
ClauseQA: Enhancing Customized Clause Extraction in Large Language
Models via Instruction Following

Anonymous ACL submission

Abstract

Contract review is a critical and time-001
consuming task for lawyers, involving the iden-002
tification of key clauses that may pose poten-003
tial risks. However, previous methods trained004
on predefined taxonomies struggle to general-005
ize to meet varying requirements. To address006
this limitation, we propose ClauseQA, a frame-007
work to adapt large language models (LLMs) to008
extract clauses by following instructions with009
customized clause descriptions. Additionally,010
we introduce an out-of-distribution setting for011
recognizing unseen clause categories, investi-012
gating how supervised fine-tuning (SFT) affects013
LLMs’ generalization. Our experiments show014
that SFT significantly reduces hallucinations015
while making LLMs more cautious in provid-016
ing positive answers, which can sometimes lead017
to lower recall. Furthermore, we observe that018
SFT tends to induce the original pre-training019
capability in decoder-only models like Llama3,020
whereas encoder-decoder models, such as Flan-021
T5, fit the SFT data more closely and thus show022
less robustness to distribution shifts. Finally,023
we discuss potential directions for future re-024
search. Our code and models will be released.025

1 Introduction026

Legal AI (Zhong et al., 2020) is attracting increas-027

ing attention for its potential to promote justice028

(Zhong et al., 2018; Chalkidis et al., 2019) and cre-029

ate economic value, such as assisting lawyers in re-030

viewing contracts (Leivaditi et al., 2020; Hendrycks031

et al., 2021). Contract review aims to identify032

risks and revise clauses to protect their parties’033

interests. Reviewing entire contracts, which can034

span hundreds of pages, to find specific clauses035

is time-consuming. Significant time savings can036

be achieved by automatically locating and high-037

lighting key clauses using AI models. However,038

lawyers’ attention can change depending on the039

type of contracts, necessitating models that can040

DISTRIBUTOR AGREEMENT

1. ESTABLISHMENT OF DISTRIBUTORSHIP

1.1 Grant and Acceptance. Company hereby appoints 
Distributor as Company‘s exclusive distributor within the Market 
and grants … to sell and distribute Products within the Market, and 
Distributor hereby accepts … . ….

1.2 License. The Company hereby grants the Distributor the 
right to do business and use the name “Electric City of Illinois” …
for use under this Agreement. …

1.3 Term. The term of this Agreement shall be ten (10) years 
(the "Term") which shall commence on the date upon which the 
Company delivers to Distributor the last Sample, as defined 
hereinafter. If Distributor complies with all of the terms of this 
Agreement, the Agreement shall be renewable on an annual basis 
for one (1) year terms for up to another ten (10) years on the same 
terms and conditions as set forth herein.

Exclusivity
License Grant

License Grant

Effective Date
Expiration Date

Renewal Term

Clause Category

Training (ID)

Test (OOD)

You are a helpful assistant. Review the contract clauses and answer 
questions. Output the mentioned clauses if exist; otherwise output "No".
###Clauses:
###Question: Is there an exclusive dealing commitment with the 
counterparty? This includes a commitment to procure …
###Answer:

(Exclusivity)

{contract body}

Company herby appoints distributor as Company’s exclusive
distributor …

Figure 1: An example of a distributor agreement con-
tract to illustrate the contract review task. Highlighted
text spans denote different clause categories. Given
a question describing the desired clause category (Ex-
clusivity), LLMs are expected to generate the original
clauses belonging to this category.

adapt to customized instructions. This poses signif- 041

icant challenges for traditional AI models. 042

Previous works typically focus on extracting 043

clause snippets for manual review based on a pre- 044

defined taxonomy of clause categories (Leivaditi 045

et al., 2020; Xu et al., 2022), namely clause ex- 046

traction, as shown in Figure 1. These studies often 047

formulate clause extraction as extractive QA (Ra- 048

jpurkar et al., 2018), and train BERT-based mod- 049

els with supervised data. However, BERT-based 050

models struggle with new questions for unseen 051

clause categories, making them unsuitable for real- 052

world applications. Recently, large language mod- 053

els (LLMs) (Achiam et al., 2023; Touvron et al., 054

2023; Jiang et al., 2023) have shown significant 055

potential in industry, particularly in completing 056

new tasks by following user instructions. Directly 057

prompting LLMs has also been applied to legal 058

tasks (Shui et al., 2023). Although flexible, the 059

performance of directly prompting often falls short 060

due to insufficient adaptation to the legal domain 061
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(Niklaus et al., 2024). This necessitates supervised062

fine-tuning (SFT) (Wei et al., 2021; Ouyang et al.,063

2022) with task-specific instructions.064

In this paper, we propose ClauseQA to tackle065

contract review by enabling LLMs generate de-066

sired clause snippets through following instructions067

in response to customized questions. We develop068

instruction data tailored to clause extraction for069

SFT and introduce an out-of-distribution (OOD)070

(Hendrycks et al., 2020b) setting to investigate how071

SFT affects model generalization. Specifically, we072

enrich prompt questions with detailed descriptions073

of clause characteristics, as shown in Figure 1,074

which facilitates the recall of relevant legal knowl-075

edge. Additionally, we incorporate negative sam-076

ples to align models to appropriately reject ques-077

tions when no applicable contract clause exists. To078

mirror real-world conditions, we divide clause cate-079

gories into two distinct sets: an in-distribution (ID)080

set for training and an OOD set for testing. This di-081

vision allows us to effectively evaluate the model’s082

ability to generalize to unseen clause categories.083

We conduct experiments using various LLMs, in-084

cluding Llama 3 (AI@Meta, 2024), Mistral (Jiang085

et al., 2023) and Flan-T5 (Chung et al., 2024). Our086

main findings are as follows: 1) SFT is important087

to induce pre-training capabilities, showing signifi-088

cant improvement over direct prompting. 2) While089

SFT helps reduce false positive answers (hallucina-090

tions), it also makes LLMs more cautious, leading091

to lower recall, sometimes. 3) Decoder-only and092

encoder-decoder LLMs benefit from SFT in differ-093

ent ways. SFT tends to induce the pre-training ca-094

pabilities of the former (Zhou et al., 2024), whereas095

the latter tends to better fit the SFT data and thus096

show less robustness to distribution shifts.097

We highlight two potential directions for future098

research. First, incorporating more legal knowl-099

edge in pre-training stage is critical for downstream100

task performance. Second, there is significant po-101

tential for developing advanced contract review102

systems, such as collaboration of multiple LLM-103

based agents (Qian et al., 2023; Zheng et al., 2024)104

akin to a team of expert legal advisors.105

2 Methodology106

We first formulate the clause extraction task and107

the training objective (Section 2.1), followed by the108

generation of SFT samples (Section 2.2). Finally,109

we introduce the OOD setting to test the models’110

generalization capabilities (Section 2.3).111

2.1 Task Formulation 112

Clause extraction involves extract the original 113

spans in contracts belonging to a given clause cate- 114

gory. To enable efficient contract review, we follow 115

the standard extractive QA formulation (Hendrycks 116

et al., 2021). Let c represent a segment of a con- 117

tract 1, and q ∈ Q refers to a question in a clause 118

category. The answers to question q are contract 119

snippets, denoted as xq. Then, the clause extrac- 120

tion task involves extracting target clauses for each 121

question, defined as: f : (c,q) → xq. For each 122

contract, we process each question qi sequentially 123

to extract all pertinent clauses. 124

Training Objective. Given a LLM with param- 125

eters θ, we fine-tune the model to directly max- 126

imize the conditional probability of the ground- 127

truth contract snippets based on the prompts: 128

pθ(x
q|a(c,q)), where the prompt function a(c,q) 129

will be introduced later. 130

2.2 Training Samples of ClauseQA 131

We begin by introducing the design of the prompts 132

used for training samples, followed by a discus- 133

sion on the necessity of negative samples and their 134

construction. 135

Prompt Design. The prompt template is shown 136

in Figure 1, consisting of three parts: an instruction 137

detailing the task and the desired output format, the 138

context of the contract body, and a question describ- 139

ing the characteristics of target clauses. We employ 140

descriptions rather than mere category names to 141

help LLMs recall knowledge of legal terminolo- 142

gies, thereby enhancing their ability to generalize 143

to unseen clause terms. 144

Reject Unknown Questions. If target clauses 145

are missing in a contract, LLMs should properly 146

reject the question and avoid providing with false 147

positive answers, known as hallucination (Zhang 148

et al., 2023; Huang et al., 2023). Therefore, we 149

build negative samples where the ground answers 150

of missing clauses are set to “No”. 151

Sampling Negative Samples. Considering the 152

sparsity of key clauses, we develop two strategies 153

to construct negative samples. For each clause q, 154

we randomly sample segments where q is absent 155

and ensure their number proportional to positive 156

samples. Moreover, we emphasize distinguishing 157

nuanced clause categories by questioning a contract 158

segment containing qi with a negative question qj . 159

1A contract is divided into segments due to GPU memory
constraints. Details are introduced in Appendix B.1
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Model
Macro Micro

P R F1 IOU P R F1 IOU
Direct Prompting

Flan-T5-XL 18.34 51.97 23.38 13.69 14.44 46.13 21.27 12.01
Llama3-Chat 20.03 64.03 26.64 16.24 16.91 66.20 26.55 15.36

Supervised Fine-tuning (Fully)
T5-Large 3.71 13.02 4.21 2.18 3.73 10.00 4.55 2.34

Flan-T5-Large 67.69 47.37 45.99 33.26 63.19 45.75 51.22 34.42
Flan-T5-XL 69.14 50.04 49.75 36.30 65.18 51.16 56.52 39.42

Supervised Fine-tuning (Lora)
Llama3 68.05 43.88 44.10 31.73 64.58 44.85 52.20 35.48

Llama3-Chat 68.45 46.93 48.76 35.45 69.22 48.35 56.85 39.74
Mistral 67.03 45.96 45.80 33.33 63.84 46.25 51.91 35.10

Mistral-Chat 62.63 40.91 42.09 29.83 64.96 41.82 50.10 33.64

Table 1: The OOD performance of direct prompting and SFT . The best performances are highlighted in bold for
model trained with fullly fine-tuning and PEFT separately.

2.3 OOD Setting160

The OOD setting is to evaluate how LLMs general-161

ize to recognize unseen clauses categories.162

The clause categories are divided into two dis-163

joint sets, denoted as QID and QOOD. Train-164

ing and test contracts are denoted as Ctr and Cte,165

respectively. The training data of SFT is con-166

structed with training contracts and ID categories:167

{(c,q)|c ∈ Ctr,q ∈ QID}, while the test data168

is constructed as {(c,q)|c ∈ Cte,q ∈ QOOD},169

ensuring that both test contracts and clauses are170

unseen during training.171

The above setting leads to the OOD performance.172

We also introduce the Full performance, where both173

ID and OOD categories are seen during training.174

3 Experiment and Results175

We first brief the experimental setup (Section 3.1),176

and introduce the findings to uncover the effects of177

SFT (Section 3.2-3.5).178

3.1 Experimental Setup179

Dataset and Pre-processing. We use the contract180

review dataset, CUAD (Hendrycks et al., 2021)181

that contains 510 commercial contracts and manual182

annotation of 41 clause categories. These contracts,183

averaging 7, 861 words, are divided into segments184

based on paragraphs, with one-fifth containing key185

clauses. Dataset statistics and segmentation details186

are introduced in Appendix B.1187

Dataset Splits. We follow the original CUAD188

division, with 408 training contracts and 102 test189

contracts. We specify the sizes of ID and OOD190

category sets as 29 and 12, respectively. We create191

three splits of the ID-OOD division using three ran- 192

dom seeds, and performances are averaged across 193

these three splits. 194

Models. We experiment on open-source LLMs, 195

including Llama3 (8B) (AI@Meta, 2024), Mis- 196

tral (7B) (Jiang et al., 2023) and both the large 197

(800M) and xl (3B) versions of Flan-T5 (Chung 198

et al., 2024). For Llama3 and Mistral, we em- 199

ploy Lora (Hu et al., 2021; Dettmers et al., 2024) 200

adapters across all linear layers during training. 201

Metrics. Following Hendrycks et al. (2020a), 202

we utilize word-level overlap of ground answers 203

and generated outputs and calculate the precision, 204

recall, F1 score and Intersection over Union (IOU) 205

scores with Macro and Micro methods. 206

3.2 Overall Results 207

The performance on OOD clause categories are 208

shown in Table 1. We highlight two findings. 209

SFT benefits task alignment, while prompting 210

leads to under-estimation. We observe a signif- 211

icant improvement of SFT over prompting. This 212

highlight the importance of task alignment (Zhou 213

et al., 2024) to unlock the pre-training capabilities, 214

and suggest the under-estimation of prompting. 215

General instruction tuning typically improve 216

generalization. Chung et al. (2024) show that in- 217

struction tuning on multitasks yields generalization 218

on new tasks. We observe enhanced generaliza- 219

tion of the instruction-tuned version of Flan-T5 220

and Llama3. However, this situation is opposite for 221

Mistral. The degradation of Mistral-Chat mainly 222

results from one split. We speculate that the instruc- 223

tion tuning data of Mistral includes few contract 224

knowledge and distracts the base LM. 225
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Figure 2: Generalization gap of different LLMs. The
upper part shows performance of three splits, and the
difference between “Full” and “OOD” performance is
plotted at bottom.
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Figure 3: Performance across clause categories. The
Macro IOU of Full, OOD and Prompting performance
of Llama3-Chat is visualized.

3.3 Generalization Gap226

We measure the robustness to distribution shifts by227

the difference between Full and OOD performance228

(generalization gap), as shown in Figure 2.229

The result demonstrates a noticeable decrease230

of the gap between larger LMs and smaller ones,231

indicating that LMs with more parameters tend to232

be more robust. However, the result of two Mistral233

models suggests that capable models may suffer234

more drop to distribution shifts.235

Figure 3 shows performance across clause cate-236

gories. Comparing Full and SFT performance, we237

argue that LLMs after SFT can generalize well238

to unseen clauses.239

3.4 SFT Leads to More Cautious Models240

One interesting finding in Figure 3 is that the Full241

performance is even worse than OOD performance242

on some categories. It is counter-intuitive that243

Model Flan-T5 Llama3 Mistral
Corr 0.37 0.83 (0.88) 0.71 (0.88)

Table 2: Correlation between Full and OOD perfor-
mance across clause categories. The values in parenthe-
ses denote the correlation for Chat models.

models’ capabilities in these categories degener- 244

ate after seeing them during SFT. 245

A close check on these categories reveal that 246

there is a large drop in recall while the precision 247

usually remains similar or even improves. Similar 248

phenomenon is also observed in Table 1. Compar- 249

ing prompting and SFT, we find that SFT enhance 250

the holistic precision and decrease recall to some 251

extend. It suggests that SFT reduces hallucination, 252

while the side effect is a more cautious model in 253

providing positive responses. 254

We speculate two reasons for cautious models: 255

first, the existence of nuanced clause categories, 256

e.g., Cap on Liability and Uncapped Liability; sec- 257

ond, the existence of negative samples influencing 258

the output distribution. 259

3.5 SFT Induces Pre-training Ability or 260

Introduces New Knowledge? 261

To uncover the effect of SFT, we calculate the cor- 262

relation between Full and OOD performance across 263

clause categories in Table 2. The intuition is that 264

LLMs acquire different knowledge levels of these 265

clause categories during pre-training, which can be 266

reflected by the OOD performance. 267

We find that decoder-only LLMs demonstrate 268

a high correlation between performance before 269

and after seeing specific clauses during SFT, while 270

encoder-decoder LLMs an indistinct correlation. 271

This implies that the pre-training capabilities of 272

decoder-only LMs tend to be induced by SFT, 273

while encoder-decoder LMs tend to fit the SFT 274

data and are less robust to distribution shifts. 275

4 Conclusion 276

We proposed ClauseQA, a framework for adapting 277

LLMs to extract desired clauses in contracts based 278

on instructions with customized descriptions of 279

clause characteristics. This framework is practical 280

in real-world applications, enabling LLMs to gener- 281

alize to unseen clause categories. We conducted an 282

in-depth analysis to reveal the side effects of SFT, 283

observed as producing “cautious” models, and the 284

different behaviors of decoder-only and encoder- 285

decoder LLMs during SFT. 286
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Limitation287

We discuss three key limitations related to the fine-288

tuning technique, objective, and dataset used in our289

study.290

First, our models with 7B parameters or more are291

fine-tuned with parameter efficient technique, Lora.292

This may result in sub-optimal performance. Due293

to the limitation of GPU memory size (NVIDIA294

A5000 with 24GB memory), we have to compro-295

mise performance with GPU memory usage. Fu-296

ture work will compare the performance of Lora297

and fully fine-tuning.298

Second, the training objective of SFT is to only299

maximize the probability of ground-truth answers.300

Alternative fine-tuning methods, such as Direct301

Preference Optimization (DPO), can be utilized302

to better train the model.303

Third, our experiments are limited to a single304

dataset comprising contracts from the US Securi-305

ties and Exchange Commission (SEC). Due to the306

high cost of labeling contract clauses, there are not307

many available contract review datasets with high308

quality. We will incorporate more datasets in future309

work.310
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A Related Work 447

A.1 LLMs for Legal Domain 448

Recently, there are increasing work focusing on 449

applying LLMs on legal tasks, evaluating their legal 450

capabilities, and building legal domain resources. 451

For evaluation close-source leading LLMs, GPT- 452

4 (Achiam et al., 2023) is reported to pass the Uni- 453

form Bar Exam (UBE) with a 90 percentile score. 454

However, the benchmark of UBE is argued to be 455

too general. Therefore, Shui et al. (2023) propose 456

a new benchmark to evaluate LLMs’ capacity on 457

legal judgment prediction with retrieval augmented 458

prompts. Guha et al. (2024) propose a large scale 459

benchmark, namely LegalBench, that encompass 460

various legal tasks. LegalBench also includes the 461

dataset CUAD (Hendrycks et al., 2021) used in this 462

paper. However, CUAD is simplified as answering 463

yes or no questions in LegalBench, while we keep 464

the original settings to extract key clauses from 465

whole contracts. 466

Recently, Niklaus et al. (2024) build a large scale 467

instruction tuning dataset for legal reasoning, and 468

investigate the effects of continued pre-training and 469

instruction tuning. 470

A.2 Legal Contract Review 471

Legal contracts, especially commercial contracts, 472

are receiving attention due to their importance in 473

business activities. Most of the datasets are built 474

from the corpus provided by the US Security and 475

Exchange Commission. 476

Tuggener et al. (2020) focus on classify clauses 477

(provisions) into their paragraph headings, and the 478

label taxonomy is built based on heuristics. The fol- 479

lowing work begins to adopt expert defined clause 480

categories, such as red flags (Leivaditi et al., 2020) 481

and CUAD (Hendrycks et al., 2021). Contract read- 482

ing comprehension datasets are also created for 483

specific contract types, such as merger agreements 484

(Wang et al., 2023). 485

These datasets are usually published with naive 486

baseline methods, such as BERT-based models. 487

Some studies delve into the structure and semantic 488

relations in contracts to enhance performance(Xu 489

et al., 2022). 490

B Experiment Settings 491

B.1 Data Processing 492

Statistics. Table 3 presents dataset statistics on con- 493

tract length and key clauses density. The first two 494
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rows indicate that contracts typically contains sub-495

stantial paragraphs. However, only about one-fifth496

of these paragraphs contain key clauses necessitat-497

ing thorough legal review (Row 3). Moreover, the498

review of contracts across various types requires499

emphases on distinct clause categories. On average,500

a contract contains approximately 13 categories of501

key clauses, with each category appearing in 31.5%502

of contracts (Row 4-5).503

The statistics underscore the importance of lever-504

aging LLMs to assist lawyers in this needle-in-a-505

haystack task, as well as developing robust models506

capable of managing emerging contract categories.507

Average no. of para. per doc. 65.5
Average no. of words per para. 120.0
Percent of para. w/ key clauses 19.3
Average no. of clause types per doc. 12.9
Average ratio of clause occurrence 31.5

Table 3: Statistics of the CUAD dataset about the num-
ber of paragraphs and clauses to show the sparsity of
key clauses.

Contract Segmentation. Different from508

Hendrycks et al. (2021), who utilize a sliding win-509

dow approach to segment contracts, we first divide510

contracts into segments based on paragraphs, treat-511

ing each paragraph as a separate segment 2. This512

method often results in many short paragraphs, typ-513

ically chapter headings. To address this, we iter-514

atively merge each short paragraph with the sub-515

sequent one until the combined length exceeds a516

threshold of 300 characters. For longer paragraphs,517

we further split them into consecutive segments,518

each with a window size of 512 tokens.519

B.2 Evaluation Metrics520

Following (Hendrycks et al., 2021), we utilize521

the word-level overlap of ground-truth answer and522

LLM generated predictions to evaluate the perfor-523

mance of clause extraction. We introduce four used524

metrics, namely precision, recall, F1 score and In-525

tersection over Union (IOU) below.526

Let Gold denote the number of words in ground-527

truth answers and Pred the number of words in528

generated text 3. The correctly predicted clause529

snippets contain Join words. The four metrics are530

2The terms ’paragraph’ and ’segment’ are used inter-
changeably below.

3Pred is set to 0 if a model refuses answering with “No”

calculated as: 531

P =
Join

Pred
; R =

Join

Gold
;

F1 =
2 ∗ P ∗R
P +R

=
2 ∗ Join

Pred+Gold
;

IOU =
Join

Pred+Gold− Join

(1) 532

The Micro metrics are calculated by aggregat- 533

ing word counts across all clause categories and 534

contracts. Macro metrics are derived by first ag- 535

gregating counts for each clause category across all 536

contracts , and then averaging these metrics across 537

all clause categories 4. 538

B.3 Training Details 539

We introduce the training hyper-parameters, hard- 540

ware and training cost here. 541

We use learning rate of 1e− 5 for decoder-only 542

LLMs and 1e− 4 for encoder-decoder LLMs. The 543

weight decay is set to 0.0. We use two NVIDIA 544

A5000 gpus to train Flan-T5-XL, Llama3 and Mis- 545

tral. We train all models for 5 epochs and it costs 5 546

to 7 hours for one running. 547

4The aggregation methods are different from (Hendrycks
et al., 2021)
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