, we have

ω2m − ω2m−1 = µ

µ + λm
(ω2m−1 − ω2m−2)

Therefore,

f(ω̃2m+1) ≤ f(ω2m−1) −
(1

µ
− LB

µ2ρ
− LB2

2ρ2

)
||∇f(ω2m−1)||2

+
(L2

µ2ρ
+ L + µ

µ2 + L(L + ρ)B
ρ2

) µ

µ + λm
||∇f(ω2m−1)|| · ||ω2m−1 − ω2m−2||

+L(L + ρ)2

2ρ2
µ2

(µ + λm)2 ||ω2m−1 − ω2m−2||2

The Lemma B.1 is proved.

Proof of Lemma B.2

Proof. Because local function Fi is L-Lipschitz smooth, f is local Lipschitz continuous.

f(ω2m+1) ≤ f(ω̃2m+1) + L0||ω2m+1 − ω̃2m+1||

where L0 is the local Lipschitz continuouty constant. Moreover, we have

L0 ≤ ||∇f(ω2m−1)|| + L(||ω̃2m+1 − ω2m−1|| + ||ω2m+1 − ω2m−1||)

Therefore,

ESm [f(ω2m+1)] ≤f(ω̃2m+1)

+ ESm

[(
||∇f(ω2m−1)|| + L(||ω̃2m+1 − ω2m−1|| + ||ω2m+1 − ω2m−1||)

)
||ω2m+1 − ω̃2m+1||

]
=f(ω̃2m+1) +

(
||∇f(ω2m−1)|| + L||ω̃2m+1 − ω2m−1||

)
· ESm

[||ω2m+1 − ω̃2m+1||]

+ LESm

[
||ω2m+1 − ω2m−1|| · ||ω2m+1 − ω̃2m+1||

]
≤f(ω̃2m+1) +

(
||∇f(ω2m−1)|| + 2L||ω̃2m+1 − ω2m−1||

)
· ESm

[||ω2m+1 − ω̃2m+1||]

+ LESm

[
||ω2m+1 − ω̃2m+1||2

]

20

Published in Transactions on Machine Learning Research (07/2024)

When K devices are randomly selected, by Eqn. (9), we have

ESm

[
||ω2m+1 − ω̃2m+1||2

]
≤ 1

K
Ei

[
||ω2m+1

i − ω̃2m+1||2
]

≤ 2
K

Ei

[
||ω2m+1

i − ω2m||2
]

≤ 2
K

Ei

[L2

ρ2 ||ω2m − ω2m−1||2 + 1
ρ2 ||∇Fi(ω2m−1)||2 + 2L

ρ2 ||ω2m − ω2m−1|| · ||∇Fi(ω2m−1)||
]

≤ 2
K

L2

ρ2 ||ω2m − ω2m−1||2 + 2B2

Kρ2 ||∇f(ω2m−1)||2 + 4LB

Kρ2 ||ω2m − ω2m−1|| · ||∇f(ω2m−1)||

= 2
K

(L

ρ
||ω2m − ω2m−1|| + B

ρ
||∇f(ω2m−1)||

)2

By Jensen’s inequality,

ESm

[
||ω2m+1 − ω̃2m+1||

]
≤

√
ESm

[
||ω2m+1 − ω̃2m+1||2

]
=

√
2
K

(L

ρ
||ω2m − ω2m−1|| + B

ρ
||∇f(ω2m−1)||

)

By Eqn. (10),

||∇f(ω2m−1)|| + 2L||ω̃2m+1 − ω2m−1|| ≤ 2L
L + ρ

ρ
||ω2m − ω2m−1|| + 2LB + ρ

ρ
||∇f(ω2m−1)||

Re-organize, we have

ESm [f(ω2m+1)] ≤f(ω̃2m+1) + 2
K

L2

ρ2 ||ω2m − ω2m−1||2 + 2B2

Kρ2 ||∇f(ω2m−1)||2

+ 4LB

Kρ2 ||ω2m − ω2m−1|| · ||∇f(ω2m−1)||

+
(

2L
L + ρ

ρ
||ω2m − ω2m−1|| + 2LB + ρ

ρ
||∇f(ω2m−1)||

)√
2
K

L

ρ
||ω2m − ω2m−1||

+
(

2L
L + ρ

ρ
||ω2m − ω2m−1|| + 2LB + ρ

ρ
||∇f(ω2m−1)||

)√
2
K

B

ρ
||∇f(ω2m−1)||

=f(ω̃2m+1) +
(2

K

L2

ρ2 + 2L
L + ρ

ρ

√
2
K

L

ρ

)
·
(µ

µ + λm

)2
||ω2m−1 − ω2m−2||2

+
(4LB

Kρ2 + 2LB + ρ

ρ

√
2
K

L

ρ
+ 2L

L + ρ

ρ

√
2
K

B

ρ

)
· µ

µ + λm
||ω2m−1 − ω2m−2|| · ||∇f(ω2m−1)||

+
(2B2

Kρ2 + 2LB + ρ

ρ

√
2
K

B

ρ

)
||∇f(ω2m−1)||2

Lemma B.2 is proved.

Proof of Lemma 5.5

21

Published in Transactions on Machine Learning Research (07/2024)

Proof. Lemma 5.5 can be proved by combing Lemmas B.1 and B.2, where

C1C1C1 := C1

(
L, B,

1
µ

,
1
ρ

,
1
K

)
= Ĉ1

(
L, B,

1
µ

,
1
ρ

)
− C̃1

(
L, B,

1
K

,
1
ρ

)
= 1

µ
− LB

µ2ρ
− LB2

2ρ2 − 2B2

Kρ2 − 2LB + ρ

ρ

√
2
K

B

ρ
(11)

C2C2C2 := C2

(
L, B,

1
µ

,
1
ρ

,
1
K

,
µ

µ + λm

)
= Ĉ2

(
L, B,

1
µ

,
1
ρ

,
µ

µ + λm

)
+ C̃2

(
L, B,

1
K

,
1
ρ

,
µ

µ + λm

)
=

(L2

µ2ρ
+ L + µ

µ2 + L(L + ρ)B
ρ2 + 4LB

Kρ2 + (4L2B + ρL(1 + 2B)
ρ2

√
2
K

)
· µ

µ + λm
(12)

C3C3C3 := C3

(
L,

1
µ

,
1
ρ

,
1
K

,
µ

µ + λm

)
= Ĉ3

(
L,

1
µ

,
1
ρ

,
µ

µ + λm

)
+ C̃3

(
L,

1
K

,
1
ρ

,
µ

µ + λm

)
=

(L(L + ρ)2

2ρ2 + 2
K

L2

ρ2 + 2L
L + ρ

ρ

√
2
K

L

ρ

)
·
(µ

µ + λm

)2
(13)

D Proof of Theorem 5.6

This can be proved directed using Lemma 5.5 by averaging over all M odd iterations.

E Proof of Theorem 6.2

WLOG, consider the case when local device got updated in every iteration and the algorithm runs over 2M
iterations in total. We will use the uppercase letters X and lowercase letters x to denote random variables
and the corresponding realizations, and use PX(·) to denote its probability distribution. To simplify the
notations, we will drop the index i as we are only concerned with one agent.

According to Abadi et al. (2016), for a mechanism M outputs o, with inputs d and d̂, let a random variable
c(o; M , d, d̂) = log Pr(M (d)=o)

Pr(M (d̂)=o) denote the privacy loss at o, and

αM (λ) = max
d,d̂

logEo∼M (d){exp(λc(o; M , d, d̂))}

For two neighboring datasets D and D′ of agent i, by Lemma 6.1, the total privacy loss is only contributed by
odd iterations. Thus, for any sequence of private (clipped) models ω̂t generated by mechanisms {M m}M

m=1
over 2M iterations, there is:

c(ω̂0:2M ; {M m}M
m=1, D, D′) = log

PΩ̂0:2M (ω̂0:2M |D)
PΩ̂0:2M (ω̂0:2M |D′)

=
M∑

m=0
log

PΩ̂2m+1(ω̂2m+1|D, ω̂0:2m)
PΩ̂2m+1(ω̂2m+1|D′, ω̂0:2m) + log

PΩ̂0(ω̂0|D)
PΩ̂0(ω̂0|D′)

=
M∑

m=0
c(ω̂2m+1; M m, ω̂0:2m, D, D′)

22

Published in Transactions on Machine Learning Research (07/2024)

where ω̂0:t = {ω̂τ }t
τ=0 and Ω̂t is random variable whose realization is ω̂t. Since ω̂0 is randomly generated,

which is independent of dataset, we have PΩ̂0(ω̂0|D) = PΩ̂0(ω̂0|D′). Moreover, the following holds for any λ:

logE
ω̂0:2M {exp(λc(ω̂0:2M ; {M m}M

m=1, D, D′))}

= logE
ω̂0:2M {exp(λ

M∑
m=0

c(ω̂2m+1; M m, ω̂0:2m, D, D′)}

=
M∑

m=0
logE

ω̂2m+1{exp(λc(ω̂2m+1; M m, ω̂0:2m, D, D′)} (14)

Therefore, α{M m}M
m=1

(λ) ≤
∑M

m=1 αM m(λ) also holds. First bound each individual αM m(λ).

Consider two neighboring datasets D and D′. Private (clipped) model ω̂2m+1 is generated by mechanism
M m(D) = ξ(ω2m+1)+N = 1

|D|
∑

d∈D η(d)+N with function ||η(·)||2 ≤ τ and Gaussian noise N ∼ N (0, σ2I).
Without loss of generality, let D′ = D ∪{dn}, f(dn) = ±τe1 and

∑
d∈D η(d) = 0. Then M m(D) and M m(D′)

are distributed identically except for the first coordinate and the problem can be reduced to one-dimensional
problem.

c(ω̂2m+1; M m, ω̂0:2m, D, D′) = log
PΩ̂2m+1(ω̂2m+1|D, ω̂0:2m)
PΩ̂2m+1(ω̂2m+1|D′, ω̂0:2m)

= log PN (n)
PN (n ± τ)

≤ τ

2|D|σ2 (2|n| + τ) .

where n + 1
|D|

∑
d∈D η(d) = ω̂2m+1. Therefore,

αM m(λ) = logEN∼N (0,σ2){exp(λ τ

2|D|σ2 (2N + τ))}

= log
∫ ∞

−∞

1√
2πσ

exp(− 1
2σ2 (n − λ

τ

|D|
)2) · exp(τ2

2|D|2σ2 (λ2 + λ))dn

= τ2λ(λ + 1)
2|D|2σ2 .

α{M m}M
m=1

(λ) ≤
M∑

m=1
αM m(λ) = Mτ2λ(λ + 1)

2|D|2σ2

Use the tail bound [Theorem 2, Abadi et al. (2016)], for any ε ≥ Mτ2

2|D|2σ2 , the algorithm is (ε, δ)-differentially
private for

δ = min
λ:λ≥0

h(λ) = min
λ:λ≥0

exp
(Mτ2λ(λ + 1)

2|D|2σ2 − λε
)

To find λ∗ = argmin
λ:λ≥0

h(λ), take derivative of h(λ) and assign 0 gives the solution λ̄ = ε|D|2σ2

Mτ2 − 1
2 ≥ 0, and

h′′(λ̄) > 0, implies λ∗ = λ̄. Plug into (15) gives:

δ = exp
((Mτ2

4|D|2σ2 − ε

2

)(ε|D|2σ2

Mτ2 − 1
2

))
(15)

Similarly, for any δ ∈ [0, 1], the algorithm is (ε, δ)-differentially private for

ε = min
λ:λ≥0

h1(λ) = min
λ:λ≥0

Mτ2(λ + 1)
2|D|2σ2 + 1

λ
log

(
1
δ

)
= 2

√
Mτ2

2|D|2σ2 log(1
δ

) + Mτ2

2|D|2σ2

23

Published in Transactions on Machine Learning Research (07/2024)

Proof of Theorem 6.3

Proof. WLOG, consider the case when local device got updated in every iteration and the algorithm runs
over 2M iteration in total.

We will use the uppercase letters X and lowercase letters x to denote random variables and the corresponding
realizations, and use PX(·) to denote its probability distribution. To simplify the notations, we will drop the
index i as we are only concerned with one agent, and use ωt to denote private output ω̂t.

For two neighboring datasets D and D′ of agent i, by Lemma 6.1, the total privacy loss is only contributed
by odd iterations. Thus, the ratio of joint probabilities (privacy loss) is given by:

PΩ0:2M (ω0:2M |D)
PΩ0:2M (ω0:2M |D′) = PΩ0(ω0|D)

PΩ0(ω0|D′) ·
M∏

m=0

PΩ2m+1(ω2m+1|ω0:2m, D)
PΩ2m+1(ω2m+1|ω0:2m, D′) (16)

where ω0:t := {ωs}t
s=1 and Ωt denotes random variable of ωt. Since ω0 is randomly generated, which is

independent of dataset. We have PΩ0(ω0|D) = PΩ0(ω0|D′).

Consider the (2m + 1)-th iteration, by first-order condition, we have:

nm = −∇Fi(ω2m+1; D) − µ(ω2m+1 − ω2m) := g(ω2m+1; D)

Given ω0:2m, nm and ω2m+1 will be bijective and the relation is captured by a one-to-one mapping g : Rd → Rd

defined above. By Jacobian transformation, we have

PΩ2m+1(ω2m+1|ω0:2m, D) = PNm(g(ω2m+1; D)) · |det(J(g(ω2m+1; D)))|

Therefore,

PΩ2m+1(ω2m+1|ω0:2m, D)
PΩ2m+1(ω2m+1|ω0:2m, D′) = PNm(g(ω2m+1; D))

PNm(g(ω2m+1; D′)) · |det(J(g(ω2m+1; D)))|
|det(J(g(ω2m+1; D′)))|

Let nm := g(ω2m+1; D), nm′ := g(ω2m+1; D′) be noise vectors that result in output ω2m+1 under neighboring
datasets D and D′ respectively. WLOG, let d1 ∈ D and d′

1 ∈ D′ be the data pints in two datasets that are
different, and D \ d1 = D′ \ d′

1. Because noise vector Nm ∼ exp(−αm||nm||), we have,

PNm(g(ω2m+1; D))
PNm(g(ω2m+1; D′)) ≤ exp(αm||nm − nm′

||) = exp(αm||∇Fi(ω2m+1; D′) − ∇Fi(ω2m+1; D)||)

= exp
(αm

|D|
||∇Fi(ω2m+1; d′

1) − ∇Fi(ω2m+1; d1)||
)

≤ exp
(2αmu1

|D|

)
(17)

Jacobian matrix

J(g(ω2m+1; D))) = −∇2Fi(ω2m+1; D) − µId := A (18)

Further define matrix

A∆ = J(g(ω2m+1; D′))) − A = 1
|D|

(
∇2Fi(ω2m+1; d1) − ∇2Fi(ω2m+1; d′

1)
)

Then

|det(J(g(ω2m+1; D)))|
|det(J(g(ω2m+1; D′)))| = |det(A)|

|det(A∆ + A)| = 1
|det(I + A−1A∆)| = 1

|
∏r

k=1(1 + λk(A−1A∆))|

24

Published in Transactions on Machine Learning Research (07/2024)

where λk(A−1A∆) denotes the k-th largest eigenvalue of matrix A−1A∆. Under generalized linear models,
A∆ has rank at most 2. Because − u2

|D|µ ≤ λk(A−1A∆) ≤ u2
|D|µ and µ, u2, |D| satisfy u2

|D|µ ≤ 0.5, we have,

|det(J(g(ω2m+1; D)))|
|det(J(g(ω2m+1; D′)))| ≤ 1

|1 − u2
|D|µ |2

= exp(−2 ln(1 − u2

|D|µ
)) ≤ exp

(2.8u2

|D|µ

)
(19)

where the last inequality holds because − ln(1 − x) < 1.4x, ∀x ∈ [0, 0.5].

Combine Eqn. (16), (19) and (17), we have

PΩ0:2M (ω0:2M |D)
PΩ0:2M (ω0:2M |D′) ≤

M∏
m=0

exp
(2αmu1

|D|

)
· exp

(2.8u2

|D|µ

)
= exp

(M∑
m=0

2αmu1µ + 2.8u2

|D|µ

)
Theorem 6.2 is proved.

F Experiments

F.1 Details of Datasets

Table 2: Details of datasets. Numbers in parentheses represent the amount of test data. All of the numbers
round to integer.

Dataset Samples # of device Samples per device
mean stdev

Syn

iid 6726(683) 30 224 166
0,0 13791(1395) 30 460 841

0.5,0.5 8036(818) 30 268 410
1,1 10493(1063) 30 350 586

FEMNIST 16421(1924) 50 328 273
Sent140 32299(8484) 52 621 105

Synthetic. The synthetic data is generated using the same method in Li et al. (2020). We briefly describe the
generating steps here. For each device k, yk is computed from a softmax function yk = argmax(softmax(Wkxk+
bk)). Wk and bk are drawn from the same Gaussian distribution with mean uk and variance 1, where
uk ∈ N(0; β). xk ∈ N(vk; Σ). vk is drawn from a Gaussian distribution with mean Bk ∈ N (0, γ) and variance
1. Σ is diagonal with

∑
j, j = j−1.2. In such a setting, β controls how many local models differ from each

other and γ controls how much local data at each device differs from that of other devices.

In our experiment, we take k = 30, x ∈ R20, W ∈ R10∗20, b ∈ R10. We generate 4 datasets in total. They’re
Syn(iid) Syn(0,0) with β = 0 and γ = 0, Syn(0.5,0.5) with β = 0.5 and γ = 0.5 and Syn(1,1) with β = 1 and
γ = 1. In the output perturbation experiments, we set σ to 1.0 for the baseline methods and to 0.8 for the
Upcycled baselines, ensuring that the privacy budget ϵ for the baselines is always greater than that for the
Upcycled baselines (e.g., the baseline ϵ̄ = 0.773 and the Upcycled baseline ϵ̄ = 0.683 for Syn(iid)). In the
objective perturbation experiments, we set α to 10 for the baselines and 20 for the Upcycled baselines to
achieve similar levels of information leakage, while still maintaining that ϵ for the Upcycled baselines is less
than for the others. This constraint is maintained across all experiments.

FEMNIST: Similar with Li et al. (2020), we subsample 10 lower case characters (‘a’-‘j’) from EMNIST Cohen
et al. (2017) and distribute 5 classes to each device. There are 50 devices in total. The input is 28x28 image.
In the privacy experiments, σ is set to 0.27 for the baselines and 0.2 for the Upcycled baselines, and α is set
to 100 for the baselines and 200 for the Upcycled baselines, respectively.

25

Published in Transactions on Machine Learning Research (07/2024)

Sent140: A text sentiment analysis task on tweets Go et al. (2009). The input is a sequence of length 25 and
the output is the probabilities of 2 classes. Here, σ is set to 0.27 for the baselines and 0.2 for the Upcycled
baselines, and α is set to 15 and 30 respectively.

A brief summary of dataset can be found in Table 2.

F.2 Details of Algorithm FedProx

Here we present the detailed algorithm of FedProx:

Algorithm 2 FedProx (Li et al., 2020)
1: Input: µ > 0, {Di}i∈I , ω0

2: for t = 1 to T do
3: The central server sends the current global model parameter ωt to all the clients.
4: A subset of clients get active and each active client updates its local model by finding (approximate)

minimizer of local loss function:

ωt+1
i = arg min

ω
Fi(ω; Di) + µ

2 ||ω − ωt||2.

5: Each client sends its local model to server.
6: The central server updates the global model by aggregating all local models:

ωt+1 =
∑

i∈I piω
t+1
i .

7: end for

26

Published in Transactions on Machine Learning Research (07/2024)

F.3 Convergence on all datasets

Here we present the convergence and accuracy of the testing dataset in the final iteration for all datasets
under 90% straggler and 30% straggler scenarios.

F.3.1 90% Straggler

0 10 20 30 40 50 60 70 80
training time

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(a) Syn(iid)

0 10 20 30 40 50 60 70 80
training time

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(b) Syn(0,0)

0 10 20 30 40 50 60 70 80
training time

0.4

0.5

0.6

0.7

0.8

0.9

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(c) Syn(0.5,0.5)

0 10 20 30 40 50 60 70 80
training time

0.4

0.5

0.6

0.7

0.8

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(d) Syn(1,1)

0 20 40 60 80 100 120 140
training time

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(e) FEMNIST

0 10 20 30 40 50 60 70 80
training time

0.50

0.55

0.60

0.65

0.70

0.75

0.80

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(f) Sent140

Figure 5: Convergence of Upcycled-FL and regular FL methods with the approximate same training time
under 90% Straggler.

27

Published in Transactions on Machine Learning Research (07/2024)

F.3.2 30% Straggler

We also conduct an experiment with a 30% straggler scenario to examine the convergence of our method.
Table 3 demonstrates that our conclusions remain valid even when the straggler rate is relatively low.

Table 3: Average accuracy with 30% straggler on the testing dataset over four runs, the experimental setting
is same as Table 1.

Method
Dataset

Syn(iid) Syn(0,0) Syn(0.5,0.5) Syn(1,1) FEMNIST Sent140

FedAvg 98.50±0.18 80.30±1.01 82.60±0.72 78.81±2.10 83.06±1.30 74.29±0.12

Upcycled-FedAvg 99.30±0.25 80.77±1.09 83.09±0.14 80.74±2.71 84.41±0.09 75.18±0.50

FedAvgM 98.50±0.07 81.08±2.33 82.89±0.12 80.64±2.64 81.60±4.57 74.61±2.28

Upcycled-FedAvgM 99.12±0.17 82.20±1.80 82.68±0.19 80.43±2.51 82.31±3.17 74.16±2.84

FedProx 97.22±0.24 80.88±0.67 82.31±1.05 80.13±2.76 81.57±1.46 74.23±0.31

Upcycled-FedProx 98.24±0.21 81.52±0.82 83.05±0.14 81.73±0.84 82.85±1.60 74.83±0.14

Scaffold 98.28±0.14 79.95±1.67 79.54±0.72 72.27±4.68 76.85±5.55 75.76±0.21

Upcycled-Scaffold 99.52±0.18 79.46±1.62 81.83±2.08 73.34±1.13 77.69±2.39 77.01±0.30

FedDyn 98.17±0.08 82.06±0.61 80.97±1.04 78.65±3.83 84.39±0.95 75.88±0.11

Upcycled-FedDyn 98.57±0.22 82.08±0.68 82.80±1.42 81.11±2.64 85.34±2.47 75.90±0.33

pFedme 96.45±0.14 91.05±0.60 89.64±1.04 92.88±0.67 76.15±3.08 72.87±0.26

Upcycled-pFedme 96.89±0.27 91.06±0.61 89.40±1.13 92.64±0.90 77.36±3.59 73.48±0.49

FedYogi 99.38±0.28 81.06±2.53 80.65±1.32 79.14±1.63 79.98±7.83 77.63±0.29

Upcycled-FedYogi 99.60±0.14 81.77±2.06 81.72±1.02 80.32±0.76 81.96±4.28 77.78±0.85

28

Published in Transactions on Machine Learning Research (07/2024)

F.3.3 30% Straggler

0 10 20 30 40 50 60 70 80
training time

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(a) Syn(iid)

0 10 20 30 40 50 60 70 80
training time

0.4

0.5

0.6

0.7

0.8

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(b) Syn(0,0)

0 10 20 30 40 50 60 70 80
training time

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(c) Syn(0.5,0.5)

0 10 20 30 40 50 60 70 80
training time

0.4

0.5

0.6

0.7

0.8

0.9

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(d) Syn(1,1)

0 20 40 60 80 100 120 140
training time

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(e) FEMNIST

0 10 20 30 40 50 60 70 80
training time

0.50

0.55

0.60

0.65

0.70

0.75

0.80

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM
Upcycled-FedProx

FedProx
Upcycled-Scaffold
Scaffold
Upcycled-FedDyn
FedDyn

Upcycled-pFedMe
pFedMe
Upcycled-FedYogi
FedYogi

(f) Sent140

Figure 6: Convergence of Upcycled-FL and regular methods with the approximate same training time under
30% Straggler.

29

Published in Transactions on Machine Learning Research (07/2024)

F.4 Additional Privacy Experiments

In addition to privacy experiments on synthetic datasets, we also report the output perturbation and objective
perturbation on real-world datasets: FEMNIST and Sent140 in Figure 7 and 8. Due to limited computational
resources, we conduct these experiments using a subset of the previously established baselines.

0 20 40 60 80 100 120 140
iteration

1.9

2.0

2.1

2.2

2.3

2.4

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM

Upcycled-FedProx
FedProx
Upcycled-Scaffold

Scaffold
Upcycled-FedDyn
FedDyn

0 10 20 30 40 50 60 70 80
iteration

1.7

1.8

1.9

2.0

2.1

2.2

2.3

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM

Upcycled-FedProx
FedProx
Upcycled-Scaffold

Scaffold
Upcycled-FedDyn
FedDyn

Figure 7: Comparison of private Upcycled-FL and private FL methods using output perturbation (left)
and objective perturbation (right) on FEMNIST.

0 10 20 30 40 50 60 70 80
iteration

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM

Upcycled-FedProx
FedProx
Upcycled-Scaffold

Scaffold
Upcycled-FedDyn
FedDyn

0 10 20 30 40 50 60 70 80
iteration

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

lo
ss

Upcycled-FedAvg
FedAvg
Upcycled-FedAvgM
FedAvgM

Upcycled-FedProx
FedProx
Upcycled-Scaffold

Scaffold
Upcycled-FedDyn
FedDyn

Figure 8: Comparison of private Upcycled-FL and private FL methods using output perturbation (left)
and objective perturbation (right) on Sent140.

F.5 Experiments on full-scale lowercase letter of FEMNIST

We conduct a convergence experiment with full-scale lowercase letters (26 classes) from the FEMNIST dataset,
as shown in Table 4. We also conduct privacy experiments comparing our method with FedProx, as shown in
Figure 9.

30

Published in Transactions on Machine Learning Research (07/2024)

Table 4: Average accuracy on the large-scale FEMNIST dataset

Method FEMNIST(lowercase letters)
30% straggler 90% straggler

FedAvg 90.90 ± 4.55 88.50 ± 5.07
Upcycled-FedAvg 91.26 ± 4.06 88.69 ± 4.94

FedAvgM 91.02 ± 4.47 89.13 ± 4.35
Upcycled-FedAvgM 91.05 ± 4.36 89.28 ± 4.05

FedProx 91.91 ± 0.38 89.02 ± 4.53
Upcycled-FedProx 92.08 ± 0.72 89.44 ± 4.30

Scaffold 89.69 ± 3.92 89.11 ± 3.74
Upcycled-Scaffold 89.77 ± 4.01 89.72 ± 3.90

FedDyn 92.88 ± 0.30 91.42 ± 0.24
Upcycled-FedDyn 93.56 ± 0.30 92.64 ± 0.37

pFedme 81.36 ± 4.63 80.72 ± 1.47
Upcycled-pFedme 85.62 ± 1.43 85.14 ± 0.93

FedYogi 87.64 ± 1.05 85.61 ± 0.56
Upcycled-FedYogi 88.89 ± 1.84 86.48 ± 1.30

Table 5: Training time for output perturbation experiments on Syn(iid).
Time/s FedAvg FedAvgM FedProx Scaffold FedDyn pFedme FedYogi
Baseline 147.50 ± 6.69 147.47 ± 7.49 139.91 ± 10.81 153.88 ± 12.70 181.49 ± 17.60 467.42 ± 12.87 153.53 ± 13.72
Upcycled 86.44 ± 9.23 84.95 ± 3.39 80.59 ± 3.29 95.09 ± 13.89 99.82 ± 3.32 259.54 ± 18.27 92.82 ± 2.24

0 20 40 60 80 100 120 140
iteration

1.8

1.9

2.0

2.1

2.2

2.3

lo
ss

Upcycled-FedProx
FedProx

0 20 40 60 80 100 120 140
iteration

1.7

1.8

1.9

2.0

2.1

2.2

2.3

lo
ss

Upcycled-FedProx
FedProx

Figure 9: Comparison of private Upcycled-FedProx and private FedProx using output perturbation (left)
and objective perturbation (right).

F.6 Training Time

We report the average training time to compare the communication cost in Table 5.

31

	Introduction
	Related Work
	Problem Formulation
	Proposed Method: Upcycled-FL
	Convergence Analysis
	Private Upcycled-FL
	Experiments
	Datasets and Networks
	Experimental setup
	Results

	Conclusion
	Notation Table
	Lemmas
	Proofs
	Proof of Theorem 5.6
	Proof of Theorem 6.2
	Experiments
	Details of Datasets
	Details of Algorithm FedProx
	Convergence on all datasets
	90% Straggler
	30% Straggler
	30% Straggler

	Additional Privacy Experiments
	Experiments on full-scale lowercase letter of FEMNIST
	Training Time

