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Abstract
Training compute thresholds are increasingly be-
ing used as a tool to regulate AI model develop-
ment and deployment. We therefore forecast the
number of models exceeding training compute
thresholds in the coming years (2025-28), such
as the 1025 FLOP threshold in the EU AI Act
and the 1026 FLOP threshold in the US AI Dif-
fusion Framework. We estimate that by the end
of 2028, there will be between 103-306 founda-
tion models exceeding a 1025 FLOP threshold and
45-148 models exceeding the 1026 FLOP thresh-
old (90% CIs) with median predictions of 165
and 81 models, respectively. We also find that
the number of models exceeding these thresholds
grows superlinearly, but subexponentially. Com-
pute thresholds that are defined with respect to
the largest training run to date (for example, such
that all models within one order of magnitude of
the largest training run to date are captured by the
threshold) see a more stable trend, with a median
forecast of 14-16 models being captured by this
definition annually from 2025-2028.

1. Introduction
Recent years in machine learning have seen the rise of
foundation models – AI systems that exhibit powerful and
general-purpose capabilities. Governments across the world
are starting to impose requirements on the development
and deployment of the most capable such systems, such
as the GPT o-series (OpenAI, 2024). For example, the
EU AI Act (European Union, 2023) and US AI Diffusion
Framework (Federal Register, 2025) both subject models ex-
ceeding specific training compute thresholds (1025 and 1026

FLOP respectively) to additional requirements intended to
mitigate risks and limit proliferation. However, it is well
established that the amount of compute used to train foun-
dation models has been increasing extraordinarily quickly,
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Figure 1. Historical data (2017-2023; blue) and a sample of our
model’s predictions (2024-2028; red) for the number of AI models
exceeding 1025 and 1026 FLOP.

with recent estimates of 4-5x per year growth rates over the
past decade (Sevilla, Jaime and Roldán, Edu, 2024). These
trends have important implications for compute-based gov-
ernance frameworks. In April 2025, estimates suggest that
there are 2 publicly available models trained using more
than 1026 FLOP and approximately 30 publicly available
models trained using more than 1025 FLOP (EpochAI), yet
if current trends continue and governments fail to take this
growth into account, they may be left with insufficient ca-
pacity to implement their regulations and/or place regulatory
burdens on an excessive number of actors.

With this in mind, we attempt to estimate the number of
released models that will exceed various compute thresholds
over the coming years. Extrapolating from current trends,
we conclude that by the end of 2028 there could be between
103-306 models exceeding the 1025 FLOP threshold (90%
confidence interval) with a median estimate of 165, and
45-148 models exceeding the 1026 FLOP threshold (90%
confidence interval), with a median estimate of 81. We also
study “frontier-connected thresholds” – thresholds that are
defined relative to the largest training run at any one point
in time rather than based on the absolute amount of train-
ing compute used – and estimate that in the coming years
there will be between 6-35 models released within 1 order
of magnitude (OOM) of the largest training run that has
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taken place (90% CI) with a stable median of 14-16 mod-
els captured by this definition. However, our analysis has
limitations resulting from selection effects in the database
that we extrapolate trends from, as well as uncertainty in
key parameters that influence the projections.

Importantly, our estimates do not straightforwardly trans-
late into the number of models in scope of the EU AI Act
or the AI Diffusion Framework. Our numbers may pro-
vide an overestimate in that neither the EU or US would
regulate models trained and made available in other juris-
dictions (e.g: China). The EU AI Act specifically targets
general purpose AI, potentially excluding image and video
generation models; additionally, these regulations could
disincentivize companies from releasing models above the
thresholds. Conversely, we may underestimate affected
models since regulations could extend to companies that
simply modify models (Williams et al., 2025).

2. Method
Our aim is to forecast the number of models that will exceed
different training compute thresholds in the coming years.
To do this, we model scenarios for the distribution of AI
model releases over training compute, and count models ex-
ceeding each threshold. We use Epoch AI’s Notable Models
databases (Epoch AI, 2025b) as the main dataset for our
analysis, containing approximately 450 machine learning
models with estimated training compute. To capture recent
trends we analyse data from 2017-2023 (296 datapoints).
Models included in this database are selected according to
five ”notability criteria” (see section A), which induces a
selection effect that is discussed further in section 4.

To forecast the distribution of AI models over training com-
pute, we:

1. Project total compute usage for AI workloads (training,
inference, and other uses) with a growth rate of 4.1x
per year.

2. Allocate this compute between model training and
other uses (e.g: inference, compute for experiments),
with 40% toward training in 2024-2026 and 30% in
2027-2028.

3. Allocate training compute across models of different
sizes according to historical trends (Table 1).

4. Randomly sample models from each size category until
the training compute allocation for that category is met.

In the first stage of our predictive model1 we project the
total compute usage for “AI workloads” at a rate of 4.1x per
year. The term “AI workloads” is used to refer to compute
used for model training, model inference, research experi-

1We often refer to the model constructed to produce these fore-
casts as the “predictive model”, to distinguish it from AI models.

ments, and other uses. The 4.1x growth rate is a weighted
average of two compute forecasts; the first comes from a
recent analysis (Dean, 2024) estimating that compute for
AI workloads grows at 3.4x per year, and the second comes
from a 6.3x historical growth rate in the training compute
stock estimated from the Notable Models database2. We
give the first forecast three times as much weight as the
second given the more detailed analysis that was used to
arrive at this figure, but these weightings are subjective and
Appendix B gives results for other reasonable choices of
growth rate weighting.

The second stage of our model involves allocating the com-
pute stock for AI workloads to be allocated to model train-
ing, inference, and other uses. Following (Dean, 2024), we
use a 40% allocation towards model training for the years
2025 and 2026, and a 30% figure for 2027. (Dean, 2024)
allocates 20% of compute towards model training by the end
of 2027 (and presumably 2028) but we find their forecast to
be aggressive with respect to the share of compute allocated
to inference, so we instead maintain a 30% training compute
share for 2028.

Next, the training compute stock is allocated across models
of different size. An example of how this is done when retro-
dicting the model to 2023 is shown in Table 1. We define
model size (in training compute) with respect to the largest
training run in a given year, therefore, our predictive model
must first make assumptions about the largest training run;
this is done by allocating a fraction of the total training com-
pute stock to the largest run. This parameter is called the
“largest model share” (or LMS) in our model, and historical
values of the LMS suggest it is uniformly distributed over
the range [0.05, 0.50] (Appendix C). However, a qualitative
interpretation of the LMS parameter is the degree of con-
centration in the market of developers training AI models
at the largest scale, and with several relatively new entrants
(x.AI, Inflection, Mistral) joining established actors (Ope-
nAI, Google DeepMind, Anthropic) in training large-scale
models (Epoch AI, 2025a), we expect the number of actors
training “frontier AI models” (Anderljung et al., 2023) to
grow. To quantitatively account for this, we sample the LMS
parameter log-normally from the bounds [0.05, 0.50] when
projecting the model forward.

The fraction of compute allocated to each model size is con-
trolled by a model parameter referred to as the “allocation
gradient” and denoted as k. The parameter is named as
such because it is the gradient of a linear fit to the cumula-
tive distribution function of training compute spending as a
function of model size (normalised by the largest training

2Which can be generalised to a 6.3x growth rate in the compute
stock used for AI workloads under the assumption that allocation
of compute between training and other uses has remained roughly
constant in recent years.
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run in a given year) - Appendix D shows k for the years
2020-2023 and further discusses it’s quantitative interpreta-
tion. Varying the allocation gradient amounts to altering the
distribution of compute amongst the largest models relative
to smaller models; this is shown in Table 10. Historical
values of the allocation gradient (Appendix D) indicate that
k should be sampled from the uniformly from the range
[0.9, 1.1] for our projections. However, it should be noted
that sampling k from a lower range than those found in the
Notable Models database could serve as a mechanism to
correct the notability selection effect previously discussed.

Table 1. Allocating 1.35 × 1026 FLOP of training compute
amongst models in 2023. Largest training run: Gemini Ultra @
5× 1025 FLOP. Models that use up to 3 OOMs training compute
less than Gemini Ultra are not shown, hence fractional allocations
do not sum exactly to 1.0.
Model size Within 2-3 Within 1-2 Within 1
relative to OOM OOM OOM
Gemini Ultra

Model size 5× 1022– 5× 1023– 5× 1024–
(absolute) 5× 1023 5× 1024 5× 1025

Fractional 0.98% 9.4% 90%
allocation

Compute 1.32× 1024 1.27× 1025 1.22× 1026

allocation (FLOP)

Table 2. Compute allocations (%) for various values of the alloca-
tion gradient (k). Table shows percentages for model size ranges
relative to the largest training run. For example, with k=1.1, 92%
of the training compute stock is allocated to models within an
OOM of the largest model, with 7.3% allocated to models within
1-2 OOMs of the largest run, etc. Models smaller than 1× 10−3

of largest training run not shown (hence rows do not sum exactly
to one.)

k Within 2-3
OOM

Within 1-2
OOM

Within 1
OOM

0.75 2.6 15 82

0.9 1.4 11 87

1.0 0.9 9 90

1.1 0.58 7.3 92

1.25 0.3 5.3 94

Finally, models are randomly sampled from each size bin
until the compute allocation for that bin is met. The model
is run 1000 times to generate the confidence intervals shown
in the next section.

3. Results and verification
Results for the number of models exceeding the absolute
compute thresholds are show in Table 3. A median of 165
models exceeding the 1025 FLOP threshold in the EU AI
Act is predicted, with a 90% confidence interval of 103-306
models. For the 1026 FLOP threshold in the AI Diffusion
Framework a median of 81 models is predicted, with a 90%
CI of 45-148 models.

Table 4 shows growth trends for the number of models
exceeding the 1025 FLOP threshold. Superlinear growth is
seen, with more models released that exceed the threshold
in a given year than the year before, however this growth is
subexponential. The implications of these growth rates are
discussed in Section 4. These trends hold for all absolute
compute thresholds.

To validate the model, we retrodict it for 1023, 1024 and
1025 FLOP thresholds for which there exists data from 2020-
2023. This is shown in Table 5. All historical datapoints
are captured by the 90% confidence intervals, providing
considerable evidence that the predicted intervals of Table 3
will capture the number of models above each threshold.

Finally, trends in compute thresholds that are defined with
respect to the largest training run are also studied. Specif-
ically, how many models are captured by a threshold that
includes all models with training compute within one order
of magnitude of the largest training run to date? The pre-
dictions of our model for this threshold, and variations, are
shown in Table 6. More stable medians can be observed
with the median number of models that fall within 1 OOM of
the largest training run fixed at 14-16 from 2025-28, though
the 90% confidence intervals are wide.

4. Limitations and Discussion
The key limitation of our analysis results from the selection
effect applied to models in the Notable Models database.
Models with larger training compute are more likely to
satisfy the notability criteria, which leads to our median
estimates being biased towards underestimating the true
number of models that will exceed the compute thresholds.
The predictive model presented in this paper does offer a
potential correction - by sampling the allocation gradient
(k) from a lower range than is seen in the Notable Models
database, more compute can be allocated to smaller models
relative to their larger counterparts, compensating for the
over-representation of large models in the database. Model
predictions when k is varied as such are shown in Appendix
E. However, this is not done in the results presented in
Section 3 as it is unclear how exactly to adjust k to com-
pensate for the selection effect. The analysis is also limited
by the limited historical data with which to calibrate key
parameters of the model, such as the largest model share

3



Trends in Frontier AI Model Count: A Forecast to 2028

Table 3. Results for absolute thresholds. The table presents 90% prediction intervals [5th, 50th, 95th percentile] for the number of models
exceeding each compute threshold. Results are cumulative, showing estimates for the number of models released by the end of each year.

Threshold
(FLOP)

2025 2026 2027 2028

> 1025 [32, 45, 64] [51, 77, 119] [76, 117, 201] [103, 165, 306]
> 1026 [3, 7, 11] [12, 24, 38] [27, 47, 81] [45, 81, 148]
> 1027 [0, 0, 0] [0, 2, 5] [1, 10, 20] [9, 27, 56]
> 1028 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 3, 8]
> 1029 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]

Table 4. Projection of models exceeding 1025 FLOP threshold by year, showing predicted ranges [5th, 50th, 95th percentile], yearly
differences in median values, and year-on-year median growth rates.

2025 2026 2027 2028

> 1025 [32, 45, 64] [51, 77, 119] [76, 117, 201] [103, 165, 306]
Median Differences 22 32 40 48
Median Multipliers 1.96 1.71 1.52 1.41

Table 5. Absolute compute thresholds retrodiction. Each cell is formatted as O (5, 50, 95) where O, 5, 50, 95 are the historically observed
values, 5th percentile, 50th percentile (median) and 95th percentile prediction.

Threshold
(FLOP)

2020 2021 2022 2023

> 1023 2 (0,1,4) 9 (8,13,27) 29 (19,29,60) 54 (36,54,128)
> 1024 0 (0,0,0) 3 (0,2,3) 8 (3,8,10) 19 (13,22,44)
> 1025 0 (0,0,0) 0 (0,0,0) 0 (0,0,0) 4 (0,4,5)

Table 6. Frontier-connected thresholds. Results show 90% prediction intervals [5th, 50th, 95th percentile] for models within specified
distances of the frontier model. Results for each year represent new models released in that year only.

Distance from
frontier model

2025 2026 2027 2028

Within 0.5 OOM [3, 6, 14] [2, 7, 16] [3, 8, 15] [3, 8, 17]
Within 1 OOM [7, 14, 25] [6, 15, 29] [7, 16, 31] [7, 15, 35]
Within 1.5 OOM [12, 20, 39] [11, 22, 46] [11, 24, 50] [11, 23, 55]

(LMS) and allocation gradient (k). The model is fit with
data from 2017-2023, providing only six datapoints to set
these parameters.

What are the implications of these results on compute-based
regulatory thresholds? The superlinear growth in the number
of models captured by absolute compute thresholds could
strain regulatory capacity and/or impose excessive burdens
on AI developers. Policymakers have two main options:
1) Make regulatory requirements more proportionate for
lower-risk models while expanding enforcement capacity,
or (2) update the thresholds over time to exclude certain
models from the requirements. Both the EU AI Office and
US Bureau of Industry and Security can adjust the respec-
tive frameworks’ thresholds. Frontier-connected thresholds
show more stable annual model counts, offering an alterna-
tive to absolute compute thresholds as a first pass filter for

regulatory requirements.
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A. Notable Models Database
This appendix presents some basic information about the notable models database, the selection criteria that are used to
populate the database, and the distribution of models in the database over training compute.

The Notable Models database, curated by EpochAI, contains over “over 900 models that were state of the art, highly cited,
or otherwise historically notable.” Models are considered notable if they satisfy any of the five criteria below:

1. highly cited (over 1000 citations);
2. large training cost (over $1,000,000, measured in 2023 USD);
3. significant use (over one million monthly active users);
4. state of the art performance (typically on a recognised ML benchmark);
5. indisputable historical significance.

Over 400 of these entries have training compute estimates.

Figures 2 and 3 show the distribution of notable models over training compute. Both plots show a deviation of 2024 data
from previous years suggesting the data to be incomplete (this was also verified by a member of staff at EpochAI). Therefore
we exclude 2024 data when fitting our model. We also do not use data of models released before 2017, as this corresponds
to the era prior to the Transformer architecture that is at the heart of most frontier AI models today.

Figure 2. Historical distribution of models over training compute - scatter plot.

Figure 3. Historical distribution of models over training compute - KDEs

6

https://epoch.ai/data/notable-ai-models
https://epoch.ai/
https://epoch.ai/data/notable-ai-models-documentation#estimation


Trends in Frontier AI Model Count: A Forecast to 2028

B. Results for alternate growth rate weightings
Our baseline results use a 4.1x growth rate in the compute stock used for “AI workloads”. This figure is a weighted average
between the 3.4x figure of (Dean, 2024) and a 6.3x figure derived from the Notable Models database, with a weighting of
3:1 between these forecasts. This is a subjective choice; therefore, we present results for alternate growth rate weightings in
this appendix.

Table 7. Results for absolute thresholds with growth weighting of (0.1,0.9) between historical growth rate (6.3x) and forecasted growth
rate (3.4x).

Threshold
(FLOP)

2025 2026 2027 2028

> 1025 [27, 41, 57] [45, 71, 109] [63, 106, 179] [88, 150, 268]

> 1026 [0, 5, 8] [8, 18, 31] [18, 36, 68] [34, 64, 123]

> 1027 [0, 0, 0] [0, 0, 3] [0, 4, 13] [2, 15, 37]

> 1028 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 4]

> 1029 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]

Table 8. Results for absolute thresholds with growth weighting of (0.33,0.66) between historical growth rate (6.3x) and forecasted growth
rate (3.4x).

Threshold
(FLOP)

2025 2026 2027 2028

> 1025 [33, 48, 69] [54, 84, 128] [78, 129, 207] [106, 178, 305]

> 1026 [5, 8, 11] [16, 26, 38] [30, 53, 87] [50, 87, 152]

> 1027 [0, 0, 0] [0, 2, 5] [3, 11, 25] [13, 30, 57]

> 1028 [0, 0, 0] [0, 0, 0] [0, 0, 1] [0, 4, 9]

> 1029 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]

Table 9. Results for absolute thresholds with growth weighting of (0.5,0.5) between historical growth rate (6.3x) and forecasted growth
rate (3.4x).

Threshold
(FLOP)

2025 2026 2027 2028

> 1025 [37, 52, 78] [59, 90, 146] [83, 136, 239] [115, 195, 363]

> 1026 [6, 9, 14] [19, 31, 48] [34, 59, 107] [58, 101, 189]

> 1027 [0, 0, 0] [0, 4, 7] [7, 17, 30] [21, 41, 77]

> 1028 [0, 0, 0] [0, 0, 0] [0, 0, 2] [0, 8, 17]

> 1029 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]
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C. Further discussion of largest model share parameter (LMS)

Figure 4. Left: Historical values of total training compute spending and largest training run. Right: Largest model share (LMS) derived
from left-hand side plot.

Historical values of the LMS parameter and the total compute and the largest model each year that the LMS is derived from.
The AlphaGo family of models have been removed from the dataset on the basis of being outliers, as done in similar analyses
(Sevilla et al., 2022). We fit the model on data from 2017-2023 and also discount the LMS for 2018 as it appears to be an
outlier. Our predictions sample the LMS uniformly from the range [0.05,0.5]. The upper bound is chosen to accommodate
GPT-3 davinci accounting for ∼46% of training compute in 2020. The lower bound is chosen with the 2022 value of 0.15 in
mind, however we incorporate a wide range underneath this value due to an increased sensitivity of the model’s prediction to
small values of the LMS parameter.

Figure 5. Lognormal and uniform sampling distributions of the LMS sampling parameter. The predictive model samples LMS values
lognormally to model an increasing number of actors training frontier models.
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D. Further discussion of allocation gradient parameter (k)

Figure 6. Linear fits to the cumulative distribution of annual training compute spending as a function of normalised model size (where
models are normalised by the largest training run in a given year). These plots determine how training compute is allocated to models of
various size, hence they are referred to as “allocation plots”. Both axes are log-scaled.

Figure 6 shows (on a log-log scale) the cumulative distribution function of training compute spending as a function of
normalised model size, alongside linear fits. To illustrate what these plots indicate, consider a datapoint from 2023 - we see
that 1× 10−4 of total compute spending was accounted for by models that were trained with up to 1× 10−4 the compute of
the largest training run that year (Gemini Ultra, 5× 1025 FLOP). There is a consistent linear relationship between these two
plots across the years 2017-2023 (though 2017-2017 data is not shown), hence this is a trend we assume remains constant in
the coming years. The gradient of these plots is the allocation gradient (k) that is introduced in Section 2 - historical values
of tis parameter are plotted in Figure 7. The mathematical details and interpretation of k are discussed in the following
subsection.

D.1. Interpretation of linear fits to allocation plots

This subsection discusses the constraints on the linear fit to the compute allocation trends, and the interpretation of the
allocation gradient parameter.

Observing historical data we see that the relationship between normalized model size (normalized by the largest model
trained that year) - m̃ and the fraction of compute spent on models of size m̃ or less (the cumulative distribution function,
denoted by A(m̃)) is linear in log-space. Mathematically:

log(A(m̃)) = k · log(m̃) + b (1)

9
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Figure 7. Historical values of the allocation gradient parameter k.

Let that largest model trained in a given year be mmax, then m̃max = 1. Models of size mmax or smaller (i.e., all models) take
up all compute spending that year, therefore A(m̃max = 1) = 1. Enforcing this constraint on equation 1 means that b = 0 -
and so equation (1) reduces to A(m̃) = m̃k.

The parameter k determines how compute is allocated across models of different scales. To see this, let us first denote
a(m1,m2) as the amount of compute that is allocated to models in the range [m1,m2). Consider also three sizes
of models - m∗, 10m∗, and 100m∗. The compute allocated to models in the range [m∗, 10m∗] is a(m∗, 10m∗) =
A(10m∗) − A(m∗) = (10k − 1)mk using equation (1). The compute allocated to models in the range [10m∗, 100m∗)
is a(10m∗, 100m∗) = A(100m∗)− A(10m∗) = 10k(10k − 1)mk after some simplification. Therefore, the relationship
between a(m∗, 10m∗) and a(10m∗, 100m∗) is simply:

a(10m∗, 100m∗) = 10k · a(m∗, 10m∗) (2)

In other words, scaling up model size by a factor of 10 leads to a factor of 10k increase in compute allocated to models of
this size. k = 1 means that these larger models get 10 times as much compute as their smaller counterparts. k > 1 means
that they get a factor greater than 10, and k < 1 leads to a factor less than 10.

10
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E. Results under alternate distributions of allocation gradient (k)

Table 10. Compute allocations (%) for various values of the allocation gradient (k). Table shows percentages for model size ranges relative
to the largest training run. For example, with k=0.5, 68% of the training compute stock is allocated to models within an OOM of the
largest model, with 22% allocated to models within 1-2 OOMs of the largest run, etc.

k Within 4-5
OOM

Within 3-4
OOM

Within 2-3
OOM

Within 1-2
OOM

Within 1
OOM

0.5 0.68 2.2 6.8 22 68

0.6 0.3 1.2 4.7 19 75

0.7 0.13 0.64 3.2 16 80

0.8 0.053 0.34 2.1 13 84

0.9 0.022 0.17 1.4 11 87

1.0 0.009 0.09 0.9 9 90

Our baseline scenario samples the allocation gradient uniformly from the range [0.9, 1.1]. The median prediction in this
scenario will therefore follow a compute allocation across model sizes as shown in the k=1 scenario in Table 10. This
modeling choice is made from observations of the allocation plots for the notable models released in the years 2017-2023
(Appendix D).

However Section 4 discusses the limitations of the Notable Models database upon which these trends are based, specifically,
the notability criterion (Appendix A) leads to models that use significant amounts of training compute being over-represented
in the dataset. One potential way to account for the Notable Models selection effect is to allocate more compute to smaller
models relative to their larger counterparts. This can be seen in the table above where the k=0.5 case allocates ∼68%
of compute that year to the largest model category, whereas the k=1.0 case allocates 90% of compute. More generally,
increasing model size by 10x leads to a 10k times increase in compute allocated, as shown in Appendix D.1.

This appendix presents model predictions for allocation gradients that allocate relatively more compute to smaller model
sizes. Specifically, Table 11 presents the results of the model when the allocation gradient (k) is sampled from the range
[0.7,0.9] (corresponding to a median scenario in which k = 0.8), and Table 12 presents the results of the model when the
allocation gradient is sampled from the range [0.5,0.7] (corresponding to a median scenario in which k = 0.6). Notably more
aggressive medians can be observed in the later years of the projection for 1025 and 1026 FLOP thresholds compared to the
baseline - this is because these scenarios allocate relatively more compute to smaller models, and in the years 2027 and
2028, 1025 and 1026 FLOP models are multiple orders of magnitude away from the largest training runs.
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Table 11. Results for absolute compute thresholds when the allocation gradient is sampled uniformly from the range [0.7,0.9].

Threshold
(FLOP)

2025 2026 2027 2028

> 1025 [52, 74, 99] [71, 114, 172] [97, 160, 265] [132, 221, 380]
> 1026 [8, 13, 18] [19, 34, 52] [36, 63, 106] [59, 105, 183]
> 1027 [0, 0, 2] [0, 4, 11] [7, 17, 34] [20, 40, 77]
> 1028 [0, 0, 0] [0, 0, 0] [0, 0, 4] [0, 7, 20]
> 1029 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]

Table 12. Results for absolute compute thresholds when the allocation gradient is sampled uniformly from the range [0.5,0.7].

Threshold
(FLOP)

2025 2026 2027 2028

> 1025 [36, 49, 67] [70, 106, 155] [116, 199, 314] [205, 359, 637]
> 1026 [2, 5, 9] [12, 21, 34] [29, 55, 88] [63, 113, 196]
> 1027 [0, 0, 0] [0, 1, 4] [3, 7, 16] [12, 26, 52]
> 1028 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 1, 6]
> 1029 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]
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