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Abstract: Generating time-optimal quadrotor trajectories is challenging due to
the complex dynamics of high-speed, agile flight. In this paper, we propose a
data-driven method for real-time time-optimal trajectory generation that is suit-
able for complicated system models. We utilize a temporal deep neural network
with sequence-to-sequence learning to find the optimal trajectories for sequences
of a variable number of waypoints. The model is efficiently trained in a semi-
supervised manner by combining supervised pretraining using a minimum-snap
baseline method with Bayesian optimization and reinforcement learning. Com-
pared to the baseline method, the trained model generates up to 20 % faster trajec-
tories at an order of magnitude less computational cost. The optimized trajectories
are evaluated in simulation and real-world flight experiments, where the improve-
ment is further demonstrated.

Keywords: Motion planning, Model learning

1 Introduction

Generating a feasible minimum-time quadrotor trajectory, i.e., the fastest trajectory that can be flown
accurately and reliably on the actual vehicle, is challenging due to the complex nonlinear quadro-
tor dynamics. At high speeds, these dynamics include phenomena, such as unsteady aerodynam-
ics, estimator error, and battery dynamics, that make it difficult to incorporate realistic feasibility
bounds in trajectory generation. Popular methods address this difficulty by using simplified fea-
sibility models [1, 2, 3] or by minimizing snap (i.e., the fourth temporal derivative of position) as
a proxy for feasibility [4, 5]. Given a waypoint sequence and a time allocation over the segments
between these waypoints, a corresponding polynomial minimum-snap trajectory can be obtained
efficiently through convex optimization. However, finding the optimal, i.e., minimum-time and fea-
sible, minimum-snap time allocation still amounts to a much harder nonlinear optimization problem.

Existing methods for finding (near-)optimal time allocations suffer from downsides with regard to
applicability, evaluation time, or their ability to incorporate realistic feasibility constraints. For
example, while gradient descent (with or without regularization) has been demonstrated with sim-
plified dynamics [5, 6, 7], its large number of evaluations makes it computationally too expensive to
consider a more realistic feasibility test. Additionally, the algorithm may not converge to a feasible
solution altogether [8]. On the other hand, methods that are capable of incorporating complex real-
istic feasibility constraints are typically not suitable for online motion planning. For instance, their
learned feasibility representation may be specific to a given sequence of waypoints [9].

In this paper, we address these shortcomings through a novel deep neural network model that gen-
erates the optimal minimum-snap time allocation for any given sequence of quadrotor waypoints.
Specifically, we utilize a temporal neural network model with sequence-to-sequence (seq2seq) learn-
ing to handle sequences with a variable number of waypoints. Our work contains several contribu-
tions. Firstly, we design the deep neural network trajectory generation model and train it using
a realistic six-degree-of-freedom flight dynamics feasibility model. The resulting model generates
faster trajectories than standard minimum-snap methods at a fraction of the computational cost, mak-
ing it suitable for high-rate online motion planning. Secondly, we propose a novel training process
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(a) The proposed seq2seq model (b) Average improvement over training phases.

Figure 1: (a) The proposed model with fully-connected (FC) layers, bi-directional GRU encoder
(ENC), and basic GRU decoder (DEC). Attention values are estimated from the context vector cenc,
i.e., all encoder hidden states, and the preceding hidden state. The model takes the variable-length
waypoint sequence xin

p as input and outputs the time allocation xt and the smoothness weights xw
as well as the reconstructed waypoint sequence xout

p . (b) The three-phase training for forward-facing
trajectory with differential flatness feasibility constraint.

that utilizes Bayesian optimization to enable supervised pretraining on a data subset. This pretrain-
ing serves as a guiding step that increases the efficiency of reinforcement learning by improving
the sampling quality. Thirdly, we extend the minimum-snap optimization formulation by adding
an individual snap penalty weight for each trajectory segment, enabling more aggressive minimum-
snap trajectories. Fourthly, we demonstrate the improvement of the proposed model over standard
minimum-snap trajectory planning in both simulation and real-world flight experiments.

2 Preliminaries

2.1 Quadrotor Trajectory Planning

We study the problem of planning a time-optimal quadrotor trajectory that passes through m + 1
given waypoints p̃ =

[
p̃0 p̃1 · · · p̃m

]
. Each waypoint p̃i consists of a prescribed position p̃ir

and yaw angle p̃iψ . A trajectory is a continuous function that maps time to position and yaw, i.e.,
p(t) =

[
pr(t)

ᵀ
pψ(t)

]ᵀ
. The time-optimal planning problem can be formulated as follows:

minimize
p, T, x∈Rm≥0

T subject to p(0) = p̃0, p
(∑i

j=1xj

)
= p̃i, i = 1, . . . , m,

T =
∑m
i=1 xi, p ∈ PT ,

(1)

where x = [ x1 · · · xm ] is the time allocation over them segments between waypoints, and the
function space PT is the set of all feasible trajectories, i.e., all trajectory functions that the quadrotor
can successfully track over [0, T ]. This set is defined by physical phenomena (e.g., aerodynamics,
thrust limitations, and vehicle mass and inertia), as well as hardware and software limitations of
the estimation and control systems. Consequently, fast and agile motion planning is subject to a
complex feasibility boundary that makes directly solving (1) challenging.

Widely used quadrotor motion planning algorithms employ minimum-snap trajectory generation [4,
5], which does not directly consider the complex feasibility bounds. Instead, it minimizes the fourth-
order derivative of position, i.e., snap, and the yaw acceleration to generate smooth trajectories that
are less likely to violate feasibility constraints, as follows:

minimize
p∈Rm≥0

σ (p,
∑m
i=1xi) subject to p(0) = p̃0, p

(∑i
j=1xj

)
= p̃i, i = 1, . . . , m, (2)

where

σ(p, T ) =

∫ T

0

µr

∥∥∥∥d4prd4t

∥∥∥∥2 + µψ

(d2pψ
d2t

)2
dt (3)

with µr and µψ weighing parameters. By considering piecewise polynomial trajectories, the convex
program (2) can be solved efficiently [5]. For convenience, we denote the resulting minimum-snap
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trajectory p = χ(x, p̃). One way to obtain the time allocation x, which appears as a constraint in
(2), is to first find the optimal allocation ratio as

minimize
x∈Rm≥0

σ(χ(x, p̃), T ) subject to T =
∑m
i=1xi. (4)

Since the optimal allocation ratio is independent of the duration T [5], a uniform scaling factor k
can be used to find the the fastest trajectory that satisfies the feasibility constraint, i.e., χ(kx, p̃) ∈
PkT [10]. This constraint can be evaluated in various ways, ranging from a simple check based
on differential flatness of the idealized quadrotor dynamics [4] to experimental evaluation in flight
tests [9]. While the resulting time allocation kx is on the feasibility boundary, it is typically not time-
optimal because there may exist a different (non-minimum-snap) time allocation ratio that remains
feasible for smaller kT .

2.2 Bayesian Optimization

Bayesian optimization (BO) is a class of machine learning algorithms to efficiently solve optimiza-
tion problems with black-box objective or constraint functions that are expensive to evaluate. The
Gaussian process classifier (GPC) is widely used as a surrogate model to approximate constraint
functions based on (noisy) evaluations [11]. Each point is selected as the maximum of the ac-
quisition function α(x|D), which balances uncertainty reduction in the surrogate model against the
anticipated improvement in the objective function, given all dataD obtained in previous evaluations.
Multi-fidelity Bayesian optimization (MFBO) extends the notion of BO to incorporate evaluations
from various sources. The key idea is that combining cheap low-fidelity evaluation with expen-
sive high-fidelity measurements improves overall efficiency. For instance, a rough simulation or an
expert’s opinion may serve as low-fidelity model, while a high-accuracy simulation or real-world
experiment serves as high-fidelity model.

Ryou et al. [9] utilize MFBO to find the minimum-time allocation x for quadrotor trajectory gen-
eration. By efficiently combining evaluations from analytical models, numerical simulation, and
real-world flight experiments, the algorithm finds faster trajectories that remain dynamically fea-
sible on the actual vehicle, when compared to standard minimum-snap algorithms. However, the
learned surrogate constraint model does not generalize beyond the predefined waypoint sequence p̃,
making the algorithm unsuitable for online motion planning.

2.3 Deep Learning-based Approaches

Deep learning-based approaches have been applied in the field of quadrotor motion planning and
control, e.g., to improve model predictive control parameters through deep reinforcement learn-
ing [12, 13] and for neural network flight control [14, 15, 16, 17]. de Almeida et al. [8] apply deep
learning to generate minimum-snap trajectories. They train a network model to generate the time
allocation between the prescribed waypoints. By replacing the time-consuming nonlinear optimiza-
tion (4) with neural network inference, an algorithm speed-up is achieved. However, since it uses a
fully-connected network, the algorithm is limited to sequences with a specific number of waypoints.
Additionally, the model is trained only with supervised learning using labels from minimum-snap
optimization, so it does not provide minimum-time solutions.

Sequence-to-sequence models take a variable-length input sequence and transform it to an out-
put sequence [18], which makes then particularly suitable for natural language processing appli-
cations [19, 20, 21, 22, 23, 24, 25]. Seq2seq learning has also been applied towards various mo-
tion planning problems, such as predicting the future trajectory from past states and control in-
puts [26, 27, 28, 29] and generating trajectories that are predictable for other agents, e.g., in multi-
agent settings [30] and for socially-acceptable trajectory generation [31].

3 Algorithm

We propose seq2seq learning with a specialized training scheme to build a model that generates the
time-optimal trajectory for any given sequence of waypoints. By using minimum-snap trajectories,
we obtain a finite parameterization of the trajectory in terms of the time allocation over the segments
between waypoints. Additionally, we introduce smoothness weights xwi, leading to the following
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snap objective (cf. (3))

σ(p,xt,xw) =

m∑
i=1

xwi

(∫ Ti

Ti−1

µr

∥∥∥∥d4prd4t

∥∥∥∥2 + µψ

(d2pψ
d2t

)2
dt

)
(5)

where Ti =
∑i
j=1 xtj ,

∑m
i=1 xti = m,

∑m
i=1 xwi = m and xti refers to the time allocated to the

segment between the i-th and (i+1)-th waypoints. The smoothness weights enable faster trajectories
that remain feasible by allowing modification of the objective to locally increase aggressiveness,
according to

minimize
xt,xw∈Rm≥0

T, subject to T =
∑m
i=1xti, χ(xt,xw, p̃) ∈ PT . (6)

Our goal is to build a model that outputs the optimal time allocation xt and smoothness weights
xw for any given waypoint sequence p̃ with variable length. Solely using supervised learning to
train the model is impractical, as obtaining the optimal time allocation and smoothness weights with
regard to a realistic feasibility model (i.e., solving (6)) is computationally expensive, e.g., taking
almost an hour for a single set of waypoints using the BO approach from [9]. At the same time,
reinforcement learning is inefficient and may fail, because randomly sampled time allocations and
smoothness weights often fail to solve (5) altogether or require absurd paths with extreme excursions
between waypoints. In order to address these challenges, we propose a three-phase training process
consisting of pretraining, guiding, and generalizing. We first pretrain the model using supervised
learning with minimum-snap labels obtained from (4), which is not time-optimal but gives realistic
trajectories. Next, we guide the model towards better solutions using optimal time allocation and
smoothness weights obtained using BO [9] for a subset of training dataset. The model exploits the
progress from pretraining and guiding to efficiently sample in the final reinforcement learning phase,
where the entire training dataset is used to generalize the policy. In the remainder of this section we
describe the dataset, the seq2seq model, and the three training phases. Additional details are given
in the appendix.

3.1 Waypoint Sequences Dataset Generation

We create a dataset of sensible waypoint sequences by randomly sampling sequences in the unit
cube [−0.5, 0.5]3 and accepting samples based on two topological constraints: the summed Menger
curvature [32] (i.e., the reciprocal of the radius of the circle that passes through a subsequence of
three waypoints) and the summed Euclidean distance between subsequent waypoints, as follows:

Icurvature =
∑m−2

i=0

1

R(p̃ir, p̃
i+1
r , p̃i+2

r )
∈ [5, 20], Idistance =

∑m−1

i=0
d(p̃ir, p̃

i+1
r ) ∈ [0, 30]. (7)

An initial minimum-snap trajectory obtained from (4) is used to reject waypoint sequences that result
in trajectories that go beyond [−1, 1]3 and to set the yaw component for each waypoint tangential
to the local velocity. We unwrap the reference yaw, so that the yaw difference between subsequent
waypoints is less than π rad. Finally, the actual waypoint positions are obtained by scaling with the
desired space scale Lspace.

3.2 Sequence-to-Sequence Model

The proposed seq2seq model, shown in Fig. 1a, consists of encoder, decoder, varia-
tional autoencoder (VAE), and attention modules. Encoder input is normalized as xin

p,i =

[p̃ir/(Lspace/2) cos(p̃iψ) sin(p̃iψ) fEOS], where fEOS is an indicator function for the final way-
point in the sequence. The final hidden state of the bi-directional gated recurrent unit (GRU) en-
coder serves as a feature vector that represents the waypoint sequence. Before it is passed to the
decoder, the feature vector is densified by the VAE to prevent memorization behavior and force the
model to summarize the waypoint sequence in a low-dimensional latent space [33]. Additionally,
the hidden encoder states are used to generate content-based attention information that helps guide
the decoder [19]. The feature vector and attention information are fed to the decoder network, which
is a basic GRU [34].

The decoder output is passed through a fully-connected neural network and then converted to the
latent time allocation x̃t, the latent smoothness weights x̃w, and the reconstructed waypoints xout

p
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through additional separate fully-connected networks. Finally, a softmax (i.e., normalized exponen-
tial) function is used to make sure that the output time allocation xt and the smoothness weights xw
are positive. Motivated by examples where performance on a primary task is improved by training
on additional auxiliary tasks [35, 36, 37], we also train the model to minimize the reconstruction loss
LRecon =

∥∥xin
p − xout

p

∥∥2 of the waypoints. The similarity in feature space between the waypoints and
the time allocation and smoothness weights enables the reconstruction loss minimization to guide
the training on the primary tasks and to articulate the latent feature space. Indeed, we observed that
adding this auxiliary task improves the stability of the training process.

3.3 Pretraining: Supervised Learning with Snap Minimization

In the first learning phase, the seq2seq model is pretrained using (4). While the resulting time
allocations are not time-optimal, they provide a decent starting point for the learning process. Before
generating the time allocations, we perform a grid search to find the penalty weights µr and µψ that
result in the fastest feasible trajectories on a subset of the waypoint sequences dataset. In order
to further reduce trajectory times, we considered adding a weighted regularization term [5, 38].
However, through a grid search using a data subset, we found that there was no constant weight that
improves the average performance, i.e., that did not also lead to many slower trajectories.

Based on the minimum-snap time allocations xMS
t , the seq2seq model is trained by minimizing

L = LRecon + LELBO +
∥∥xt − xMS

t

∥∥2 + ∥∥xw − xMS
w

∥∥2 , (8)

where LELBO is the evidence lower bound (ELBO) loss from the VAE, and xt and xw are the
softmax-normalized outputs of the seq2seq model. In effect, (4) uses uniform smoothness weights,
but training the model with constant xMS

w converges to zero neural network weights because the soft-
max function normalizes the zero output to a uniform xw. In order to avoid this behavior—which
causes issues in the next learning phase because all gradients will be zero—we set xMS

w to the inverse
of the time allocation, i.e., xMS

w,i = m(
∑m
j=1

xMS
t,i/xMS

t,j)
−1. Intuitively, these weights prioritize snap

minimization on segments with small time allocation, which makes sense because these segments
are flown faster on average and often require relatively increased smoothness to remain feasible.

3.4 Guiding: Supervised Learning with Bayesian Optimization

In the second training phase, we improve the model by using time-optimal time allocations and
smoothness weights obtained for a subset of the dataset by solving (6) with BO. The BO algorithm
is initialized using the solution from (4) and efficiently samples the 2m-dimensional space of time
allocations and smoothness weights to build a surrogate model of the feasibility constraint PT [9].
We further improve efficiency by combining analytical and numerical feasibility evaluations us-
ing multi-fidelity BO, as described in Section 4.2. Based on the optimal time allocations xBO

t and
smoothness weights xBO

w obtained using MFBO for a portion of waypoint sequences dataset, the
seq2seq model is trained by minimizing the following loss function:

L = LRecon + LELBO +
∥∥xt − xBO

t

∥∥2 + ∥∥xw − xBO
w

∥∥2 , (9)

which has similar form as (8).

3.5 Generalizing: Reinforcement Learning

In the third and final phase, we use reinforcement learning to generalize the seq2seq model that
was overfitted to the BO data subset. A Markov decision process is formulated with the preceding
waypoint xout

p,i−1 as the current state si and the latent time allocation x̃t,i and latent smoothness
weight x̃w,i as the action ai. At the end of each episode, consisting of a variable-length sequence of
m+1 waypoints, the minimum feasible trajectory duration Txt,xw for the normalized time allocation
xt and smoothness weights xw is computed. The episode reward is the improvement of the trajectory
time based on xt and xw, compared to the baseline TMS:

r(xt,xw) = 1− Txt,xw/TMS. (10)

Since the reward is only obtained a the end of the episode, we estimate the discounted reward at the
i-th step, as ri =

∑m
j=i γ

j−ir(sj , aj) = γm−ir(xt,xw), where γ ∈ [0, 1] is the discount factor.
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We use the REINFORCE algorithm [39] to find the policy π∗θ that maximizes the expected reward,
i.e., π∗θ = argmaxθ Eã1,··· ,ãm∼πθ(a1,··· ,am) [rm(ã1, · · · , ãm)]. During exploration, the action ãi ∼
N (ai, σrf ) is sampled from the normal distribution around the model output ai. The objective
function Lθ =

∑m
i=1 ri log πθ(ãi|ai) is estimated with batches of Nbatch sequences, as follows:

Lθ = Nbatch
−1
∑Nbatch

k=1

∑m

i=1
(rt − rb) log πθ(ãi|ai), (11)

where the baseline reward rb = Nbatch
−1∑Nbatch

k=1

∑mk
i=1 ri is subtracted to reduce reward variance.

Moreover, all rewards are clipped to [−0.5, 0.5] for further variance reduction. The objective func-
tion (11) is minimized together with the reconstruction loss and the VAE variational loss, i.e.,

L = LRecon + LELBO + Lθ. (12)

4 Experimental Results

In order to validate the performance of our proposed algorithm, we trained the seq2seq model, eval-
uated the trajectories generated by the model, and tested these trajectories in flight experiments.
Specifically, we trained two types of models: (i) using analytical feasibility evaluations based on
the reference motor speeds obtained from the simplified quadrotor dynamics differential flatness
transform, and (ii) using numerical evaluations of trajectory-tracking accuracy in a six-degree-of-
freedom (6DOF) flight dynamics simulation. All training data consists of sequences of five to four-
teen waypoints that are scaled to be used in a 10 m × 10 m × 10 m space, i.e., Lspace = 10 m.
Additional implementation details and experimental results can be found in the appendix and at
https://youtu.be/lCD6UH8G7AY.

4.1 Differential Flatness Feasibility Constraint

We define the feasible set PT as all trajectories that can be flown without violating the admissible
motor speeds [0, 2200] rad/s according to idealized quadrotor dynamics differential flatness trans-
form from [4]. Based on this set, we train two models: one that considers only waypoint positions
and not yaw (i.e., constant yaw at zero), and one for a tangential (i.e., forward-facing) yaw refer-
ence (see Section 3.1). The pretraining and generalization stages were each terminated after 150
training epochs based on convergence of the training loss and the intermediate guiding stage was
terminated after 1000 epochs when the performance gap between the training and validation data
reached a set threshold. The BO stage requires more training epochs because it uses a much smaller
training dataset than the other stages. Figure 1b shows the improvement over the three training
stages for the model with forward-facing yaw reference. It can be seen that during the first stage
the model approaches the performance of the minimum-snap labels. The BO data subset used in
the second learning stage has superior labels, due to the more sophisticated optimization of (6).
Overfitting to this dataset initially results in decreased performance on the validation dataset, but
improves efficiency by guiding the RL algorithm. In the final stage, the model is generalized to con-
sistent performance on the validation data. Moreover, Table 1 shows that all fully-trained models
actually outperform the BO labels that were obtained using a limited number of iterations to curb
computational cost.

-4 -2 0 2 4

-4

-2

0

2

4

Seq2Seq Traj
-5.0

-2.5

0.0

2.5

5.0

Al
tit

ud
e 

[m
]

0 5 10 15 20
Time [s]

0

2

4

6

8

speed profile [m/s]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

250

500

750

1000

1250

1500

M
ot

or
 sp

ee
d 

[ra
d/

s]

motor 0
motor 1
motor 2
motor 3

-4 -2 0 2 4

-4

-2

0

2

4
MinSnap Traj

-5.0

-2.5

0.0

2.5

5.0

Al
tit

ud
e 

[m
]

0 10 20
Time [s]

0

2

4

6

8

speed profile [m/s]

0 5 10 15 20
Time [s]

0

200

400

600

800

1000

1200

M
ot

or
 sp

ee
d 

[ra
d/

s]

motor 0
motor 1
motor 2
motor 3

(a) 95th percentile (14.94 % improvement)

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6 Seq2Seq Traj

-5.0

-2.5

0.0

2.5

5.0

Al
tit

ud
e 

[m
]

0 5 10 15
Time [s]

0

2

4

6

8

10 speed profile [m/s]

0 2 4 6 8 10 12 14
Time [s]

0

250

500

750

1000

1250

1500

M
ot

or
 sp

ee
d 

[ra
d/

s]

motor 0
motor 1
motor 2
motor 3

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6 MinSnap Traj

-5.0

-2.5

0.0

2.5

5.0

Al
tit

ud
e 

[m
]

0 5 10 15
Time [s]

0

2

4

6

8

10 speed profile [m/s]

0 2 4 6 8 10 12 14 16
Time [s]

250

500

750

1000

1250

1500

M
ot

or
 sp

ee
d 

[ra
d/

s]

motor 0
motor 1
motor 2
motor 3

(b) 75th percentile (8.88 % improvement)

Figure 2: Trajectories obtained using minimum-snap optimization (top row) and the proposed
seq2seq model (bottom row) with reference motor speeds.

With an average inference time of 0.01 s, our model is able to generate trajectories much faster
than minimum-snap optimization algorithms, which require at least several seconds to solve the
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Table 1: Trajectory time reduction relative to minimum-snap trajectories for BO labels obtained
using BayesOpt on (6), and for the seq2seq model after Phase 2 and Phase 3 of learning. BO set
refers to the data subset with BO labels; Val. set refers to the validation dataset.

Feasibility constraint Differential flatness 6DOF Simulation

Yaw reference Constant Forward-facing Forward-facing

BO labels 5.375 % 4.746 % 5.552 %
Phase 2 (BO) BO set | Val. set 3.884 % | -2.682 % 4.178 % | -2.368 % 5.048 % | -2.582 %
Phase 3 (RL) BO set | Val. set 6.971 % | 6.638 % 6.191 % | 6.031 % 7.169 % | 7.291 %

Table 2: Trajectory time reduction by the seq2seq (s2s) model relative to minimum-snap (MS)
trajectories for the validation data set with forward-facing yaw and using the differential flatness
feasibility constraints. The bottom four rows contain data for the sample (i.e., the waypoint sequence
and corresponding trajectory) at the percentile rank.

Percentile 95th 75th 7th 1st
Time reduction 14.94 % 8.88 % 1.08 % −3.79 %

Waypoints 13 12 11 7
Duration [s] MS 22.8 15.8 15.9 9.1
Top speed [m/s] MS | s2s 6.7 | 8.3 8.8 | 8.6 6.9 | 7.7 9.1 | 8.4
Length [m] MS | s2s 83.4 | 87.8 71.9 | 67.1 62.1 | 67.7 38.5 | 39.5
Smoothness cost (s2s / MS) 1.6 0.8 1.2 1.2

nonconvex optimization (4). As shown in Table 2, the trained model also outperforms minimum-
snap in terms of trajectory time on 93 % of the validation dataset. The improvement is greatest
for trajectories with a large number of waypoints, where the seq2seq model has most options to
modify the trajectory. The bottom row of Table 2 shows that the seq2seq trajectories have a higher
smoothness cost than those from the minimum-snap method, i.e., they are less smooth and more
aggressive. In practice, the proposed model generates lengthier paths that can be flown at a higher
speed or lowers the flight speed to allow tighter turns, as shown in respectively Fig. 2a and Fig. 2b.

4.2 6DOF Simulation Feasibility Constraint

We now consider the feasible set PT that contains all trajectories that can be flown with less than
20 cm position tracking error and 15 deg yaw tracking error based on a 6DOF flight dynamics and
inertial measurement [40] and flight control [41] simulation. During the pretraining and RL stages,
simulation is used for all feasibility evaluations, whereas it is combined with low-fidelity differen-
tial flatness evaluations during MFBO label generation. Training in simulation enables our model to
consider more realistic feasibility constraints that incorporate vehicle aerodynamics, sensor noise,
control system limitations etc. It also permits increasingly aggressive trajectories, including motor
saturation, provided that an acceptable tracking error can be maintained. Consequently, our seq2seq
model further exploits the vehicle capabilities, leading to faster trajectories. While the first two
learning stages are again terminated after respectively 150 and 1000 epochs, we only perform three
RL epochs in the final stage due to the increased computational cost of improvement evaluation. De-
spite this reduced RL training phase, our model for forward-facing yaw trajectories still outperforms
minimum-snap trajectory generation on 87 % of the dataset with an overall average improvement of
7.3 %, as shown in Table 1.

We randomly select ten waypoint sequences with corresponding minimum-snap and seq2seq trajec-
tories. Over a series of flight tests, we uniformly scale the corresponding time allocations until the
aforementioned tracking error constraints are active. As shown in Table 3, the seq2seq time allo-
cation ratios also result in quicker real-world trajectories. Figure 3a compares an example seq2seq
trajectory with the corresponding minimum-snap trajectory. While the trajectory from our model
has a lower top speed, it has tighter, more aggressive turns that utilize more of the motor speed
capacity, leading to a 22 % reduction in trajectory duration.

In addition, we choose two sequences that contain several waypoints linked to moving obstacles,
as shown in Figure 3b. The proposed Seq2Seq model is evaluated by updating the trajectory in
real-time as the locations of these waypoints change. When compared to a real-time baseline, which
reuses the initial trajectory’s minimum-snap time allocation, the proposed model produces more
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compact trajectories with shorter flight times. Detailed experimental results are available in the
accompanying video.

Table 3: Length and duration of minimum-snap (MS) trajectories with simulation (sim) and real-
world (exp) feasibility constraints, as well as duration improvements by seq2seq (s2s) model.

Trajectory 1 2 3 4 5 6 7 8 9 10

Length [m] MS sim 26.5 30.5 30.3 44.0 47.3 41.3 52.7 66.1 50.1 70.4

Duration [s] MS sim 7.2 9.7 9.3 13.2 13.0 12.9 18.4 18.9 16.4 21.5
Imp. [%] s2s sim 11.9 5.6 13.7 9.4 13.5 11.3 8.1 12.0 8.6 18.7

Duration [s] MS exp 5.8 7.7 8.4 10.6 12.7 11.7 13.6 15.8 16.2 20.2
Imp. [%] s2s exp 4.3 1.3 10.5 10.4 4.2 14.0 9.2 5.2 8.9 22.1
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(a) Traj. 10 (22.11 % real-world improvement). (b) Online trajectory adaptation.

Figure 3: Trajectories obtained using minimum-snap optimization (left, top row) and the proposed
seq2seq model (left, bottom row) with reference motor speeds, and real-time trajectory generation
through moving obstacles (right).

5 Conclusion

5.1 Contributions

We presented a seq2seq model that generates time-optimal quadrotor trajectories from waypoint
sequences. In order to train the model, we introduced a novel three-stage learning process that
combines the advantages of supervised learning, Bayesian optimization, and reinforcement learning.
The resulting model outperforms minimum-snap trajectory generation in both computation time and
time-optimality of the generated trajectories in simulation and real-world flight experiments.

5.2 Limitations

The main limitation of the proposed method is its lack of theoretical performance guarantees. While
the trained model outperforms minimum-snap trajectory generation for the vast majority of the val-
idation dataset, it generates slower trajectories for a small subset of waypoint sequences, e.g., the
edge case where all but one waypoints are located very closely together. We expect that utilizing
ensemble modeling, i.e., training several models with varying parameters, or increasing the size of
the data subset labeled with BO may relieve this issue.

Additionally, the learning process is computationally expensive. Using a multi-core implementation
on a powerful desktop computer, the complete process of data labeling and training described in
Section 4 took on the order of several weeks for the differential flatness feasibility constraints and
on the order of several months for the 6DOF simulation. In particular, the costly computation of
RL rewards with the 6DOF simulation may be sped up by using a multi-fidelity formulation that
incorporates cheap low-fidelity evaluations from the differential flatness feasibility model, similar
our approach for BO.

Finally, our model still needs some modifications to make it suitable for online motion planning.
While it can generate trajectories in real time, it is currently limited to waypoint sequences that start
and end in static hover. Our future work includes extending the seq2seq model to allow dynamic
start and end points with nonzero velocity, yaw rate, acceleration etc., and deploying the model on
an embedded system for online motion planning.
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