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Abstract

Contract review is a critical and time-
consuming task for lawyers, involving the iden-
tification of key clauses that may pose poten-
tial risks. However, previous methods trained
on predefined taxonomies struggle to general-
ize to meet varying requirements. To address
this limitation, we propose ClauseQA, a frame-
work to adapt large language models (LLMs) to
extract clauses by following instructions with
customized clause descriptions. Additionally,
we introduce an out-of-distribution setting for
recognizing unseen clause categories, investi-
gating how supervised fine-tuning (SFT) affects
LLMs’ generalization. Our experiments show
that SFT significantly reduces hallucinations
while making LLMs more cautious in provid-
ing positive answers, which can sometimes lead
to lower recall. Furthermore, we observe that
SFT tends to induce the original pre-training
capability in decoder-only models like Llama3,
whereas encoder-decoder models, such as Flan-
TS, fit the SFT data more closely and thus show
less robustness to distribution shifts. Finally,
we discuss potential directions for future re-
search. Our code and models will be released.

1 Introduction

Legal Al (Zhong et al., 2020) is attracting increas-
ing attention for its potential to promote justice
(Zhong et al., 2018; Chalkidis et al., 2019) and cre-
ate economic value, such as assisting lawyers in re-
viewing contracts (Leivaditi et al., 2020; Hendrycks
et al., 2021). Contract review aims to identify
risks and revise clauses to protect their parties’
interests. Reviewing entire contracts, which can
span hundreds of pages, to find specific clauses
is time-consuming. Significant time savings can
be achieved by automatically locating and high-
lighting key clauses using AI models. However,
lawyers’ attention can change depending on the
type of contracts, necessitating models that can
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You are a helpful assistant. Review the contract clauses and answer
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##Clauses:  {contract body}

###Question: Is there an exclusive dealing commitment with the
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#it Answer:

@ Company herby appoints distributor as Company’s exclusive
= distributor ...

Figure 1: An example of a distributor agreement con-
tract to illustrate the contract review task. Highlighted
text spans denote different clause categories. Given
a question describing the desired clause category (Ex-
clusivity), LLMs are expected to generate the original
clauses belonging to this category.

adapt to customized instructions. This poses signif-
icant challenges for traditional AI models.
Previous works typically focus on extracting
clause snippets for manual review based on a pre-
defined taxonomy of clause categories (Leivaditi
et al., 2020; Xu et al., 2022), namely clause ex-
traction, as shown in Figure 1. These studies often
formulate clause extraction as extractive QA (Ra-
jpurkar et al., 2018), and train BERT-based mod-
els with supervised data. However, BERT-based
models struggle with new questions for unseen
clause categories, making them unsuitable for real-
world applications. Recently, large language mod-
els (LLMs) (Achiam et al., 2023; Touvron et al.,
2023; Jiang et al., 2023) have shown significant
potential in industry, particularly in completing
new tasks by following user instructions. Directly
prompting LL.Ms has also been applied to legal
tasks (Shui et al., 2023). Although flexible, the
performance of directly prompting often falls short
due to insufficient adaptation to the legal domain



(Niklaus et al., 2024). This necessitates supervised
fine-tuning (SFT) (Wei et al., 2021; Ouyang et al.,
2022) with task-specific instructions.

In this paper, we propose ClauseQA to tackle
contract review by enabling LL.Ms generate de-
sired clause snippets through following instructions
in response to customized questions. We develop
instruction data tailored to clause extraction for
SFT and introduce an out-of-distribution (OOD)
(Hendrycks et al., 2020b) setting to investigate how
SFT affects model generalization. Specifically, we
enrich prompt questions with detailed descriptions
of clause characteristics, as shown in Figure 1,
which facilitates the recall of relevant legal knowl-
edge. Additionally, we incorporate negative sam-
ples to align models to appropriately reject ques-
tions when no applicable contract clause exists. To
mirror real-world conditions, we divide clause cate-
gories into two distinct sets: an in-distribution (ID)
set for training and an OOD set for testing. This di-
vision allows us to effectively evaluate the model’s
ability to generalize to unseen clause categories.

We conduct experiments using various LLMs, in-
cluding Llama 3 (Al@Meta, 2024), Mistral (Jiang
et al., 2023) and Flan-T5 (Chung et al., 2024). Our
main findings are as follows: 1) SFT is important
to induce pre-training capabilities, showing signifi-
cant improvement over direct prompting. 2) While
SFT helps reduce false positive answers (hallucina-
tions), it also makes LLMs more cautious, leading
to lower recall, sometimes. 3) Decoder-only and
encoder-decoder LLMs benefit from SFT in differ-
ent ways. SFT tends to induce the pre-training ca-
pabilities of the former (Zhou et al., 2024), whereas
the latter tends to better fit the SFT data and thus
show less robustness to distribution shifts.

We highlight two potential directions for future
research. First, incorporating more legal knowl-
edge in pre-training stage is critical for downstream
task performance. Second, there is significant po-
tential for developing advanced contract review
systems, such as collaboration of multiple LLM-
based agents (Qian et al., 2023; Zheng et al., 2024)
akin to a team of expert legal advisors.

2 Methodology

We first formulate the clause extraction task and
the training objective (Section 2.1), followed by the
generation of SFT samples (Section 2.2). Finally,
we introduce the OOD setting to test the models’
generalization capabilities (Section 2.3).

2.1 Task Formulation

Clause extraction involves extract the original
spans in contracts belonging to a given clause cate-
gory. To enable efficient contract review, we follow
the standard extractive QA formulation (Hendrycks
et al., 2021). Let c represent a segment of a con-
tract |, and q € Q refers to a question in a clause
category. The answers to question q are contract
snippets, denoted as x9. Then, the clause extrac-
tion task involves extracting target clauses for each
question, defined as: f : (c,q) — x9. For each
contract, we process each question q; sequentially
to extract all pertinent clauses.

Training Objective. Given a LLM with param-
eters A, we fine-tune the model to directly max-
imize the conditional probability of the ground-
truth contract snippets based on the prompts:
po(x%|a(c, q)), where the prompt function a(c, q)
will be introduced later.

2.2 Training Samples of ClauseQA

We begin by introducing the design of the prompts
used for training samples, followed by a discus-
sion on the necessity of negative samples and their
construction.

Prompt Design. The prompt template is shown
in Figure 1, consisting of three parts: an instruction
detailing the task and the desired output format, the
context of the contract body, and a question describ-
ing the characteristics of target clauses. We employ
descriptions rather than mere category names to
help LLMs recall knowledge of legal terminolo-
gies, thereby enhancing their ability to generalize
to unseen clause terms.

Reject Unknown Questions. If target clauses
are missing in a contract, LLMs should properly
reject the question and avoid providing with false
positive answers, known as hallucination (Zhang
et al., 2023; Huang et al., 2023). Therefore, we
build negative samples where the ground answers
of missing clauses are set to “No”.

Sampling Negative Samples. Considering the
sparsity of key clauses, we develop two strategies
to construct negative samples. For each clause q,
we randomly sample segments where q is absent
and ensure their number proportional to positive
samples. Moreover, we emphasize distinguishing
nuanced clause categories by questioning a contract
segment containing q; with a negative question q;.

'A contract is divided into segments due to GPU memory
constraints. Details are introduced in Appendix B.1



Model Macro Micro
P R Fl1 10U P R F1 10U
Direct Prompting
Flan-T5-XL | 18.34 51.97 23.38 13.69 | 1444 46.13 21.27 12.01
Llama3-Chat | 20.03 64.03 26.64 16.24 | 1691 66.20 26.55 15.36
Supervised Fine-tuning (Fully)
T5-Large 371 13.02 421 218 | 373 10.00 455 234
Flan-T5-Large | 67.69 47.37 4599 33.26 | 63.19 45.75 5122 3442
Flan-T5-XL | 69.14 50.04 49.75 36.30 | 65.18 51.16 56.52 39.42
Supervised Fine-tuning (Lora)
Llama3 68.05 43.88 44.10 31.73 | 64.58 4485 5220 3548
Llama3-Chat | 68.45 46.93 48.76 3545 | 69.22 48.35 56.85 39.74
Mistral 67.03 4596 45.80 33.33 | 63.84 46.25 5191 35.10
Mistral-Chat | 62.63 4091 42.09 29.83 | 6496 4182 50.10 33.64

Table 1: The OOD performance of direct prompting and SFT . The best performances are highlighted in bold for

model trained with fullly fine-tuning and PEFT separately.

2.3 OOD Setting

The OOD setting is to evaluate how LLMs general-
ize to recognize unseen clauses categories.

The clause categories are divided into two dis-
joint sets, denoted as OIP and Q99P. Train-
ing and test contracts are denoted as C'" and C*¢,
respectively. The training data of SFT is con-
structed with training contracts and ID categories:
{(c,q)|c € C",q € QP}, while the test data
is constructed as {(c,q)|c € C'*,q € QV°P},
ensuring that both test contracts and clauses are
unseen during training.

The above setting leads to the OOD performance.
We also introduce the Full performance, where both
ID and OOD categories are seen during training.

3 Experiment and Results

We first brief the experimental setup (Section 3.1),
and introduce the findings to uncover the effects of
SFT (Section 3.2-3.5).

3.1 Experimental Setup

Dataset and Pre-processing. We use the contract
review dataset, CUAD (Hendrycks et al., 2021)
that contains 510 commercial contracts and manual
annotation of 41 clause categories. These contracts,
averaging 7,861 words, are divided into segments
based on paragraphs, with one-fifth containing key
clauses. Dataset statistics and segmentation details
are introduced in Appendix B.1

Dataset Splits. We follow the original CUAD
division, with 408 training contracts and 102 test
contracts. We specify the sizes of ID and OOD
category sets as 29 and 12, respectively. We create

three splits of the ID-OOD division using three ran-
dom seeds, and performances are averaged across
these three splits.

Models. We experiment on open-source LLMs,
including Llama3 (8B) (Al@Meta, 2024), Mis-
tral (7B) (Jiang et al., 2023) and both the large
(800M) and x1 (3B) versions of Flan-T5 (Chung
et al., 2024). For Llama3 and Mistral, we em-
ploy Lora (Hu et al., 2021; Dettmers et al., 2024)
adapters across all linear layers during training.

Metrics. Following Hendrycks et al. (2020a),
we utilize word-level overlap of ground answers
and generated outputs and calculate the precision,
recall, F1 score and Intersection over Union (IOU)
scores with Macro and Micro methods.

3.2 Overall Results

The performance on OOD clause categories are
shown in Table 1. We highlight two findings.

SFT benefits task alignment, while prompting
leads to under-estimation. We observe a signif-
icant improvement of SFT over prompting. This
highlight the importance of task alignment (Zhou
et al., 2024) to unlock the pre-training capabilities,
and suggest the under-estimation of prompting.

General instruction tuning typically improve
generalization. Chung et al. (2024) show that in-
struction tuning on multitasks yields generalization
on new tasks. We observe enhanced generaliza-
tion of the instruction-tuned version of Flan-T5
and Llama3. However, this situation is opposite for
Mistral. The degradation of Mistral-Chat mainly
results from one split. We speculate that the instruc-
tion tuning data of Mistral includes few contract
knowledge and distracts the base LM.
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Figure 2: Generalization gap of different LLMs. The
upper part shows performance of three splits, and the
difference between “Full” and “OOD” performance is
plotted at bottom.
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Figure 3: Performance across clause categories. The
Macro 10U of Full, OOD and Prompting performance
of Llama3-Chat is visualized.

3.3 Generalization Gap

We measure the robustness to distribution shifts by
the difference between Full and OOD performance
(generalization gap), as shown in Figure 2.

The result demonstrates a noticeable decrease
of the gap between larger LMs and smaller ones,
indicating that LMs with more parameters tend to
be more robust. However, the result of two Mistral
models suggests that capable models may suffer
more drop to distribution shifts.

Figure 3 shows performance across clause cate-
gories. Comparing Full and SFT performance, we
argue that LLMs after SFT can generalize well
to unseen clauses.

3.4 SFT Leads to More Cautious Models

One interesting finding in Figure 3 is that the Full
performance is even worse than OOD performance
on some categories. It is counter-intuitive that

Model | Flan-T5
Corr 0.37

Llama3
0.83 (0.88)

Mistral
0.71 (0.88)

Table 2: Correlation between Full and OOD perfor-
mance across clause categories. The values in parenthe-
ses denote the correlation for Chat models.

models’ capabilities in these categories degener-
ate after seeing them during SFT.

A close check on these categories reveal that
there is a large drop in recall while the precision
usually remains similar or even improves. Similar
phenomenon is also observed in Table 1. Compar-
ing prompting and SFT, we find that SFT enhance
the holistic precision and decrease recall to some
extend. It suggests that SFT reduces hallucination,
while the side effect is a more cautious model in
providing positive responses.

We speculate two reasons for cautious models:
first, the existence of nuanced clause categories,
e.g., Cap on Liability and Uncapped Liability; sec-
ond, the existence of negative samples influencing
the output distribution.

3.5 SFT Induces Pre-training Ability or
Introduces New Knowledge?

To uncover the effect of SFT, we calculate the cor-
relation between Full and OOD performance across
clause categories in Table 2. The intuition is that
LLMs acquire different knowledge levels of these
clause categories during pre-training, which can be
reflected by the OOD performance.

We find that decoder-only LLMs demonstrate
a high correlation between performance before
and after seeing specific clauses during SFT, while
encoder-decoder LLMs an indistinct correlation.
This implies that the pre-training capabilities of
decoder-only LMs tend to be induced by SFT,
while encoder-decoder LMs tend to fit the SFT
data and are less robust to distribution shifts.

4 Conclusion

We proposed ClauseQA, a framework for adapting
LLMs to extract desired clauses in contracts based
on instructions with customized descriptions of
clause characteristics. This framework is practical
in real-world applications, enabling LLMs to gener-
alize to unseen clause categories. We conducted an
in-depth analysis to reveal the side effects of SFT,
observed as producing “cautious” models, and the
different behaviors of decoder-only and encoder-
decoder LLMs during SFT.



Limitation

We discuss three key limitations related to the fine-
tuning technique, objective, and dataset used in our
study.

First, our models with 7B parameters or more are
fine-tuned with parameter efficient technique, Lora.
This may result in sub-optimal performance. Due
to the limitation of GPU memory size (NVIDIA
AS5000 with 24GB memory), we have to compro-
mise performance with GPU memory usage. Fu-
ture work will compare the performance of Lora
and fully fine-tuning.

Second, the training objective of SFT is to only
maximize the probability of ground-truth answers.
Alternative fine-tuning methods, such as Direct
Preference Optimization (DPO), can be utilized
to better train the model.

Third, our experiments are limited to a single
dataset comprising contracts from the US Securi-
ties and Exchange Commission (SEC). Due to the
high cost of labeling contract clauses, there are not
many available contract review datasets with high
quality. We will incorporate more datasets in future
work.
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A Related Work
A.1 LLMs for Legal Domain

Recently, there are increasing work focusing on
applying LLMs on legal tasks, evaluating their legal
capabilities, and building legal domain resources.

For evaluation close-source leading LLMs, GPT-
4 (Achiam et al., 2023) is reported to pass the Uni-
form Bar Exam (UBE) with a 90 percentile score.
However, the benchmark of UBE is argued to be
too general. Therefore, Shui et al. (2023) propose
a new benchmark to evaluate LLMs’ capacity on
legal judgment prediction with retrieval augmented
prompts. Guha et al. (2024) propose a large scale
benchmark, namely LegalBench, that encompass
various legal tasks. LegalBench also includes the
dataset CUAD (Hendrycks et al., 2021) used in this
paper. However, CUAD is simplified as answering
yes or no questions in LegalBench, while we keep
the original settings to extract key clauses from
whole contracts.

Recently, Niklaus et al. (2024) build a large scale
instruction tuning dataset for legal reasoning, and
investigate the effects of continued pre-training and
instruction tuning.

A.2 Legal Contract Review

Legal contracts, especially commercial contracts,
are receiving attention due to their importance in
business activities. Most of the datasets are built
from the corpus provided by the US Security and
Exchange Commission.

Tuggener et al. (2020) focus on classify clauses
(provisions) into their paragraph headings, and the
label taxonomy is built based on heuristics. The fol-
lowing work begins to adopt expert defined clause
categories, such as red flags (Leivaditi et al., 2020)
and CUAD (Hendrycks et al., 2021). Contract read-
ing comprehension datasets are also created for
specific contract types, such as merger agreements
(Wang et al., 2023).

These datasets are usually published with naive
baseline methods, such as BERT-based models.
Some studies delve into the structure and semantic
relations in contracts to enhance performance(Xu
et al., 2022).

B Experiment Settings

B.1 Data Processing

Statistics. Table 3 presents dataset statistics on con-
tract length and key clauses density. The first two



rows indicate that contracts typically contains sub-
stantial paragraphs. However, only about one-fifth
of these paragraphs contain key clauses necessitat-
ing thorough legal review (Row 3). Moreover, the
review of contracts across various types requires
emphases on distinct clause categories. On average,
a contract contains approximately 13 categories of
key clauses, with each category appearing in 31.5%
of contracts (Row 4-5).

The statistics underscore the importance of lever-
aging LLMs to assist lawyers in this needle-in-a-
haystack task, as well as developing robust models
capable of managing emerging contract categories.

Average no. of para. per doc. 65.5
Average no. of words per para. 120.0
Percent of para. w/ key clauses 19.3
Average no. of clause types per doc. | 12.9
Average ratio of clause occurrence 31.5

Table 3: Statistics of the CUAD dataset about the num-
ber of paragraphs and clauses to show the sparsity of
key clauses.

Contract Segmentation.  Different from
Hendrycks et al. (2021), who utilize a sliding win-
dow approach to segment contracts, we first divide
contracts into segments based on paragraphs, treat-
ing each paragraph as a separate segment 2. This
method often results in many short paragraphs, typ-
ically chapter headings. To address this, we iter-
atively merge each short paragraph with the sub-
sequent one until the combined length exceeds a
threshold of 300 characters. For longer paragraphs,
we further split them into consecutive segments,
each with a window size of 512 tokens.

B.2 Evaluation Metrics

Following (Hendrycks et al., 2021), we utilize
the word-level overlap of ground-truth answer and
LLM generated predictions to evaluate the perfor-
mance of clause extraction. We introduce four used
metrics, namely precision, recall, F1 score and In-
tersection over Union (IOU) below.

Let Gold denote the number of words in ground-
truth answers and Pred the number of words in
generated text 3. The correctly predicted clause
snippets contain Join words. The four metrics are

>The terms ’paragraph’ and ’segment’ are used inter-
changeably below.
3 Pred is set to 0 if a model refuses answering with “No”

calculated as:

B Join_ B Join.
~ Pred’ ~ Gold’
2+« Px R 2% Join
Fl= P+ R  Pred+ Gold’ @
10U Join

~ Pred + Gold — Join

The Micro metrics are calculated by aggregat-
ing word counts across all clause categories and
contracts. M acro metrics are derived by first ag-
gregating counts for each clause category across all
contracts , and then averaging these metrics across

all clause categories *.

B.3 Training Details

We introduce the training hyper-parameters, hard-
ware and training cost here.

We use learning rate of 1e — 5 for decoder-only
LLMs and le — 4 for encoder-decoder LLMs. The
weight decay is set to 0.0. We use two NVIDIA
A5000 gpus to train Flan-T5-XL, Llama3 and Mis-
tral. We train all models for 5 epochs and it costs 5
to 7 hours for one running.

*The aggregation methods are different from (Hendrycks
et al., 2021)
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