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Abstract

In contrast to the advances in characterizing the sample complexity for solving
Markov decision processes (MDPs), the optimal statistical complexity for solving
constrained MDPs (CMDPs) remains unknown. We resolve this question by
providing minimax upper and lower bounds on the sample complexity for learning
near-optimal policies in a discounted CMDP with access to a generative model
(simulator). In particular, we design a model-based algorithm that addresses two
settings: (i) relaxed feasibility, where small constraint violations are allowed, and
(ii) strict feasibility, where the output policy is required to satisfy the constraint. For
(i), we prove that our algorithm returns an ε-optimal policy with probability 1− δ,
by making Õ

(
SA log(1/δ)
(1−γ)3ε2

)
queries to the generative model, thus matching the

sample-complexity for unconstrained MDPs. For (ii), we show that the algorithm’s
sample complexity is upper-bounded by Õ

(
SA log(1/δ)
(1−γ)5 ε2ζ2

)
where ζ is the problem-

dependent Slater constant that characterizes the size of the feasible region. Finally,
we prove a matching lower-bound for the strict feasibility setting, thus obtaining
the first near minimax optimal bounds for discounted CMDPs. Our results show
that learning CMDPs is as easy as MDPs when small constraint violations are
allowed, but inherently more difficult when we demand zero constraint violation.

1 Introduction

Common reinforcement learning (RL) algorithms focus on optimizing an unconstrained objective, and
have found applications in games such as Atari [23] or Go [28], robot manipulation tasks [29, 37] or
clinical trials [26]. However, many applications require the planning agent to satisfy constraints – for
example, in wireless sensor networks [10] where there is a constraint on average power consumption.
More generally, in the constrained Markov decision processes (CMDP) framework, the goal is to find
a policy that maximizes the value associated with a reward function subject to the policy achieving
a return (for a second reward function) that exceeds an apriori determined threshold [3]. There has
been substantial work addressing the planning problem to find a near-optimal policy in a known
CMDP [8, 7, 30, 24, 1, 35]. However, since the CMDP is unknown in most practical applications, we
consider the problem of finding a near-optimal policy in this more challenging setting.

There have been multiple recent approaches to obtain a near-optimal policy in CMDPs in the
regret-minimization or PAC-RL settings [13, 38, 9, 19, 31, 22, 36, 12, 15, 16, 11]. These works
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tackle the exploration, estimation and planning problems simultaneously. On the other hand, recent
works [16, 33, 6] consider an easier, but even more fundamental problem of obtaining a near-optimal
policy with access to a simulator or generative model [20, 18, 2]. In particular, these works assume
that the transition probabilities in the underlying CMDP are unknown, but the planner has access
to a sampling oracle (the generative model) that returns a sample of the next state when given any
state-action pair as input. This is the problem setting we consider and aim to obtain matching upper
and lower bounds on the sample complexity of planning in CMDPs with access to a generative model.

Given a target error ε > 0, the approximate CMDP objective is to return a policy that achieves a
cumulative reward within an ε additive error of the optimal policy in the CMDP. Previous work can
be classified into two categories based on how it tackles the constraint – for the easier problem that
we term relaxed feasibility, the policy returned by an algorithm is allowed to violate the constraint by
at most ε. On the other hand, for the more difficult strict feasibility problem, the returned policy is
required to strictly satisfy the constraint and achieve zero constraint violation. Except for the recent
works of Wei et al. [33] and Bai et al. [6], most provably efficient approaches including those in the
regret-minimization and PAC-RL settings consider the relaxed feasibility setting. For this problem,
the best model-based algorithm requires Õ

(
S2A

(1−γ)3ε2

)
samples to return an ε-optimal policy in an

infinite-horizon γ-discounted CMDP with S states and A actions [16], while the best model-free
approach requires Õ

(
SA

(1−γ)5ε2

)
samples for achieving the objective [12]. On the other hand, the best

known upper bounds for a model-free algorithm in the strict feasibility setting are achieved by Bai
et al. [6]. In particular, their algorithm requires Õ

(
SA

(1−γ)2ε2

)
samples [6, Theorem 2] to output an ε-

optimal policy. However, their analysis considers normalized reward and constraint value functions [6,
Eq. 1] that lie in the [0, 1] range (compared to the standard [0, 1/1− γ] range). This difference in the
scale of the values prevents a direct comparison of their results to our sample complexity bounds.
Subsequently, we show that when appropriately normalized, our sample complexity bounds are better
by a (1/1−γ) factor in both the relaxed feasibility (Section 4) and strict feasibility settings (Section 5).

Importantly, there are no lower bounds characterizing the difficulty of either the relaxed or strict
feasibility problems (except in degenerate cases where the constraint is always satisfied and the CMDP
problem reduces to an unconstrained MDP). To get an indication of what the optimal bounds might
be, it is instructive to compare these results to the unconstrained MDP setting. For unconstrained
MDPs with access to a generative model, both model-based [2, 21] and model-free approaches [27]
can return an ε-optimal policy within near-optimal Θ̃

(
SA

(1−γ)3ε2

)
sample-complexity [4]. Hence,

compared to the sample-complexity for unconstrained MDPs, the best-known upper-bounds for
CMDPs are worse for both the relaxed and strict feasibility settings. However, it is unclear whether
solving CMDPs is inherently more difficult than unconstrained MDPs. We resolve these questions
for both the relaxed and strict feasibility settings, and make the following contributions.

Generic model-based algorithm: In Section 3, we provide a generic model-based primal-dual
algorithm (Algorithm 1) that can be used to achieve both the relaxed and strict feasibility objectives
(with appropriate parameter settings). The proposed algorithm requires solving a sequence of
unconstrained empirical MDPs using any black-box MDP planner.

Upper-bound on sample complexity under relaxed feasibility: In Section 4, we prove that with
a specific set of parameters, Algorithm 1 uses no more than Õ

(
SA

(1−γ)3ε2

)
samples to achieve the

relaxed feasibility objective. This improves upon the bounds of HasanzadeZonuzy et al. [16] and
matches the lower-bound in the easier unconstrained MDP setting, implying that our bounds are
near-optimal. Our result indicates that under relaxed feasibility solving CMDPs is as easy as solving
unconstrained MDPs. To the best of our knowledge, these are the first such bounds.

Upper-bound on sample-complexity under strict feasibility: In Section 5, we prove that with
a specific set of parameters, Algorithm 1 uses no more than Õ

(
SA

(1−γ)5ζ2ε2

)
to achieve the strict

feasibility objective. Here ζ ∈ (0, 1/1−γ] is the problem-dependent Slater constant that characterizes
the size of the feasible region and influences the difficulty of the problem. Unlike Bai et al. [6], our
bounds do not depend on additional (potentially large) problem-dependent quantities.

Lower-bound on sample-complexity under strict feasibility: In Section 7, we prove a matching
problem-dependent Ω

(
SA

(1−γ)5 ζ2 ε2

)
lower bound on the sample-complexity in the strict feasibility
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setting. Our results thus demonstrate that the proposed model-based algorithm is near minimax
optimal. Furthermore, our bounds indicate that under strict feasibility (i) solving CMDPs is inherently
more difficult than solving unconstrained MDPs, and (ii) the problem hardness (in terms of the
sample-complexity) increases as ζ (and hence the size of the feasible region) decreases. To the best
of our knowledge, these are first results characterizing the difficulty of solving CMDPs with access to
a generative model and demonstrate a separation between the relaxed and strict feasibility settings.

Overview of techniques: For proving the upper bounds, we use a specific primal-dual algorithm
that reduces the CMDP planning problem to solving multiple unconstrained MDPs. Specifically, by
using a strong-duality argument, we show that we can obtain an optimal CMDP policy by averaging
the optimal policies of a specific sequence of MDPs. For each MDP in this sequence, we use the
model-based techniques from Agarwal et al. [2], Li et al. [21] to prove concentration results for
data-dependent policies. This allows us to prove concentration for the optimal data-dependent policy
in the CMDP, and subsequently bound the sample complexity for both the relaxed and strict feasibility
problems. For the lower bound, we modify the MDP hard instances [5, 34] to handle a constraint
reward. This makes the resulting gadgets significantly more complex than those required for MDPs,
but we show that similar likelihood arguments can be used to prove the lower-bound.

2 Problem Formulation

We consider an infinite-horizon discounted constrained Markov decision process (CMDP) [3] denoted
by M , and defined by the tuple 〈S,A,P, r, c, b, ρ, γ〉 where S is the set of states, A is the action
set, P : S × A → ∆S is the transition probability function, ρ ∈ ∆S is the initial distribution of
states and γ ∈ [0, 1) is the discount factor. The primary reward to be maximized is denoted by
r : S × A → [0, 1], whereas the constraint reward is denoted by c : S × A → [0, 1]2. If ∆A
denotes the simplex over the action space, the expected discounted return or reward value function
of a stationary, stochastic policy3 π : S → ∆A is defined as V πr (ρ) = Es0,a0,...

[∑∞
t=0 γ

tr(st, at)
]
,

where s0 ∼ ρ, at ∼ π(·|st), and st+1 ∼ P(·|st, at). For each state-action pair (s, a) and policy
π, the reward action-value function is defined as Qπr : S × A → R, and satisfies the relation:
V πr (s) = 〈π(·|s), Qπr (s, ·)〉, where V πr (s) is the reward value function when the starting state is equal
to s. Analogously, the constraint value function and constraint action-value function of policy π is
denoted by V πc (ρ) and Qπc respectively. The CMDP objective is to return a policy that maximizes
V πr (ρ), while ensuring that V πc (ρ) ≥ b. Formally,

max
π

V πr (ρ) s.t. V πc (ρ) ≥ b. (1)

The optimal stochastic policy for the above CMDP is denoted by π∗ and the corresponding reward
value function is denoted by V ∗r (ρ). We also define ζ := maxπ V

π
c (ρ)− b as the problem-dependent

quantity referred to as the Slater constant [12, 6]. The Slater constant is a measure of the size of the
feasible region and determines the difficulty of solving Eq. (1).

For simplicity of exposition, we assume that the rewards r and constraint rewards c are known, but
the transition matrix P is unknown and needs to be estimated. We note that assuming the knowledge
of the rewards does not affect the leading terms of the sample complexity since learning these is
an easier problem compared to the transition matrix [5, 27]. We assume access to a generative
model or simulator that allows the agent to obtain samples from the P(·|s, a) distribution for any
(s, a). Assuming access to such a generative model, our aim is to characterize the sample complexity
required to return a near-optimal policy π̂ in M . Given a target error ε > 0, we can characterize the
performance of policy π̂ in two ways:

Relaxed feasibility: We require π̂ to achieve an approximately optimal reward value, while allowing
it to have a small constraint violation in M 4. Formally, we require π̂ s.t.

V π̂r (ρ) ≥ V ∗r (ρ)− ε, and V π̂c (ρ) ≥ b− ε. (2)

2These ranges for r and c are chosen for simplicity. Our results can be easily extended to handle other ranges.
3The performance of an optimal policy in a CMDP can always be achieved by a stationary, stochastic

policy [3]. On the other hand, for an MDP, it suffices to only consider stationary, deterministic policies [25].
4In general, the desired gap in the reward value can be different from the level of constraint violation.
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Algorithm 1: Model-based algorithm for CMDPs with generative model
1 Input: S (state space), A (action space), r (rewards), c (constraint rewards), ζ (Slater constant),

N (number of samples), b′ (constraint RHS), ω (perturbation magnitude), U (projection upper
bound), εl (epsilon-net resolution), T (number of iterations), λ0 = 0 (initialization).

2 For each state-action (s, a) pair, collect N samples from P(.|s, a) and form P̂ .
3 Perturb the rewards to form vector rp(s, a) := r(s, a) + ξ(s, a) where ξ(s, a) ∼ U [0, ω].
4 Form the empirical CMDP M̂ = 〈S,A, P̂, rp, c, b′, ρ, γ〉.
5 Form the epsilon-net Λ = {0, εl, 2εl, . . . , U}.
6 for t← 0 to T − 1 do
7 Update the policy by solving an unconstrained MDP: π̂t = arg max V̂ πrp+λtc

.

8 Update the dual-variables: λt+1 = RΛ

[
P[0,U ]

[
λt − η (V̂ π̂tc (ρ)− b′)

]]
.

9 end
10 Output: Mixture policy π̄T = 1

T

∑T−1
t=0 π̂t.

Strict feasibility We require π̂ to achieve an approximately optimal reward value, while simultane-
ously demanding zero constraint violation in M . Formally, we require π̂ s.t.

V π̂r (ρ) ≥ V ∗r (ρ)− ε, and V π̂c (ρ) ≥ b (3)

Next, we describe a general model-based algorithm to handle both these cases, and subsequently
instantiate the algorithm for the relaxed feasibility (Section 4) and strict feasibility (Section 5) settings.

3 Methodology

We will use a model-based approach [2, 21, 16] for achieving the objectives in Eq. (2) and Eq. (3). In
particular, for each (s, a) pair, we collectN independent samples fromP(·|s, a) and form an empirical
transition matrix P̂ such that P̂(s′|s, a) = N(s′|s,a)

N , where N(s′|s, a) is the number of samples that
have transitions from (s, a) to s′. These estimated transition probabilities are used to form an empirical
CMDP. Due to a technical requirement, (which we will clarify in the Section 6), we require adding
a small random perturbation to the rewards in the empirical CMDP5. In particular, for each s ∈ S
and a ∈ A, we define the perturbed rewards rp(s, a) := r(s, a) + ξ(s, a) where ξ(s, a) ∼ U [0, ω]
are i.i.d. uniform random variables. Finally, compared to Eq. (1), we will require solving the
empirical CMDP with a constraint right-hand side equal to b′. Note that setting b′ < b corresponds
to loosening the constraint, while b′ > b corresponds to tightening the constraint. This completes
the specification of the empirical CMDP M̂ that is defined by the tuple 〈S,A, P̂, rp, c, b′, ρ, γ〉. For
M̂ , the corresponding reward value function (and constraint value function) for policy π is denoted
as V̂ πrp(ρ) (and V̂ πc (ρ) respectively). In order to fully instantiate M̂ , we require setting the values
of ω (the magnitude of the perturbation) and b′ (the constraint right-hand side). This depends on
the specific setting (relaxed vs strict feasibility) and we do this in Sections 4 and 5 respectively. We
compute the optimal policy for the empirical CMDP M̂ as follows:

π̂∗ ∈ arg max V̂ πrp(ρ) s.t. V̂ πc (ρ) ≥ b′ (4)

In contrast to Agarwal et al. [2], Li et al. [21] that consider model-based approaches for unconstrained
MDPs and can solve the resulting empirical MDP using any black-box approach, we will require
solving Eq. (4) using a specific primal-dual approach that we outline next. Using this algorithm
enables us to prove optimal sample complexity bounds under both relaxed and strict feasibility.

First, observe that Eq. (4) can be written as an equivalent saddle-point problem –
maxπ minλ≥0

[
V̂ πrp(ρ) + λ

(
V̂ πc (ρ)− b′

)]
, where λ ∈ R corresponds to the Lagrange multiplier

for the constraint. The solution to this saddle-point problem is (π̂∗, λ∗) where π̂∗ is the optimal
empirical policy and λ∗ is the optimal Lagrange multiplier. We solve the above saddle-point problem

5Similar to MDPs [21], we can instead perturb the Q function while planning in the empirical CMDP.
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iteratively, by alternatively updating the policy (primal variable) and the Lagrange multiplier (dual
variable). If T is the total number of iterations of the primal-dual algorithm, we define π̂t and λt to
be the primal and dual iterates for t ∈ [T ] := {1, . . . , T}. The primal update at iteration t is given as:

π̂t = arg max
[
V̂ πrp(ρ) + λtV̂

π
c (ρ)

]
= arg max V̂ πrp+λtc. (5)

Hence, iteration t of the algorithm requires solving an unconstrained MDP with a reward equal to
rp + λtc. This can be done using any black-box MDP solver such as policy iteration. The algorithm
updates the Lagrange multipliers using a gradient descent step and requires projecting and rounding
the resulting dual variables. In particular, the dual variables are first projected onto the [0, U ] interval,
where U is chosen to be an upper-bound on |λ∗|. After the projection, the resulting iterates are
rounded to the closest element in the set Λ = {0, εl, 2εl, . . . , U}, a one-dimensional epsilon-net (with
resolution εl) over the dual variables. In Section 6, we will see that constructing such an εl-net will
enable us to prove concentration results for all λ ∈ Λ. The dual update at iteration t is given as:

λt+1 = RΛ

[
P[0,U ]

[
λt − η (V̂ π̂tc (ρ)− b′)

]]
, (6)

where P[0,U ][λ] = arg minp∈[0,U ] |λ− p| projects λ onto the [0, U ] interval and RΛ[λ] =

arg minp∈Λ |λ− p| rounds λ to the closest element in Λ. Since Λ is an epsilon-net, for all λ ∈ [0, U ],
|λ−RΛ[λ]| ≤ εl. Finally, η in Eq. (6) corresponds to the step-size for the gradient descent update.
The above primal-dual updates are similar to the dual-descent algorithm proposed in Paternain et al.
[24]. The pseudo-code summarizing the entire model-based algorithm is given in Algorithm 1. We
note that although Algorithm 1 requires the knowledge of ζ, this is not essential and we can instead
use an estimate of ζ. In Appendix F, we show that we can estimate ζ to within a factor of 2 using
Õ
(
|S||A|

(1−γ)3ζ2

)
additional queries. Next, we show that the primal-dual updates in Algorithm 1 can

be used to solve the empirical CMDP M̂ . Specifically, we prove the following theorem (proof
in Appendix A) that bounds the average optimality gap (in the reward value function) and constraint
violation for the mixture policy returned by Algorithm 1.

Theorem 1 (Guarantees for the primal-dual algorithm). For a target error εopt > 0 and the primal-

dual updates in Eq. (5)-Eq. (6) with U > |λ∗|, T = 4U2

ε2opt (1−γ)2

[
1 + 1

(U−λ∗)2

]
, η = U(1−γ)√

T
and

εl =
ε2opt(1−γ)2 (U−λ∗)

6U , the mixture policy π̄T := 1
T

∑T−1
t=0 π̂t satisfies,

V̂ π̄Trp (ρ) ≥ V̂ π̂
∗

rp (ρ)− εopt ; V̂ π̄Tc (ρ) ≥ b′ − εopt.

Hence, with T = O(1/ε2opt) and εl = O(ε2
opt), the algorithm outputs a policy π̄T that achieves a reward

εopt close to that of the optimal empirical policy π̂∗, while violating the constraint by at most εopt.
Hence, with sufficient number of iterations T and by choosing a sufficiently small resolution εl for the
epsilon-net, we can use the above primal-dual algorithm to approximately solve the problem in Eq. (4).
In order to completely instantiate the primal-dual algorithm, we require setting U > |λ∗|. We will
subsequently do this for the the relaxed and strict feasibility settings in Sections 4 and 5 respectively.
We note that in contrast to Paternain et al. [24, Theorem 3] that bounds the Lagrangian, Theorem 1
provides explicit bounds on both the reward suboptimality and constraint violation.

We conclude this section by making some observations about the primal-dual algorithm – while
the subsequent bounds for both settings heavily depend on using the “best-response” primal update
in Eq. (5), the algorithm does not require using the specific form of the dual updates in Eq. (6). Indeed,
when used in conjunction with the projection and rounding operations in Eq. (6), we can use any
method to update the dual variables (not necessarily gradient descent) provided that it results in an
O
(
T a + εlT

b
)

(for a < 1) bound on the dual regret (see the proof of Theorem 1 for the definition).
Next, we specify the values of N, b′, ω, εl, T , U in Algorithm 1 to achieve the objective in Eq. (2).

4 Upper-bound under Relaxed Feasibility

In order to achieve the objective in Eq. (2) for a target error ε > 0, we require setting N =

Õ
(

log(1/δ)
(1−γ)3ε2

)
, b′ = b − 3ε

8 and ω = ε(1−γ)
8 . This completely specifies the empirical CMDP M̂
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and the problem in Eq. (4). In order to specify the primal-dual algorithm, we set U = O (1/ε (1−γ)),
εl = O

(
ε2(1− γ)2

)
and T = O (1/(1−γ)4ε4). With these choices, we prove the following theorem

in Appendix B and provide a proof sketch below.

Theorem 2. For a fixed ε ∈ (0, 1/1−γ] and δ ∈ (0, 1), Algorithm 1 with N = Õ
(

log(1/δ)
(1−γ)3ε2

)
samples, b′ = b− 3ε

8 , ω = ε(1−γ)
8 , U = O (1/ε (1−γ)), εl = O

(
ε2(1− γ)2

)
and T = O (1/(1−γ)4ε4),

returns policy π̄T that satisfies the objective in Eq. (2) with probability at least 1− 4δ.

Proof Sketch: We prove the result for a general primal-dual error εopt < ε and b′ = b− ε−εopt
2 , and

subsequently specify εopt and hence b′. In Lemma 11 (proved in Appendix B), we show that if the
constraint value functions are sufficiently concentrated (the empirical value function is close to the
ground truth value function) for both the optimal policy π∗ in M and the mixture policy π̄T returned
by Algorithm 1, i.e., if∣∣∣V π̄Tc (ρ)− V̂ π̄Tc (ρ)

∣∣∣ ≤ ε− εopt

2
;
∣∣∣V π∗c (ρ)− V̂ π

∗

c (ρ)
∣∣∣ ≤ ε− εopt

2
, (7)

then (i) policy π̄T violates the constraint in M by at most ε, i.e., V π̄Tc (ρ) ≥ b − ε, and (ii) its
suboptimality in M (compared to π∗) can be decomposed as:

V π
∗

r (ρ)− V π̄Tr (ρ) ≤ 2ω

1− γ
+ εopt +

∣∣∣V π∗rp (ρ)− V̂ π
∗

rp (ρ)
∣∣∣+
∣∣∣V̂ π̄Trp (ρ)− V π̄Trp (ρ)

∣∣∣ . (8)

In order to instantiate the primal-dual algorithm, we require a concentration result for policy π∗c
that maximizes the the constraint value function, i.e. if π∗c := arg maxV πc (ρ), then we require∣∣∣V π∗cc (ρ)− V̂ π

∗
c

c (ρ)
∣∣∣ ≤ ε+ εopt. In Case 1 of Lemma 9 (proved in Appendix A), we show that if this

concentration result holds, then we can upper-bound the optimal dual variable |λ∗| by 2(1+ω)
(ε+εopt)(1−γ) .

With these results in hand, we can instantiate all the algorithm parameters except N (the number of
samples required for each state-action pair). In particular, we set εopt = ε

4 and hence b′ = b− 3ε
8 , and

ω = ε(1−γ)
8 < 1. Setting U = 32

5ε (1−γ) ensures that the U > |λ∗| condition required by Theorem 1
holds. To guarantee that the primal-dual algorithm outputs an ε

4 -approximate policy, we use Theorem 1

to set T = O
(

1
(1−γ)4ε4

)
iterations and εl = O

(
ε2(1− γ)2

)
. Eq. (8) can then be simplified as,

V π
∗

r (ρ)− V π̄Tr (ρ) ≤ ε

2
+
∣∣∣V π∗rp (ρ)− V̂ π

∗

rp (ρ)
∣∣∣+
∣∣∣V̂ π̄Trp (ρ)− V π̄Trp (ρ)

∣∣∣ .
Putting everything together, in order to guarantee an ε-reward suboptimality for π̄T , we require that:∣∣∣V π∗cc (ρ)− V̂ π

∗
c

c (ρ)
∣∣∣ ≤ 5ε

4
;
∣∣∣V π̄Tc (ρ)− V̂ π̄Tc (ρ)

∣∣∣ ≤ 3ε

8
;
∣∣∣V π∗c (ρ)− V̂ π

∗

c (ρ)
∣∣∣ ≤ 3ε

8∣∣∣V π∗rp (ρ)− V̂ π
∗

rp (ρ)
∣∣∣ ≤ ε

4
;
∣∣∣V̂ π̄Trp (ρ)− V π̄Trp (ρ)

∣∣∣ ≤ ε

4
. (9)

We control such concentration terms for both the constraint and reward value functions in Section 6,
and bound the terms in Eq. (9). In particular, we prove that for a fixed ε ∈ (0, 1/1−γ], using
N ≥ Õ

(
log(1/δ)

(1−γ)3 ε2

)
samples enssures that the statements in Eq. (9) hold with probability 1 − 4δ.

This guarantees that V π
∗

r (ρ)− V π̄Tr (ρ) ≤ ε and V π̄Tc (ρ) ≥ b− ε.

Hence, the total sample-complexity of achieving the objective in Eq. (2) is Õ
(
SA log(1/δ)
(1−γ)3ε2

)
. This

result improves over the Õ
(
S2A log(1/δ)

(1−γ)3ε2

)
result in HasanzadeZonuzy et al. [16]. Furthermore, our

result matches the lower-bound in the easier unconstrained setting [4], implying that our bounds are
near-optimal. We conclude that under relaxed feasibility and with access to a generative model, solv-
ing constrained MDPs is as easy as solving MDPs. Algorithmically, we do not require constructing
an optimistic CMDP like in HasanzadeZonuzy et al. [16]. Instead, we solve the empirical CMDP
in Eq. (4) using specific primal-dual updates Eqs. (5) and (6). Note that if the rewards and constraint
rewards (corresponding to K constraints) are unknown and need to be estimated, a union bound
guarantees that the sample complexity will only increase by a multiplicative log(K + 1) factor [16].
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In this setting, when using the normalized value functions, Bai et al. [6, Corollary 1] prove an
O
(

SA
(1−γ)2 ε2ζ2

)
bound on the sample complexity. When translated to the standard [0, 1/1−γ] range,

this implies an O
(

SA
(1−γ)4 ε2ζ2

)
bound [6, Footnote 6]. In comparison, our result in Theorem 2 has a

better dependence on 1/1−γ and does not depend on ζ. Importantly, unlike [6], our result implies that
in the relaxed feasibility setting, solving CMDPs is as hard as solving MDPs. In the next section, we
instantiate Algorithm 1 in the strict feasibility setting.

5 Upper-bound under Strict Feasibility

Unlike Section 4, since the strict feasibility setting does not allow any constraint violations, it
necessitates using a stricter constraint in the empirical CMDP to account for the estimation error
in the transition probabilities. Algorithmically, we require setting b′ > b. Specifically, in order to
achieve the objective in Eq. (3) for a target error ε > 0, we require setting N = Õ

(
log(1/δ)

(1−γ)5ζ2ε2

)
,6

b′ = b+ ε(1−γ)ζ
20 and ω = ε(1−γ)

10 . This completely specifies the empirical CMDP M̂ and the problem
in Eq. (4). To specify the primal-dual algorithm, we set U = 4(1+ω)

ζ(1−γ) , εl = O
(
ε2(1− γ)4ζ2

)
and

T = O (1/(1−γ)6ζ4ε2). With these choices, we prove the following theorem in Appendix C, and
provide a proof sketch below.

Theorem 3. For a fixed ε ∈ (0, 1/1−γ] and δ ∈ (0, 1), Algorithm 1, withN = Õ
(

log(1/δ)
(1−γ)5ε2ζ2

)
sam-

ples, b′ = b+ ε(1−γ)ζ
20 , ω = ε(1−γ)

10 , U = 4(1+ω)
ζ(1−γ) , εl = O

(
ε2(1− γ)4ζ2

)
and T = O (1/(1−γ)6ζ4ε2)

returns policy π̄T that satisfies the objective in Eq. (3), with probability at least 1− 4δ.

Proof Sketch: We prove the result for a general b′ = b+∆ for ∆ > 0 and primal-dual error εopt < ∆,
and subsequently specify ∆ (and hence b′) and εopt. In Lemma 12 (proved in Appendix C), we prove
that if the constraint value functions are sufficiently concentrated (the empirical value function is
close to the ground truth value function) for both the optimal policy π∗ in M and the mixture policy
π̄T returned by Algorithm 1 i.e. if∣∣∣V π̄Tc (ρ)− V̂ π̄Tc (ρ)

∣∣∣ ≤ ∆− εopt ;
∣∣∣V π∗c (ρ)− V̂ π

∗

c (ρ)
∣∣∣ ≤ ∆ (10)

then (i) policy π̄T satisfies the constraint in M i.e. V π̄Tc (ρ) ≥ b, and (ii) its suboptimality in M
(compared to π∗) can be decomposed as:

V π
∗

r (ρ)− V π̄Tr (ρ) ≤ 2ω

1− γ
+ εopt + 2∆|λ∗|+

∣∣∣V π∗rp (ρ)− V̂ π
∗

rp (ρ)
∣∣∣+
∣∣∣V̂ π̄Trp (ρ)− V π̄Trp (ρ)

∣∣∣ (11)

In order to upper-bound |λ∗|, we require a concentration result for policy π∗c := arg maxV πc (ρ)

that maximizes the the constraint value function. In particular, we require ∆ ∈
(

0, ζ2

)
and∣∣∣V π∗cc (ρ)− V̂ π

∗
c

c (ρ)
∣∣∣ ≤ ζ

2 − ∆. In Case 2 of Lemma 9 (proved in Appendix A), we show that

if this concentration result holds, then we can upper-bound the optimal dual variable |λ∗| by 2(1+ω)
ζ(1−γ) .

Using the above bounds to simplify Eq. (11),

V π
∗

r (ρ)− V π̄Tr (ρ) ≤ 2ω

1− γ
+ εopt +

4∆(1 + ω)

ζ(1− γ)
+
∣∣∣V π∗rp (ρ)− V̂ π

∗

rp (ρ)
∣∣∣+
∣∣∣V̂ π̄Trp (ρ)− V π̄Trp (ρ)

∣∣∣ .
With these results in hand, we can instantiate all the algorithm parameters except N (the number of
samples required for each state-action pair). In particular, we set ∆ = ε (1−γ) ζ

40 < ζ
2 , εopt = ∆

5 =
ε (1−γ) ζ

200 < ε
5 , and ω = ε(1−γ)

10 < 1. We set U = 8
ζ(1−γ) for the primal-dual algorithm, ensuring

that the U > |λ∗| condition required by Theorem 1 holds. In order to guarantee that the primal-dual
algorithm outputs an ε (1−γ) ζ

200 -approximate policy, we use Theorem 1 to set T = O
(

1
(1−γ)6ζ4ε2

)
6Again, we do not need to know ζ and it can be replaced by the estimator constructed in Section F.
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iterations and εl = O
(
ε2(1− γ)4ζ2

)
. With these values, we can further simplify Eq. (11),

V π
∗

r (ρ)− V π̄Tr (ρ) ≤ 3ε

5
+
∣∣∣V π∗rp (ρ)− V̂ π

∗

rp (ρ)
∣∣∣+
∣∣∣V̂ π̄Trp (ρ)− V π̄Trp (ρ)

∣∣∣ .
Putting everything together, in order to guarantee an ε-reward suboptimality for π̄T , we require the
following concentration results to hold for ∆ = ε(1−γ)ζ

40 ,∣∣∣V π̄Tc (ρ)− V̂ π̄Tc (ρ)
∣∣∣ ≤ 4∆

5
;
∣∣∣V π∗c (ρ)− V̂ π

∗

c (ρ)
∣∣∣ ≤ ∆ ;

∣∣∣V π∗cc (ρ)− V̂ π
∗
c

c (ρ)
∣∣∣ ≤ 19∆

5∣∣∣V π∗rp (ρ)− V̂ π
∗

rp (ρ)
∣∣∣ ≤ ε

5
;
∣∣∣V̂ π̄Trp (ρ)− V π̄Trp (ρ)

∣∣∣ ≤ ε

5
. (12)

We control such concentration terms for both the constraint and reward value functions in Section 6,
and bound the terms in Eq. (12). In particular, we prove that for a fixed ε ∈ (0, 1/1−γ], using
N ≥ Õ

(
log(1/δ)

(1−γ)5 ζ2 ε2

)
ensures that the statements in Eq. (12) hold with probability 1 − 4δ. This

guarantees that V π
∗

r (ρ)− V π̄Tr (ρ) ≤ ε and V π̄Tc (ρ) ≥ b.

Hence, the total sample-complexity of achieving the objective in Eq. (3) is Õ
(
SA log(1/δ)
(1−γ)5 ζ2ε2

)
. Similar

to Section 4, in the strict feasibility setting, with the normalized value functions, Bai et al. [6] prove
anO

(
SA

(1−γ)2 ε2ζ2

)
bound on the sample complexity. When translated to the standard [0, 1/1−γ] range,

this implies an Ω
(

SA
(1−γ)6 ε2ζ2

)
bound (see Appendix G for a detailed explanation). In comparison,

our result in Theorem 3 has a better dependence on (1/1−γ).

In Section 7, we prove a matching lower bound showing that Algorithm 1 is minimax optimal in the
strict feasibility setting. In the next section, we give more details for the bounding the concentration
terms in Theorem 2 and Theorem 3.

6 Bounding the concentration terms

We have seen that proving Theorem 2 and Theorem 3 require bounding the concentration terms
in Eq. (9) and Eq. (12) respectively. In this section, we detail the techniques to achieve these bounds.

Our approach requires reasoning about a general unconstrained MDP Mα = (S,A,P, γ, α) with
the same state-action space, transition probabilities and discount factor as the CMDP in Eq. (1)
but with rewards equal to α, coming from [0, αmax]. Analogously, we define the empirical MDP
M̂α = (S,A, P̂, γ, α) where the empirical transition matrix P̂ is the same as that of the empirical
CMDP in Eq. (4). Similarly, we define MDP (and its empirical counterpart) Mβ = (S,A,P, γ, β)

(and M̂β) where the rewards β are from [0, βmax]. Note that the rewards α and β are independent
of the sampling of the transition matrix. The corresponding value functions for policy π in Mα and
M̂α (and Mβ and M̂β) are denoted as V πα and V̂ πα (and V πβ and V̂ πβ ) respectively, with the optimal
value functions denoted as V ∗α and V̂ ∗α (and V ∗β and V̂ ∗β ) respectively. The action-value function in
Mα for policy π and state-action pair (s, a) is denoted as Qπα(s, a) and analogously for M̂α. For the
subsequent technical results, we require that M̂α satisfy the following gap condition [21]:

Definition 4 (ι-Gap Condition). MDP M̂α satisfies the ι-gap condition if ∀s, V̂ ∗α (s) −
maxa′:a 6=π̂∗α(s) Q̂

∗
α(s, a′) ≥ ι, where π̂∗α := arg max V̂ πα and π̂∗α(s) = arg maxa Q̂

∗
α(s, a) is the

optimal action in state s.

Intuitively, the gap condition states that there is a unique optimal action at each state and there is a
gap between the performance of best action and the second best action. With this gap condition, we
use techniques in Li et al. [21] to prove the following lemma in Appendix D.

Lemma 5. Define π̂∗α := arg maxπ V̂
π
α . If (i) E is the event that the ι-gap condition in Definition 4

holds for M̂α and (ii) for δ ∈ (0, 1) andC(δ) = 72 log
(

16αmaxSA log(e/1−γ)
(1−γ)2 ι δ

)
, the number of samples

per state-action pair is N ≥ 4C(δ)
1−γ , then with probability at least Pr[E ]− δ/10,∥∥∥V̂ π̂∗αβ − V π̂

∗
α

β

∥∥∥
∞
≤

√
C(δ)

N · (1− γ)3
‖β‖∞ .
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Hence, for policy π̂∗α, we can obtain a concentration result in another MDP M̂β with an independent
reward function β and the same empirical transition matrix P̂ .

We wish to use the above lemma for the unconstrained MDP formed at every iteration of the primal
update in Eq. (5). In particular, for a given λt, we will use Lemma 5 with α = rp + λtc and β = rp.

Doing so will immediately give us a bound on
∥∥∥V π̂trp − V̂ π̂trp ∥∥∥∞ and hence

∣∣∣V π̂trp (ρ)− V̂ π̂trp (ρ)
∣∣∣. In

order to use Lemma 5, we require the unconstrained MDP M̂rp+λc to satisfy the gap condition
in Definition 4 for any λ ∈ Λ. This is achieved by the perturbation of the rewards in Line 3
of Algorithm 1. Specifically, using Li et al. [21, Lemma 6] with a union-bound over Λ, we prove
(in Lemma 16 in Appendix D) that with probability 1 − δ/10, M̂rp+λc satisfies the gap condition
in Definition 4 with ι = ω δ (1−γ)

30 |Λ||S||A|2 for every λ ∈ Λ. This allows us to use Lemma 5 with
α = rp + λtc for all t ∈ [T ], and β = rp and β = c. In the following theorem, we obtain a
concentration result for each π̂t and hence for the mixture policy π̄T .

Theorem 6. For δ ∈ (0, 1), ω ≤ 1 and C(δ) = 72 log
(

16(1+U+ω)SA log(e/1−γ)
(1−γ)2 ι δ

)
where ι =

ω δ (1−γ) εl
30U |S||A|2 , if N ≥ 4C(δ)

1−γ , then for π̄T output by Algorithm 1, with probability at least 1− δ/5,

∣∣∣V π̄Trp (ρ)− V̂ π̄Trp (ρ)
∣∣∣ ≤ 2

√
C(δ)

N · (1− γ)3
;
∣∣V π̄Tc (ρ)− V π̄Tc (ρ)

∣∣ ≤√ C(δ)

N · (1− γ)3
.

Eqs. (9) and (12) also require proving concentration bounds for fixed (that do not depend on the data)
policies π∗ and π∗c . This can be done by directly using Li et al. [21, Lemma 1]. Specifically, we
prove the following the lemma in Appendix D.

Lemma 7. For δ ∈ (0, 1), ω ≤ 1 and C ′(δ) = 72 log
(

4|S| log(e/1−γ)
δ

)
, if N ≥ 4C′(δ)

1−γ and

B(δ,N) :=
√

C′(δ)
(1−γ)3N , then with probability at least 1− 3δ,∣∣∣V π∗rp (ρ)− V̂ π
∗

rp (ρ)
∣∣∣ ≤ 2B(δ,N) ;

∣∣∣V π∗c (ρ)− V̂ π
∗

c (ρ)
∣∣∣ ≤ B(δ,N) ;

∣∣∣V π∗cc (ρ)− V̂ π
∗
c

c (ρ)
∣∣∣ ≤ B(δ,N).

Using Theorem 6 and Lemma 7, we can bound each term in Eq. (9) and Eq. (12), completing the
proof of Theorem 2 and Theorem 3 respectively. In the next section, we prove a lower-bound on the
sample-complexity in the strict feasibility setting.

7 Lower-bound under strict feasibility

For a target error of ε, our lower bound construction demonstrates that it is important to estimate the
constraint value function to a smaller error equal to ε′ := ε(1 − γ)ζ. Intuitively, this is because a
small (ε′) estimation error in the constraint value can incorrectly render the optimal policy infeasible
and result in a large ε′/(1−γ)ζ suboptimality in the reward value. In Appendix E.1, we detail this
intuition in a simplified bandit setting and present the formal CMDP lower-bound below.

We define an algorithm to be (ε, δ)-sound if it outputs a policy π̂ such that with probability 1− δ,
V ∗r (ρ)−V π̂r (ρ) ≤ ε and V π̂c (ρ) ≥ b i.e. the algorithm achieves the strict feasibility objective in Eq. (3).
We prove a lower bound on the number of samples required by any (ε, δ)-sound algorithm on the
CMDP instance in Fig. 1. For this instance, with a specific setting of the rewards and probabilities
p0 < p̄ < p1, we prove that any (ε, δ)-sound algorithm requires at least Ω

(
ln(|S||A|/4δ)
ε2ζ2(1−γ)5

)
samples to

distinguish between M0 and Mi,a. In particular, we prove the following theorem in Appendix E.2.

Theorem 8. There exists constants γ0 ∈ (1 − 1/ log(|S|), 1), 0 ≤ ε0 ≤ 1
(1−γ) min

{
1, γ

(1−γ)ζ

}
,

δ0 ∈ (0, 1), such that, for any γ ∈ (γ0, 1), ε ∈ (0, ε0), δ ∈ (0, δ0), any (ε, δ)-sound algorithm
requires Ω

(
SA ln(1/4δ)
ε2ζ2(1−γ)5

)
samples from the generative model in the worst case.

The above lower bound matches the upper bound in Theorem 3 and proves that Algorithm 1 is near
minimax optimal in the strict feasibility setting. It also demonstrates that solving CMDPs under strict
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Figure 1: The instance consists of CMDPs with S = 2m − 1 (for some integer m > 0) states and A
actions. We consider SA + 1 CMDPs – M0 and Mi,a (i ∈ {1, . . . S}, a ∈ {1, . . . , A}) that share
the same structure shown in the figure. For each CMDP, o0 is the fixed starting state and there is a
deterministic path of length m+ 1 from o0 to each of the S + 1 states – si (for i ∈ {0, 1, . . . , S}).
Except for states s̃i, the transitions in all other states are deterministic. For i 6= 0, for action a ∈ A in
state s̃i, the probability of staying in s̃i is pi,a, while that of transitioning to state zi is 1− pi,a. There
is only one action a0 in s̃0 and the probability of staying in s̃0 is p0,a0 , while that of transitioning to
state z0 is 1− p0,a0 . The CMDPs M0 and Mi,a only differ in the values of pi,a. The rewards r and
constraint rewards c are the same in all CMDPs and are denoted in green and red respectively.

feasibility is inherently more difficult than solving unconstrained MDPs or CMDPs in the relaxed
feasibility setting. Finally, we can conclude that the problem becomes more difficult (requires more
samples) as the Slater constant ζ decreases and the feasible region shrinks.

8 Discussion

We proposed a model-based primal-dual algorithm for planning in CMDPs. Via upper and lower
bounds, we proved that our algorithm is near minimax optimal for both the relaxed and strict feasibility
settings. Our results demonstrate that solving CMDPs is as easy as MDPs when small constraint
violations are allowed, but inherently more difficult when we demand zero constraint violation.
Algorithmically, we required a specific primal-dual approach that involved solving a sequence of
MDPs. In contrast, model-based approaches for MDPs [2, 21] allow the use of any black-box planner.
It is possible to obtain an O

(
S2A

(1−γ)3 ε2

)
sample complexity for a black-box CMDP planner in the

relaxed feasibility setting. However, the O(S2A) dependence in the bound implies that we need
to accurately estimate all entries in the transition probability matrix, and is therefore loose in the
special case of unconstrained MDPs [2, 21]. In the future, we aim to extend our near-optimal sample
complexity results to black-box CMDP solvers.
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