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Abstract

State-of-the-art contextualized models eg.001
BERT use tasks such as WiC and WSD to002
evaluate their word-in-context representations.003
This inherently assumes that performance in004
these tasks reflect how well a model represents005
the coupled word and context semantics. We006
question this assumption by presenting the first007
quantitative analysis on the context-word inter-008
action required and being tested in major con-009
textual lexical semantic tasks, taking into ac-010
count that tasks can be inherently biased and011
models can learn spurious correlations from012
datasets. To achieve this, we run probing base-013
lines on masked input, based on which we then014
propose measures to calculate the degree of015
context or word biases in a dataset, and plot016
existing datasets on a continuum. The anal-017
ysis were performed on both models and hu-018
mans to decouple biases inherent to the tasks019
and biases learned from the datasets. We found020
that, (1) to models, most existing datasets fall021
into the extreme ends of the continuum: the022
retrieval-based tasks and especially the ones023
in the medical domain (eg. COMETA) ex-024
hibit strong target word bias while WiC-style025
tasks and WSD show strong context bias; (2)026
AM2ICO and Sense Retrieval show less ex-027
treme model biases and challenge a model028
more to represent both the context and target029
words. (3) A similar trend of biases exists in030
humans but humans are much less biased com-031
pared with models as humans found seman-032
tic judgments more difficult with the masked033
input, indicating models are learning spuri-034
ous correlations. This study demonstrates that035
with heavy context or target word biases, mod-036
els are usually not being tested for word-in-037
context representations as such in these tasks038
and results are therefore open to misinterpreta-039
tion. We recommend our framework as a san-040
ity check for context and target word biases in041
future task design and model interpretation in042
lexical semantics.043

1 Introduction 044

Meaning contextualization (i.e., identifying the cor- 045

rect meaning of a target word in linguistic context) 046

is essential for understanding natural language, 047

and has been the focus in many lexical semantic 048

tasks. Pretrained contextualized models (PCMs) 049

have brought large improvements in these tasks in- 050

cluding WSD (Hadiwinoto et al., 2019; Loureiro 051

and Jorge, 2019; Huang et al., 2019; Blevins and 052

Zettlemoyer, 2020), WiC (Pilehvar and Camacho- 053

Collados, 2019; Garí Soler et al., 2019) and entity 054

linking (EL) (Wu et al., 2020; Broscheit, 2019). 055

These superior performances have been taken 056

as proof that PCMs can successfully model word- 057

in-context semantics. However, on one hand, the 058

evaluation benchmarks often vary in their emphasis 059

on context vs target words. For example, we could 060

expect tasks such as WSD and WiC to rely more 061

on context by design as the target words are either 062

given or the same in each input pair. Notice that 063

the exact amount of context/target word reliance in 064

these tasks is to be tested as humans naturally use 065

both to make prediction. On the other hand, models 066

may find shortcuts from datasets to avoid learning 067

the complex word-context interaction. What is 068

missing in the current literature is an accurate 069

quantification of this word-context interplay re- 070

quired and being tested in each task so that we 071

can fully understand task goals and model per- 072

formance. In particular, we need to flag heavy 073

word and context reliance where a model can solve 074

a task by relying solely on context or the target 075

words. Such heavy word or context reliance hinders 076

a scientific understanding of the models’ meaning 077

contextualization abilities as it essentially bypasses 078

the key word-context interaction challenge in mean- 079

ing contextualization, which requires the modeling 080

of both target words and their contexts (Words are 081

frequently ambiguous, but so are contexts. In “I 082

like XX .”, XX could have a number of meanings). 083
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Figure 1: Plotting context and target word biases from BERT (blue) and humans (black) across popular context-
aware lexical semantic datasets. The green shade and the yellow shade roughly indicate the areas for high target
word bias and high context bias (>0.8). We would ideally want a dataset to lie towards the bottom left corner which
is bias-free. The dashed red lines indicate 1.0 context (right) and 1.0 target word bias (top), implying a dataset is
in effect dealt with by relying on target words alone or context alone.

Therefore, we refer to such heavy reliance on target084

words or context in a contextual lexical semantic085

dataset as target word biases or context biases. This086

is also in line with Gardner et al. (2021)’s claim087

that all simple feature correlations based on partial088

input are spurious.089

This study presents an analysis framework to090

quantify this context-word interaction by measur-091

ing context and target word biases. We first run092

controlled probing baselines by masking the in-093

put to show the context or the target word alone.094

Based on model’s performance on these probing095

baselines, we calculate two ratios that reflect how096

much of the model performance in this dataset can097

be achieved from simply relying on context alone098

or the target word alone, i.e. the degree of context099

or target word biases (See Figure 1 which will be100

discussed fully in Section 3). The design of the101

probing baselines follows previous studies that ap-102

plied input permutation techniques for model and103

task analysis in GLUE (Pham et al., 2020), NLI104

(Poliak et al., 2018; Wang et al., 2018; Talman et al.,105

2021) and relation extraction (Peng et al., 2020). 106

While previous probing studies usually assume no 107

meaningful information from corrupted input with 108

no human verification, we provide fairer compari- 109

son with model performance by collecting human 110

judgment on the same masked input in four tasks. 111

Such comparison reveals whether the biases are 112

learned spuriously by models from the datasets or 113

are inherent in the tasks. 114

2 The Analysis Framework 115

2.1 Task Selection 116

We examine a number of popular context-aware 117

lexical semantic tasks. For illustration, we list ex- 118

ample data for each task in Table 4 in the appendix. 119

Word Sense Disambiguation (WSD). WSD (Nav- 120

igli, 2009; Raganato et al., 2017) requires a model 121

to assign a sense label to a target word in context 122

from a set of possible candidates for the target word. 123

Following the standard practice, we use SemCor 124

as the train set, Semeval2007 as dev, and report 125
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accuracy results on the concatenated ALL testset.126

The WiC-style Tasks (WiC, WiC-TSV, MCL-127

WiC and XL-WiC). To alleviate WSD’s require-128

ment for a sense inventory, WiC (Pilehvar and129

Camacho-Collados, 2019) presents a pairwise clas-130

sification task where each pair consists of two word-131

in-context instances. The model needs to judge132

whether the target words in a pair have the same133

contextual meanings. WiC-TSV (Breit et al., 2021)134

extends the WiC framework to multiple domains135

and settings. This study adopts the combined set-136

ting where each input consists of a word in context137

instance paired with a definition and a hypernym,138

and the task is to judge whether the sense intended139

by the target word in context matches the one de-140

scribed by the definition and is the hyponym of the141

hypernym. The WiC-style tasks have also been ex-142

tended to the multilingual and crosslingual settings143

in MCL-WiC (Martelli et al., 2021), XL-WiC (Ra-144

ganato et al., 2020) and more recently in AM2ICO145

(Liu et al., 2021). MCL-WiC provides test sets146

for five languages with full gold annotation scores.147

However, MCL-WiC only covers training data in148

English. To ensure the analysis will be testing149

the same data distribution during both training and150

testing, we will only use the English dataset of151

MCL-WiC. XL-WiC extends WiC to 12 languages.152

While most languages in this task do not have train-153

ing data, we perform analysis on its German dataset154

which does contain both train (50k) and test data155

(20k). AM2ICO covers 14 datasets, each of which156

pairs English word-in-context instances with word-157

in-context instances in a target language. In this158

study, we perform analysis on the English-Chinese159

dataset which contain 13k train and 1k test data 1.160

Sense Retrieval (SR). Based on WSD with the161

same train and test data, SR (Loureiro and Jorge,162

2019) requires a model to retrieve a correct entry163

from the full sense inventory of all words from164

WordNet (Miller, 1998).165

AIDA and Wikification. An important applica-166

tion scenario for testing meaning contextualization167

is Entity Linking (EL). EL maps a mention (an en-168

tity in its context) to a knowledge base (KB) which169

is usually Wikipedia in the general domain. The170

target word and its context help solve name vari-171

1We performed the analysis on other datasets of AM2 ICO
and found the trend is similar

ations and lexical ambiguity, which are the main 172

challenges in EL (Shen et al., 2014). In addition, 173

the context itself can help learn better representa- 174

tions for rare or new entities (Schick and Schütze, 175

2019; Ji et al., 2017). We test on two popular 176

Wikipedia-based EL benchmarks: AIDA (Hoffart 177

et al., 2011) and Wikification (Wiki) (Ratinov et al., 178

2011; Bunescu and Paşca, 2006). AIDA provides 179

manual annotations of entities with Wikipedia and 180

YAGO2 labels for 946, 216 and 231 articles as train, 181

dev and test sets respectively. The Wiki Dataset 182

is based on the hyperlinks from Wikipedia. We 183

randomly sampled 50k sentences from Wikipedia 184

as the test and another 50k as the dev set. The rest 185

is used for training. For both AIDA and Wiki, the 186

search space is the full Wikipedia entity list. 187

WikiMed and COMETA. To test domain ef- 188

fects, we evaluate on two medical EL tasks. We 189

use the WikiMed corpus (Vashishth et al., 2020), 190

an automatically extracted medical subset from 191

Wikipedia, for medical wikification. Each men- 192

tion is mapped to a Wikipedia page linked to a 193

concept in UMLS (Bodenreider, 2004), a massive 194

medical concept KB. We define the search space as 195

the Wikipedia entities covered in UMLS. With the 196

same Wikipedia ontology but a different domain 197

subset, WikiMed can be directly compared with 198

Wiki for assessing domain influence. We also test 199

on COMETA (Basaldella et al., 2020), a medical 200

EL task in social media. COMETA consists of 20k 201

English biomedical entity mentions from online 202

posts in Reddit. The expert-annotated labels are 203

linked to SNOMED CT (Donnelly et al., 2006), 204

another widely-used medical KB. 205

We report accuracy for WSD and all the WiC 206

style tasks, and accuracy@1 for retrieval-based 207

tasks including Wiki, AIDA, etc. 208

2.2 Probing Baselines 209

Context vs. Word: For the main experiment, we 210

design the WORD baseline where we input only 211

the target word 2 to the model, and the CONTEXT 212

baseline where the target word is replaced with a 213

[MASK] token in the input. The model is then 214

trained and tested on the perturbed input. A high 215

performance in CONTEXT or WORD will indicate 216

strong context or target word bias. Example base- 217

line input is shown in Table 1. Lower Bound: 218

2In the surveyed tasks, a target word can show different
surface variations of number, case and etc. Eg., breed, breeds.
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Apart from a RANDOM baseline, we also set up a219

LABEL baseline where all the input is masked and220

the learning is only from the label distribution in221

the task. Notice that training the LABEL baseline is222

preferable to simply counting label occurrences in223

the data as the former can work with both contin-224

uous and categorical label space. All the probing225

baselines are compared with model performance226

on the full input (FULL). We refer to model M’s227

performance in WORD, CONTEXT, LABEL and228

FULL as MW , MC , ML and MFull respectively.229

Human Evaluation: To measure the inherent230

task biases, we collect human judgment (HUM)231

for a subset (WiC, XL-WiC, AM2ICO and AIDA)232

as being representative of the tasks described in233

Section 2.1 and feasible given resources for annota-234

tion. WiC, XL-WiC and AM2ICO cover WiC-style235

datasets in different languages; AIDA is chosen236

as a representative retrieval-based task. We fol-237

low the quality control procedures in Pilehvar and238

Camacho-Collados (2019); Liu et al. (2021) to re-239

cruit two different annotators for each baseline in-240

put from CONTEXT,WORD and for FULL input in241

each task. The annotators are recruited from Pro-242

lific. They have graduate degrees and are fluent243

or native in the language of the dataset. In each244

setup, an annotator is assigned a randomly sam-245

pled 100 examples from the test set of each task3246

and there is a 50 example overlap between the two247

annotators for agreement calculation. The anno-248

tators are asked to perform meaning judgment in249

WiC, XL-WiC and AM2ICO, and to find the cor-250

responding Wikipedia pages for entities for AIDA.251

For CONTEXT input where the target words are252

masked, annotators are encouraged to first guess253

what the target words could be. As to the WORD254

input, annotators are asked to think of the most255

representative meaning of the out-of-context words256

when performing the tasks. As the pairs of input257

are always the same word by design in WiC and258

XL-WiC, we assume humans will give true judg-259

ment for all the examples and therefore will score260

0.5 on WORD input in WiC and XL-WiC. As to261

human’s LABEL baseline performance, while hu-262

mans are not given any prior indication of how the263

task labels will be distributed, it is reasonable to264

expect that an annotator will give a random choice265

between the available labels or stick with one label266

3We cannot use the test set for WiC and XL-WiC as the
test labels are undisclosed. As the dev set comes from the
same distribution of the test, we use dev to estimate human
performance in these two tasks.

when there is no input. Therefore, we approximate 267

the LABEL human baseline as being 0.5 for WiC, 268

XL-WiC and AM2ICO, and 0 for AIDA. 269

2.3 Calculating the Bias Measures 270

Based on a model M ’s performance on the full in- 271

put and on the baseline input, we propose BiasMC 272

and BiasMW (as calculated in Equation (1) and 273

Equation (2)) to measure the model’s context and 274

target word biases in a dataset. BiasMC is the ratio 275

of MC to MFull with the LABEL performance ML 276

deducted from both MC and MFull. ML has to be 277

deducted as it is unrelated to the input. Otherwise, 278

the ratio will give an inflated bias measurement. 279

BiasMW is calculated in the same way asBiasMC 280

except that we replace MC with MW in the equa- 281

tion. The two measures can also be seen asMC and 282

MW under min-max normalization where the min 283

value is ML and the max value is MFull, and there- 284

fore the normalized values can be fairly compared 285

across datasets. BiasMC and BiasMW reflect how 286

much of what a model has learned from the input 287

in a dataset can be achieved from context alone or 288

target word alone, which will give us indicators 289

of the degree of context and target word biases in 290

the dataset. These bias indicators will in turn tell 291

us how important the masked part of the input is. 292

For example, we can interpret a BiasMC of 0.9 as 293

90% of what the model has learned from the full 294

input can be achieved from the context alone. The 295

10% gap can be gained from adding the masked 296

target word and since this gap is small with a high 297

context bias, we can conclude that the model can 298

do pretty well just from the context alone and it is 299

not learning much from the target word. 300

BiasMC =
(MC −ML)

(MFull −ML)
(1) 301

BiasMW =
(MW −ML)

(MFull −ML)
(2) 302

Like models, humans can also be biased as they 303

can also use their prior knowledge or biases (eg. 304

humans can guess the typical meaning of a word 305

without knowing the context) to make predictions 306

based on partial input (Gardner et al., 2021). To 307

measure how much humans can perform on the 308

baseline input will help us understand the biases in- 309

herent in a task. We therefore calculate the context 310

and target word bias scores for humans in the same 311

way. 312
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Input Sentence1 Sentence2 BERT HUMAN

FULL Google represents a new [breed] of entrepreneurs . The [breed] of tulip . F F
CONTEXT Google represents a new [MASK] of entrepreneurs . The [MASK] of tulip . F T
WORD breed breed T -

GUESSEDWORD Google represents a new [type] of entrepreneurs . The [type] of tulip . F T

Table 1: Example input of FULL, CONTEXT and WORD in WiC. Target words are in brackets and the original
WiC label for the FULL example is F. GUESSEDWORD shows human-elicited target words based on CONTEXT.
Comparing CONTEXT and GUESSEDWORD also shows BERT’s contextual bias in WiC as BERT is not sensitive
to the target word change.

2.4 Experiment setup313

The underlying model for our main experiments is314

BERT (Devlin et al., 2019), one of the most suc-315

cessful PCMs that offer dynamic contextual word316

representations as bidirectional hidden layers from317

a transformer architecture. To ensure the general318

trend of our findings are consistent across differ-319

ent models, we also performed the analysis using320

ROBERTA (Liu et al., 2019), which improves upon321

BERT by optimized design decisions during train-322

ing.323

We adopt standard model finetuning setups in324

each task. We use the base uncased variant of325

BERT4 for general domain experiments and PUB-326

MEDBERT (Gu et al., 2020) for the medical tasks.327

For WSD, we use GLOSSBERT (Huang et al., 2019)328

that learns a sentence-gloss pair classification329

model based on BERT. For the WiC-style tasks,330

we follow the SuperGlue (Wang et al., 2019) prac-331

tices to concatenate BERT’s last layer of [CLS]332

and the target words’ token representations for333

each input pair, followed by a linear classifier. For334

the retrieval-based tasks including SR and EL, we335

adopt a bi-encoder architecture to model query and336

target candidates with BERT (Wu et al., 2020). For337

the query, we insert [ and ] to mark the start and338

end positions of the target word in context. Each339

target candidate is reformatted as “[CLS]Name340

|| Description[SEP]”. Name is an entity341

title (EL) or synset lemmas from WordNet (SR).342

Description is the first sentence in an entity’s343

Wikipedia page (Wiki & WikiMed), a gloss (SR),344

or n/a (COMETA). The model learns to draw345

closer the true query-target pairs’ representations346

using triplet loss with triplet miners during fine-347

tuning (Liu et al., 2020). For each experiment,348

we perform grid search for the learning rate in349

[1e−5, 2e−5, 3e−5] and select models with early350

4All PCM configurations are listed in Appendix D. We
also conducted experiments with ROBERTA (Liu et al., 2019)
and reported the results in Appendix E

stopping on the dev set. We also run all the models 351

with three random seeds and select the models with 352

the best performance on the dev set. The perfor- 353

mance across random seeds are stable as shown by 354

small standard deviations which can be referred to 355

in Table 5 in the appendix. 356

3 Main Results and Discussion 357

We report BERT’s baseline performance in Fig- 358

ure 2, based on which we calculate BiasBERTC 359

and BiasBERTW for each dataset and plot the 360

results (black dots) in Figure 1 (We also report 361

ROBERTA biases in Appendix E and found a simi- 362

lar trend). For comparison, we plot human baseline 363

performance and biases alongside the model per- 364

formance in each figure. 365

3.1 Model biases 366

Models can learn extreme context or target 367

word biases from the datasets. One obvious ob- 368

servation from Figure 1 is that, probed with BERT, 369

most of the datasets lie close to the dashed red lines: 370

tasks such as WiC and MCL-WiC lie towards the 371

right and are close to the vertical red line which 372

indicates 1.0 context bias; the retrieval-based tasks 373

such as WikiMed and Wiki lie towards the top and 374

are close to or even surpass the horizontal red line 375

which indicates 1.0 target word bias. This pat- 376

tern indicates that BERT can learn a tremendous 377

amount from these datasets by relying only on the 378

target words or only on the context. In other words, 379

context or target words can be much ignored when 380

the model learns to solve the tasks. It is therefore 381

questionable how much word-context interaction, 382

which requires the modeling of both word and con- 383

text representations, is actually learned by BERT 384

when applied to these tasks. 385

Moreover, the datasets tend to concentrate in 386

two corners. That is, models usually learn strong 387

bias from either context or the target word: the 388

retrieval-based datasets (eg. Wiki) lie in the top 389
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Figure 2: BERT and human performance on probing baselines across popular context-aware lexical semantic tasks.
For the retrieval-based tasks, we report @1 accuracy, and the LABEL and RANDOM baselines are not visible as
they are close to 0.

left corner, showing large target word bias and low390

context bias; the WiC style datasets and WSD lie in391

the bottom right corner with large context bias and392

low target word bias. XL-WiC is an exception as it393

contains both strong context and target word biases.394

We will come back to this later in Section 3.2 where395

we compare model and human performance.396

AM2ICO and SR are closest to testing word-397

context interaction from models. There are few398

existing datasets that in effect require the model-399

ing of the context-word interaction, which should400

result in both low context and target word biases.401

SR and AM2ICO can be seen as two such datasets402

which, in Figure 1, can be found further inside of403

the red lines towards the bias-free left bottom cor-404

ner. This is because these two tasks are designed to405

require balanced attention over context and target406

words. In SR, a system needs to model the target407

words in order to retrieve all the possible senses as-408

sociated with the word, and because there is plenty409

of ambiguity in the dataset, context is also crucial410

to identify the correct sense. AM2ICO was specifi-411

cally designed to include adversarial examples to412

penalize models that rely only on the context, and413

therefore elicits the lowest context bias from mod-414

els among the WiC-style tasks. As such, SR and415

AM2ICO are the closest tasks that we have to test416

word-context interaction.417

Domains affect lexical ambiguity and the target 418

word bias. 419

The retrieval-based tasks in this study offer com- 420

parison between two domains, general vs medical, 421

by comparing Wiki/AIDA and WikiMed. The tar- 422

get word bias is increased in the medical domain 423

where relying on the target words alone gives the 424

best performance (i.e. COMETA and WikiMed 425

both have > 1.0 target word bias). Such divergence 426

across domains is arguably caused by the different 427

degrees of lexical ambiguity in these tasks. In par- 428

ticular, domain could reduce ambiguity (Magnini 429

et al., 2002; Koeling et al., 2005), and therefore af- 430

fect the importance of the context and therefore the 431

target word bias. As a quantitative measure for lex- 432

ical ambiguity, we calculate average sense entropy 433

across all words in each task’s training data, see 434

Table 2. Confirming our hypothesis, sense entropy 435

(lexical ambiguity) in a task does roughly correlate 436

with the model’s target word bias: the medical do- 437

main tasks (WikiMed and COMETA) contain the 438

lowest lexical ambiguity as reflected by the low- 439

est sense entropy, and therefore missing context 440

in these two tasks will not bring so much negative 441

impact on the model performance, resulting in the 442

highest target word biases; whereas higher sense 443

entropy and thus higher lexical ambiguity (eg. Wiki 444

and then SR) will necessarily require context along- 445
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SemCor Wikification AIDA WikiMed COMETA

Sense Entropy 0.2102 0.060 0.0438 0.026 0.0004
BiasBERTW 0.7274 0.8939 0.8705 1.0208 1.0124
BiasRoBERTaW 0.7315 0.8994 0.8319 0.9957 1.1798

Table 2: Target Word Bias and Sense Entropy across retrieval-based tasks

side the target word, which leads to lower target446

word biases.447

Context can harm model performance in Med-448

ical EL. We notice that the model’s target word449

bias in COMETA and WikiMed can go beyond 1.0,450

indicating that the model learning is dominated en-451

tirely by the target words with the context being452

useless or even harmful. This comes as a surprise as453

medical EL has been treated as a contextual lexical454

semantic task where the context is usually provided455

in the hope for higher modeling accuracy. We ex-456

amined the errors from FULL as compared with457

WORD, and we found that the model tends to get458

distracted by related context words. Table 3 shows459

an example where the retrieval model selects the460

entry that is closer to a context word (“Miltonia”)461

than to the target word (“Miltoniopsis”), but in fact462

knowing the target word alone in this case is suf-463

ficient to retrieve the correct label. This indicates464

that the model has not learned a good strategy to465

incorporate word and context representations from466

the datasets (i.e. not knowing when to focus on the467

context and when to focus on the target words).468

3.2 Human vs Model469

There are inherent task biases. Our first finding470

is that humans show a similar trend of biases in the471

tasks in comparison to model biases (except for XL-472

WiC). This is evident from Figure 1 where, with the473

human bias indicators, WiC still lies near bottom474

right corner with relatively high context bias; AIDA475

lies near top left corner with high target word bias476

and AM2ICO remains in the middle. This confirms477

that there are some degrees of biases inherent in the478

task design so that humans can also rely on either479

target words or context alone to perform the task to480

some extent.481

Humans are less biased than models.482

That being said, the second finding and the more483

important one is that humans exhibit overall much484

weaker biases in comparison with models in all the485

four tasks. If we compare human performance with486

model performance in Figure 2, we can see the487

Figure 3: The minimum gap between FULL and CON-
TEXT or WORD, i.e. min(FULL-CONTEXT,FULL-
WORD) with BERT and human performance. A small
gap will indicate strong bias.

CONTEXT and WORD baseline scores are lower 488

in comparison toFULL from human performance. 489

For clearer comparison, we calculate and plot the 490

minimum gap between FULL to either of the two 491

baselines in Figure 3, and we can see substantial 492

difference between humans and models where hu- 493

mans exhibit much larger gaps across the four tasks. 494

The much larger gaps from humans also result in 495

all the four tasks moving further towards the left- 496

bottom “bias-free” corner as shown Figure 1. In 497

other words, humans are more likely than models 498

to rely on both word and context as the absence of 499

either part will lead to much more negative impact 500

for humans when performing these tasks. 501

The most dramatic difference is in XL-WiC 502

where the model’s strong target word bias disap- 503

pears in humans. The task of XL-WiC by nature 504

should not leak any information from the target 505

word alone (hence 0 target word bias for humans) 506

as the input pair will always contain the same tar- 507

get word. The high target word bias from models 508

comes from the fact the dataset does not contain 509

sufficient ambiguous cases where the same word 510

pair can have both true and false labels dependent 511

on the contexts. We confirm this by calculating the 512

per-word average label entropy of the training data 513

as 0.09, and on average a word pair has the same 514

label for 94% of the context examples it appears 515
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Baseline Input Retrieved concept entry Result

FULL Formerly many more species
were attributed to “Miltonia”,
... including [Miltoniopsis] and
Oncidium ...

miltonia: miltonia is an orchid genus comprising twelve epiphyte
species and eight natural hybrids.

Wrong

WORD Miltoniopsis miltoniopsis: miltoniopsis is a genus of orchids native to costa
rica and etc.

Correct

Table 3: Error analysis on FULL and WORD BERT predictions on WikiMEd.

in the dataset. Therefore, the model learns correla-516

tion between the word itself and the label without517

needing context for disambiguation.518

Target words are important in WiC for humans.519

The much lower context bias from humans in tasks520

such as WiC suggests that the absence of the target521

words drastically decreases performance. In fact,522

human CONTEXT baseline (0.61) is even worse523

than BERT (0.65) as shown in Figure 2. This may524

also come as a surprise, considering that target525

words are always the same and only the context is526

different in each pair of input. We examined hu-527

man response in CONTEXT and found that humans528

can guess another valid target word based on the529

context, which gives a different prediction. Table 1530

shows such an example. While the original WiC531

label of the input is F, our annotator gave T for532

the CONTEXT input, guessing the target word is533

type. This is a reasonable prediction as type fits534

the contexts and does hold its meaning across the535

two sentences. We refer to this new example with536

human-elicited target words as GUESSEDWORD in-537

put. The same annotator was able to give the WiC538

label F when we reveal the original target word539

(breed) which has the specific meaning of species540

in sentence1 and personality in sentence2 (see the541

FULL input in Table 1). BERT however still pre-542

dicts F regardless of the target word change in this543

GUESSEDWORD example.544

As qualitative analysis on the human-model dis-545

crepancy on CONTEXT, we examined 20 cases546

where annotators did not predict WiC labels (from547

the corresponding FULL input) while BERT did.548

In 11 cases, humans guessed other valid target549

words to justify their predictions. We then perform550

preliminary analysis to test BERT on all the 11551

GUESSEDWORD cases where the human-elicited552

target words change the labels (We show more ex-553

amples in Table 6), and found that for 7 out of 11,554

BERT is insensitive to the changed target words555

and maintains its original prediction. This suggests556

BERT does not appreciate the same word-context 557

interaction as humans, and is making prediction 558

mainly based on contexts rather than modeling con- 559

textual lexical semantics in WiC. 560

4 Conclusion 561

This study presented an analysis framework to dis- 562

entangle and quantify context-word interplay in 563

application of popular contextual lexical semantic 564

benchmarks. With our proposed bias measures, we 565

plot datasets on a continuum, and we found that, to 566

models, most existing datasets lie on the two ends 567

with excessive biases (WiC-style tasks and WSD 568

are heavily context-biased while retrieval-based 569

tasks are heavily target-word-biased) that essen- 570

tially bypass the key challenges in word-context 571

interaction. SR and AM2ICO have been identified 572

as two tasks that have less extreme biases and there- 573

fore can better test the representation of both word 574

and context, and we call for more tasks that chal- 575

lenge models to do so. In addition, we identify that 576

the degree of lexical ambiguity as a byproduct of 577

domain affects target word bias (medical>general) 578

in retrieval-based tasks. Most importantly, we dif- 579

ferentiate biases spuriously learned by models and 580

task-inherent biases by collecting human responses 581

on the same baseline input. We found that mod- 582

els’ heavy context and target word biases are not 583

attested to the same extent in humans who usually 584

need both context and target words to perform well 585

in the tasks. This suggests that models are learning 586

spurious correlations instead of modeling contex- 587

tual lexical semantics as intended by the tasks. Our 588

paper highlights the importance of understanding 589

these biases in existing datasets and encourages 590

future dataset and model design to control for these 591

biases and to focus more on testing the challeng- 592

ing word-context interaction in context-sensitive 593

lexical semantics. Possible future directions will 594

be to include adversarial examples that penalize 595

sole reliance on context or target words in both task 596

design and model training. 597
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Figure 4: Plotting context and target word biases when
applying ROBERTA across popular context-aware lex-
ical semantic datasets. The green shade and the yel-
low shade roughly indicate the areas for high target
word bias and high context bias (0.8). The dashed red
lines indicate 1.0 context (right) and 1.0 target word
bias (top), implying the model only requires the target
words alone or context alone in this dataset.

A Task examples 829

Table 4 lists example input and labels for tasks 830

surveyed in this study. 831

B Dev performance 832

Table 5 shows BERT biases calculated over three 833

runs on the dev set with standard deviation re- 834

ported. 835

C Examples of the context bias in WiC 836

See Table 6 for two examples where the model 837

relies solely on the context to make the prediction. 838

D Model configurations 839

ALL PCMs are from https://huggingface.co/. 840

Model configurations are listed in Table 7. 841

842

E ROBERTA Performance (Figure 4) 843
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Task Input Label Label Space Metrics

WiC Room and [board].
He nailed [boards] across the windows.

F T or F Acc

WiC-TSV I spent my [spring] holidays in Morocco.
the season of growth; season, time of the
year

T T or F Acc

MCL-WiC Bolivia holds a key [play] in any pro-
cess...
A musical [play] on the same subject...

F T or F Acc

XL-WiC Herr [Starke] wollte uns kein Interview
geben.
Das kann ich dir aber sagen: Wenn die
Frau [Starke] kommt...

T T or F Acc

AM2 ICO ...航天员训练及[阿波罗]中飞船...
...the six [Apollo] Moon landings...

T T or F Acc

WSD The [art] of change-ringing is peculiar to
the English...

art: a superior skill that
you can learn by study
and practice and obser-
vation

art: the creation of beautiful or significant
things
art: the products of human creativity; works
of art collectively
...(all possible meanings of art)

F1

SR The [art] of change-ringing is peculiar to
the English...

art: a superior skill that
you can learn by study
and practice and obser-
vation

art: a superior skill that you can learn by
study and practice and observation
door: a swinging or sliding barrier that will
close the entrance...
... PLUS all other entries in WordNet

Acc

Wiki an additional [Hash] literal syntax using
colons for symbol keys...

hash table: in comput-
ing , a hash table ( hash
map ) is a data struc-
ture...

hash table: in computing , a hash table (
hash map ) is a data structure ...
united kingdom: the United Kingdom of
Great Britain and Northern Ireland...
... (all entries in Wikipedia)

Acc@1

WikiMed The flowers produce pollen, but no nec-
tar. Various bees and flies visit the flow-
ers looking in vain for nectar, for in-
stance [sweat bees] in the genera “La-
sioglossum” and “Halictus”...

halictidae: the Halicti-
dae is the second largest
family of Apoidea bees.

halictidae: the Halictidae is the second
largest family of Apoidea bees.
eomecon: eomecon is a monotypic genus of
fl owering plants in the poppy family...
... (all entries in the medical section of
Wikipedia)

Acc@1

COMETA I am [spacey] because I am thinking and
daydreaming about my obsession.

dizziness (finding) dizziness (finding)
large intestine
...PLUS all other entries in SNOMED CT

Acc@1

Table 4: Examples for a selection of context-sensitive lexical semantic tasks surveyed in this thesis. Acc: accuracy;
ρ: Spearman’s correlation; r: Pearson’s correlation; P&R: precision and recall.
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WiC WiC-
TSV

WSD MCL-
WiC

XL-
WiC

AM2 ICO SR AIDA Wiki MedWiki COMETA

BiasBERTW 0.473 0.266 0.346 0.122 0.903 0.665 0.648 0.910 0.946 1.024 1.017
(0.016) (0.043) (0.015) (0.007) (0.002) (0.008) (0.012) (0.007) (0.002) (0.022) (0.034)

BiasBERTC 1.055 0.890 0.874 0.864 0.844 0.768 0.237 0.241 0.308 0.447 0.028
(0.017) (0.028) (0.020) (0.043) (0.002) (0.016) (0.011) (0.015) (0.003) (0.010) (0.010)

Table 5: Average context and target word biases over three runs with three different random seeds on the dev set
in each dataset. Standard deviation is reported in the parenthesis.

Input Sentence1 Sentence2 BERT HUM

FULL [Misdirect] the letter . The pedestrian [misdirected] the out - of - town driver . F F
CONTEXT [MASK] the letter . The pedestrian [MASK] the out - of - town driver . F T
GUESSEDWORD [Ignore] the letter . The pedestrian [ignored] the out - of - town driver . F T
FULL [Kill] the engine . He [kills] the ball . F F
CONTEXT [MASK] the engine He [MASK] the ball . F T
GUESSEDWORD [Hit] the engine . He [hits] the ball . F T

Table 6: Example input of WORD, CONTEXT and FULL in WiC. The original WiC label for these examples is F.
GUESSEDWORD contains human-elicited target words that flip the label. Comparing CONTEXT and GUESSED-
WORD also shows BERT’s contextual bias in WiC as BERT is not sensitive to the target word change.

Model Variant name in Huggingface Parameters Pretraining corpus

BERT bert-base-uncased 12-layer, 768-hidden, 12-heads, 110M
parameters

Lowercased Wikipedia + BookCorpus

PUBMEDBERT microsoft/BiomedNLP-PubMedBERT-base-
uncased-abstract-fulltext

12-layer, 768-hidden, 12-heads, 110M
parameters

Lowercased abstracts from PubMed and
full-text articles from PubMedCentral

DEBERTA microsoft/deberta-large 24-layer, 1024-hidden, 16-heads, 400M
parameters

Wikipedia + BookCorpus + OPENWEB-
TEXT (public Reddit content) + STO-
RIES

Table 7: Model details in our experiments
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