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ABSTRACT

In constrained Markov decision processes (CMDPs) with adversarial rewards
and constraints, a well-known impossibility result prevents any algorithm from
attaining both sublinear regret and sublinear constraint violation, when competing
against a best-in-hindsight policy that satisfies constraints on average. In this paper,
we show that this negative result can be eased in CMDPs with non-stationary
rewards and constraints, by providing algorithms whose performances smoothly
degrade as non-stationarity increases. Specifically, we propose algorithms attaining
Õ(
√
T+C) regret and positive constraint violation under bandit feedback, whereC

is a corruption value measuring the environment non-stationarity. This can be Θ(T )
in the worst case, coherently with the impossibility result for adversarial CMDPs.
First, we design an algorithm with the desired guarantees when C is known. Then,
in the case C is unknown, we show how to obtain the same results by embedding
such an algorithm in a general meta-procedure. This is of independent interest, as
it can be applied to any non-stationary constrained online learning setting.

1 INTRODUCTION

Reinforcement learning (Sutton & Barto, 2018) is concerned with settings where a learner sequentially
interacts with an environment modeled as a Markov decision process (MDP) (Puterman, 2014). Most
of the works in the field focus on learning policies that maximize learner’s rewards. However, in most
of the real-world applications of interest, the learner also has to meet some additional requirements.
For instance, autonomous vehicles must avoid crashing (Isele et al., 2018; Wen et al., 2020), bidding
agents in ad auctions must not deplete their budget (Wu et al., 2018; He et al., 2021), and users
of recommender systems must not be exposed to offending content (Singh et al., 2020). These
requirements can be captured by constrained MDPs (CMDPs) (Altman, 1999), which generalize
MDPs by specifying constraints that the learner has to satisfy while maximizing their rewards.

We study online learning in episodic CMDPs (see, e.g., (Efroni et al., 2020)), where the goal of the
learner is twofold. On the one hand, the learner wants to minimize their regret, which measures how
much reward they lost over the episodes compared to what they would have obtained by always using
a best-in-hindsight constraint-satisfying policy. On the other hand, the learner wants to ensure that
the (cumulative) constraint violation is minimized during the learning process. Ideally, one seeks for
algorithms with both regret and constraint violation growing sublinearly in the number of episodes T .

A crucial feature distinguishing online learning problems in CMDPs is whether rewards and con-
straints are selected stochastically or adversarially. Most of the works focus on the case in which
constraints are stochastic (see, e.g., (Wei et al., 2018; Zheng & Ratliff, 2020; Efroni et al., 2020; Qiu
et al., 2020; Liu et al., 2021; Bai et al., 2023)), with only one exception addressing settings with
adversarial constraints (Stradi et al., 2024b). This is primarily motivated by a well-known impos-
sibility result by Mannor et al. (2009), which prevents any learning algorithm from attaining both
sublinear regret and sublinear constraint violation, when competing against a best-in-hindsight policy
that satisfies the constraints on average. However, dealing with adversarially-selected constraints is
of paramount importance to cope with real-world environments, which are typically non-stationary.
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1.1 ORIGINAL CONTRIBUTIONS

The main contribution of this paper is to show how to ease the negative result of (Mannor et al., 2009),
by considering CMDPs with non-stationary rewards and constraints. Specifically, we address CMDPs
where rewards and constraints are selected from probability distributions that are allowed to change
adversarially from episode to episode. One may think of our setting as bridging the gap between fully-
stochastic and fully-adversarial ones. We design algorithms whose performances—in terms of regret
and constraint violation—smoothly degrade as a suitable measure of non-stationarity increases. This
is called (adversarial) corruption, as it intuitively quantifies how much the distributions of rewards
and constraints vary over the episodes with respect to some “fictitious” non-corrupted counterparts.

We propose algorithms that attain Õ(
√
T + C) regret and constraint violation, where C denotes the

corruption of the setting. We remark that C can be Θ(T ) in the worst case, and, thus, our bounds are
coherent with the impossibility result by Mannor et al. (2009). Notably, our algorithms work under
bandit feedback, namely, by only observing rewards and constraint costs of the state-action pairs
visiting during episodes. Moreover, they are able to manage positive constraint violation. This means
that they do not allow for a negative violation (i.e., a constraint satisfaction) to cancel out a positive
one across different episodes. This is a crucial requirement for most of the practical applications. For
instance, in autonomous driving, avoiding a collision does not “repair” a previously-occurred crash.

In the first part of the paper, we design an algorithm, called NS-SOPS, which works assuming that the
value of the corruptionC is known. This algorithm achieves Õ(

√
T+C) regret and positive constraint

violation by employing a policy search method that is optimistic in both reward maximization and
constraint satisfaction. Specifically, the algorithm incorporates C in the confidence bounds of rewards
and constraint costs, so as to “boost” its optimism and achieve the desired guarantees.

In the second part of the paper, we show how to embed the NS-SOPS algorithm in a meta-procedure
that allows to achieve Õ(

√
T + C) regret and positive constraint violation when C is unknown. The

meta-procedure works by instantiating multiple instances of an algorithm for the case in which C is
known, each one taking care of a different “guess” on the value of C. Specifically, the meta-procedure
acts as a master by choosing which instance to follow in order to select a policy at each episode. To do
so, it employs an adversarial online learning algorithm, which is fed with losses constructed starting
from the Lagrangian of the CMDP problem, suitably modified to account for positive constraint
violation. Our meta-procedure is of independent interest, as it can be applied in any non-stationary
constrained online learning setting, so as to relax the knowledge of C.

1.2 RELATED WORKS

Within the literature on CMDPs, settings with stochastic rewards and constraints have been widely
investigated. However, their non-stationary counterparts, including adversarial ones in the worst
case, are still largely unexplored. In the following, we discuss the works that are most related to ours,
while we refer the reader to Appendix A for a comprehensive survey of related works.

Qiu et al. (2020) provide the first primal-dual approach to deal with episodic CMDPs with adversarial
losses and stochastic constraints, achieving, under full feedback, both sublinear regret and sublinear
(non-positive) constraint violation (i.e., allowing for cancellations). Stradi et al. (2024a) are the first to
tackle CMDPs with adversarial losses and stochastic constraints under bandit feedback, by proposing
an algorithm that achieves sublinear regret and sublinear positive constraint violation. These works
do not consider settings where constraints are non-stationary, i.e., they may change over the episodes.

Ding & Lavaei (2023) and Wei et al. (2023) consider the case in which rewards and constraints are
non-stationary, assuming that their variation is bounded. Our work differs from theirs in multiple
aspects. First, we consider positive constraint violation, while they allow for cancellations. As
concerns the definition of regret, ours and that used by Ding & Lavaei (2023) and Wei et al. (2023)
are not comparable. Indeed, they employ a dynamic regret baseline, which, in general, is harder
than the static regret employed in our work. However, they compare learner’s performances against
a dynamic policy that satisfies the constraints at every round. Instead, we consider a policy that
satisfies the constraints on average, which can perform arbitrarily better than a policy satisfying the
constraints at every round. Furthermore, the dependence on T in their regret bound is much worse
than ours, even when the non-stationarity is small, namely, when it is a constant independent of T
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(and, thus, dynamic regret collapses to static regret). Finally, we do not make any assumption on T ,
while both regret and constraint violation bounds in (Wei et al., 2023) only hold for large T .

Finally, Stradi et al. (2024b) are the first to study CMDPs with adversarial constraints. Given the
impossibility result by Mannor et al. (2009), they propose an algorithm that, under full feedback,
attains sublinear (non-positive) constraint violation (i.e., with cancellations allowed) and a fraction of
the optimal reward, thus resulting in a regret growing linearly in T . We show that sublinear regret
and sublinear constraint violation can indeed be attained simultaneously if one takes into account the
corruption C, which can be seen as a measure of how much adversarial the environment is. Moreover,
let us remark that our algorithms deal with positive constraint violation under bandit feedback, and,
thus, they are much more general than those in (Stradi et al., 2024b).

2 PRELIMINARIES

2.1 CONSTRAINED MARKOV DECISION PROCESSES

We study episodic constrained MDPs (Altman, 1999) (CMDPs), in which a learner interacts with an
unknown environment over T episodes, with the goal of maximizing long-term rewards subject to
some constraints. X is a finite set of states of the environment, A is a finite set of actions available
to the learner in each state, while the environment dynamics is governed by a transition function
P : X × A × X → [0, 1], with P (x′|x, a) denoting the probability of going from state x ∈ X
to x′ ∈ X by taking action a ∈ A.1At each episode t ∈ [T ],2 a reward vector rt ∈ [0, 1]|X×A| is
sampled according to a probability distributionRt, with rt(x, a) being the reward of taking action
a ∈ A in state x ∈ X at episode t. Moreover, a constraint cost matrixGt ∈ [0, 1]|X×A|×m is sampled
according to a probability distribution Gt, with gt,i(x, a) being the cost of constraint i ∈ [m] when
taking action a ∈ A in state x ∈ X at episode t. We also denote by gt,i ∈ [0, 1]|X×A| the vector
of all the costs gt,i(x, a) associated with constraint i at episode t. Each constraint requires that its
corresponding expected cost is kept below a given threshold. The thresholds of all the m constraints
are encoded in a vector α ∈ [0, L]m, with αi denoting the threshold of the i-th constraint.

We consider a setting in which the sequences of probability distributions {Rt}Tt=1 and {Gt}Tt=1 are
selected adversarially. Thus, reward vectors rt and constraint cost matrices Gt are random variables
whose distributions are allowed to change arbitrarily from episode to episode. To measure how much
such probability distributions change over the episodes, we introduce the notion of (adversarial)
corruption. In particular, we define the adversarial corruption Cr for the rewards as follows:

Cr := min
r∈[0,1]|X×A|

∑
t∈[T ]

∥E[rt]− r∥1 . (1)

Intuitively, the corruption Cr encodes the sum over all episodes of the distances between the means
E[rt] of the adversarial distributions Rt and a “fictitious” non-corrupted reward vector r. Notice
that a similar notion of corruption has been employed in unconstrained MDPs to measure the non-
stationarity of transition probabilities; see (Jin et al., 2024). In the following, we let r◦ ∈ [0, 1]|X×A|

be a reward vector that attains the minimum in the definition of Cr. Similarly, we introduce the
adversarial corruption CG for constraint costs, which is defined as follows:

CG := min
G∈[0,1]|X×A|×m

∑
t∈[T ]

max
i∈[m]
∥E[gt,i]− gi∥1, (2)

where gi is the i-th component of G. We let G◦ ∈ [0, 1]|X×A|×m be the constraint cost matrix that
attains the minimum in the definition of CG. Finally, we introduce the total adversarial corruption C,
which is defined as C := max{CG, Cr}.

1In this paper, we consider w.l.o.g. loop-free CMDPs. This means that X is partitioned into L layers
X0, . . . , XL such that the first and the last layers are singletons, i.e., X0 = {x0} and XL = {xL}. Moreover,
the loop-free property implies that P (x′|x, a) > 0 only if x′ ∈ Xk+1 and x ∈ Xk for some k ∈ [0 . . . L− 1].
Notice that any episodic CMDP with horizon L that is not loop-free can be cast into a loop-free one by suitably
duplicating the state space L times, i.e., a state x is mapped to a set of new states (x, k), where k ∈ [0 . . . L].

2In this paper, we denote by [a . . . b] the set of all the natural numbers from a ∈ N to b ∈ N (both included),
while [b] := [1 . . . b] is the set of the first b ∈ N natural numbers.
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Algorithm 1 Learner-Environment Interaction

1: Rt and Gt are chosen adversarially
2: Choose a policy πt : X ×A→ [0, 1]
3: Observe initial state x0
4: for k = 0, . . . , L− 1 do
5: Play ak ∼ πt(·|xk)
6: Observe rt(xk, ak) and gt,i(xk, ak) for i ∈ [m]
7: Observe new state xk+1 ∼ P (·|xk, ak)

Algorithm 1 summarizes how the learner
interacts with the environment at episode
t ∈ [T ]. In particular, the learner chooses a
policy π : X ×A→ [0, 1] at each episode,
defining a probability distribution over ac-
tions to be employed in each state. For ease
of notation, we denote by π(·|x) the prob-
ability distribution for a state x ∈ X , with
π(a|x) being the probability of selecting
action a ∈ A. Let us remark that we as-
sume that the learner knowsX andA, but they do not know anything about P . Moreover, the feedback
received by the learner after each episode is bandit, as they observe the realizations of rewards and
constraint costs only for the state-action pairs (xk, ak) actually visited during that episode.

2.2 OCCUPANCY MEASURES

Next, we introduce occupancy measures, following the notation by (Rosenberg & Mansour, 2019a).
Given a transition function P and a policy π, the occupancy measure qP,π ∈ [0, 1]|X×A×X| induced
by P and π is such that, for every x ∈ Xk, a ∈ A, and x′ ∈ Xk+1 with k ∈ [0 . . . L − 1]
qP,π(x, a, x′) := P[xk = x, ak = a, xk+1 = x′|P, π], which represents the probability that, under P
and π, the learner reaches state x, plays action a, and gets to the next state x′. Moreover, we also define
the following quantities qP,π(x, a) :=

∑
x′∈Xk+1

qP,π(x, a, x′) and qP,π(x) :=
∑

a∈A q
P,π(x, a).

The following lemma characterizes when a vector q ∈ [0, 1]|X×A×X| is a valid occupancy measure.

Lemma 1 (Rosenberg & Mansour (2019b)). A vector q ∈ [0, 1]|X×A×X| is a valid occupancy
measure of an episodic loop-free CMDP if and only if it satisfies the following conditions:

∑
x∈Xk

∑
a∈A

∑
x′∈Xk+1

q(x, a, x′) = 1 ∀k ∈ [0 . . . L− 1]∑
a∈A

∑
x′∈Xk+1

q(x, a, x′) =
∑

x′∈Xk−1

∑
a∈A

q(x′, a, x) ∀k ∈ [1 . . . L− 1],∀x ∈ Xk

P q = P,

where P is the transition function of the CMDP and P q is the one induced by q (see Equation (3)).

Notice that any valid occupancy measure q induces a transition function P q and a policy πq as:

P q(x′|x, a) = q(x, a, x′)

q(x, a)
and πq(a|x) = q(x, a)

q(x)
. (3)

2.3 PERFORMANCE METRICS TO EVALUATE LEARNING ALGORITHMS

In order to define the performance metrics used to evaluate our online learning algorithms, we need
to introduce an offline optimization problem. Given a CMDP with transition function P , we define
the following parametric linear program (Program (4)), which is parametrized by a reward vector
r ∈ [0, 1]|X×A|, a constraint cost matrix G ∈ [0, 1]|X×A|×m and a threshold vector α ∈ [0, L]m.

OPTr,G,α :=

{
maxq∈∆(P ) r⊤q s.t.

G⊤q ≤ α, (4)

where q ∈ [0, 1]|X×A| is a vector encoding an occupancy measure, and ∆(P ) is the set of all valid
occupancy measures given the transition function P (this set can be encoded by linear constraints
thanks to Lemma 1).

We say that an instance of Program (4) satisfies Slater’s condition if the following holds.
Condition 1 (Slater). There exists an occupancy measure q◦ ∈ ∆(P ) such that G⊤q◦ < α.

Moreover, we also introduce a problem-specific feasibility parameter related to Program (4). This is
denoted by ρ ∈ [0, L] and formally defined as ρ := supq∈∆(P ) mini∈[m]

[
α−G⊤q

]
i
.3 Intuitively, ρ

3In this paper, given a vector y, we denote by [y]i its i-th component.
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represents by how much feasible solutions to Program (4) strictly satisfy the constraints. Notice that
Condition 1 is equivalent to say that ρ > 0, while, whenever ρ = 0, there is no occupancy measure
that allows to strictly satisfy the constraints G⊤q ≤ α in Program (4).

We are now ready to introduce the notion of (cumulative) regret and positive (cumulative) constraint
violation, which are the performance metrics that we use to evaluate our learning algorithm. In
particular, we define the cumulative regret over T episodes as

RT := T · OPTr,G,α −
∑
t∈[T ]

E[rt]⊤qP,πt ,

where r := 1
T

∑T
t=1 E[rt] and G := 1

T

∑T
t=1 E[Gt]. In the following, we denote by q∗ an occupancy

measure solving Program (4) instantiated with r, G, and α, while its corresponding policy (computed
by Equation (3)) is π∗. Thus, OPTr,G,α = r⊤q∗ and the regret is RT :=

∑T
t=1 E[rt]⊤(q∗ − qP,πt).

Furthermore, we define the positive cumulative constraint violation over T episodes as

VT := max
i∈[m]

∑
t∈[T ]

[
E[Gt]

⊤qP,πt − α
]+
i
,

where we let [·]+ := max{0, ·}. In the following, for ease of notation, we compactly refer to qP,πt as
qt, thus omitting the dependency on P and π.
Remark 1 (Relation with adversarial/stochastic CMDPs). Our setting is more akin to CMDPs with
adversarial rewards and constraints, rather than stochastic ones. This is because our notion of
regret is computed with respect to an optimal constraint-satisfying policy in hindsight that takes into
account the average over episodes of the mean values E[rt] and E[Gt] of the adversarially-selected
probability distributions Rt and Gt. This makes our setting much harder than one with stochastic
rewards and constraints. Indeed, in the special case in which the supports ofRt and Gt are singletons
(and, thus, mean values are fully revealed after each episode), our setting reduces to a CMDP with
adversarial rewards and constraints, given that such supports are selected adversarially.
Remark 2 (Impossibility results carrying over from adversarial CMDPs). Mannor et al. (2009) show
that, in online learning problems with constraints selected adversarially, it is impossible to achieve
both regret and constraint violation growing sublinearly in T . This result holds for a regret definition
that corresponds to ours. Thus, it carries over to our setting. This is why we look for algorithms
whose regret and positive constraint violation scale as Õ(

√
T +C), with a linear dependency on the

adversarial corruption C. Notice that the impossibility result by Mannor et al. (2009) does not rule
out the possibility of achieving such a guarantee, since regret and positive constraint violation are
not sublinear when C grows linearly in T , as it could be the case in a classical adversarial setting.

3 LEARNING WHEN C IS KNOWN: MORE OPTIMISM IS ALL YOU NEED

We start studying the case in which the learner knows the adversarial corruption C. We propose
an algorithm (called NS-SOPS, see also Algorithm 2), which adopts a suitably-designed UCB-
like approach encompassing the adversarial corruption C in the confidence bounds of rewards and
constraint costs. This effectively results in “boosting” the optimism of the algorithm, and it allows to
achieve regret and positive constraint violation of the order of Õ(

√
T +C). The NS-SOPS algorithm

is also a crucial building block in the design of our algorithm for the case in which the adversarial
corruption C is not known, as we show in the following section.

3.1 NS-SOPS: NON-STATIONARY SAFE OPTIMISTIC POLICY SEARCH

Algorithm 2 provides the pseudocode of the non-stationary safe optimistic policy search (NS-SOPS
for short) algorithm. The algorithm keeps track of suitably-defined confidence bounds for tran-
sition probabilities, rewards, and constraint costs. At each episode t ∈ [T ], the algorithm builds
a confidence set Pt for the transition function P by following the same approach as Jin et al.
(2020) (see Appendix G for its definition). Instead, for rewards and constraint costs, the al-
gorithm adopts novel enlarged confidence bounds, which are suitably designed to tackle non-
stationarity. Given δ ∈ (0, 1), by letting Nt(x, a) be the total number of visits to the state-action pair
(x, a) ∈ X×A up to episode t (excluded), the confidence bound for the reward rt(x, a) is ϕt(x, a) :=

5
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min
{
1,
√

ln(2T |X||A|/δ)
2max{Nt(x,a),1} + C

max{Nt(x,a),1} + C
T

}
, while the confidence bound for the constraint

costs gt,i(x, a) is defined as ξt(x, a) := min
{
1,
√

ln(2mT |X||A|/δ)
2max{Nt(x,a),1} + C

max{Nt(x,a),1} + C
T

}
. Intu-

itively, the first term in the expressions above is derived from Azuma-Hoeffding inequality, the second
term allows to deal with the non-stationarity of rewards and constraint costs, while the third term is
needed to bound how much the average reward vector r and the average constraint costs [G]i differ
from their “fictitious” non-corrupted counterparts r◦ and [G◦]i, respectively.

Algorithm 2 also computes empirical rewards and constraint costs. At each episode t ∈ [T ], for
any state-action pair (x, a) ∈ X × A and constraint i ∈ [m], these are defined as r̂t(x, a) :=∑

τ∈[t] Iτ (x,a)rτ (x,a)
max{Nt(x,a),1} and ĝt,i(x, a) :=

∑
τ∈[t] Iτ (x,a)gτ,i(x,a)
max{Nt(x,a),1} , where Iτ (x, a) = 1 if and only if (x, a)

is visited during episode τ , while Iτ (x, a) = 0 otherwise. For ease of notation, we let Ĝt ∈
[0, 1]|X×A|×m be the matrix with components ĝt,i(x, a). We refer the reader to Appendix C for all
the technical results related to confidence bounds.

Algorithm 2 NS-SOPS
Require: C, δ ∈ (0, 1)

1: π1 ← select any policy
2: for t ∈ [T ] do
3: Choose policy πt in Algorithm 1 and ob-

serve feedback from interaction
4: Compute Pt, rt, and Gt
5: q ← solution to OPT-CB∆(Pt),rt,Gt,α

6: if problem is feasible then
7: q̂t+1 ← q
8: else
9: q̂t+1 ← take any q ∈ ∆(Pt)

10: πt+1 ← πq̂t+1

Algorithm 2 selects policies with an UCB-like
approach encompassing optimism in both re-
wards and constraints satisfaction, following an
approach similar to that employed by Efroni
et al. (2020). Specifically, at each episode
t ∈ [T ] and for any state-action pair (x, a) ∈
X × A, the algorithm employs an upper con-
fidence bound for the reward rt(x, a), defined
as rt(x, a) := r̂t(x, a) + ϕt(x, a), while it uses
lower confidence bounds for the constraint costs
gt,i(x, a), defined as g

t,i
(x, a) := ĝt,i(x, a) −

ξt(x, a) for every constraint i ∈ [m]. Then, by
letting rt ∈ [0, 1]|X×A| be the vector with com-
ponents rt(x, a) and Gt be the matrix with en-
tries g

t,i
(x, a), Algorithm 2 chooses the policy

to be employed in the next episode t+ 1 by solving the following linear program:

OPT-CB∆(Pt),rt,Gt,α
:=

{
argmaxq∈∆(Pt) r⊤t q s.t.

G⊤
t q ≤ α,

(5)

where ∆(Pt) is the set of all the possible valid occupancy measures given the confidence set Pt

(see Appendix G). If OPT-CB∆(Pt),rt,Gt,α
is feasible, its solution is used to compute a policy to be

employed in the next episode, otherwise the algorithm uses any occupancy measure in the set ∆(Pt).

3.2 THEORETICAL GUARANTEES OF NS-SOPS

Next, we prove the theoretical guarantees attained by Algorithm 2 (see Appendix D for complete
proofs of the theorems and associated lemmas). First, we analyze the positive cumulative violation
incurred by the algorithm. Formally, we can state the following result.
Theorem 2. Given any δ ∈ (0, 1), with probability at least 1− 8δ, Algorithm 2 attains violations

VT = O
(
L|X|

√
|A|T ln (mT |X||A|/δ) + ln(T )|X||A|C

)
.

Intuitively, Theorem 2 is proved by showing that every constraint-satisfying occupancy measure is
also feasible for Program (5) with high probability. This holds since Program (5) employs lower
confidence bounds for constraint costs. Thus, in order to bound VT , it is sufficient to analyze at which
rate the feasible region of Program (5) concentrates to the true one (i.e., the one defined by G in
Program (4)). Since by definition of ξt(x, a) the feasibility region of Program (5) concentrates as
1/
√
t+C/t, the resulting bound for the positive constraint violation VT is of the order of Õ(

√
T+C).

The regret guaranteed by Algorithm 2 is formalized by the following theorem.
Theorem 3. Given any δ ∈ (0, 1), with probability at least 1 − 9δ, Algorithm 2 attains regret

RT = O
(
L|X|

√
|A|T ln (T |X||A|/δ) + ln(T )|X||A|C

)
.

6
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Theorem 3 is proved similarly to Theorem 2. Indeed, since every constraint-satisfying occupancy
measure is feasible for Program (5) with high probability, this also holds for q∗, as it satisfies
constraints by definition. Thus, since by definition of ϕt(x, a) the upper confidence bound for the
rewards maximized by Program (5) concentrates as 1/

√
t+ C/t, the regret bound follows.

Remark 3 (What if some under/overestimate of C is available). We also study what happens if the
learner runs Algorithm 2 with an under/overestimate on the adversarial corruption as input. We
defer to Appendix E all the technical results related to this analysis. In particular, it is possible to
show that any underestimate on C does not detriment the bound on VT , which remains the one in
Theorem 2. On the other hand, an overestimate on C, say Ĉ > C, results in a bound on VT of the
order of O(

√
T + Ĉ), which is worse than the one in Theorem 2. Intuitively, this is because using

an overestimate makes Algorithm 2 too conservative. As a result, one could be tempted to conclude
that running Algorithm 2 with an underestimate of C as input is satisfactory when the true value
of C is unknown. However, this would lead to a regret RT growing linearly in T , since, intuitively,
a regret-minimizing policy could be cut off from the algorithm decision space. This motivates the
introduction of additional tools to deal with the case in which C is unknown, as we do in Section 4.

4 LEARNING WHEN C IS Not KNOWN: A LAGRANGIFIED META-PROCEDURE

Algorithm 3 Lag-FTRL
Require: δ ∈ (0, 1)

1: Λ← Lm+1
ρ , M ← ⌈log2 T ⌉

2: γ ←
√

ln(M/δ)/TM, η ← 1

2Λm(
√
β1T+β2+β5+

√
β4T)

3: for j ∈ [M ] do
4: Algj ← stabilized Algorithm 2 with C = 2j

5: w1,j ← 1/M for all j ∈ [M ]
6: for t ∈ [T ] do
7: Sample index jt ∼ wt

8: πjt
t ← policy that Algjt would choose

9: Choose policy πjt
t in Algorithm 1 and observe

......feedback from interaction
10: Let Algjt observe received feedback
11: for j ∈ [M ] do
12: Build ℓt,j as in Equation (6)
13: Build bt,j as in Equation (7)

14: wt+1 ← argmin
w∈∆M ,
wj≥1/T

w⊤
∑
τ∈[t]

(ℓt− bt)+
1

η

∑
j∈[M ]

ln
1

wj

In this section, we go beyond Sec-
tion 3 by studying the more rele-
vant case in which the learner does
not know the value of the adversar-
ial corruption C. In order to tackle
this challenging scenario, we de-
velop a meta-procedure (called
Lag-FTRL, see Algorithm 3) that
instantiates multiple instances of
an algorithm working for the case
in which C is known, with each
instance taking care of a differ-
ent “guess” on the value of C.
The Lag-FTRL algorithm is in-
spired by the work of Agarwal
et al. (2017) in the context of clas-
sical (unconstrained) multi-armed
bandit problems. Let us remark
that Lag-FTRL is a general algo-
rithm that is not specifically tai-
lored for our non-stationary CMDP
setting. Indeed, it could be applied
to any non-stationary online learn-
ing problem with constraints when the adversarial corruption C is unknown, provided that an
algorithm for known C is available. In this section, to deal with our non-stationary CMDP setting,
we let Lag-FTRL instantiate multiple instances of the NS-SOPS algorithm developed in Section 3.

4.1 LAG-FTRL: LAGRANGIFIED FTRL

At a high level, the Lagrangified follow-the-regularized-leader (Lag-FTRL for short) algorithm
works by instantiating several instances of Algorithm 2, suitably stabilized (see section H), with each
instance Algj being run for a different “guess” of the (unknown) adversarial corruption value C.
The algorithm plays the role of a master by choosing which instance Algj to use at each episode.
The selection is done by employing an FTRL approach with a suitable log-barrier regularization.
In particular, at each episode t ∈ [T ], by letting Algjt be the selected instance, the Lag-FTRL
algorithm employs the policy πji

t prescribed by Algjt and provides feedback to instance Algjt only.
The Lag-FTRL algorithm faces two main challenges. First, the feedback available to the FTRL
procedure implemented at the master level is partial. This is because, at each episode t ∈ [T ], the
algorithm only observes the result of using the policy πji

t prescribed by the chosen instance Algjt ,

7
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and not those of the policies suggested by other instances. The algorithm tackles this challenge
by employing optimistic loss estimators in the FTRL selection procedure, following an approach
originally introduced by Neu (2015). The second challenge originates from the fact that the goal of
the algorithm is to keep under control both the regret and the positive constraint violation. This is
accomplished by feeding the FTRL procedure with losses constructed starting from the Lagrangian of
the offline optimization problem in Program (4), and suitably modified to manage positive violations.

The pseudocode of the Lag-FTRL algorithm is provided in Algorithm 3. At Line 4, it instantiates
M := ⌈log2 T ⌉ instances of Algorithm 2, with each instance Algj , for j ∈ [M ], receiving as input
a “guess” on the adversarial corruption C = 2j . Notice that, to every instance of Algorithm 2,
a standard doubling trick and a stabilization procedure is applied (see Algorithm 4 for additional
details). This modification to Algorithm 2 is necessary to guarantee that each instance j attains a
regret and positive cumulative constraints violation which linearly degrade in νT,j = 1/mint∈[T ] wt,j

and C, when employed by the master algorithm. The algorithm assigns weights defining a probability
distribution to instances Algj , with wt,j ∈ [0, 1] denoting the weight of instance Algj at episode
t ∈ [T ]. We denote by wt ∈ ∆M the weight vector at episode t, with ∆M being the M -dimensional
simplex. At the first episode, all the weights w1,j are initialized to the value 1/M (Line 5). Then, at
each episode t ∈ [T ], the algorithm samples an instance index jt ∈ [M ] according to the probability
distribution defined by the weight vector wt (Line 7), and it employs the policy πjt

t prescribed by
Algjt (Line 8). The algorithm observes the feedback from the interaction described in Algorithm 1
and it sends such a feedback to instance Algjt (Line 10). Then, at Line 12, the algorithm builds an
optimistic loss estimator to be fed into each instance Algj . In particular, at episode t ∈ [T ] and for
every j ∈ [M ], the optimistic loss estimator is defined as:

ℓt,j :=
I(jt = j)

wt,j + γ

(
L−

∑
k∈[0...L−1]

rt(x
t
k, a

t
k) + Λ

∑
i∈[m]

[(
Ĝj

t

)⊤
q̂jt − α

]+
i

)
, (6)

where γ is a suitably-defined implicit exploration factor, (xtk, a
t
k) is the state-action pair visited at

layer k during episode t, Λ is a suitably-defined upper bound on the optimal values of Lagrangian
multipliers,4 Ĝj

t is the matrix of empirical constraint costs built by the instance Algj of Algorithm 2
at episode t, while q̂jt is the occupancy measure computed by instance Algj of Algorithm 2 at t.
Finally, the algorithm updates the weight vector according to an FTRL update on a cut decision space
with a suitable log-barrier regularization and a bonus term bt defined as:

bt,j :=
(
(mΛβ5 + β2) +

(√
β1 +mΛ

√
β4

)√
T
)
(νt,j − νt−1,j), , (7)

where νt,j = maxτ≤t
1

wτ,j
and the parameters β are linked to the performance of Algorithm 2 (see

Line 13 and Section F.2.1 for additional details). See Line 14 for the complete definition of the update.
The bonus term purpose is to balance out the term related to the difference between the performance
of Algorithm 2 updated at each episode and the performance of its stabilized version, which works
under the condition imposed by the master algorithm.

4.2 THEORETICAL GUARANTEES OF LAG-FTRL

Next, we prove the theoretical guarantees attained by Algorithm 3 (see Appendix F for complete
proofs of the theorems and associated lemmas). As a first preliminary step, we extend the well-known
strong duality result for CMDPs (Altman, 1999) to the case of bounded Lagrangian multipliers.
Lemma 2. Given a CMDP with a transition function P , for every reward vector r ∈ [0, 1]|X×A|,
constraint cost matrix G ∈ [0, 1]|X×A|×m, and threshold vector α ∈ [0, L]m, if Program (4) satisfies
Slater’s condition (Condition 1), then the following holds:

min
∥λ∥1∈[0,L/ρ]

max
q∈∆(P )

r⊤q −
∑
i∈[m]

λi
[
G⊤q − α

]
i
= max

q∈∆(P )
min

∥λ∥1∈[0,L/ρ]
r⊤q −

∑
i∈[m]

λi
[
G⊤q − α

]
i

= OPTr,G,α,

where λ ∈ Rm
≥0 is a vector of Lagrangian multipliers and ρ is the feasibility parameter of Program (4).

4Notice that, in the definition of Λ, ρ is the feasibility parameter of Program (4) for the reward vector r, the
constraint cost matrix G, and the threshold vector α. In order to compute Λ, Algorithm 3 needs knowledge of ρ.
Nevertheless, our results continue to hold even if Algorithm 3 is only given access to a lower bound on ρ.
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Intuitively, Lemma 2 states that, under Slater’s condition, strong duality continues to hold even
when restricting the set of Lagrangian multipliers to the λ ∈ Rm

≥0 having ∥λ∥1 bounded by L/ρ.
Furthermore, we extend the result in Lemma 2 to the case of a Lagrangian function suitably-modified
to encompass positive violations. We call it positive Lagrangian of Program (4), defined as follows.
Definition 1 (Positive Lagrangian). Given a CMDP with a transition function P , for every reward
vector r ∈ [0, 1]|X×A|, constraint cost matrix G ∈ [0, 1]|X×A|×m, and threshold vector α ∈ [0, L]m,
the positive Lagrangian of Program (4) is defined as a function L : R+ ×∆(P ) → R such that it
holds L (β, q) := r⊤q − β

∑
i∈[m]

[
G⊤q − α

]+
i

for every β ≥ 0 and q ∈ ∆(P ).

The positive Lagrangian is related to the Lagrangian of a variation of Program (4) in which the [·]+
operator is applied to the constraints. Notice that such a problem does not admit Slater’s condition,
since, by definition of [·]+, it does not exist an occupancy measure q◦ such that

[
G⊤q◦ − α

]+
i
< 0

for every i ∈ [m]. Nevertheless, we show that a kind of strong duality result still holds for L(L/ρ, q),
when Slater’s condition is met by Program (4). This is done in the following result.
Theorem 4. Given a CMDP with a transition function P , for every reward vector r ∈ [0, 1]|X×A|,
constraint cost matrix G ∈ [0, 1]|X×A|×m, and threshold vector α ∈ [0, L]m, if Program (4) satisfies
Slater’s condition (Condition 1), then the following holds:

max
q∈∆(P )

L(L/ρ, q) = max
q∈∆(P )

r⊤q − L

ρ

∑
i∈[m]

[
G⊤q − α

]+
i
= OPTr,G,α,

where ρ is the feasibility parameter of Program (4).

Theorem 4 intuitively shows that a L/ρ multiplicative factor on the positive constraint violation is
enough to compensate the large rewards that non-feasible policies would attain when employed by
the learner. This result is crucial since, without properly defining the Lagrangian function optimized
by Algorithm 3, the FTRL optimization procedure would choose instances with both large rewards
and large constraint violation, thus preventing the violation bound from being sublinear. By means of
Theorem 4, it is possible to provide the following result.
Theorem 5. If Program (4) instantiated with r, G and α satisfies Slater’s condition (Condi-
tion 1), then, given any δ ∈ (0, 1), with probability at least 1 − 34δ, Algorithm 3 attains viola-
tion VT = O(m2L2|X|

√
|A|T log (mT |X||A|/δ) log(T )2 + m2L|X|2|A|2 log(T )3 log (log(T )/δ) +

m2L log(T )2|X||A|C).

Intuitively, to prove Theorem 5, it is necessary to bound the negative regret attained by the algorithm,
i.e., how better Algorithm 3 can perform in terms of rewards with respect to an optimal occupancy in
hindsight q∗. Notice that this is equivalent to showing that the FTRL procedure cannot gain more
than OPTr,G,α by playing policies that are not feasible, or, equivalently, by choosing instances Algj

with a large corruption guess, which, by definition of the confidence sets employed by Algorithm 2,
may play non-feasible policies attaining large rewards. This is done by employing Theorem 4, which
shows that the positive Lagrangian does not allow the algorithm to achieve too large rewards with
respect to q∗. Thus, the violations are still upper bounded by Õ(

√
T + C). Finally, we prove the

regret bound attained by Algorithm 3.
Theorem 6. If Program (4) instantiated with r, G and α satisfies Slater’s condition (Condi-
tion 1), then, given any δ ∈ (0, 1), with probability at least 1 − 30δ, Algorithm 3 attains re-
gret RT = O(m2L2|X|

√
|A|T log (mT |X||A|/δ) log(T )2 + m2L|X|2|A|2 log(T )3 log (log(T )/δ) +

m2L log(T )2|X||A|C).

Bounding the regret attained by Algorithm 3 requires different techniques with respect to bounding
constraint violation. Indeed, strong duality is not needed, since, even if Λ is set to a too small value
and thus the algorithm plays non-feasible policies, then the regret would still be sublinear. The regret
bound is strongly related to the optimal value of the problem associated with the positive Lagrangian,
which, by definition of [·]+ cannot perform worse than the optimum of Program (4), in terms of
rewards gained. Thus, by letting j∗ be the index of the instance associated with true corruption value
C, proving Theorem 6 reduces to bounding the regret and the constraint violation of instance Algj∗ ,
with the additional challenge of bounding the estimation error of the optimistic loss estimator. Finally,
by means of the results for the known C case derived in Section 3, we are able to show that the regret
is at most Õ(

√
T + C), which is the desired bound.
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APPENDIX

The appendix is structured as follows:

• In Appendix A we provide the complete related works.

• In Appendix B we provide the events dictionary.

• In Appendix C we provide the preliminary results on the confidence sets employed to
estimate the unknown parameters of the environment.

• In Appendix D we provide the omitted proofs related to the theoretical guarantees when the
corruption value is known by the learner, namely, the results attained by Algorithm 2.

• In Appendix E we provide the omitted proofs of the theoretical guarantees attained by
Algorithm 2, when a guess on the corruption is given as input to the algorithm.

• In Appendix F we provide the omitted proofs related to the theoretical guarantees when the
corruption value is not known by the learner, namely, the results attained by Algorithm 3.

• In Appendix G we restate useful results from existing works.

• In Appendix H we provide the results related to stability a corruption-robustness.

A RELATED WORKS

In the following, we discuss some works that are tightly related to ours. In particular, we first describe
works dealing with the online learning problem in MDPs, and, then, we discuss some works studying
the constrained version of the classical online learning problem.

Online learning in MDPs The literature on online learning problems (Cesa-Bianchi & Lugosi,
2006) in MDPs is wide (see (Auer et al., 2008; Even-Dar et al., 2009; Neu et al., 2010) for some
initial results on the topic). In such settings, two types of feedback are usually studied: in the
full-information feedback model, the entire loss function is observed after the learner’s choice, while
in the bandit feedback model, the learner only observes the loss due to the chosen action. Azar et al.
(2017) study the problem of optimal exploration in episodic MDPs with unknown transitions and
stochastic losses when the feedback is bandit. The authors present an algorithm whose regret upper
bound is Õ(

√
T ), thus matching the lower bound for this class of MDPs and improving the previous

result by Auer et al. (2008).

Online learning in non-stationary MDPs The literature on non-stationary MDPs encompasses
both works on non-stationary rewards and non-stationary transitions. As concerns the first research
line, Rosenberg & Mansour (2019b) study the online learning problem in episodic MDPs with
adversarial losses and unknown transitions when the feedback is full information. The authors present
an online algorithm exploiting entropic regularization and providing a regret upper bound of Õ(

√
T ).

The same setting is investigated by Rosenberg & Mansour (2019a) when the feedback is bandit. In
such a case, the authors provide a regret upper bound of the order of Õ(T 3/4), which is improved by
Jin et al. (2020) by providing an algorithm that achieves in the same setting a regret upper bound
of Õ(

√
T ). Related to the non-stationarity of the transitions , Wei et al. (2022) study MDPs with

adversarial corruption on transition functions and rewards, reaching a regret upper bound of order
Õ(
√
T + C) (where C is the amount of adversarial corruption) with respect to the optimal policy of

the non-corrupted MDP . Finally, Jin et al. (2024) is the first to study completely adversarial MDPs
with changing transition functions, providing a Õ(

√
T + C) regret bounds, where C is a corruption

measure of the adversarially changing transition functions.

Online learning with constraints A central result is provided by Mannor et al. (2009), who
show that it is impossible to suffer from sublinear regret and sublinear constraint violation when
an adversary chooses losses and constraints. Liakopoulos et al. (2019) try to overcome such an
impossibility result by defining a new notion of regret. They study a class of online learning problems
with long-term budget constraints that can be chosen by an adversary. The learner’s regret metric is
modified by introducing the notion of a K-benchmark, i.e., a comparator that meets the problem’s

13
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allotted budget over any window of length K. Castiglioni et al. (2022a;b) deal with the problem
of online learning with stochastic and adversarial losses, providing the first best-of-both-worlds
algorithm for online learning problems with long-term constraints.

Online learning in CMDPs Online Learning In MDPs with constraints is generally studied when
the constraints are selected stochastically. Precisely, Zheng & Ratliff (2020) deal with episodic
CMDPs with stochastic losses and constraints, where the transition probabilities are known and the
feedback is bandit. The regret upper bound of their algorithm is of the order of Õ(T 3/4), while
the cumulative constraint violation is guaranteed to be below a threshold with a given probability.
Wei et al. (2018) deal with adversarial losses and stochastic constraints, assuming the transition
probabilities are known and the feedback is full information. The authors present an algorithm that
guarantees an upper bound of the order of Õ(

√
T ) on both regret and constraint violation. Bai et al.

(2020) provide the first algorithm that achieves sublinear regret when the transition probabilities
are unknown, assuming that the rewards are deterministic and the constraints are stochastic with
a particular structure. Efroni et al. (2020) propose two approaches to deal with the exploration-
exploitation dilemma in episodic CMDPs. These approaches guarantee sublinear regret and constraint
violation when transition probabilities, rewards, and constraints are unknown and stochastic, while
the feedback is bandit. Qiu et al. (2020) provide a primal-dual approach based on optimism in the
face of uncertainty. This work shows the effectiveness of such an approach when dealing with
episodic CMDPs with adversarial losses and stochastic constraints, achieving both sublinear regret
and constraint violation with full-information feedback. Stradi et al. (2024a) is the first work to
tackle CMDPs with adversarial losses and bandit feedback. They propose an algorithm which
achieves sublinear regret and sublinear positive constraints violations, assuming that the constraints
are stochastic. Stradi et al. (2024b) are the first to study CMDPs with adversarial constraints. Given
the well-known impossibility result to learn with adversarial constraints, they propose an algorithm
that attains sublinear violation (with cancellations allowed) and a fraction of the optimal reward
when the feedback is full. Finally, Ding & Lavaei (2023) and Wei et al. (2023) consider the case
in which rewards and constraints are non-stationary, assuming that their variation is bounded, as
in our work. Nevertheless, our settings differ in multiple aspects. First of all, we consider positive
constraints violations, while the aforementioned works allow the cancellations in their definition.
We consider a static regret adversarial baseline, while Ding & Lavaei (2023) and Wei et al. (2023)
consider the stronger baseline of dynamic regret. Nevertheless, our bounds are not comparable, since
we achieve linear regret and violations only in the worst case scenario in which C = T , while a
sublinear corruption would lead to linear dynamic regret in their work. Finally, we do not make any
assumption on the number of episodes, while both the regret and violations bounds presented in Wei
et al. (2023) hold only for large T .

B EVENTS DICTIONARY

In the following, we introduce the main events which are related to estimation of the unknown
stochastic parameters of the environment.

• Event EP : for all t ∈ [T ], P ∈ Pt. EP holds with probability at least 1− 4δ by Lemma 19.
The event is related to the estimation of the unknown transition function.

• Event EG: for all t ∈ [T ], i ∈ [m], (x, a) ∈ X ×A:∣∣∣∣ĝt,i(x, a)− 1

T

∑
τ∈[T ]

E[gτ,i(x, a)]
∣∣∣∣ ≤ ξt(x, a).

Similarly, ∣∣∣∣ĝt,i(x, a)− g◦i (x, a)∣∣∣∣ ≤ ξt(x, a),
where g◦i ∈ [0, 1]|X×A| := [G◦]i.
EG holds with probability at least 1− δ by Corollary 2. The event is related to the estimation
of the unknown constraint functions.

14
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• Event Er: for all t ∈ [T ], (x, a) ∈ X ×A:∣∣∣∣r̂t(x, a)− 1

T

∑
τ∈[T ]

E[rτ (x, a)]
∣∣∣∣ ≤ ϕt(x, a).

Similarly, ∣∣∣∣r̂t(x, a)− r◦(x, a)∣∣∣∣ ≤ ϕt(x, a).
Er holds with probability at least 1− δ by Corollary 4. The event is related to the estimation
of the unknown reward function.

• Event Eq̂ : for any P x
t ∈ Pt:∑

t∈[T ]

∑
x∈X,a∈A

∣∣∣qPx
t ,πt(x, a)− qt(x, a)

∣∣∣ ≤ O(L|X|√|A|T ln

(
T |X||A|

δ

))
.

Eq̂ holds with probability at least 1 − 6δ by Lemma 20. The event is related to the
convergence to the true unknown occupancy measure. Notice that P [Eq̂ ∩ EP ] ≥ 1− 6δ by
construction.

C CONFIDENCE INTERVALS

In this section we will provide the preliminary results related to the high probability confidence sets
for the estimation of the cost constraints matrices and the reward vectors.

We start bounding the distance between the non-corrupted costs and rewards with respect to the mean
of the adversarial distributions.
Lemma 3. For all i ∈ [m], fixing (x, a) ∈ X ×A, it holds:∣∣∣∣g◦i (x, a)− 1

T

∑
t∈[T ]

E[gt,i(x, a)]
∣∣∣∣ ≤ CG

T
.

Similarly, fixing (x, a) ∈ X ×A, it holds:∣∣∣∣r◦(x, a)− 1

T

∑
t∈[T ]

E[rt(x, a)]
∣∣∣∣ ≤ Cr

T
,

Proof. By triangle inequality and from the definition of CG, it holds:∣∣∣∣g◦i (x, a)− 1

T

∑
t∈[T ]

E[gt,i(x, a)]
∣∣∣∣ = ∣∣∣∣ 1T ∑

t∈[T ]

(g◦i (x, a)− E[gt,i(x, a)])
∣∣∣∣

≤ 1

T

∑
t∈[T ]

∣∣∣∣g◦i (x, a)− E[gt,i(x, a)]
∣∣∣∣

≤ CG

T
.

Notice that the proof holds for all i ∈ [m] since CG is defined employing the maximum over i ∈ [m].
Following the same steps, it holds:∣∣∣∣∣∣r◦(x, a)− 1

T

∑
t∈[T ]

E[rt(x, a)]

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1T
∑
t∈[T ]

(r◦(x, a)− E[rt(x, a)])

∣∣∣∣∣∣
≤ 1

T

∑
t∈[T ]

∣∣∣∣r◦(x, a)− E[rt(x, a)]
∣∣∣∣

≤ Cr

T
,

which concludes the proof.
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In the following lemma, we bound the distance between the empirical mean of the constraints function
and the true non-corrupted value.

Lemma 4. Fixing i ∈ [m], (x, a) ∈ X ×A , t ∈ [T ], for any δ ∈ (0, 1), it holds with probability at
least 1− δ:∣∣∣∣ĝt,i(x, a)− g◦i (x, a)∣∣∣∣ ≤

√
1

2max{Nt(x, a), 1}
ln

(
2

δ

)
+

CG

max{Nt(x, a), 1}
.

Proof. We start bounding the quantity of interest as follows:∣∣∣∣ĝt,i(x, a)− g◦i (x, a)∣∣∣∣ =
∣∣∣∣∣
(∑

τ∈[t] Iτ (x, a)gτ,i(x, a)
max{Nt(x, a), 1}

)
− g◦i (x, a)

∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

max{Nt(x, a), 1}
∑
τ∈[t]

Iτ (x, a) (gτ,i(x, a)− E[gτ,i(x, a)])

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

max{Nt(x, a), 1}
∑
τ∈[t]

Iτ (x, a)[E[gτ,i(x, a)]− g◦i (x, a)]

∣∣∣∣∣∣ , (8)

where we employed the triangle inequality and the definition of ĝt,i(x, a).

We bound the two terms in Equation (8) separately. For the first term, by Hoeffding’s inequality and
noticing that constraints values are bounded in [0, 1], it holds that:

P
[
A ≥ c

max{Nt(x, a), 1}

]
≤ 2 exp

(
− 2c2

max{Nt(x, a), 1}

)
,

where,

A =

∣∣∣∣∣
(∑

τ∈[t] Iτ (x, a)gτ,i(x, a)
max{Nt(x, a), 1}

)
−

(∑
τ∈[t] Iτ (x, a)E[gτ,i(x, a)]
max{Nt(x, a), 1}

)∣∣∣∣∣ ,
Setting δ = 2 exp

(
− 2c2

max{Nt(x,a),1}

)
and solving to find a proper value of c we get that with

probability at least 1− δ:∣∣∣∣∣∣ 1

max{Nt(x, a), 1}
∑
τ∈[t]

Iτ (x, a) (gτ,i(x, a)− E[gτ,i(x, a)])

∣∣∣∣∣∣ ≤
√

1

2max{Nt(x, a), 1}
ln

(
2

δ

)
.

Finally, we focus on the second term. Thus, employing the triangle inequality and the definition of
CG, it holds:∣∣∣∣∣ 1

max{Nt(x, a), 1}
∑
τ∈[t]

Iτ (x, a) [E[gτ,i(x, a)]− g◦i (x, a)]

∣∣∣∣∣
≤ 1

max{Nt(x, a), 1}
∑
τ∈[t]

Iτ (x, a)
∣∣∣∣E[gτ,i(x, a)]− g◦i (x, a)∣∣∣∣

≤ 1

max{Nt(x, a), 1}
∑
τ∈[T ]

∣∣∣∣E[gτ,i(x, a)]− g◦i (x, a)∣∣∣∣
≤ CG

max{Nt(x, a), 1}
,

which concludes the proof.

We now prove a similar result for the rewards function.
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Lemma 5. Fixing (x, a) ∈ X × A , t ∈ [T ], for any δ ∈ (0, 1), it holds with probability at least
1− δ: ∣∣∣∣r̂t(x, a)− r◦(x, a)∣∣∣∣ ≤

√
1

2max{Nt(x, a), 1}
ln

(
2

δ

)
+

Cr

max{Nt(x, a), 1}
.

Proof. The proof is analogous to the one of Lemma 4.

We now generalize the previous results as follows.
Lemma 6. Given any δ ∈ (0, 1), for any (x, a) ∈ X × A, t ∈ [T ], and i ∈ [m], it holds with
probability at least 1− δ:∣∣∣∣ĝt,i(x, a)− g◦i (x, a)∣∣∣∣ ≤

√
1

2max{Nt(x, a), 1}
ln

(
2mT |X||A|

δ

)
+

CG

max{Nt(x, a), 1}
.

Proof. First let’s define ζt(x, a) as:

ζt(x, a) :=

√
1

2max{Nt(x, a), 1}
ln

(
2

δ

)
+

CG

max{Nt(x, a), 1}
.

From Lemma 4, given δ′ ∈ (0, 1), we have, fixed any i ∈ [m], t ∈ [T ] and (x, a) ∈ X ×A:

P

[∣∣∣∣ĝt,i(x, a)− g◦i (x, a)∣∣∣∣ ≤ ζt(x, a)
]
≥ 1− δ′.

Now, we are interested in the intersection of all the events, namely,

P

[ ⋂
x,a,i,t

{∣∣∣ĝt,i(x, a)− g◦i (x, a)∣∣∣ ≤ ζt(x, a)}
]
.

Thus, we have:

P

[ ⋂
x,a,i,t

{∣∣∣ĝt,i(x, a)− g◦i (x, a)∣∣∣ ≤ ζt(x, a)}
]

= 1− P

[ ⋃
x,a,i,t

{∣∣∣ĝt,i(x, a)− g◦i (x, a)∣∣∣ ≤ ζt(x, a)}c
]

≥ 1−
∑

x,a,i,t

P

[{∣∣∣ĝt,i(x, a)− g◦i (x, a)∣∣∣ ≤ ζt(x, a)}c
]

(9)

≥ 1− |X||A|mTδ′,
where Inequality (9) holds by Union Bound. Noticing that gt,i(x, a) ≤ 1, substituting δ′ with
δ := δ′/|X||A|mT in ζt(x, a) with an additional Union Bound over the possible values of Nt(x, a),
we have, with probability at least 1− δ:∣∣∣∣ĝt,i(x, a)− g◦i (x, a)∣∣∣∣ ≤

√
1

2max{Nt(x, a), 1}
ln

(
2mT |X||A|

δ

)
+

CG

max{Nt(x, a), 1}
,

which concludes the proof.

We provide a similar result for the rewards function.
Lemma 7. Given any δ ∈ (0, 1), for any (x, a) ∈ X ×A, t ∈ [T ], it holds with probability at least
1− δ:∣∣∣∣r̂t(x, a)− r◦(x, a)∣∣∣∣ ≤

√
1

2max{Nt(x, a), 1}
ln

(
2T |X||A|

δ

)
+

Cr

max{Nt(x, a), 1}
.
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Proof. First let’s define ψt(x, a) as:

ψt(x, a) :=

√
1

2max{Nt(x, a), 1}
ln

(
2

δ

)
+

Cr

max{Nt(x, a), 1}
.

From Lemma 5, given δ′ ∈ (0, 1), we have fixed any t ∈ [T ] and (x, a) ∈ X ×A:

P

[∣∣∣∣r̂t(x, a)− r◦(x, a)∣∣∣∣ ≤ ψt(x, a)

]
≥ 1− δ′.

Now, we are interested in the intersection of all the events, namely,

P

[ ⋂
x,a,t

{∣∣∣r̂t(x, a)− r◦(x, a)∣∣∣ ≤ ψt(x, a)
}]
.

Thus, we have:

P

[ ⋂
x,a,t

{∣∣∣r̂t(x, a)− r◦(x, a)∣∣∣ ≤ ψt(x, a)
}]

= 1− P

[ ⋃
x,a,t

{∣∣∣r̂t(x, a)− r◦(x, a)∣∣∣ ≤ ψt(x, a)
}c
]

≥ 1−
∑
x,a,t

P

[{∣∣∣r̂t(x, a)− r◦(x, a)∣∣∣ ≤ ψt(x, a)
}c
]

(10)

≥ 1− |X||A|Tδ′,

where Inequality (10) holds by Union Bound. Noticing that rt(x, a) ≤ 1, substituting δ′ with
δ := δ′/|X||A|T in ψt(x, a) with an additional Union Bound over the possible values of Nt(x, a),
we have, with probability at least 1− δ:∣∣∣∣r̂t(x, a)− r◦(x, a)∣∣∣∣ ≤

√
1

2max{Nt(x, a), 1}
ln

(
2T |X||A|

δ

)
+

Cr

max{Nt(x, a), 1}
,

which concludes the proof.

In the following, we bound the distance between the empirical estimation of the constraints and the
empirical mean of the mean values of the constraints distribution during the learning dynamic.
Lemma 8. Given δ ∈ (0, 1), for all episodes t ∈ [T ], state-action pairs (x, a) ∈ X × A and
constraint i ∈ [m],it holds, with probability at least 1− δ:∣∣∣∣ĝt,i(x, a)− 1

T

∑
τ∈[T ]

E[gτ,i(x, a)]
∣∣∣∣ ≤ ξt(x, a),

where,

ξt(x, a) := min

{
1,

√
1

2max{Nt(x, a), 1}
ln

(
2mT |X||A|

δ

)
+

CG

max{Nt(x, a), 1}
+
CG

T

}
.

Proof. We first notice that if ξt(x, a) = 1, the results is derived trivially by definition on the cost

function. We prove now the non trivial case
√

1
2max{Nt(x,a),1} ln

(
2mT |X||A|

δ

)
+ CG

max{Nt(x,a),1} +

CG

T ≤ 1. Employing Lemma 3 and Lemma 6, with probability 1− δ for all (x, a) ∈ X ×A, for all
t ∈ [T ] and for all i ∈ [m], it holds that:∣∣∣∣∣ĝt,i(x, a)− 1

T

∑
τ∈[T ]

E[gτ,i(x, a)]

∣∣∣∣∣
18
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≤

∣∣∣∣∣ĝt,i(x, a)− g◦i (x, a)
∣∣∣∣∣+
∣∣∣∣∣g◦i (x, a)− 1

T

∑
t∈[T ]

E[gt,i(x, a)]

∣∣∣∣∣
≤

√
1

2max{Nt(x, a), 1}
ln

(
2mT |X||A|

δ

)
+

CG

max{Nt(x, a), 1}
+
CG

T
,

where the first inequality follows from the triangle inequality. This concludes the proof.

For the sake of simplicity, we analyze our algorithm with respect to the total corruption of the
environment, defined as the maximum between the reward and the constraints corruption. In the
following, we show that this choice does not prevent the confidence set events from holding.

Corollary 1. Given a corruption guess Ĉ ≥ CG and δ ∈ (0, 1), for all episodes t ∈ [T ], state-action
pairs (x, a) ∈ X ×A and constraint i ∈ [m], with probability at least 1− δ, it holds:∣∣∣∣ĝt,i(x, a)− 1

T

∑
τ∈[T ]

E[gτ,i(x, a)]
∣∣∣∣ ≤ ξt(x, a),

where,

ξt(x, a) = min

{
1,

√
1

2max{Nt(x, a), 1}
ln

(
2mT |X||A|

δ

)
+

Ĉ

max{Nt(x, a), 1}
+
Ĉ

T

}
.

Proof. Following the same analysis of Lemma 8 for Ĉ ≥ CG, it holds∣∣∣∣ĝt,i(x, a)− 1

T

∑
τ∈[T ]

E[gτ,i(x, a)]
∣∣∣∣

≤

√
1

2max{Nt(x, a), 1}
ln

(
2mT |X||A|

δ

)
+

CG

max{Nt(x, a), 1}
+
CG

T

≤

√
1

2max{Nt(x, a), 1}
ln

(
2mT |X||A|

δ

)
+

Ĉ

max{Nt(x, a), 1}
+
Ĉ

T
,

which concludes the proof.

Corollary 2. Taking the definition of ξt employed in Lemma 8 and defining EG as the intersection
event:

EG :=

{∣∣ĝt,i(x, a)− g◦i (x, a)∣∣ ≤ ξt(x, a), ∀(x, a) ∈ X ×A,∀t ∈ [T ],∀i ∈ [m]

} ⋂

∣∣∣∣ĝt,i(x, a)− 1

T

∑
τ∈[T ]

E[gτ,i(x, a)]
∣∣∣∣ ≤ ξt(x, a), ∀(x, a) ∈ X ×A,∀t ∈ [T ],∀i ∈ [m]

 ,

it holds that P[EG] ≥ 1− δ.

Notice that by Corollary 1, EG includes all the analogous events where ξt is built employing an
arbitrary adversarial corruption Ĉ such that Ĉ ≥ CG.

In the following, we provide similar results for the reward function.
Lemma 9. Given δ ∈ (0, 1), for all episodes t ∈ [T ] and for all state-action pairs (x, a) ∈ X ×A,
with probability at least 1− δ, it holds:∣∣∣∣∣∣r̂t(x, a)− 1

T

∑
τ∈[T ]

E[rτ (x, a)]

∣∣∣∣∣∣ ≤ ϕt(x, a),
where,

ϕt(x, a) := min

{
1,

√
1

2max{Nt(x, a), 1}
ln

(
2T |X||A|

δ

)
+

Cr

max{Nt(x, a), 1}
+
Cr

T

}
.
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Proof. Employing Lemma 3 and Lemma 7, with probability at least 1− δ, for all (x, a) ∈ X ×A
and for all t ∈ [T ], it holds:∣∣∣∣r̂t(x, a)− 1

T

∑
τ∈[T ]

E[rτ (x, a)]
∣∣∣∣

≤
∣∣∣∣r̂t(x, a)− r◦(x, a)∣∣∣∣+ ∣∣∣∣r◦(x, a)− 1

T

∑
t∈[T ]

E[rt(x, a)]
∣∣∣∣

≤

√
1

2max{Nt(x, a), 1}
ln

(
2T |X||A|

δ

)
+

Cr

max{Nt(x, a), 1}
+
Cr

T
,

where the first inequality follows from the triangle inequality. Noticing that, by construction,∣∣∣∣r̂t(x, a)− 1

T

∑
τ∈[T ]

E[rτ (x, a)]
∣∣∣∣ ≤ 1,

for all episodes t ∈ [T ] and (x, a) ∈ X ×A concludes the proof.

We conclude the section, showing the overestimating the reward corruption does not invalidate the
confidence set estimation.
Corollary 3. Given a corruption guess Ĉ ≥ Cr and δ ∈ (0, 1), for all episodes t ∈ [T ] and for all
state-action pairs (x, a) ∈ X ×A, with probability at least 1− δ, it holds:∣∣∣∣r̂t(x, a)− 1

T

∑
τ∈[T ]

E[rτ (x, a)]
∣∣∣∣ ≤ ϕt(x, a),

where,

ϕt(x, a) := min

{
1,

√
1

2max{Nt(x, a), 1}
ln

(
2T |X||A|

δ

)
+

Ĉ

max{Nt(x, a), 1}
+
Ĉ

T

}
.

Proof. The proof is analogous to the one of Corollary 1.

Corollary 4. Taking the definition of ϕt employed in Lemma 9 and defining Er as the intersection
event:

Er :=

{∣∣r̂t(x, a)−r◦(x, a)∣∣ ≤ ϕt(x, a), ∀(x, a) ∈ X ×A,∀t ∈ [T ]

} ⋂

∣∣∣∣r̂t(x, a)− 1

T

∑
τ∈[T ]

E[rτ (x, a)]
∣∣∣∣ ≤ ϕt(x, a), ∀(x, a) ∈ X ×A,∀t ∈ [T ]

 ,

it holds that P[Er] ≥ 1− δ.

Notice that by Corollary 3, Er includes all the analogous events where ϕt is built employing an
arbitrary adversarial corruption Ĉ such that Ĉ ≥ Cr.

D OMITTED PROOFS WHEN THE CORRUPTION IS KNOWN

In the following, we provide the main results attained by Algorithm 2 in term of regret and constraints
violations. The following results hold when the corruption of the environment is known to the learner.

We start providing a preliminary result, which shows that the linear program solved by Algorithm 2
at each t ∈ [T ] admits a feasible solution, with high probability.
Lemma 10. For any δ ∈ (0, 1), for all episodes t ∈ [T ], with probability at least 1− 5δ, the space

defined by linear constraints
{
q ∈ ∆(Pt) : G

⊤
t q ≤ α

}
admits a feasible solution and it holds:{

q ∈ ∆(P ) : G
⊤
q ≤ α

}
⊆
{
q ∈ ∆(Pt) : G

⊤
t q ≤ α

}
.
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Proof. Under the event EP , we have that ∆(P ) ⊆ ∆(Pt), for all episodes t ∈ [T ]. Similarly, under

the event EG, it holds that

{
q : 1

T

∑
t∈[T ]

E[Gt]
⊤q ≤ α

}
⊆
{
q : G⊤

t q ≤ α
}

. This implies that any fea-

sible solution of the offline problem, is included in the optimistic safe set
{
q ∈ ∆(Pt) : G

⊤
t q ≤ α

}
.

Taking the intersection event EP ∩ EG concludes the proof.

We are now ready to provide the violation bound attained by Algorithm 2.

Theorem 2. Given any δ ∈ (0, 1), with probability at least 1− 8δ, Algorithm 2 attains violations

VT = O
(
L|X|

√
|A|T ln (mT |X||A|/δ) + ln(T )|X||A|C

)
.

Proof. In the following, we will refer as Eq̂ to the event described in Lemma 20, which holds with
probability at least 1− 6δ . Thus, under EG ∩ Eq̂ , the linear program solved by Algorithm 2 has a
feasible solution (see Lemma 10) and it holds:

VT = max
i∈[m]

∑
t∈[T ]

[
E[Gt]

⊤qt − α
]+
i

= max
i∈[m]

∑
t∈[T ]

[
(E[gt,i]− g◦i )

⊤
qt + g◦i

⊤qt − αi

]+
≤ max

i∈[m]

∑
t∈[T ]

[
(E[gt,i]− g◦i )

⊤
qt +

(
g
t−1,i

+ 2ξt−1

)⊤
qt − αi

]+
(11a)

= max
i∈[m]

∑
t∈[T ]

[
(E[gt,i]− g◦i )

⊤
qt + g⊤

t−1,i
(qt − q̂t) + g⊤

t−1,i
q̂t + 2ξ⊤t−1qt − αi

]+
≤ max

i∈[m]

∑
t∈[T ]

[
(E[gt,i]− g◦i )

⊤
qt + g⊤

t−1,i
(qt − q̂t) + 2ξ⊤t−1qt

]+
(11b)

≤ max
i∈[m]

∑
t∈[T ]

∣∣∣(E[gt,i]− g◦i )⊤ qt∣∣∣+ 2max
i∈[m]

∑
t∈[T ]

∣∣ξ⊤t−1qt
∣∣+ max

i∈[m]

∑
t∈[T ]

∣∣∣g⊤
t−1,i

(qt − q̂t)
∣∣∣ (11c)

≤ max
i∈[m]

∑
t∈[T ]

∥E[gt,i]− g◦i ∥1 + 2max
i∈[m]

∑
t∈[T ]

ξ⊤t−1qt + max
i∈[m]

∑
t∈[T ]

∥qt − q̂t∥1 (11d)

≤ CG + 2max
i∈[m]

∑
t∈[T ]

ξ⊤t−1qt +
∑
t∈[T ]

∥qt − q̂t∥1, (11e)

where Inequality (11a) follows from Corollary 2, Inequality (11b) holds since Algorithm 2 ensures,
for all t ∈ [T ] and for all i ∈ [m], that g⊤

t,i
q̂t ≤ αi, Inequality (11c) holds since [a+ b]+ ≤ |a|+ |b|,

for all a, b ∈ R, Inequality (11d) follows from Hölder inequality since ||g
t,i
(x, a)||∞ ≤ 1 and

||qt(x, a)||∞ ≤ 1, and finally Equation (11e) holds for the definition of CG.

To bound the last term of Equation (11e), we notice that, under Eq̂ , by Lemma 20, it holds:

∑
t∈[T ]

∥qt − q̂t∥1 = O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
.

To bound the second term of Equation (11e) we proceed as follows. Under Eq̂ ,with probability at
least 1− δ, it holds:∑

t∈[T ]

ξ⊤t−1qt ≤
∑
t∈[T ]

∑
x,a

ξt−1(x, a)It(x, a) + L

√
2T ln

1

δ
(12a)

≤
∑
x,a

∑
t∈[T ]

It(x, a)

(√
1

2max{Nt−1(x, a), 1}
ln

(
2mT |X||A|

δ

)
+
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+
CG

max{Nt−1(x, a), 1}
+
CG

T

)
+ L

√
2T ln

1

δ
(12b)

≤

√
1

2
ln

(
2mT |X||A|

δ

)∑
x,a

∑
t∈[T ]

It(x, a)

√
1

max{Nt−1(x, a), 1}
+

+ CG

∑
x,a

∑
t∈[T ]

(
It(x, a)

max{Nt−1(x, a), 1}
+

1

T

)
+ L

√
2T ln

1

δ

≤ 3

√
1

2
|X||A|LT ln

(
2mT |X||A|

δ

)
+ |X||A|(2 + ln(T ))CG + |X||A|CG + L

√
2T ln

1

δ

(12c)

≤ 3

√
1

2
|X||A|LT ln

(
2mT |X||A|

δ

)
+ (3 + ln(T ))|X||A|CG + L

√
2T ln

1

δ

= O

(√
|X||A|LT ln

(
mT |X||A|

δ

)
+ ln(T )|X||A|CG

)
,

where Inequality (12a) follows from the Azuma-Hoeffding inequality and noticing that∑
x,a ξt−1(x, a)qt(x, a) ≤ L, Equality (12b) follows from the definition of ξt and finally, In-

equality (12c) holds since 1 +
∑NT (x,a)

t=1

√
1
t ≤ 1 + 2

√
NT (x, a) ≤ 3

√
NT (x, a) , since

1 +
∑NT (x,a)

t=1
1
t ≤ 2 + ln(T ) and by Cauchy-Schwarz inequality. Finally, we notice that the

intersection event EG ∩ Eq̂ ∩ EAzuma holds with the following probability,

P [EG ∩ Eq̂ ∩ EAzuma] = 1− P
[
ECG ∪ ECq̂ ∪ ECAzuma

]
≥ 1−

(
P
[
ECG
]
+ P

[
ECq̂
]
+ P

[
ECAzuma

])
≥ 1− 8δ.

Noticing that, by Corollary 1, what holds for a ξt built with corruption value CG, still holds for a
higher corruption (by definition, C ≥ CG) concludes the proof.

We conclude the section providing the regret bound attained by Algorithm 2.
Theorem 3. Given any δ ∈ (0, 1), with probability at least 1 − 9δ, Algorithm 2 attains regret

RT = O
(
L|X|

√
|A|T ln (T |X||A|/δ) + ln(T )|X||A|C

)
.

Proof. First, we notice that under the event Er it holds that, for all (x, a) ∈ X×A and for all t ∈ [T ]:

rt(x, a)− 2ϕt(x, a) ≤
1

T

∑
t∈[T ]

E[rt(x, a)].

Let’s observe that, by Lemma 10, under the event EG ∩ EP , q̂t is optimal solution for rt−1 in{
q ∈ ∆(Pt) : G

⊤
t q ≤ α

}
. Thus, under EG ∩ EP the optimal feasible solution q∗ is such that:

r⊤t−1q̂t ≥ r⊤t−1q
∗.

Thus under the event Er, it holds:

1

T

∑
t∈[T ]

E[rt]⊤q∗ ≤ r⊤t−1q
∗

≤ r⊤t−1q̂t

≤

 1

T

∑
t∈[T ]

E[rt] + 2ϕt−1

⊤

q̂t.
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Thus, we can rewrite the regret (under the event EG ∩ Er ∩ EP ) as,

RT =
∑
t∈[T ]

E[rt]⊤(q∗ − qt)

=
∑
t∈[T ]

1

T

∑
τ∈[T ]

E[rτ ]⊤(q∗ − qt) +
∑
t∈[T ]

(E[rt]− r)⊤ (q∗ − qt)

=
∑
t∈[T ]

1

T

∑
τ∈[T ]

E[rτ ]⊤(q∗ − q̂t + q̂t − qt) +
∑
t∈[T ]

(E[rt]− r◦ + r◦ − r)⊤ (q∗ − qt)

≤
∑
t∈[T ]

 1

T

∑
τ∈[T ]

E [rτ ]
⊤
(q∗ − q̂t)

+
∑
t∈[T ]

∥q̂t − qt∥1 +
∑
t∈[T ]

∥E[rt]− r◦∥1 +
∑
t∈[T ]

∥r◦ − r∥1

≤
∑
t∈[T ]

2ϕ⊤t−1qt +
∑
t∈[T ]

∥q̂t − qt∥1 + 2Cr.

By Lemma 19 with probability at least 1− 6δ under event Eq̂ we can bound
∑

t∈[T ]∥q̂t − qt∥1 as:

∑
t∈[T ]

∥q̂t − qt∥1 = O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
.

Finally with probability at least 1− δ it holds:∑
t∈[T ]

ϕ⊤t−1qt ≤
∑
t∈[T ]

∑
x,a

ϕt−1(x, a)It(x, a) + L

√
2T ln

1

δ
(13a)

≤
∑
x,a

∑
t∈[T ]

It(x, a)

(√
1

2max{Nt−1(x, a), 1}
ln

(
2T |X||A|

δ

)
+

+
Cr

max{Nt−1(x, a), 1}
+
Cr

T

)
+ L

√
2T ln

1

δ
(13b)

≤

√
1

2
ln

(
2T |X||A|

δ

)∑
x,a

∑
t∈[T ]

It(x, a)

√
1

max{Nt−1(x, a), 1}
+

+ Cr

∑
x,a

∑
t∈[T ]

(
It(x, a)

max{Nt−1(x, a), 1}
+

1

T

)
+ L

√
2T ln

1

δ

≤ 3

√
1

2
|X||A|LT ln

(
2T |X||A|

δ

)
+ |X||A|(2 + ln(T ))Cr + |X||A|Cr + L

√
2T ln

1

δ
(13c)

≤ 3

√
1

2
|X||A|LT ln

(
2T |X||A|

δ

)
+ (3 + ln(T ))|X||A|Cr + L

√
2T ln

1

δ

= O

(√
|X||A|LT ln

(
T |X||A|

δ

)
+ ln(T )|X||A|Cr

)
,

where Inequality (13a) follows from Azuma-Hoeffding inequality, Equality (13b) holds for the defini-

tion of ϕt, and Inequality (13c) holds since 1 +
∑NT (x,a)

t=1

√
1
t ≤ 1 + 2

√
NT (x, a) ≤ 3

√
NT (x, a),

1 +
∑NT (x,a)

t=1
1
t ≤ 2 + ln(T ) and by Cauchy-Schwarz inequality. Thus, we observe that with

probability at least 1− 9δ it holds:

RT = O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

)
+ ln(T )|X||A|Cr

)
.

Employing Corollary 3 and the definition of C, which is at least equal to Cr, concludes the proof.
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E OMITTED PROOFS WHEN THE KNOWLEDGE OF C IS NOT PRECISE

In this section, we focus on the performances of Algorithm 2 when a guess on the corruption value is
given as input. These preliminary results are "the first step" to relax the assumption on the knowledge
about the corruption.

First, we present some preliminary results on the confidence set.

Lemma 11. Given the corruption guess ĈG, where CG = ĈG + ϵ, with ϵ > 0, and confidence ξt as
defined in Algorithm 2 using ĈG as corruption value, for any δ ∈ (0, 1), with probability at least
1− δ, for all episodes t ∈ [T ], state-action pair (x, a) ∈ X×A and constraint i ∈ [m], the following
result holds:

g◦i (x, a) ≤ ĝt,i(x, a) + ξt(x, a) +

(
ϵ

max{Nt(x, a), 1}
+
ϵ

T

)
.

Similarly, recalling the definition of Gt, for all episodes t ∈ [T ], state-action pairs (x, a) ∈ X ×A
and constraints i ∈ [m], it holds:

g◦i (x, a) ≤ gt,i(x, a) + 2ξt(x, a) +

(
ϵ

max{Nt(x, a), 1}
+
ϵ

T

)
.

Proof. To prove the result, we recall that, by Corollary 2, with probability at least 1−δ, the following
holds, for all episodes t ∈ [T ], state-action pairs (x, a) ∈ X ×A and constraints i ∈ [m]:∣∣∣∣ĝt,i(x, a)−g◦i (x, a)]∣∣∣∣ ≤√

1

2max{Nt(x, a), 1}
ln

(
2mT |X||A|

δ

)
+

CG

max{Nt(x, a), 1}
+
CG

T
,

which can be rewritten as:∣∣∣∣ĝt,i(x, a)− g◦i (x, a)]∣∣∣∣ ≤ ξt(x, a) + ϵ

max{Nt(x, a), 1}
+
ϵ

T
,

where,

ξt(x, a) := min

{
1,

√
1

2max{Nt(x, a), 1}
ln

(
2mT |X||A|

δ

)
+

ĈG

max{Nt(x, a), 1}
+
ĈG

T

}
,

and CG = ĈG + ϵ, which concludes the proof.

We are now ready study the regret bound attained by the algorithm when the guess on the corruption
is an overestimate.
Theorem 7. For any δ ∈ (0, 1), Algorithm 2, when instantiated with corruption value Ĉ which is
an overestimate of the true value of C, i.e. Ĉ > CG and Ĉ > Cr, attains with probability at least
1− 8δ:

RT = O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

)
+ ln(T )|X||A|Ĉ

)
.

Proof. By Corollary 1, it holds that the decision space of the linear program performed by Algorithm 2
contains with high probability the optimal solution that respects to the constraints. Furthermore,
employing Corollary 3 and following the proof of Theorem 3 concludes the proof.

We proceed bounding the violation attained by our algorithm when an underestimate of the corruption
is given as input.

Theorem 8. For any δ ∈ (0, 1), Algorithm 2, when instantiated with corruption value Ĉ which is an
underestimate of the true value of CG, i.e. Ĉ < CG, attains with probability at least 1− 9δ:

VT = O

(
L|X|

√
|A|T ln

(
mT |X||A|

δ

)
+ ln(T )|X||A|CG

)
.
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Proof. First, let’s define ϵ ∈ R+ such that ϵ := CG − Ĉ. Then, with probability at least 1− δ:

VT = max
i∈[m]

∑
t∈[T ]

[
E[Gt]

⊤qt − α
]+
i

(14a)

= max
i∈[m]

∑
t∈[T ]

[
(E[gt,i]− g◦i )

⊤
qt + g◦i

⊤qt − αi

]+
≤ max

i∈[m]

∑
t∈[T ]

[
(E[gt,i]− g◦i )⊤qt + g⊤

t−1,i
(qt − q̂t) + g⊤

t−1,i
q̂t + 2ξ⊤t−1qt+

+
∑
x,a

(
ϵ

max{Nt−1(x, a), 1}
+
ϵ

T

)
qt(x, a)− αi

]+
(14b)

≤ CG + 2max
i∈[m]

∑
t∈[T ]

ξ⊤t−1qt +
∑
t∈[T ]

∥qt − q̂t∥1+

+
∑
t∈[T ]

∑
x,a

ϵ

max{Nt−1(x, a), 1}
qt(x, a) + ϵL, (14c)

where Inequality (14b) follows from Lemma 11 and Inequality (14c) is derived as in the proof of
Theorem 2, and considering that ∥qt∥1 = L, ∀t ∈ [T ]. Now, employing the Azuma-Hoeffding
inequality, we can bound, with probability at least 1−δ the term

∑T
t=1

∑
x,a

ϵ
max{Nt−1(x,a),1}qt(x, a)

as follows:∑
t∈[T ]

∑
x,a

ϵ

max{Nt−1(x, a), 1}
qt(x, a) ≤ L

√
2T ln

1

δ
+
∑
t∈[T ]

∑
x,a

ϵ

max{Nt−1(x, a), 1}
It(x, a)

≤ L
√
2T ln

1

δ
+ ϵ|X||A|(1 + ln(T )),

where we applied Azume Hoeffding inequality and the fact that
∑

t∈[NT (x,a)]
1
t ≤ 1+ ln(T ). Finally,

following the steps of the proof of Theorem 2 to bound the first 3 elements of Inequality (14c) under
Eq̂ with probability at least 1−δ, and considering that ϵ ≤ CG and Ĉ ≤ CG, it holds, with probability
at least 1− 9δ,

VT = O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

)
+ ln(T )|X||A|CG

)
,

which concludes the proof.

Finally, we provide the violation bound attained by Algorithm 2 when an overestimate of the
corruption value is given as input.

Theorem 9. For any δ ∈ (0, 1), Algorithm 2, when instantiated with corruption value Ĉ which is an
overestimate of the true value of CG, i.e. Ĉ > CG, attains with probability at least 1− 8δ:

VT = O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

)
+ ln(T )|X||A|Ĉ

)
.

Proof. The proof follows by employing Corollary 1 to the proof of Theorem 2.

F OMITTED PROOFS WHEN THE CORRUPTION IS not KNOWN

In the following section we provide the omitted proofs of the theoretical guarantees attained by
Algorithm 3. The algorithm is designed to work when the corruption value is not known.
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F.1 LAGRANGIAN FORMULATION OF THE CONSTRAINED OPTIMIZATION PROBLEM

Since Algorithm 3 is based on a Lagrangian formulation of the constrained problem, it is necessary
to show that this approach is well characterized. Precisely, we show that a strong duality-like result
holds even when the Lagrangian function is defined taking the positive violations.

First, we show that strong duality holds with respect to the standard Lagrangian function, even
considering a subset of the Lagrangian multiplier space.
Lemma 2. Given a CMDP with a transition function P , for every reward vector r ∈ [0, 1]|X×A|,
constraint cost matrix G ∈ [0, 1]|X×A|×m, and threshold vector α ∈ [0, L]m, if Program (4) satisfies
Slater’s condition (Condition 1), then the following holds:

min
∥λ∥1∈[0,L/ρ]

max
q∈∆(P )

r⊤q −
∑
i∈[m]

λi
[
G⊤q − α

]
i
= max

q∈∆(P )
min

∥λ∥1∈[0,L/ρ]
r⊤q −

∑
i∈[m]

λi
[
G⊤q − α

]
i

= OPTr,G,α,

where λ ∈ Rm
≥0 is a vector of Lagrangian multipliers and ρ is the feasibility parameter of Program (4).

Proof. The proof follows the one of Theorem 3.3 in (Castiglioni et al., 2022b). First we prove that,
given the Lagrangian function Q(λ, q) := r⊤q −

∑
i∈[m] λi

(
G⊤

i q − αi

)
, it holds:

min
∥λ∥1∈[0,L/ρ]

max
q∈∆(P )

Q(λ, q) = min
λ∈Rm

≥0

max
q∈∆(P )

Q(λ, q),

with λ ∈ Rm
≥0. In fact notice that for all λ ∈ Rm

≥0 such that ∥λ∥1 > L/ρ :

max
q∈∆(P )

Q(λ, q) ≥ Q(λ, q◦) ≥ −
∑
i∈[m]

λi
(
G⊤

i q
◦ − αi

)
≥ ∥λ∥1ρ > L,

where q◦ is defined as q◦ := argmaxq∈∆(P ) mini∈[m]

[
αi −G⊤

i q
]
. Moreover since

min
∥λ∥1∈[0,L/ρ]

max
q∈∆(P )

Q(λ, q) ≤ max
q∈∆(P )

Q(0, q) = max
q∈∆(P )

r⊤q ≤ L,

it holds:

min
λ∈Rm

≥0

max
q∈∆(P )

Q(λ, q) = min

{
min

∥λ∥1∈[0,L/ρ]
max

q∈∆(P )
Q(λ, q), min

∥λ∥1≥L/ρ
max

q∈∆(P )
Q(λ, q)

}
= min

∥λ∥1∈[0,L/ρ]
max

q∈∆(P )
Q(λ, q).

Thus,
OPTr,G,α = max

q∈∆(P )
min

λ∈Rm
≥0

Q(λ, q)

≤ max
q∈∆(P )

min
∥λ∥1≥L/ρ

Q(λ, q)

≤ min
∥λ∥1≥L/ρ

max
q∈∆(P )

Q(λ, q)

= min
λ∈Rm

≥0

max
q∈∆(P )

Q(λ, q)

= OPTr,G,α,

where the second inequality holds by the max-min inequality and the last step holds by the well-known
strong duality result in CMDPs (Altman, 1999). This concludes the proof.

In the following, we extend the previous result for the Lagrangian function which encompasses the
positive violations.
Theorem 4. Given a CMDP with a transition function P , for every reward vector r ∈ [0, 1]|X×A|,
constraint cost matrix G ∈ [0, 1]|X×A|×m, and threshold vector α ∈ [0, L]m, if Program (4) satisfies
Slater’s condition (Condition 1), then the following holds:

max
q∈∆(P )

L(L/ρ, q) = max
q∈∆(P )

r⊤q − L

ρ

∑
i∈[m]

[
G⊤q − α

]+
i
= OPTr,G,α,

where ρ is the feasibility parameter of Program (4).
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Proof. Following the definition of Lagrangian function, we have:

max
q∈∆(P )

L(L/ρ, q) = max
q∈∆(P )

r⊤q − L

ρ

∑
i∈[m]

[
G⊤

i q − αi

]+
≤ max

q∈∆(P )
min

∥λ∥1∈[0,L/ρ]
r⊤q −

∑
i∈[m]

λi[G
⊤
i q − αi]

+

≤ min
∥λ∥1∈[0,L/ρ]

max
q∈∆(P )

r⊤q −
∑
i∈[m]

λi[G
⊤
i q − αi]

+

≤ min
∥λ∥1∈[0,L/ρ]

max
q∈∆(P )

r⊤q −
∑
i∈[m]

λi
(
G⊤

i q − αi

)
= OPTr,G,α

where λ ∈ Rm
≥0 is the Lagrangian vector, the second inequality holds by the max-min inequality and

the last step follows from Lemma 2. Noticing that for all q belonging to
{
q ∈ ∆(P ) : G⊤q ≤ α

}
,

we have L(1/ρ, q) = r⊤q, which implies that maxq∈∆(P ) L(1/ρ, q) ≥ OPTr,G,α, concludes the
proof.

F.2 PRELIMINARY RESULTS

In the following sections we will refer as:

V̂T :=
∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

[
ĝ j⊤
t,i q̂

j
t − αi

]+
, (15)

to the estimated violation attained by the instances of Algorithm 3. Furthermore, we will refer as:

V̂T,j∗ :=
∑
t∈[T ]

I(jt = j∗)

wt,j∗ + γ

∑
i∈[m]

[
ĝ j∗⊤
t,i q̂ j∗

t − αi

]+
, (16)

to the estimated violation attained by the optimal instance j∗, namely, the integer in [M ] such that
the true corruption C ∈ [2j

∗−1, 2j
∗
].

Furthermore, we will refer as qjt to the occupancy measure induced by the policy proposed by Algj

at episode t, with j ∈ [M ], t ∈ [T ], and we will refer as:

ĝjt,i(x, a) :=

∑
τ∈[t] Iτ (x, a)I(jτ = j)gτ,i(x, a)

max{N j
t (x, a), 1}

,

to the estimate of the cost computed for j-th algorithm, where N j
t (x, a) is a counter initialize to 0 in

t = 0, and which increases by one from episode t to episode t+ 1 whenever It(x, a)I(jt = j) = 1.

F.2.1 STABILITY PARAMETERS

In the following sections, we will employ the stability parameters β defined as follows:

• β1 = O
(
L2|X|2|A| ln

(
T |X||A|

δ

))
• β2 = O

(
|X|2|A|2 log(T ) log (log(T )/δ)

)
• β3 = O

(
ln(T )2|X||A|

)
• β4 = O

(
L2|X|2|A| ln

(
mT |X||A|

δ

))
• β5 = O

(
|X|2|A|2 log(T ) log (log(T )/δ)

)
• β6 = O

(
ln(T )2|X||A|

)
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F.2.2 OMITTED PROOFS AND LEMMAS

We start providing some preliminary results on the optimistic estimator employed by Algorithm 3.
Lemma 12. For any δ ∈ (0, 1), given γ ∈ R≥0, with probability at least 1− δ, it holds:

R̂T ≤ O

(
γTLM + L

√
2T ln

(
1

δ

))
,

where R̂T =
∑

t∈[T ]

∑
j∈[M ]

(
wt,j

(
L− E[rt]⊤qjt

)
− wt,jI(jt=j)

wt,j+γ

∑
(xt

k,a
t
k)
(1− rt (xtk, atk))

)
.

Proof. We first observe that by construction:

E

∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
(xt

k,a
t
k)

(
1− rt

(
xtk, a

t
k

)) =
∑
t∈[T ]

∑
j∈[M ]

w2
t,j

wt,j + γ

(
L− E[rt]⊤qjt

)
.

Moreover, still by construction, for all episodes t ∈ [T ], it holds:∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
(xt

k,a
t
k)

(
1− rt

(
xtk, a

t
k

))
≤
∑

j∈[M ]

I(jt = j)
∑

(xt
k,a

t
k)

(
1− rt

(
xtk, a

t
k

))
≤ L.

Thus, employing Azuma-Hoeffding inequality, with probability at least 1− δ, it holds:

∑
t∈[T ]

∑
j∈[M ]

 w2
t,j

wt,j + γ
(L− E[rt]⊤qjt )−

wt,jI(jt = j)

wt,j + γ

∑
(xt

k,a
t
k)

(1− rt(xtk, atk))

 ≤ L√2T ln

(
1

δ

)
.

Finally we notice that:∑
t∈[T ]

∑
j∈[M ]

wt,j

(
L− E[rt]⊤qjt

)
−
∑
t∈[T ]

∑
j∈[M ]

w2
t,j

wt,j + γ

(
L− E[rt]⊤qjt

)
=
∑
t∈[T ]

∑
j∈[M ]

(
wt,j

wt,j + γ

)
γ
(
L− E[rt]⊤qjt

)
≤ γTLM.

Adding and subtracting E
[∑

t∈[T ]

∑
j∈[M ]

wt,jI(jt=j)
wt,j+γ

∑
(xt

k,a
t
k)
(1− rt (xtk, atk))

]
to the quantity of

interest and employing the previous bound concludes the proof.

We provide an additional result on the optimistic estimator employed by Algorithm 3.
Lemma 13. For any δ ∈ (0, 1), given γ ∈ R≥0, with probability at least 1− δ, it holds:∑

t∈[T ]

I(jt = j∗)

wt,j∗ + γ

∑
(xt

k,a
t
k)

(
1− rt

(
xtk, a

t
k

))
−
∑
t∈[T ]

(
L− E[rt]⊤qj

∗

t

)
= O

(
L

γ
ln

(
1

δ

))

Proof. The proof closely follows the idea of Corollary 5. We define the loss ℓ̄t =
∑

(xt
k,a

t
k)
(1 −

rt(x
t
k, a

t
k)), the optimistic loss estimator ℓ̂t :=

I(jt=j∗)
wt,j∗+γ

∑
(xt

k,a
t
k)
(1− rt(xtk, atk)) and the unbiased

estimator ℓ̃t :=
I(jt=j∗)
wt,j∗

∑
(xt

k,a
t
k)
(1− rt(xtk, atk)).

Employing the same argument as Neu (2015) it holds:

ℓ̂t =
I(jt = j∗)

wt,j∗ + γ
ℓ̄t ≤

I(jt = j∗)

wt,j∗ + γℓ̄t/L
ℓ̄t ≤

L

2γ

2γℓ̄t/wt,j∗L

1 + γℓ̄t/wt,j∗L
I(jt = j∗) ≤ L

2γ
ln

(
1 +

2γ

L
ℓ̃t

)
,

since z
1+z/2 ≤ ln(1 + z), z ∈ R+. Employing the previous inequality, it holds:

E

[
exp

(
2γ

L
ℓ̂t

) ∣∣∣∣∣Ft−1

]
≤ E

[
exp

(
2γ

L

L

2γ
ln

(
1 +

2γ

L
ℓ̃t

)) ∣∣∣∣∣Ft−1

]
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= E

[
1 +

2γ

L
ℓ̃t

∣∣∣∣∣Ft−1

]

= 1 +
2γ

L
E

 I(jt = j∗)

wt,j∗

∑
(xt

k,a
t
k)

(1− rt(xtk, atk))

∣∣∣∣∣Ft−1


≤ 1 +

2γ

L

(
L− E[rt]⊤qj

∗

t

)
≤ exp

(
2γ

L

(
L− E[rt]⊤qj

∗

t

))
,

where Ft−1 is the filtration up to episode t. We conclude the proof employing the Markov inequality
as follows:

P

( ∑
t∈[T ]

2γ

L

(
ℓ̂t −

(
L− E[rt]⊤qj

∗

t

))
≥ ϵ

)

≤ E

exp
∑

t∈[T ]

2γ

L

(
ℓ̂t −

(
L− E[rt]⊤qj

∗

t

)) exp(−ϵ)

≤ exp(−ϵ).

Solving δ = exp(−ϵ) for ϵ we obtain:

P

∑
t∈[T ]

(
ℓ̂t −

(
L− E[rt]⊤qj

∗

t

))
≥ L

2γ
ln

(
1

δ

) ≤ δ.
This concludes the proof.

We are now ready to prove the regret bound attained by FTRL with respect to the Lagrangian
underlying problem.
Lemma 14. For any δ ∈ (0, 1) and properly setting the learning rate η such that η ≤

1

2Λm(
√
β1T+β2+β5+

√
β4T)

, Algorithm 3 attains, with probability at least 1− 2δ:

∑
t∈[T ]

E[rt]⊤qj
∗

t −
∑
t∈[T ]

∑
j∈[M ]

wt,jE[rt]⊤qjt +
Lm+ 1

ρ
V̂T −

Lm+ 1

ρ
V̂T,j∗

+

(
m(mL+ 1)

ρ
β5 + β2

)
νT,j∗ +

(√
β1 +

(
m(Lm+ 1)

ρ

)√
β4

)√
TνT,j∗

≤ O
(
M lnT

η
+ η m4L4TM + η M ln(T )m4L2β2

5 + η M ln(T )β2
2

+ ηT (β1 + L2m4β4)M log(T ) + γTLM + L
√
T ln (1/δ) +

L

γ
ln (1/δ)

)
.

Proof. First, we define ℓt,j , for all t ∈ [T ], for all j ∈ [M ] as:

ℓt,j :=
I(jt = j)

wt,j + γ

 ∑
(xt

k,a
t
k)

(1− rt(xtk, atk)) +
Lm+ 1

ρ

∑
i∈[m]

[
ĝ j⊤
t,i q̂

j
t − αi

]+ ,

and bt,j for all t ∈ [T ], for all j ∈ [M ] as:

bt,j :=

((
m(mL+ 1)

ρ
β5 + β2

)
+

(√
β1 +

m(Lm+ 1)

ρ

√
β4

)√
T

)
(νt,j − νt−1,j),

with νt,j = maxτ∈[t]
1

wτ,j
.

First we prove that ηwt,j |ℓt,j − bt,j | ≤ 1/2 for all t ∈ [T ], j ∈ [M ], to apply Lemma 17. It
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holds that ηwt,j |ℓt,j | ≤ η(Lρ+L2m2+Lm)
ρ ≤ 1

2 for all j ∈ [M ], for all t ∈ [T ] as long as η ≤
ρ

2(Lρ+L2m2+Lm) ≤
ρ

2(L2m2+Lm) , which is true if η ≤ ρ
2Lm(Lm+1) . It also holds that

ηwt,j |bt,j | = ηwt,j

((
m(Lm+ 1)

ρ
β5 + β2

)
+

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)√
T

)
(νt,j − νt−1,j)

≤ η
((

m(Lm+ 1)

ρ
β5 + β2

)
+

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)√
T

)(
1− νt−1,j

νt,j

)
≤ η

((
m(Lm+ 1)

ρ
β5 + β2

)
+

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)√
T

)
≤ 1

2
,

if η ≤ 1

2Λm(
√
β1T+β2+β5+

√
β4T)

, where we used the fact that νt,j ̸= νt−1,j ⇐⇒ 1/wt,j = νt,j .

Thus, if the previous conditions on η hold, and notice that the second condition implies the first,
Algorithm 3 attains, by Lemma 17 :∑
t∈[T ]

[ ∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
(xt

k,a
t
k)

(1− rt(xtk, atk))−
I(jt = j∗)

wt,j∗ + γ

∑
(xt

k,a
t
k)

(1− rt(xtk, atk))

]
+
Lm+ 1

ρ
V̂T

≤ M lnT

η
+ 2η

TM(Lρ+ L2m2 + Lm)2

ρ2

+ 2η

(
2

(
m(mL+ 1)

ρ
β5 + β2

)2

M ln (T ) + 2T

(√
β1 +

(
m(Lm+ 1)

ρ

)√
β4

)2

M ln(T )

)

+
Lm+ 1

ρ
V̂T,j∗ +

∑
t∈[T ]

∑
j∈[M ]

wt,jbt,j −
∑
t∈[T ]

bt,j∗ , (17)

where we used the following inequalities:

• First inequality:∑
t∈[T ]

∑
j∈[M ]

w2
t,j(ℓt,j − bt,j)2 ≤ 2

∑
t∈[T ]

∑
j∈[M ]

w2
t,jℓ

2
t,j + 2

∑
t∈[T ]

∑
j∈[M ]

w2
t,jb

2
t,j ,

• Second inequality: ∑
(xt

k,a
t
k)

(1− rt(xtk, atk)) +
Lm+ 1

ρ

∑
i∈[m]

[
ĝ j⊤
t,i q̂

j
t − αi

]+ ≤ (Lρ+ L2m2 + Lm)

ρ
,

• Third inequality: ∑
t∈[T ]

∑
j∈[M ]

w2
t,jℓ

2
t,j ≤

TM(Lρ+ L2m2 + Lm)2

ρ2
,

and that, it holds:∑
t∈[T ]

∑
j∈[M ]

w2
t,jb

2
t,j

=
∑
t∈[T ]

∑
j∈[M ]

(wt,jbt,j)
2

≤
((

m(Lm+ 1)

ρ
β5 + β2

)
+

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)√
T

)2 ∑
j∈[M ]

∑
t∈[T ]

(
1

νt,j
(νt,j − νt−1,j)

)2

(18a)
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≤

(
2

(
m(mL+ 1)

ρ
β5 + β2

)2

+ 2T

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)2
) ∑

j∈[M ]

∑
t∈[T ]

(
1− νt−1,j

νt,j

)2

≤

(
2

(
m(mL+ 1)

ρ
β5 + β2

)2

+ 2T

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)2
) ∑

j∈[M ]

∑
t∈[T ]

(
1− νt−1,j

νt,j

)

≤

(
2

(
m(mL+ 1)

ρ
β5 + β2

)2

+ 2T

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)2
) ∑

j∈[M ]

∑
t∈[T ]

ln

(
νt,j
νt−1,j

)
(18b)

≤

(
2

(
m(mL+ 1)

ρ
β5 + β2

)2

+ 2T

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)2
) ∑

j∈[M ]

ln

∏
t∈[T ]

νt,j
νt−1,j


≤

(
2

(
m(mL+ 1)

ρ
β5 + β2

)2

+ 2T

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)2
) ∑

j∈[M ]

ln

(
νT,j

ν0,j

)

≤

(
2

(
m(mL+ 1)

ρ
β5 + β2

)2

+ 2T

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)2
)
M ln (T ) , (18c)

where Inequality (18a) is true since νt,j − νt−1,j ̸= 0 only when wt,j = 1/νt,j by definition,
Inequality (18b) holds since 1− a ≤ − ln a, and Inequality (18c) holds since by definition νT,j ≤ T
and ν0,j =M . Notice also that, following a similar reasoning, it holds:∑

t∈[T ]

wt,jbt,j −
∑
t∈[T ]

bt,j∗

=

((
m(Lm+ 1)

ρ
β5 + β2

)
+

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)√
T

) ∑
t∈[T ]

∑
j∈[M ]

(
1− νt−1,i

νt,i

)

−
((

m(Lm+ 1)

ρ
β5 + β2

)
+

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)√
T

) ∑
t∈[T ]

(νt,j∗ − νt−1,j∗)

≤ O
(
m2Lβ5M log(T ) + β2M log(T ) + (

√
β1 + Lm2

√
β4)
√
TM log(T )

)
−
((

m(Lm+ 1)

ρ
β5 + β2

)
+

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)√
T

)
νT,j∗

Thus, with probability at least 1− 2δ, it holds:∑
t∈[T ]

E[rt]⊤qj
∗

t −
∑
t∈[T ]

∑
j∈[M ]

wt,jE[rt]⊤qjt +
Lm+ 1

ρ
V̂T

=
∑
t∈[T ]

∑
j∈[M ]

wt,j

(
L− E[rt]⊤qjt

)
−
∑
t∈[T ]

(
L− E[rt]⊤qj

∗

t

)
+
Lm+ 1

ρ
V̂T (19)

≤ O
(
M lnT

η
+ η m4L4TM + η M ln(T )m4L2β2

5 + η M ln(T )β2
2

+ ηT (β1 + L2m4β4)M log(T ) + γTLM + L
√
T ln (1/δ) +

L

γ
ln (1/δ)

)
+
Lm+ 1

ρ
V̂T,j∗

−
(
m(mL+ 1)

ρ
β5 + β2

)
νT,j∗ −

(√
β1 +

(
m(Lm+ 1)

ρ

)√
β4

)√
TνT,j∗, (20)

where Equation (19) holds since
∑

j∈[M ] wt,j = 1, ∀t ∈ [T ], and Inequality (20) holds, with
probability at least 1 − 2δ, by Lemma 12, Lemma 13 and Equation (17). This concludes the
proof.
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In order to provide the desired bound RT and VT for Algorithm 3, it is necessary to study the relation
between the aforementioned performance measures and the terms appearing from the FTRL analysis
in Lemma 14.

Thus, we bound the distance between the incurred violation and the estimated one.
Lemma 15. For any γ ∈ R≥0, given δ ∈ (0, 1), with probability at least 1− 10δ, it holds:

VT − V̂T = O

(
mL|X|

√
|A|T ln

(
mT |X||A|

δ

)
+m ln(T )|X||A|C + γTLM

)
.

Proof. We start defining the quantity ξ̂t,j(x, a) – for all episode t ∈ [T ], for all state-action pairs
(x, a) ∈ X × A, for all instance j ∈ [M ] – as in Theorem 2 but using the true value of adversarial
corruption C, considering that the counter N j

t (x, a) increases on one unit from episode t to t+ 1,
if and only if I(jt = j)It(x, a) = 1, and by applying a Union Bound over all instances j ∈ [M ]
namely,

ξ̂t,j(x, a) := min

{
1,

√
1

2max{N j
t (x, a), 1}

ln

(
2mMT |X||A|

δ

)
+

C

max{N j
t (x, a), 1}

+
C

T

}
,

(21)
By Corollary 2, and applying a Union Bound on instances j ∈ [M ] simultaneously ∀t ∈ [T ],∀i ∈
[m],∀(x, a) ∈ X ×A,∀j ∈ [M ], with probability at least 1− δ, it holds:

ĝjt,i(x, a) + ξ̂t,j(x, a) ≥ g◦i (x, a). (22)

Resorting to the definition of V̂T , we obtain that, with probability at least 1− δ, under Eq̂:

V̂T =
∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

[
ĝjt,i

⊤q̂jt − αi

]+
=
∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

[
(ĝjt,i

⊤qjt + ξ̂ ⊤
t,jq

j
t − αi)− ξ̂ ⊤

t,jq
j
t − ĝ

j
t,i

⊤(qjt − q̂
j
t )
]+

≥
∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

([
(ĝjt,i + ξ̂t,j)

⊤qjt − αi

]+
− ξ̂ ⊤

t,jq
j
t − ĝ

j
t,i

⊤|qjt − q̂
j
t |
)

(23a)

≥
∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

([
g◦⊤i qjt − αi

]+
− ξ̂ ⊤

t,jq
j
t − ∥q

j
t − q̂

j
t ∥1
)

(23b)

≥
∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

([
E[gt,i]⊤qjt − αi

]+
− ξ̂ ⊤

t,jq
j
t

)
−
∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

·
∑
i∈[m]

[
(g◦i − E[gt,i])⊤qjt

]+
−O

(
mL|X|

√
|A|T ln

(
T |X||A|

δ

))
, (23c)

where Inequality (23a) holds since [a− b]+ ≥ [a]+ − b, a ∈ R, b ∈ R≥0, Inequality (23b) follows
from Inequality (22) and since, by definition, ĝjt,i(x, a) ≤ 1,∀(x, a) ∈ X × A,∀i ∈ [m],∀t ∈
[T ],∀j ∈ [M ] and, finally, Inequality (23c) holds under event Eq̂ by Lemma 20 after noticing that∑

t∈[T ]

∑
j∈[M ]

wt,jI(jt=j)
wt,j+γ

∑
i∈[m]∥q

j
t − q̂

j
t ∥1 ≤

∑
t∈[T ]

∑
j∈[M ] I(jt = j)

(
wt,j

wt,j+γ

)∑
i∈[m]∥q

j
t −

q̂jt ∥1 ≤ m
∑

t∈[T ]∥q
jt
t − q̂

jt
t ∥1.

We will bound the previous terms separately.

Lower-bound to
∑

t∈[T ]

∑
j∈[M ]

wt,jI(jt=j)
wt,j+γ

∑
i∈[m]

[
E[gt,i]⊤qjt − αi

]+
.

We bound the term by the Azuma-Hoeffding inequality. Indeed, with probability at least 1 − δ, it
holds: ∑

t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

[
E[gt,i]⊤qjt − αi

]+
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≥

∑
t∈[T ]

∑
j∈[M ]

w2
t,j

wt,j + γ

∑
i∈[m]

[
E[gt,i]⊤qjt − αi

]+−mL√2T ln

(
1

δ

)
,

where we used the following upper-bound to the martingale sequence:∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

[
E[gt,i]⊤qjt − αi

]+
≤
∑

j∈[M ]

I(jt = j)

(
wt,j

wt,j + γ

) ∑
i∈[m]

[
E[gt,i]⊤qjt

]+
≤
∑

j∈[M ]

I(jt = j)
∑
i∈[m]

∥qjt ∥1

≤ m∥qjtt ∥1
≤ mL.

Moreover, we observe the following bounds:∑
t∈[T ]

∑
j∈[M ]

wt,j

∑
i∈[m]

[
E[gt,i]⊤qjt − αi

]+
−
∑
t∈[T ]

∑
j∈[M ]

w2
t,j

wt,j + γ

∑
i∈[m]

[
E[gt,i]⊤qjt − αi

]+
≤ γTLm,

and, ∑
t∈[T ]

∑
j∈[M ]

wt,j

∑
i∈[m]

[
E[gt,i]⊤qjt − αi

]+
≥
∑

j∈[M ]

max
i∈[m]

∑
t∈[T ]

wt,j

[
E[gt,i]⊤qjt − αi

]+
.

Combining the previous results, we obtain, with probability at least 1− δ:∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

[
E[gt,i]⊤qjt − αi

]+

≥
∑

j∈[M ]

max
i∈[m]

∑
t∈[T ]

wt,j

[
E[gt,i]⊤qjt − αi

]+
−

(
γTLm+ Lm

√
2T ln

(
1

δ

))
.

Upper-bound to
∑

t∈[T ]

∑
j∈[M ]

wt,jI(jt=j)
wt,j+γ

∑
i∈[m] ξ̂

⊤
t,jq

j
t .

We bound the term noticing that, with probability at least 1− δ, it holds:∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

ξ̂ ⊤
t,jq

j
t

≤
∑

j∈[M ]

mmax
i∈[m]

∑
t∈[T ]

wt,jI(jt = j)

wt,j + γ
ξ̂ ⊤
t,jq

j
t

≤
∑

j∈[M ]

mmax
i∈[m]

∑
t∈[T ]

∑
x,a

I(jt = j)It(x, a)ξ̂t,j(x, a) + L

√
2T ln

1

δ

= O

(
m

√
|X||A|LT ln

(
mMT |X||A|

δ

)
+m lnT |X||A|C + L

√
T ln

1

δ

)
,

where we employed the Azuma-Hoeffding inequality and where the last step holds following the
proof of Theorem 2.

Upper-bound to
∑

t∈[T ]

∑
j∈[M ]

wt,jI(jt=j)
wt,j+γ

∑
i∈[m]

[
(g◦i − E[gt,i])⊤ qjt

]+
.

We simply bound the quantity of interest as follows:∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

[
(g◦i − E[gt,i])⊤ qjt

]+
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≤ mmax
i∈[m]

∑
t∈[T ]

∑
j∈[M ]

I(jt = j)∥g◦i − E[gt,i]∥1

≤ mC.

Final result. To conclude we employ the Azuma-Hoeffding inequality on the violation definition,
obtaining, with probability at least 1− δ:

VT =
∑

j∈[M ]

max
i∈[m]

∑
t∈[T ]

I(jt = j)
[
E[gt,i]⊤qjt − αi

]+

≤
∑

j∈[M ]

max
i∈[m]

∑
t∈[T ]

wt,j

[
E[gt,i]⊤qjt − αi

]+
+ L

√
2T ln

(
1

δ

)
.

Thus, plugging the previous bounds in Equation (23c), we obtain, with probability at least 1− 10δ:

VT − V̂T

≤
∑

j∈[M ]

max
i∈[m]

∑
t∈[T ]

I(jt = j)
[
E[gt,i]⊤qjt − αi

]+
−
∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

[
ĝjt,i

⊤q̂jt − αi

]+

≤ m
∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ
ξ̂ ⊤
t,jq

j
t +

∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

 1

T

∑
τ∈[T ]

(E[gτ,i]− E[gt,i])⊤qjt

+

+ γTLm+ 2Lm

√
2T

(
1

δ

)
+O

(
mL|X|

√
|A|T ln

(
T |X||A|

δ

))

= O

(
mL|X|

√
|A|T ln

(
mMT |X||A|

δ

)
+m ln(T )|X||A|C + γTLM

)
This concludes the proof.

We proceed bounding the estimated violation attained by the optimal instance j∗.

Lemma 16. For any δ ∈ (0, 1), with probability at least 1− 16δ, it holds:

V̂T,j∗ ≤ O

(
mL|X|

√
|A|T ln

(
mMT |X||A|

δ

)
+mβ6C +m ln(T )|X||A|C + Lm

ln
(
M
δ

)
2γ

)
+m

√
β4TνT,j∗ +mβ5νT,j∗ .

Proof. We start by observing that with, probability at least 1− δ under Eq̂ , the quantity of interest is
bounded as follows:∑

t∈[T ]

I(jt = j∗)

wt,j∗ + γ

∑
i∈[m]

[
ĝj

∗

t,i
⊤q̂j

∗

t − αi

]+
≤
∑
t∈[T ]

I(jt = j∗)

wt,j∗ + γ

∑
i∈[m]

([
ĝj

∗

t,i
⊤(q̂j

∗

t − q
j∗

t ) + ĝj
∗

t,i
⊤qj

∗

t − ξ̂ ⊤
t,j∗q

j∗

t − αi

]+
+ ξ̂ ⊤

t,j∗q
j∗

t

)
(24a)

≤
∑
t∈[T ]

I(jt = j∗)

wt,j∗ + γ

∑
i∈[m]

([
E[gt,i]⊤qj

∗

t − αi

]+
+ ξ̂ ⊤

t,j∗q
j∗

t +

+
[
g◦i

⊤qj
∗

t − E[gt,i]⊤qj
∗

t

]+
+ ∥q̂j

∗

t − q
j∗

t ∥1

)
(24b)

≤
∑
t∈[T ]

I(jt = j∗)

wt,j∗ + γ

∑
i∈[m]

([
E[gt,i]⊤qj

∗

t − αi

]+
+ ξ̂ ⊤

t,j∗q
j∗

t +
[
(g◦i − E[gt,i])⊤ qj

∗

t

]+)
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+O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
, (24c)

where Inequality (24a) holds since [a + b]+ ≤ [a]+ + [b]+, ∀a, b ∈ R and by the definition of
ξ̂t,j∗ (see Equation (21)) which implies that all its elements are positive, Inequality (24b) holds with
probability at least 1− δ by Corollary 2 and by union bound over M , and since that ∥ĝt,i∥∞ ≤ 1 and
Inequality (24c) holds with probability at least 1− 6δ by Lemma 20.

Upper-bound to
∑

t∈[T ]
I(jt=j∗)
wt,j∗+γ

∑
i∈[m]

[
(g◦i − E[gt,i])⊤ qj

∗

t

]+
.

It is immediate to bound the quantity of interest employing the definition of corruption C and by
Lemma 18. Indeed, with probability at least 1− δ:∑

t∈[T ]

I(jt = j∗)

wt,j∗ + γ

∑
i∈[m]

[
(g◦i − E[gt,i])⊤ qj

∗

t

]+
≤ Lm

√
2T ln

(
1

δ

)
+mC.

Upper-bound to
∑

t∈[T ]
I(jt=j∗)
wt,j∗+γ

∑
i∈[m]

[
E[gt,i]⊤qj

∗

t − αi

]+
.

We bound the quantity of interest as follows. With probability at least 1− 11δ, it holds:∑
t∈[T ]

I(jt = j∗)

wt,j∗ + γ

∑
i∈[m]

[
E[gt,i]⊤qj

∗

t − αi

]+
≤ m

√
β4TνT,j∗ +mβ5νT,j∗ + 2mβ6C + Lm

ln
(
M
δ

)
2γ

, (25a)

thank to Corollary 5 and Corollary 6 .

Upper-bound to
∑

t∈[T ]
I(jt=j∗)
wt,j∗+γ

∑
i∈[m] ξ̂

⊤
t,j∗q

j∗

t .

First, notice that, with probability at least 1− δ, it holds:∑
t∈[T ]

I(jt = j∗)

wt,j∗ + γ

∑
i∈[m]

ξ̂ ⊤
t,j∗q

j∗

t −m
∑
t∈[T ]

I(jt = j∗)ξ̂ ⊤
t,j∗q

j∗

t ≤ L

√
2T ln

(
1

δ

)
,

where we employed Lemma 18. Now we observe that, with probability at least 1− δ, it holds:
T∑

t=1

ξ̂ ⊤
t−1,j∗qtI(jt = j∗) =

T∑
t=1

∑
x,a

ξ̂t−1,j∗(x, a)q
j∗

t (x, a)I(jt = j∗)

≤
T∑

t=1

∑
x,a

ξ̂t−1,j∗(x, a)It(x, a)I(jt = j∗) + L

√
2T ln

1

δ

= O

(√
|X||A|LT ln

(
mMT |X||A|

δ

)
+ ln(T )|X||A|C + L

√
T ln

1

δ

)
,

where employed the same steps as in the proof of Theorem 2, considering that the counter increases
if and only if It(x, a)I(jt = j∗) = 1.

Combining the previous bounds concludes the proof.

F.3 MAIN RESULTS

In the following, we provide the main results attained by Algorithm 3 in terms of regret and violations.
We start providing the regret bound and the related proof.
Theorem 6. If Program (4) instantiated with r, G and α satisfies Slater’s condition (Condi-
tion 1), then, given any δ ∈ (0, 1), with probability at least 1 − 30δ, Algorithm 3 attains re-
gret RT = O(m2L2|X|

√
|A|T log (mT |X||A|/δ) log(T )2 + m2L|X|2|A|2 log(T )3 log (log(T )/δ) +

m2L log(T )2|X||A|C).
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Proof. Employing algorithm 3, with probability at least 1− 14δ, it holds:

RT =
∑
t∈[T ]

r⊤q∗ −
∑
t∈[T ]

r⊤qt

=
∑
t∈[T ]

r⊤(q∗ − qj
∗

t ) +
∑
t∈[T ]

r⊤(qj
∗

t − qt)

=
√
β1TνT,j∗ + β2νT,j∗ + 2β3C +

∑
t∈[T ]

r⊤(qj
∗

t − qt) (26a)

≤
√
β1TνT,j∗ + β2νT,j∗ + 2β3C + 2C − Lm+ 1

ρ
V̂T +

Lm+ 1

ρ
V̂T,j∗

− (
√
β1 +

m(Lm+ 1)

ρ

√
β4)
√
TνT,j∗ −

(
β2 +

m(mL+ 1)

ρ
β5

)
νT,j∗

+O
(
M lnT

η
+ η m4L4TM + η M ln(T )m4L2

(
β2
2 + β2

5

)
+ ηT (β1 + L2m4β4)M log(T ) + γTLM + L

√
T ln (1/δ) +

Lm

γ
ln (1/δ)

)
. (26b)

where Inequality (26a) hold with probability at least 1− 11δ by Corollary 7,Inequality (26b) holds
with probability at least 1− 3δ thanks to Lemma 14 and to the following reasoning, which holds with
probability at least 1− δ:∑

t∈[T ]

r⊤(qj∗t − qt) =
∑
t∈[T ]

(r − E[rt])⊤(qj∗t − qt) +
∑
t∈[T ]

E[rt]⊤(qj∗t − qt)

≤
∑
t∈[T ]

∥r − E[rt]∥1 +
∑
t∈[T ]

E[rt]⊤
(
qj∗t − qt

)
(27a)

≤ 2C +
∑
t∈[T ]

E[rt]⊤
(
qj∗t − qt

)
(27b)

≤ 2C +
∑
t∈[T ]

E[rt]⊤qj∗t −
∑
t∈[T ]

∑
j∈[M ]

wt,jE[rt]⊤qjt + L
√
2T ln(1/δ) (27c)

where Inequality (27a) holds since |qt(x, a) − qj
∗

t (x, a)| ≤ 1, ∀(x, a) ∈ X × A, where Inequal-
ity (27b) holds by definition of C, and where Inequality (27c) use Azuma-Hoeffding inequality.

We can apply Lemma 16 to bound V̂T,j∗ with high probability. In fact we observe that with probability
at least 1− 16δ, it holds:
Lm+ 1

ρ
V̂T,j∗

≤ O

(
m2L2|X|

√
|A|T ln

(
mMT |X||A|

δ

)
+m2Lβ6C +m2L ln(T )|X||A|C + L2m2 ln

(
M
δ

)
2γ

)

+
(Lm+ 1)m

ρ
β5νT,j∗ +

m(Lm+ 1)

ρ

√
β4TνT,j∗ .

Finally, combining the previous results and by Union Bound, with probability at least 1 − 30δ, it
holds:

RT +
Lm+ 1

ρ
V̂T

≤ O
(
M lnT

η
+ η m4L4TM + η M ln(T )m4L2(β2

2 + β2
5) + ηT (β1 + L2m4β4)M log(T )

+ γTLM + L
√
T ln (1/δ) +

Lm

γ
ln (1/δ)

+m2L2|X|

√
|A|T ln

(
mMT |X||A|

δ

)
+mLβ6C + β3C +m2L|X||A| ln(T )C

)
(28)
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which concludes the proof after observing that V̂T ≥ 0, by definition, and setting γ =
√

ln(M/δ)
TM ,

η ≤ 1

2Λm(
√
β1T+β2+β5+

√
β4T)

.

We conclude the section providing the violations bound and the related proof.
Theorem 5. If Program (4) instantiated with r, G and α satisfies Slater’s condition (Condi-
tion 1), then, given any δ ∈ (0, 1), with probability at least 1 − 34δ, Algorithm 3 attains viola-
tion VT = O(m2L2|X|

√
|A|T log (mT |X||A|/δ) log(T )2 + m2L|X|2|A|2 log(T )3 log (log(T )/δ) +

m2L log(T )2|X||A|C).

Proof. Starting from Inequality (28), in order to obtain the final violations bound, it is necessary to
find an upper bound for −RT . We proceed as follows,

r⊤q∗ = OPTr,G,α (29a)

= max
q∈∆(P )

r⊤q − L

ρ

∑
i∈[m]

[
G

⊤
i q − αi

]+ (29b)

≥ r⊤qt −
L

ρ

∑
i∈[m]

[
G

⊤
i qt − αi

]+
,

where Equality (29a) holds since q∗ is the feasible occupancy that maximizes the reward vector r

and Equality (29b) holds by Theorem 4 . This implies r⊤qt − r⊤q∗ ≤ L
ρ

∑
i∈[m]

[
G

⊤
i qt − αi

]+
.

Moreover, it holds:∑
t∈[T ]

∑
i∈[m]

[
G

⊤
i qt − αi

]+

≤
∑
t∈[T ]

∑
i∈[m]

[
E[gt,i]⊤qt − αi

]+
+
∑
i∈[m]

[
(Gi − E[gt,i])⊤qt

]+ (30a)

≤
∑
t∈[T ]

∑
i∈[m]

[
E[gt,i]⊤qt − αi

]+
+
∑
i∈[m]

∥∥Gi − E[gt,i]
∥∥
1

 (30b)

≤
∑
t∈[T ]

∑
i∈[m]

[
E[gt,i]⊤qt − αi

]+
+
∑
i∈[m]

(∥∥Gi − g◦i
∥∥
1
+ ∥g◦i − E[gt,i]∥1

)
≤ mVT + 2mC, (30c)

where Inequality (30a) holds since [a + b]+ ≤ [a]+ + [b]+, a ∈ R, b ∈ R, Inequality (30b) holds
since qt(x, a) ≤ 1∀t ∈ [T ],∀(x, a) ∈ X × A, and finally Inequality (30c) holds by definition of
C and VT and noticing that mmaxi∈[m] ai ≥

∑
i∈[m] ai, ∀{ai}i∈[m] ⊂ Rm. Thus, combining the

previous bounds we lower bound the quantity of interest as follows:

RT +
Lm+ 1

ρ
VT =

∑
t∈[T ]

E[rt]⊤ (q∗ − qt) +
Lm+ 1

ρ
VT

=
∑
t∈[T ]

(E[rt]− r)⊤ (q∗ − qt) +
∑
t∈[T ]

r⊤(q∗ − qt) +
Lm+ 1

ρ
VT

≥ −
∑
t∈[T ]

∥E[rt]− r∥1 +
∑
t∈[T ]

r⊤(q∗ − qt) +
Lm+ 1

ρ
VT (31a)

≥ −2C − L

ρ
(mVT + 2mC) +

Lm+ 1

ρ
VT (31b)

= −2C − 2LmC

ρ
+ VT

(
Lm+ 1

ρ
− Lm

ρ

)
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=
1

ρ
VT −

(
2C +

2LmC

ρ

)
, (31c)

where Inequality (31a) holds since v⊤w ≥ −∥v∥1∥w∥∞,∀v, w ∈ Rp, p ∈ N, and where In-

equality (31b) holds since r⊤(q∗ − qt) ≥ −L
ρ

∑
i∈[m]

[
G

⊤
i qt − αi

]+
≥ − (mVT + 2mC) and by

definition of C. Thus, rearranging Inequality (31c), we finally bound the cumulative violation as
follows:

VT ≤ 2ρC + 2LmC + ρRT + (Lm+ 1)VT

= 2ρC + 2LmC + (Lm+ 1)
(
VT − V̂T

)
+ ρ

(
RT +

Lm+ 1

ρ
V̂T

)
≤ O

(
m2L2|X|

√
|A|T ln

(
mMT |X||A|

δ

)
+m2L ln(T )|X||A|C + γmTL2M

)

+O
(
RT +

Lm+ 1

ρ
V̂T

)
,

where the last inequality holds by Equation (28) and by Lemma 15, with probability at least 1− 4δ

under Eq̂. Employing a Union Bound, setting γ =
√

ln(M/δ)
TM and η ≤ 1

2Λm(
√
β1T+β2+β5+

√
β4T)

concludes the proof.

G AUXILIARY LEMMAS FROM EXISTING WORKS

In the following section, we provide useful lemma from existing works.

G.1 AUXILIARY LEMMAS FOR THE FTRL MASTER ALGORITHM

In the following, we provide the optimization bound attained by the FTRL instance employed by
Algorithm 3.

Lemma 17 (Jin et al. (2024)). The FTRL algorithm over a convex subset Ω of the (M−1)-dimensional
simplex ∆M :

wt+1 = argmin
w∈Ω

∑
τ∈[t]

ℓ⊤τ w +
1

η

∑
j∈[M ]

ln

(
1

wj

) ,

ensures for all u ∈ Ω: ∑
t∈[T ]

ℓ⊤t (wt − u) ≤
M lnT

η
+ η

∑
t∈[T ]

∑
j∈[M ]

w2
t,jℓ

2
t,j ,

as long as ηwt,j |ℓt,j | ≤ 1
2 for all t, j.

G.2 AUXILIARY LEMMAS FOR THE OPTIMISTIC LOSS ESTIMATOR

In the following, we provide some results related to the optimistic biased estimator of the loss
function. Notice that, given any loss vector ℓt ∈ [0, 1]M , the following results are provided for
ℓ̂t,j :=

It(j)
wt,j+γt

ℓt,j , where j ∈ [M ], ℓt,j is the j-th component of the loss vector, It(j) is the indicator
functions which is 1 when arm j is played and γt is defined as in the following lemmas.

Lemma 18 (Neu (2015)). Let (γt) be a fixed non-increasing sequence with γt ≥ 0 and let αt,j be
nonnegative Ft−1-measurable random variables satisfying αt,j ≤ 2γt for all t and j. Then, with
probability at least 1− δ, ∑

t∈[T ]

∑
j∈[M ]

αt,j

(
ℓ̂t,j − ℓt,j

)
≤ ln

(
1

δ

)
.
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Corollary 5 (Neu (2015)). Let γt = γ ≥ 0 for all t. With probability at least 1− δ,

∑
t∈[T ]

(
ℓ̂t,j − ℓt,j

)
≤

ln
(
M
δ

)
2γ

,

simultaneously holds for all j ∈ [M ].

G.3 AUXILIARY LEMMAS FOR THE TRANSITIONS ESTIMATION

Next, we introduce confidence sets for the transition function of a CMDP, by exploiting suitable
concentration bounds for estimated transition probabilities. By letting Mt(x, a, x

′) be the total
number of episodes up to t ∈ [T ] in which (x, a) ∈ X ×A is visited and the environment transitions
to state x′ ∈ X , the estimated transition probability at t for (x, a, x′) is:

P t (x
′|x, a) = Mt(x, a, x

′)

max {1, Nt(x, a)}
.

Then, the confidence set for P at episode t ∈ [T ] is defined as:

Pt :=

{
P̂ :

∣∣∣P t(x
′|x, a)− P̂ (x′|x, a)

∣∣∣ ≤ ϵt(x′|x, a),
∀(x, a, x′) ∈ Xk ×A×Xk+1, k ∈ [0...L− 1]

}
,

where ϵt(x′|x, a) is defined as:

ϵt(x
′|x, a) := 2

√
P t (x′|x, a) ln (T |X||A|/δ)
max {1, Nt(x, a)− 1}

+
14 ln (T |X||A|/δ)

3max {1, Nt(x, a)− 1}
,

for some confidence δ ∈ (0, 1).

Given the estimated transition function space Pt, the following result can be proved.

Lemma 19 (Jin et al. (2020)). With probability at least 1− 4δ, we have P ∈ Pt for all t ∈ [T ].

Notice that we refer to the event P ∈ Pt for all t ∈ [T ] as EP .

We underline that the estimated occupancy measure space by Algorithm 2 is the following:

∆(Pt) :=



∀k,
∑

x∈Xk,a∈A,x′∈Xk+1

q (x, a, x′) = 1

∀k, ∀x,
∑

a∈A,x′∈Xk+1

q (x, a, x′) =
∑

x′∈Xk−1,a∈A

q (x′, a, x)

∀k, ∀ (x, a, x′) , q (x, a, x′) ≤
[
P t (x

′|x, a) + ϵt (x
′ | x, a)

] ∑
y∈Xk+1

q(x, a, y)

q (x, a, x′) ≥
[
P t (x

′|x, a)− ϵt (x′ | x, a)
] ∑
y∈Xk+1

q(x, a, y)

q (x, a, x′) ≥ 0

.

To conclude, we restate the result which bounds the cumulative distance between the estimated
occupancy measure and the real one.

Lemma 20 (Jin et al. (2020)). With probability at least 1 − 6δ, for any collection of transition
functions {P x

t }x∈X such that P x
t ∈ Pt, we have, for all x,

∑
t∈[T ]

∑
x∈X,a∈A

∣∣∣qPx
t ,πt(x, a)− qt(x, a)

∣∣∣ ≤ O(L|X|√|A|T ln

(
T |X||A|

δ

))
.
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H AUXILIARY LEMMAS FOR STABILITY

In this section we state the results related to the stability of the arm-algorithms when C is not
known. The procedure is inspired by Jin et al. (2024) and Agarwal et al. (2017), but adapted to the
case of Constrained MDP in high probability. We first give some important definitions. In these
definitions we will use Ct as the value of adversarial corruption at episode t ∈ [T ], where Ct is
defined as Ct := max{CG

t , C
r
t }, which meets the requirement of upper bounding the adversarial

corruption at each considered episode. In addition it holds that
∑

t∈[T ] Ct ≤ Cr+CG or equivalently
C ≤

∑
t∈[T ] Ct ≤ 2C, which does not influence the order of the analysis.

Definition 2. A CMDP algorithm is corruption-robust if it takes θ (a guess on the corruption amount)
as input, and achieves for any random stopping time t′ ≤ T , whenever

∑
t∈[t′] Ct < θ:∑

t∈[t′]

r⊤(q∗ − qt) ≤
√
β1t′ + (β2 + β3θ) I(t′ ≥ 1),

and
max
i∈[m]

∑
t∈[t′]

[
g⊤t,iqt − αi

]+ ≤√β4t′ + (β5 + β6θ) I(t′ ≥ 1).

Notice that Algorithm 2 is corruption-robust after applying a doubling trick to make it work for any
stopping time, with probability at least 1− 9δ thank to Theorem 7 and Theorem 9 Furthermore, we
introduce the notion of α-stability. An algorithm is considered to be α-stable, if its regret under
condition imposed by Algorithm 3 is of order ναT · Õ (RT ), where RT is the upper bound on the
regret attained by the algorithm if it receives feedback at each episode. In particular, we are interested
in the 1-stability.
Definition 3. An algorithm is 1-stable if, under the condition imposed by Algorithm 3, it holds:∑

t∈[T ]

r⊤(q∗ − qt) ≤
√
β1Tνj,T + β2νj,T + β3C,

and
max
i∈[m]

∑
t∈[T ]

[
g⊤t,iqt − αi

]+ ≤√β4Tνj,T + β5νj,T + β6C.

We can use the procedure defined by Algorithm 4 - and originally proposed by Jin et al. (2024)
- to transform a generic corruption robust algorithm to a 1-stable algorithm. Differently from Jin
et al. (2024), in our setting, we use the natural symmetry between regret and positive cumulative
constraints violation to stabilize both the regret and the positive cumulative constraints violation.
We have a different bound for Ct (value of adversarial corruption at episode t): indeed, Ct ≤
max{∥E[rt]− r◦∥1,maxi∈[m]∥E[gt,i]− g◦i ∥1} is bounded by |X||A|. Finally, we are interested in
obtaining results that hold in high probability rather than in expectation. To do so, we focus on
1-stability guarantee rather than 1/2-stability as in Jin et al. (2024) since removing the expectation
prevents us from achieving the result above with lower coefficients. We can state the following result.

Lemma 21. Given an algorithm which is corruption robust according to Definition 2 with pa-
rameters (β1, β2, β3, β4, β5, β6) and β1 ≥ O(L2 log(T/δ)), β4 ≥ O(L2 log(T/δ)), with probability
at least 1 − p with p ∈ (0, 1), then, it is possible convert it to an 1-stable algorithm with prob-
ability at least 1 − p − 2δ according to Definition 3 with parameters (β′

1, β
′
2, β

′
3, β

′
4, β

′
5, β

′
6) as

β′
1 = O (β1) , β

′
2 = O (β2 + β3|X||A| log(log(T )/δ)) , β′

3 = O (β3 log(T )) , β
′
4 = O (β4) , β

′
5 =

O (β5 + β6|X||A| log(log(T )/δ)) , β′
6 = O (β6 log(T )), employing Algorithm 4.

Proof. Suppose Algorithm 4 is initialized with the true value of adversarial corruption C.
We will first prove the result for the regret. We will start by considering a generic in-
stance algorithm k ∈ [M ]. Define the quantity dt,k = I(wt ∈ (2−k−1, 2−k]) and ht,k =
I(Instance k receives feedback at episode t). We observe that with probability at least 1 −(
p+ P

(⋃
k∈[log(T )]{

∑
t∈[T ] Ctdt,kht,k > θk}

))
it holds:∑

t∈[T ]

r⊤(q∗ − qt)dt,kht,k ≤
√
β1
∑
t∈[T ]

dt,kht,k + (β2 + β3θ)max
t∈[T ]

dt,k,
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by the corruption-robust property of instance k. We study now the quantity
P
(⋃

k∈[M ]{
∑

t∈[T ] Ctdt,kht,k > θk}
)

. Notice that E[ht,k|dt,k] = 2−k−1dt,k, and since
dt,k is an indicator function then E[ht,k|dt,k]dt,k = E[ht,k|dt,k]. In addition, since

∑
t∈[T ] Ct ≤ 2C,

it holds: ∑
t∈[T ]

CtE[ht,k|dt,k]dt,k = 2−k−1
∑
t∈[T ]

Ctdt,k ≤ 2−kC,

and with probability at least 1− δ/log(T ) noticing that M = log(T ):∑
t∈[T ]

Ctdt,kht,k −
∑
t∈[T ]

CtE[ht,k|dt,k]dt,k

≤ 2

√√√√∑
t∈[T ]

C2
t dt,kE[ht,k|dt,k] log

(
log(T )

δ

)
+ |X||A| log

(
log(T )

δ

)
(32a)

≤ 2

√√√√|X||A|∑
t∈[T ]

Ctdt,kE[ht,k|dt,k] log
(
log(T )

δ

)
+ |X||A| log

(
log(T )

δ

)
(32b)

≤
∑
t∈[T ]

CtE[ht,k|dt,k]dt,k + 2|X||A| log
(
log(T )

δ

)
, (32c)

where Inequality (32a) holds with probability at least 1− δ/log(T ) by Freedman inequality, Inequality
(32b) holds since Ct ≤ |X||A|, and Inequality (32c) holds by AM-GM inequality. Therefore, it holds
simultaneously for all k ∈ [M ]:∑

t∈[T ]

Ctdt,kht,k ≤ 2
∑
t∈[T ]

CtE[ht,k|dt,k]dt,k + 2|X||A| log
(
log(T )

δ

)

≤ 2−k+1C + 2|X||A| log
(
log(T )

δ

)
= θk,

with probability at least 1− δ, so P
(⋃

k∈[M ]{
∑

t∈[T ] Ctdt,kht,k > θk}
)
≤ δ. Moreover, notice that

with probability at least 1−p−2δ thanks to the definition of corruption robust and Azuma-Hoeffding
inequality, it holds simultaneously for all k:∑

t∈[T ]

r⊤(q∗ − qt)dt,k

=
1

2−k−1

∑
t∈[T ]

r⊤(q∗ − qt)2−k−1dt,k

=
1

2−k−1

∑
t∈[T ]

r⊤(q∗ − qt)dt,kE[ht,k | dt,k]

=
1

2−k−1

∑
t∈[T ]

r⊤(q∗ − qt)dt,k (E[ht,k | dt,k]− ht,k) +
∑
t∈[T ]

r⊤(q∗ − qt)dt,kht,k


≤ 1

2−k−1

L√√√√2 ln

(
log(T )

δ

) ∑
t∈[T ]

dt,k +

√
β1
∑
t∈[T ]

dt,k + (β2 + β3θk)max
t∈[T ]

dt,k


≤ O

(
1

2−k−1

((√
β1 + L

√
log

(
T

δ

))√
T max

t∈[T ]
dt,k + (β2 + β3θ)max

t∈[T ]
dt,k

))
,

noticing that E [dt,k (E [ht,k|dt,k]− ht,k)] = E [ht,k|dt,k] − E[ht,k]dt,k = E [ht,k|dt,k] −
E [ht,k|dt,k] = 0, since the expectation is taken w.r.t. the randomization of Algorithm 4 and the
distribution generated given the external probability of receiving feedback wt.
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To conclude with probability at least 1− p− 2δ:∑
t∈[T ]

r⊤(q∗ − qt)I
(
wt ≥

1

T

)
≤
∑

k∈[M ]

∑
t∈[T ]

r⊤(q∗ − qt)dt,k

≤ O
(√

β1T max
t∈[T ]

1

wt
+ (β2 + β3|X||A| log(log(T )/δ))max

t∈[T ]

1

wt
+ β3 log(T )C

)
≤ O

((√
β′
1T + β′

2

)
νT + β′

3C
)
,

with
√
β1 ≥ O(L

√
log(T/δ)). Notice that the analogous reasoning can be applied to the positive

cumulative constraints violation with parameters β4, β5, β6.

Algorithm 4 Adapted STABILIZE Jin et al. (2024)

Require: C, δ ∈ (0, 1)
1: InitializeM = log(T ) instance of Algorithm 2, each instance k ∈ [M ] initialized with corruption

parameter:

θk := 2−k+1C + 2|X||A| log
(
log(T )

δ

)
2: for t ∈ [T ] do
3: Observe wt, probability of receiving feedback.
4: if wt >

1
T then

5: Let kt be such that wt ∈ (2−kt−1, 2−kt ]
6: Choose πt as policy proposed by instance kt
7: If the algorithm receives feedback send it to instance kt with probability 2−kt−1

wt

8: if wt ≤ 1
T then

9: Propose random policy πt

Corollary 6. Being j∗ such that C ∈ (2j
∗−1, 2j

∗
] then with probability at least 1− 11δ it holds:

max
i∈[m]

∑
t∈[T ]

[
E[gt,i]⊤qj

∗

t − αi

]+
≤
√
β4TνT,j∗ + β5νT,j∗ + 2β6C,

with
√
β4 = O

(
L|X|

√
|A| ln(mT |X||A|/δ)

)
, β5 = O

(
|X|2|A|2 log(T ) log (log(T )/δ)

)
and β6 =

O
(
ln(T )2|X||A|

)
.

Corollary 7. Being j∗ such that C ∈ (2j
∗−1, 2j

∗
] then with probability at least 1− 11δ it holds:∑

t∈[T ]

r⊤(q∗ − qj
∗

t ) ≤
√
β1TνT,j∗ + β2νT,j∗ + 2β3C,

where
√
β1 = O

(
L|X|

√
|A| ln(T |X||A|/δ)

)
, β2 = O

(
|X|2|A|2 log(T ) log (log(T )/δ)

)
and β3 =

O
(
ln(T )2|X||A|

)
.
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