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Figure 1: Accuracy of six LMMs on two types of specialized questions in medical diagnoses, with
and without adversarial pairs. The significant drop in accuracy with adversarial pairs highlights the
models’ unreliability in handling medical diagnoses.

Abstract

Large Multimodal Models (LMMs) have shown remarkable progress in medical
Visual Question Answering (Med-VQA), achieving high accuracy on existing
benchmarks. However, their reliability under robust evaluation is questionable.
This study reveals that state-of-the-art models perform worse than random guessing
on medical diagnosis questions when subjected to simple probing evaluation. To
address this critical evaluation problem, we introduce the Probing Evaluation for
Medical Diagnosis (ProbMed) dataset to rigorously assess LMM performance in
medical imaging through probing evaluation and procedural diagnosis. Particularly,
probing evaluation features pairing original questions with negation questions
with hallucinated attributes, while procedural diagnosis requires reasoning across
various diagnostic dimensions for each image, including modality recognition,
organ identification, clinical findings, abnormalities, and positional grounding. Our
evaluation reveals that top-performing models like GPT-4o, GPT-4V and Gemini
Pro perform worse than random guessing on specialized diagnostic questions,
indicating significant limitations in handling fine-grained medical inquiries. We
further investigate the underperformance of open-source models (e.g., LLaVA,
LLaVA-Med, and Med-Flamingo) through an ablation study. This study reveals
that poor visual understanding is a primary bottleneck, which can be mitigated by
adding visual descriptions generated by GPT-4o, leading to an average performance
improvement of 9.44%. These findings underscore the urgent need for more robust
evaluation methods and domain-specific expertise to ensure LMM reliability in
critical medical fields.

GenAI for Health Workshop @ NeurIPS 2024, Vancouver.



Caption: Chest X-ray
showing bilateral
pleural thickening in the
upper and middle lung
fields.
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Figure 2: An example illustrating the potential for misleading accuracy in existing evaluations. While
the model correctly identifies the position of an existing finding in the standard evaluation, it fails to
differentiate between actual and hallucinated positions when subjected to an adversarial evaluation.

1 Introduction

Foundation models, such as large language models (LLMs) [OpenAI, 2023a, Touvron et al., 2023,
Jiang et al., 2023, Anil et al., 2023, Chung et al., 2022] and large multimodal models (LMMs) [OpenAI,
2023b, Team et al., 2023, Li et al., 2023b, Liu et al., 2023a, Chen et al., 2023a], have demonstrated
impressive capabilities in understanding complex visual and text inputs, generating human-like
language, and achieving high accuracy on various benchmarks. The integration of these foundation
models into real-life medical practice holds immense potential given their advanced computational
capabilities [Wu et al., 2023a, Yang et al., 2023] and promising progress on existing medical Visual
Question Answering (Med-VQA) benchmarks [Lau et al., 2018, Liu et al., 2021, He et al., 2020,
Zhang et al., 2023]. As we stand on the precipice of integrating these models into critical decision-
making domains, one natural question appears: how much can we trust these models in real-world
scenarios, such as medicine and healthcare, where the stakes are high?

Before discussing the reliability of LMMs in critical domains like Med-VQA, we must first address a
fundamental question: Are we evaluating LMMs correctly? To address this question, we introduce a
simple yet effective probing evaluation method that exposes the weaknesses of LMMs by creating
simple binary questions with hallucination pairs over existing benchmarks. An example is shown
in Figure 2. Despite the high accuracy reported on current Med-VQA tasks, our study reveals a
significant vulnerability in LMMs when faced with adversarial questioning, as illustrated in Figure 1.
The observed performance drops are alarming: even advanced models like GPT-4o, GPT-4V, and
Gemini Pro perform worse than random guessing, with an average decrease of 27.78% across the
tested models.

Based on this, we further analyze a critical question: How reliable are LMMs in medical diagnosis,
ranging from general questions to specialized diagnostic questions? To address this question, we
introduce ProbMed, which features procedural diagnosis designed to rigorously evaluate model
performance across multiple diagnostic dimensions. We curated ProbMed from 6,303 images
sourced from two widely-used biomedical datasets, MedICaT [Subramanian et al., 2020] and ChestX-
ray14 [Wang et al., 2017]. These images cover various modalities, including X-ray, MRI, and CT
scans, and span multiple organs such as the abdomen, brain, chest, and spine. Using GPT-4 and a
positional reasoning module, we generated metadata for each image, extracting information about
abnormalities, condition names, and their corresponding locations. This metadata facilitated the
automatic generation of 57,132 high-quality question-answer pairs, covering dimensions like modality
recognition, organ identification, abnormalities, clinical findings, and positional reasoning.

Our systematic evaluation of twelve state-of-the-art LMMs on ProbMed revealed several critical
insights. First, even the best-performing models, such as GPT-4V and Gemini Pro, performed
close to random guessing on specialized diagnostic categories like Condition/Finding and Position,
highlighting their limitations in handling fine-grained medical inquiries. Second, introducing adver-
sarial pairs significantly reduced the accuracy of all models, with LLaVA-Med-v1.5’s performance
dropping by up to 29.22% and GPT-4o’s accuracy decreasing by 20.71% in ProbMed. These findings
emphasize the importance of adversarial testing in Med-VQA to uncover model weaknesses. Third,
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by incorporating chain-of-thought reasoning and adding visual descriptions generated by GPT-4o, we
observe substantial improvements in model performance, suggesting that poor visual understanding
is a critical bottleneck. The results indicate that augmenting these models with more accurate visual
information could significantly improve their ability to handle complex medical tasks. Moreover, the
CheXagent model, which was exclusively trained on chest X-rays, demonstrated that specialized
domain knowledge is crucial. It showed that expertise gained on one particular organ could be
transferable to another modality of the same organ in a zero-shot manner, highlighting the value of
domain-specific training for improving model performance.

In summary, our work highlights significant gaps in the reliability of LMMs for medical diagnosis
despite their impressive performance on current existing general domain benchmarks. The insights
from ProbMed underscore the urgent need for robust evaluation methodologies to ensure the accuracy
and reliability of LMMs in real-world medical applications. Our findings also suggest that poor visual
understanding is a key limitation for open-source models, which can be mitigated by incorporating
chain-of-thought reasoning and accurate visual descriptions, as demonstrated by performance im-
provements with GPT-4o. This research inspires the development of more trustworthy AI systems in
healthcare and beyond, ultimately contributing to better diagnostic outcomes and patient care.

2 Related Work

2.1 Large Multimodal Models in the Medical Domain

The advancements in Large Multimodal Models (LMMs) have significantly enhanced the understand-
ing and generation of medical content that integrates both visual and linguistic elements. Notable
models include GPT-4V [OpenAI, 2023b], Gemini Pro [Team et al., 2023], LLaVA [Liu et al.,
2023a,b], and MiniGPT-v2 [Chen et al., 2023a]. The scalability and exceptional performance of these
large foundation models have driven their application in the biomedical field.

Further progress has been made in fine-tuning general-domain LMMs for the biomedical field,
resulting in specialized models like BiomedGPT [Zhang et al., 2024], LLaVA-Med [Li et al., 2023a],
Med-Flamingo [Moor et al., 2023], MedBLIP [Chen et al., 2023b], RadFM [Wu et al., 2023b] and
MedVInT [Zhang et al., 2023]. Despite the promising results from these domain-specific LMMs,
ongoing exploration exists into training smaller multimodal models to address specific clinical needs.
For instance, models like LLaVA-RAD [Chaves et al., 2024] and CheXagent [Chen et al., 2024] have
been developed for chest X-ray interpretation, aiming to bridge competency gaps in radiology tasks.

Comprehensive surveys of LLMs for healthcare highlight the progress, applications, and challenges
in deploying LLMs in clinical settings [He et al., 2023, Zhou et al., 2024, Peng et al., 2023]. Task-
specific evaluations [Yan et al., 2023, Liu et al., 2023c] underline the potential and challenges of
LMMs in the medical domain. As we move towards integrating these models into critical decision-
making processes, it becomes imperative to assess their reliability in high-stakes environments like
healthcare and medicine.

2.2 Medical Visual Question Answering

Medical Visual Question Answering (Med-VQA) plays a crucial role in assessing the capabilities
of models in interpreting and responding to queries about medical images. Some benchmarks, like
VQA-RAD [Lau et al., 2018] and SLAKE [Liu et al., 2021], are manually constructed with categorical
question types. While this method ensures high-quality question-answer pairs, it is labor-intensive
and results in limited dataset scales.

Automated curation methods have been developed to address scalability. PathVQA [He et al., 2020]
uses CoreNLP1 tools, and PMC-VQA [Zhang et al., 2023] employs generative models to create
larger datasets. However, these methods often sacrifice fine-grained question categories, and some
require additionally trained models for question filtering. ProbMed, as shown in Table 1, stands out
by providing large-scale benchmarks and enabling categorical accuracy assessments across various
diagnostic dimensions for each image, including modality recognition, organ recognition, clinical
findings identification, and positional grounding. ProbMed uniquely incorporates adversarial negation

1https://stanfordnlp.github.io/CoreNLP

3

https://stanfordnlp.github.io/CoreNLP


Table 1: Comparison ProbMed with a test set of existing medical VQA datasets, demonstrating our
dataset’s difference from existing benchmarks. For SLAKE, only the English subset is considered for
head-to-head comparison with existing benchmarks.

Dataset Images Questions Question
Category

Procedural
Diagnosis

Adversarial
Pairs

VQA-RAD [Lau et al., 2018] 0.2k 0.4k ✓ ✗ ✗
SLAKE [Liu et al., 2021] 0.09k 1k ✓ ✗ ✗
PathVQA [He et al., 2020] 0.8k 6.7k ✗ ✗ ✗
PMC-VQA [Zhang et al., 2023] 50k 400k ✗ ✗ ✗

ProbMed (Ours) 6.3k 57k ✓ ✓ ✓

pairs for each question-answer pair to ensure diagnostic specificity and reliability, setting it apart
from existing benchmarks.

Different evaluation methods are employed for assessing LMMs, including closed-ended VQA,
multiple choice VQA, and open-ended generation tasks such as captioning and report generation.
Open-ended VQA and report generation are typically considered more challenging and harder to
evaluate, often requiring human or model evaluation alongside automated lexical similarity metrics
like ROUGE-L and BLEU-4. Recent works [Wang et al., 2024, Zheng et al., 2024, Zong et al.,
2023] argue that multiple-choice questions may not be ideal due to inherent selection bias and
permutation sensitivity. In our work, we choose a relatively easy-to-evaluate method: closed-ended
VQA augmented with adversarial evaluation methods featuring hallucinated attributes. By requiring
the model to accurately distinguish relevant features, we enhance the reliability of the evaluation
process. This method allows for clear and definitive assessments, improving the overall robustness of
our findings in medical contexts.

3 ProbMed: Probing Evaluation for Medical Diagnosis

In this section, we design two evaluation principles and present a comprehensive analysis on state-of-
the-art LMMs for Med-VQA using the created ProbMed dataset to address two research questions:

1. Is the current evaluation of LMMs for Med-VQA reliable?

2. How reliable are LMMs on medical diagnosis, ranging from general questions to specialized
diagnostic questions?

Our primary goal is to rigorously evaluate these models’ readiness for real-life diagnostic tasks,
particularly under adversarial conditions. Despite their high accuracy on existing benchmarks, the
models struggle with simple probing evaluation. ProbMed is designed to expose these vulnerabilities
and provide a more reliable assessment of model performance in real-world scenarios. Additionally,
by incorporating new experimental settings, including chain-of-thought reasoning and the use of
external visual descriptions from GPT-4o, we aim to explore how model accuracy can be enhanced in
critical medical tasks.

3.1 Probing Evaluation with Adversarial Pairs

One of the main motivations behind ProbMed is to assess the models’ ability to accurately distinguish
between relevant and irrelevant features. ProbMed pairs original questions with negation questions
containing hallucinated attributes. This method challenges the model’s robustness by requiring them
to identify actual conditions while disregarding false, hallucinated ones. For instance, a question
about a specific finding is paired with a negated question featuring a different, non-existent finding to
test if the model can exclusively identify the factual finding.

3.2 Procedural Diagnosis

To ensure a comprehensive evaluation, ProbMed includes questions that require reasoning across
multiple diagnostic dimensions for each image. These dimensions include modality recognition,
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Is this a CT Scan?   Ans: yes
Is this an MRI?       Ans: no

Modality
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Does this show an Abdomen? Ans: no

Organ
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present in the right temporal lobe?   Ans: yes
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present in the right thalamus?   Ans: no

Position

Figure 3: Flow diagram of the ProbMed data curation process. Two comprehensive biomedical
datasets were utilized to collect source data and construct a metadata file, enabling the automatic
generation of high-quality question-answer pairs for the ProbMed dataset.

organ identification, clinical findings, abnormalities, and positional reasoning. This multifaceted
approach assesses a model’s diagnostic capabilities beyond simple question-answer pairs, requiring it
to integrate various pieces of information to form a coherent diagnostic picture.

3.3 Data Curation

As illustrated in Figure 3, ProbMed draws from two comprehensive biomedical datasets MedICaT
and ChestX-ray14 to compile a diverse set of 6,303 images. MedICaT [Subramanian et al., 2020]
contains 217k image-caption pairs from 131k open-access biomedical papers. From this dataset, we
selected 4,543 image-caption pairs focusing on a single organ and modality with clear indications
of normal or abnormal conditions. These images span three modalities (X-ray, MRI, and CT scan)
and four organs (abdomen, brain, chest, and spine). ChestX-ray14 [Wang et al., 2017] comprises
112k frontal-view X-ray images from 30k unique patients, including 880 images with abnormalities
marked by bounding boxes. We selected 1,760 images, balanced between healthy and abnormal
cases, with disease labels and bounding box annotations.

We generated metadata for each image to create high-quality, balanced question-answer pairs. For
MedICaT images, GPT-4 [OpenAI, 2023a] was used to analyze captions, identify abnormalities, and
extract positional descriptions using few-shot prompting. For ChestX-ray14 images, a positional
reasoning module generated textual descriptors of abnormalities based on bounding boxes and
image sizes. This metadata included unique condition names and positional descriptions for each
organ-modality combination, serving as the basis for creating both ground-truth and adversarial
question-answer pairs. Ground-truth questions were answered with "yes," while corresponding
adversarial questions were created by selecting random entities - such as alternative organs or
modalities and hallucinated conditions, and assigning "no" answers.

A comprehensive verification process was carried out to ensure the accuracy of the metadata and
corresponding QA pairs. A U.S. medical postdoc and a medical graduate student were hired to review
100 randomly sampled metadata entries from a total of 6,303 images and 1,090 QA pairs. The review
yielded an average accuracy of 94% for the metadata and 97.79% for the QA pairs. This meticulous
verification process highlights the reliability and thorough curation of ProbMed. As shown in Table 2,
the data curation process yielded 57,132 question-answer pairs, averaging 9 pairs per image, covering
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a wide range of diagnostic dimensions. These high-quality, balanced pairs provide a solid foundation
for testing models in challenging real-life medical scenarios.

Table 2: Dataset Statistics of ProbMed. There are 6.3k images and 57k VQA pairs in total. The
dataset is balanced within each question type and image type.

Organ, Modality Image Question Question with
Answer "yes" Unique Condition Unique Positional

Description

Abdomen MRI 84 757 375 107 75
Brain MRI 566 5,046 2,509 697 446
Chest MRI 40 382 189 52 38
Spine MRI 324 3,346 1,664 461 336
Abdomen CT scan 751 6,855 3,410 909 552
Brain CT scan 270 2,417 1,200 335 209
Chest CT scan 548 5,161 2,572 727 353
Spine CT scan 87 941 470 149 93
Abdomen X-ray 232 2,046 1,018 277 160
Brain X-ray 79 599 298 84 44
Chest X-ray 3,178 27,530 13,278 1,418 694
Spine X-ray 202 2,052 1,020 300 172

Total 6,303 57,132 28,003 / /

4 Experimental Analysis

We conducted a systematic evaluation and comprehensive analysis using the ProbMed dataset
on twelve state-of-the-art LMMs to identify their strengths and weaknesses in real-life imaging
diagnostics. Apart from proprietary GPT-4o, GPT-4V [OpenAI, 2023b] and Gemini Pro [Team et al.,
2023], we selected nine open-source models spanning across general models including LLaVA-v1 [Liu
et al., 2023b], LLaVA-v1.6 [Liu et al., 2023a], MiniGPT-v2 [Chen et al., 2023a] and specialized
models including LLaVA-Med-v1, LLaVA-Med-v1.5 [Li et al., 2023a], Med-Flamingo [Moor et al.,
2023], BiomedGPT [Zhang et al., 2024], RadFM [Wu et al., 2023b] and CheXagent [Chen et al.,
2024]. These models were chosen based on their computational cost, efficiency, and inference speed,
making them practical for integration into medical practice. For a robust evaluation, accuracy was
determined by requiring the models to correctly identify actual conditions while ignoring false,
hallucinated ones. Additionally, categorical accuracy was calculated by considering a hit only when
the model correctly answered all questions within a category for an image (see Table 18), meaning it
had to identify all of the real entities and exclude hallucinated ones within the image when there are
multiple.

4.1 Is Current Evaluation of LMMs for Med-VQA Reliable?

To address this first research question, we introduced adversarial pairs to the evaluation process to test
the model’s robustness and reliability. This strategy ensures that models must validate the absence
of certain characteristics or findings rather than simply acknowledge existing conditions, thereby
enhancing diagnostic specificity and reliability. To demonstrate the necessity of adversarial pairs for
achieving valid and trustworthy accuracy scores in Med-VQA, we conduct an experimental analysis
on the test set of an existing medical dataset, VQA-RAD [Lau et al., 2018], in addition to ProbMed.

4.1.1 Probing Evaluation with Adversarial Pairs in VQA-RAD

To construct challenging adversarial questions for a given image, ideally, we need full control over
the ground truth information and a set of confusing candidates, as provided in ProbMed. However,
since VQA-RAD [Lau et al., 2018] provides finalized question-answer pairs without metadata, we
could only construct adversarial pairs for 118 test instances where the answer is "yes" out of 272
closed-ended question-answers pairs within its test set. Each adversarial pair was manually created
such that, based on the limited information from the original question-answer pair, the answer to the
adversarial question had to be negated. This process resulted in 236 question-answer pairs in total.
The adversarial questions in this subset are less challenging than those in ProbMed, as they often
involve a simple semantic negation of the original question due to limited information.
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Table 3: Model accuracy on the VQA-RAD test subset and ProbMed with adversarial pairs. Accuracy
is reported in two ways: (1) averaged across individual questions in a pair and (2) requiring both
the ground truth and adversarial questions for the same image to be answered correctly. The drop in
accuracy across models demonstrates their vulnerability to adversarial questions, with percentage
decreases shown in parentheses.

Models

VQA-RAD ProbMed

Averaged
Accuracy (%)

Accuracy (%) with
Adversarial Pairs

Averaged
Accuracy (%)

Accuracy (%) with
Adversarial Pairs

LLaVA-v1 62.28 25.42 (-36.84) 55.82 19.30 (-36.51)
LLaVA-v1.6 44.06 8.47 (-35.59) 56.02 24.96 (-31.06)
MiniGPT-v2 66.10 46.61 (-19.49) 59.82 27.67 (-32.14)

LLaVA-Med-v1 43.22 3.38 (-39.83) 52.26 17.90 (-34.35)
LLaVA-Med-v1.5 48.30 15.25 (-33.05) 68.41 40.19 (-28.22)
CheXagent 55.50 21.18 (-34.32) 58.70 30.61 (-28.08)
BiomedGPT 56.35 17.79 (-38.55) 60.14 33.34 (-26.79)
Med-Flamingo 61.01 25.42 (-35.59) 64.13 35.66 (-28.47)
RadFM 67.79 38.98 (-28.81) 67.70 41.00 (-26.70)

Gemini Pro 63.13 44.91 (-18.22) 75.08 55.08 (-20.00)
GPT-4V 58.47 33.89 (-24.57) 75.70 55.28 (-20.42)
GPT-4o 69.91 55.08 (-14.83) 76.31 55.60 (-20.71)

These results, as shown in Table 3, reveal the significant impact of adversarial pairs on model
performance. Although the original accuracy appears very high for some underperforming models,
the accuracy drops drastically after rigidly evaluated with adversarial pairs: 14.83% for GPT-4o,
24.57% for GPT-4V and 18.22% for Gemini Pro, with an average decrease of 29.97% across the
tested models.

4.1.2 Probing Evaluation with Adversarial Pairs in ProbMed

Table 3 demonstrates the similar significant impact of adversarial pairs in ProbMed on 57k question-
answer pairs. The accuracy of more capable models is generally less affected by the introduction
of challenging adversarial pairs. However, even the robust models experience a minimum drop of
20.00% in accuracy when tested with ProbMed’s challenging questions, with an average decrease of
27.78% across the tested models, highlighting the critical role of probing evaluation in evaluating
Med-VQA performance comprehensively.

4.2 How Reliable Are LMMs in Medical Diagnosis?

After correcting model accuracy by introducing adversarial pairs, we continue to address the second
research question. We conducted diagnostic probing ranging from general to specialized diagnostic
questions using the ProbMed dataset.

4.2.1 Performance across Diagnostic Questions

Table 4 shows the categorical accuracy of different models aggregated among all image types. While
GPT-4o, GPT-4V, and Gemini Pro outperform other models and excel in general tasks such as
recognizing image modality and organs, their low performance in specialized tasks like determining
the existence of abnormalities and answering fine-grained questions about condition/finding and
position highlights a significant gap in their ability to aid in real-life diagnosis.

On more specialized diagnostic questions, even top-performing models like GPT-4o, GPT-4V, and
Gemini Pro performed close to random guessing. Their accuracy in identifying conditions and
positions was alarmingly low, underscoring their limitations in handling fine-grained medical inquiries.
RadFM, LLaVA-Med-v1.5 and Med-Flamingo outperform other specialized models in general
questions yet still struggle with specialized questions. CheXagent, trained exclusively on chest
X-rays, achieved the highest accuracy in determining abnormalities and conditions. However, its
performance in general tasks like identifying image modality and organs was lower, highlighting
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Table 4: Categorical and overall accuracy (%) of different models aggregated among all image types
in ProbMed (averaging over three runs). The overall accuracy is weighted by the number of questions
in each type. The best result in each question category is in-bold, and the second best is underlined.

Models
General Question Specialized Question

Overall
Modality Organ Abnormality Condition/Finding Position

Random Choice 25.00 25.00 50.00 35.67 36.48 32.13

LLaVA-v1 25.30±1.18 41.92±1.21 50.00±2.01 0.35±0.03 0.14±0.06 19.30±0.18

LLaVA-v1.6 6.95±0.24 80.33±0.34 45.89±0.24 3.67±0.10 1.37±0.17 24.96±0.11

MiniGPT-v2 3.25±0.13 76.95±0.59 50.08±0.84 15.23±0.76 7.96±0.79 27.67±0.25

LLaVA-Med-v1 5.72±0.21 34.36±1.21 38.30±2.83 20.79±0.47 5.22±1.10 17.90±0.38

LLaVA-Med-v1.5 56.14±0.90 67.96±0.08 49.12±0.05 21.91±0.06 11.65±0.03 40.19±0.13

CheXagent 37.25±0.50 33.75±0.17 73.31±0.01 28.52±0.08 7.48±0.06 30.61±0.02

BiomedGPT 60.25±0.27 46.81±0.62 50.31±0.24 14.13±0.90 6.11±0.23 33.34±0.17

Med-Flamingo 44.38±0.20 62.02±0.54 50.00±0.01 26.17±0.13 5.72±0.06 35.66±0.14

RadFM 83.72±0.26 41.04±0.33 60.83±0.32 23.05±0.14 9.10±0.29 41.00±0.19

Gemini Pro 96.47±0.88 75.69±1.89 60.29±1.99 27.93±1.82 18.44±0.77 55.08±0.93

GPT-4V 92.51±1.10 71.73±2.45 53.30±1.90 35.19±1.16 22.40±1.89 55.28±0.98

GPT-4o 97.03±0.34 68.13±1.15 61.79±2.28 29.30±2.55 24.06±1.80 55.60±1.05

the need for domain-specific training. LLaVA-Med-v1.5 achieves much higher accuracy among
open-sourced models in identifying conditions/finding and their positions but still performs around
10% worse than the proprietary models.

Among the open-sourced general-purpose models, MiniGPT-v2 performs the best, surpassing domain-
specific LLaVA-Med in identifying organs and both LLaVA-Med-v1 and CheXagent in determining
positions of condition/finding without domain-specific training. A more detailed breakdown of the
performance of different models on different image types across each question type is available in
Appendix A.

4.2.2 Error Analysis in Procedural Diagnosis

For models whose accuracy dropped drastically after introducing adversarial pairs, we observed a
consistent accuracy pattern much lower than random guess performance for specialized questions.
An error analysis focusing on GPT-4V and Gemini Pro across three specialized question types -
Abnormality, Condition/Finding, and Position is further conducted. Each accuracy measurement
is conditional on the model successfully answering the preceding diagnostic questions, reflecting a
procedural diagnosis approach. This analysis reveals both models’ vulnerabilities to hallucination
errors, particularly as they progress through the diagnostic procedure, with Gemini Pro being more
prone to accepting false conditions and positions.

As shown in Table 5, for Abnormality questions, conditioned on correctly identifying both image
modality and organ, GPT-4V’s errors arise from both incorrect answers and its tendency to reject
challenging questions, while Gemini Pro attained a slightly higher accuracy of 67.05%, with all errors
resulting from incorrect answers.

More specialized questions in identifying conditions and their positions, conditioned on successful
abnormality detection, reveal both models’ vulnerabilities to hallucination errors, particularly as they
progress through the diagnostic procedure, with Gemini Pro more prone to accepting false conditions
and positions. For questions on condition/finding, GPT-4V’s accuracy dropped to 36.9%, with
roughly even error distribution between denying ground-truth conditions and accepting hallucinated
conditions, while most of the errors of Gemini Pro were from accepting hallucinations. For questions
on position, further conditioned on correctly identifying conditions/findings, Gemini Pro had a lower
accuracy of 26.4%, with 76.68% of its errors due to accepting hallucinated positions.
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Table 5: Error Analysis of GPT-4V and Gemini Pro on ProbMed. The table shows the accuracy and
types of errors for three specialized question types: Abnormality, Condition/Finding, and Position.
Errors are categorized into wrong answers, rejection to answer, denying ground truth, and accepting
hallucinations, providing a detailed breakdown of model performance and failure modes.

Question Type Accuracy and Error Type
Models

GPT-4V Gemini Pro

Abnormality
Accuracy 66.06 67.05

E_wrong_answer 67.47 100.00
E_reject_to_answer 32.52 0.00

Condition/Finding

Accuracy 36.90 39.97
E_deny_ground-truth 51.69 39.04

E_accept_hallucination 42.12 59.69
E_reject_to_answer 6.18 1.26

Position

Accuracy 39.97 26.40
E_deny_ground-truth 39.04 23.31

E_accept_hallucination 59.69 76.68
E_reject_to_answer 1.26 0.00

4.3 Exploring Model Limitations and Potential Improvements

4.3.1 Impact of Chain-of-Thought Prompting and Visual Understanding on Model
Performance

To further investigate the underperformance of open-source models, we conducted an extensive
ablation study on LLaVA-v1, LLaVA-v1.6, LLaVA-Med-v1, LLaVA-Med-v1.5, Med-Flamingo, and
GPT-4o. In this study, we examined two additional experimental settings: (1) applying a chain-of-
thought (CoT) approach where models first generate visual descriptions from the image, which are
then used to augment the prompt along with the question, (2) enhancing the models by providing
external visual descriptions generated by GPT-4o in addition to the question.

As shown in Figure 4, employing the chain-of-thought approach alone - without external visual
descriptions - resulted in an average accuracy increase of 6.51%. In particular, LLaVA-Med-v1.5’s
accuracy improved from 40.19% to 54.55%, closing the gap to within 1.05% of the vanilla GPT-4o
model. Interestingly, GPT-4o’s performance decreased by 3.55% when the CoT mechanism was
applied, potentially indicating that the model already internally employs its own chain-of-thought
process.

Notably, all open-source models exhibited improved performance when augmented with visual
descriptions generated by GPT-4o, suggesting that their baseline limitations stem primarily from
poor visual comprehension. On average, these models showed an accuracy improvement of 9.44%
across all question categories. This observation suggests that poor visual understanding is a major
limitation of existing models, and augmenting them with external visual reasoning can lead to notable
gains. Detailed performance changes of each model, organized by question category, can be found in
Appendix C.

4.3.2 Transferability of Domain Expertise

We conducted a finer-grained analysis to explore whether the model’s expertise in identifying features
of a particular organ can be transferred to other imaging modalities. As shown in Table 15, CheXagent,
a model trained exclusively on chest X-rays images, performs best in detecting abnormalities and
identifying conditions/findings among all models when tested on chest X-ray images. We analyzed
its performance to explore the transferability of expertise across the rest modalities.

As illustrated in Figure 5, CheXagent achieves significantly higher accuracy in identifying chest-
related features compared to other organs, confirming our assumption that the model’s pre-training
on chest X-rays enhances its performance on recognizing chest images across different modalities.
Interestingly, CheXagent also demonstrated higher accuracy in identifying conditions and findings in
CT scans and MRIs of the chest, achieving a 3% increase in accuracy for MRIs and a 4% increase
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Figure 4: Accuracy comparison of LLaVA-v1, LLaVA-v1.6, LLaVA-Med-v1, LLaVA-Med-v1.5,
Med-Flamingo, and GPT-4o under three different settings: vanilla (baseline performance), chain-
of-thought (CoT) reasoning, and CoT with GPT-4o-generated visual descriptions. All models
demonstrate significant performance improvement when visual descriptions from GPT-4o are in-
cluded, indicating that poor visual understanding is a key factor limiting baseline performance.
Chain-of-thought reasoning alone also leads to notable gains in accuracy, particularly in general-
purpose models.
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Figure 5: Accuracy comparison of CheXagent in identifying organs and conditions/findings across
different modalities. The model demonstrates significantly higher accuracy in identifying organs
on chest images compared to images of other organs for both MRI and CT scans. Additionally,
CheXagent shows improved accuracy in identifying conditions/findings on chest images, indicating
the transferability of its specialized knowledge from chest X-ray training to other imaging modalities.

for CT scans compared with other organs within the same unseen modality. This indicates that
specialized knowledge gained on chest X-rays can be transferred to other imaging modalities of the
same organ in a zero-shot manner, highlighting the potential for cross-modality expertise transfer in
real-life medical imaging diagnostics.

5 Conclusion

Evaluating the reliability of LMMs in the medical domain requires robust methods, and ProbMed, our
newly introduced dataset, addresses this by incorporating probing evaluation and procedural diagnosis.
Our study reveals significant limitations in models like GPT-4o and Gemini Pro, which perform
worse than random guessing on specialized diagnostic questions, while CheXagent’s results highlight
the critical importance of domain-specific knowledge. Furthermore, our additional experiments,
which introduced chain-of-thought reasoning and external visual descriptions generated by GPT-4o,
suggested that poor visual understanding is a major limitation of existing models and augmenting
them with external visual reasoning can lead to notable gains. Despite the contributions, limitations
such as the imbalanced image distribution favoring Chest X-rays (see Table 2) and the absence of
open-ended evaluations, such as report generation, remain. The broader impact of our work includes
the potential for improved diagnostic accuracy and better patient care, but it also highlights the
risks of deploying unreliable models in healthcare. We recommend rigorous testing, continuous
performance monitoring, and the incorporation of domain-specific expertise to mitigate these risks.
Ultimately, our work aims to contribute to the development of trustworthy AI systems in healthcare,
advancing diagnostic outcomes and patient safety.
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A Breakdown Results on Different Image Modality and Organ.

A.1 Brain CT Scan

Table 6: Results of different models on Brain CT scan in ProbMed. The best-performing model in
each question category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 35.28 35.01

LLaVA-v1 Acc. with adv. pairs 25.18 52.59 50 0 0
Avg. acc. 62.59 72.22 / 46.57 49.60

LLaVA-v1.6 Acc. with adv. pairs 10.74 72.22 23.52 0 0.52
Avg. acc. 55.37 84.44 / 30.79 41.91

MiniGPT-v2 Acc. with adv. pairs 1.11 92.59 50 17.77 8.42
Avg. acc. 50.55 96.29 / 51.20 54.25

LLaVA-Med-v1 Acc. with adv. pairs 4.81 10.74 8.82 11.85 3.15
Avg. acc. 50.18 33.88 / 40.71 49.78

LLaVA-Med-v1.5 Acc. with adv. pairs 50.37 80.37 44.11 11.85 15.26
Avg. acc. 74.81 89.62 / 52.98 54.83

BiomedGPT Acc. with adv. pairs 24.44 5.18 58.82 14.44 2.63
Avg. acc. 62.03 52.59 / 53.88 35.84

Med-Flamingo Acc. with adv. pairs 3.70 9.62 50 18.14 5.26
Avg. acc. 51.85 47.03 / 50.16 47.85

CheXagent Acc. with adv. pairs 11.85 0 47.05 12.96 5.26
Avg. acc. 40.55 23.88 / 53.00 51.46

GPT-4o Acc. with adv. pairs 94.81 93.70 61.76 35.92 26.31
Avg. acc. 97.22 96.66 / 68.76 64.83

GPT-4V Acc. with adv. pairs 94.07 84.07 61.76 37.03 31.05
Avg. acc. 96.85 91.48 / 67.01 65.00

Gemini Pro Acc. with adv. pairs 84.44 85.18 70.58 34.81 21.05
Avg. acc. 92.03 92.40 / 68.01 60.16

num 270 270 34 270 270
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A.2 Chest CT Scan

Table 7: Results of different models on Chest CT Scan in ProbMed. The best-performing model in
each question category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 32.69 33.76

LLaVA-v1 Acc. with adv. pairs 27.55 46.35 50 0.36 0.23
Avg. acc. 63.77 73.08 / 48.54 50.11

LLaVA-v1.6 Acc. with adv. pairs 2.73 76.82 50 0.54 0.46
Avg. acc. 51.18 86.58 / 41.42 45.75

MiniGPT-v2 Acc. with adv. pairs 0.54 53.28 50 10.21 3.22
Avg. acc. 50.27 75.82 / 51.11 51.49

LLaVA-Med-v1 Acc. with adv. pairs 5.47 39.78 29.41 14.41 4.37
Avg. acc. 51.18 68.06 / 45.50 51.72

LLaVA-Med-v1.5 Acc. with adv. pairs 51.09 61.86 41.17 14.78 9.21
Avg. acc. 75.54 80.10 / 52.60 54.64

BiomedGPT Acc. with adv. pairs 15.51 2.91 52.94 7.11 2.30
Avg. acc. 56.93 50.63 / 50.93 34.65

Med-Flamingo Acc. with adv. pairs 22.26 70.98 50 19.16 7.14
Avg. acc. 60.31 85.49 / 51.11 48.89

CheXagent Acc. with adv. pairs 6.75 72.99 50 18.61 7.83
Avg. acc. 32.93 86.49 / 56.80 51.55

GPT-4o Acc. with adv. pairs 97.62 65.99 67.64 27.60 19.58
Avg. acc. 98.72 81.90 / 63.54 61.67

GPT-4V Acc. with adv. pairs 97.07 72.94 67.64 32.9 20.78
Avg. acc. 98.44 85.74 / 65.01 59.54

Gemini Pro Acc. with adv. pairs 95.62 58.21 82.35 34.48 14.28
Avg. acc. 97.71 78.37 / 65.62 56.84

num 548 548 34 548 548
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A.3 Spine CT Scan

Table 8: Results of different models on Spine CT Scan in ProbMed. The best-performing model in
each question category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 30.85 31.06

LLaVA-v1 Acc. with adv. pairs 22.98 44.82 50 0 0
Avg. acc. 61.49 70.68 / 49.47 50.00

LLaVA-v1.6 Acc. with adv. pairs 4.59 72.41 0 0 1.28
Avg. acc. 52.29 83.90 / 37.66 41.07

MiniGPT-v2 Acc. with adv. pairs 1.14 41.37 0 12.64 5.12
Avg. acc. 50.57 58.62 / 54.41 51.21

LLaVA-Med-v1 Acc. with adv. pairs 2.29 11.49 50 11.49 6.41
Avg. acc. 48.27 30.45 / 46.37 48.77

LLaVA-Med-v1.5 Acc. with adv. pairs 32.18 67.81 50.0 9.19 14.10
Avg. acc. 65.51 83.33 / 55.23 51.27

BiomedGPT Acc. with adv. pairs 28.73 8.04 0 6.89 2.56
Avg. acc. 63.79 53.44 / 50.00 33.27

Med-Flamingo Acc. with adv. pairs 6.89 39.08 50 14.94 8.97
Avg. acc. 53.44 68.39 / 53.92 52.22

CheXagent Acc. with adv. pairs 4.59 27.58 50 10.34 2.56
Avg. acc. 34.48 58.04 / 49.45 50.20

GPT-4o Acc. with adv. pairs 87.35 76.74 0 30.23 20.77
Avg. acc. 93.10 88.37 / 66.01 60.08

GPT-4V Acc. with adv. pairs 81.39 69.76 0 33.73 25.97
Avg. acc. 89.53 84.30 / 65.77 63.13

Gemini Pro Acc. with adv. pairs 87.2 77.9 50 22.09 25.97
Avg. acc. 92.44 88.95 / 61.64 64.94

num 86 86 2 86 86
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A.4 Abdominal CT Scan

Table 9: Results of different models on Abdominal CT Scan in ProbMed. The best-performing model
in each question category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 35.53 37.03

LLaVA-v1 Acc. with adv. pairs 26.49 54.19 50 0.53 0
Avg. acc. 63.24 77.09 / 47.70 50.00

LLaVA-v1.6 Acc. with adv. pairs 1.86 82.82 41.42 1.06 0.66
Avg. acc. 50.93 91.07 / 38.36 45.82

MiniGPT-v2 Acc. with adv. pairs 0 37.15 48.57 6.12 2.14
Avg. acc. 50.00 66.97 / 48.49 50.22

LLaVA-Med-v1 Acc. with adv. pairs 5.05 45 30 15.44 5.28
Avg. acc. 51.53 70.90 / 45.13 49.24

LLaVA-Med-v1.5 Acc. with adv. pairs 51.93 67.64 48.57 11.31 16.03
Avg. acc. 75.96 83.42 / 52.86 65.61

BiomedGPT Acc. with adv. pairs 67.77 12.38 57.14 15.31 4.62
Avg. acc. 83.75 55.52 / 54.49 45.06

Med-Flamingo Acc. with adv. pairs 1.73 35.55 50 20.37 8.26
Avg. acc. 50.86 67.57 / 51.03 49.46

CheXagent Acc. with adv. pairs 25.03 38.21 52.85 15.57 6.61
Avg. acc. 51.46 65.71 / 51.08 50.19

GPT-4o Acc. with adv. pairs 97.99 65.28 51.42 23.12 28.23
Avg. acc. 98.93 81.50 / 58.24 64.59

GPT-4V Acc. with adv. pairs 95.72 72.72 45.71 27 23.25
Avg. acc. 97.72 85.56 / 58.92 60.02

Gemini Pro Acc. with adv. pairs 98.31 69.19 65.71 28.79 20.39
Avg. acc. 99.00 84.20 / 61.03 59.27

num 750 750 70 750 750
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A.5 Brain MRI

Table 10: Results of different models on Brain MRI in ProbMed. The best-performing model in each
question category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 36.7 36.64

LLaVA-v1 Acc. with adv. pairs 1.23 32.86 50 0.53 0
Avg. acc. 49.29 65.37 / 47.85 49.87

LLaVA-v1.6 Acc. with adv. pairs 17.49 88.51 28.57 0.53 0.48
Avg. acc. 58.74 93.10 / 31.73 37.46

MiniGPT-v2 Acc. with adv. pairs 1.94 96.64 50 15.72 4.37
Avg. acc. 50.88 98.32 / 52.16 50.51

LLaVA-Med-v1 Acc. with adv. pairs 3 8.12 23.21 14.66 2.91
Avg. acc. 47.08 32.50 / 47.72 48.35

LLaVA-Med-v1.5 Acc. with adv. pairs 75.61 84.98 42.85 13.78 13.62
Avg. acc. 87.80 92.40 / 53.37 53.52

BiomedGPT Acc. with adv. pairs 15.37 12.36 44.64 11.48 2.67
Avg. acc. 54.41 56.00 / 51.26 42.06

Med-Flamingo Acc. with adv. pairs 0.35 13.60 50 10.77 3.16
Avg. acc. 47.61 51.32 / 48.27 50.01

CheXagent Acc. with adv. pairs 0 0 50 10.77 6.81
Avg. acc. 20.40 21.99 / 50.37 51.87

GPT-4o Acc. with adv. pairs 97.69 97.34 66.07 25.84 30.24
Avg. acc. 98.58 98.67 / 61.05 66.13

GPT-4V Acc. with adv. pairs 96.99 94.33 58.92 36.1 27.8
Avg. acc. 98.40 97.07 / 65.89 62.38

Gemini Pro Acc. with adv. pairs 95.22 94.87 78.57 35.51 19.7
Avg. acc. 97.26 97.34 / 65.59 59.67

num 566 566 56 566 566
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A.6 Chest MRI

Table 11: Results of different models on Chest MRI in ProbMed. The best-performing model in each
question category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 34.18 34.11

LLaVA-v1 Acc. with adv. pairs 0 35 50 0 0
Avg. acc. 41.25 66.25 / 45.00 50.00

LLaVA-v1.6 Acc. with adv. pairs 5 32.5 37.5 0 0
Avg. acc. 51.24 56.25 / 31.35 43.01

MiniGPT-v2 Acc. with adv. pairs 0 35 50 10 8.82
Avg. acc. 47.50 62.50 / 47.91 49.50

LLaVA-Med-v1 Acc. with adv. pairs 5 45 12.5 12.5 5.88
Avg. acc. 43.75 68.75 / 49.06 46.32

LLaVA-Med-v1.5 Acc. with adv. pairs 50.00 35.00 50.00 12.5 11.76
Avg. acc. 72.5 62.5 / 53.75 53.92

BiomedGPT Acc. with adv. pairs 0.00 5.00 50.00 10.00 2.94
Avg. acc. 40.00 51.24 / 51.04 49.01

Med-Flamingo Acc. with adv. pairs 2.50 45.00 50 10.00 8.82
Avg. acc. 43.75 72.50 / 48.75 47.79

CheXagent Acc. with adv. pairs 0 75 50 15 0
Avg. acc. 17.50 87.50 / 44.58 47.05

GPT-4o Acc. with adv. pairs 90.00 35.89 62.50 17.94 24.24
Avg. acc. 93.75 65.38 / 54.80 61.36

GPT-4V Acc. with adv. pairs 76.92 51.28 37.5 25.64 18.18
Avg. acc. 86.25 71.79 / 58.11 61.74

Gemini Pro Acc. with adv. pairs 87.5 62.5 37.5 17.5 11.76
Avg. acc. 91.25 77.50 / 54.89 56.86

num 40 40 8 40 40
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A.7 Spine MRI

Table 12: Results of different models on Spine MRI in ProbMed. The best-performing model in each
question category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 31.51 31.52

LLaVA-v1 Acc. with adv. pairs 0 32.09 50 50 0.3
Avg. acc. 49.22 65.58 / 47.15 49.88

LLaVA-v1.6 Acc. with adv. pairs 3.08 86.72 27.77 0.30 0
Avg. acc. 51.54 92.74 / 30.59 34.37

MiniGPT-v2 Acc. with adv. pairs 0.3 49.69 52.77 6.79 2.02
Avg. acc. 50.15 70.52 / 48.97 50.01

LLaVA-Med-v1 Acc. with adv. pairs 1.54 5.24 36.11 12.96 5.4
Avg. acc. 45.06 24.07 / 48.52 48.04

LLaVA-Med-v1.5 Acc. with adv. pairs 70.67 84.56 50.00 11.11 11.14
Avg. acc. 84.72 91.97 / 52.40 51.89

BiomedGPT Acc. with adv. pairs 0.30 5.86 50.00 7.71 3.04
Avg. acc. 45.06 52.77 / 51.31 44.04

Med-Flamingo Acc. with adv. pairs 0.30 29.93 50 “ 17.90 5.40
Avg. acc. 50.00 64.50 / 50.54 50.14

CheXagent Acc. with adv. pairs 0 13.58 47.22 15.43 2.7
Avg. acc. 22.53 44.44 / 51.28 48.54

GPT-4o Acc. with adv. pairs 98.44 84.52 63.88 19.50 24.40
Avg. acc. 98.91 91.95 / 55.46 63.70

GPT-4V Acc. with adv. pairs 96.28 90.71 55.55 22.6 15.59
Avg. acc. 97.51 94.73 / 58.89 57.52

Gemini Pro Acc. with adv. pairs 98.13 88.81 57.14 24.53 14.91
Avg. acc. 98.75 94.09 / 59.19 58.20

num 332 332 35 332 332
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A.8 Abdominal MRI

Table 13: Results of different models on Abdominal MRI in ProbMed. The best-performing model in
each question category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 37.13 38.26

LLaVA-v1 Acc. with adv. pairs 0 39.28 50.00 2.38 0
Avg. acc. 48.22 69.64 / 46.42 50.00

LLaVA-v1.6 Acc. with adv. pairs 2.38 73.8 35.71 1.19 0
Avg. acc. 51.19 85.11 / 35.46 44.06

MiniGPT-v2 Acc. with adv. pairs 0 36.9 50 8.33 4.54
Avg. acc. 50.00 67.26 / 47.51 51.70

LLaVA-Med-v1 Acc. with adv. pairs 2.38 47.61 50.00 14.28 9.09
Avg. acc. 41.66 72.61 / 47.42 46.46

LLaVA-Med-v1.5 Acc. with adv. pairs 51.19 65.47 50.00 13.09 16.66
Avg. acc. 75.59 81.54 / 54.31 56.37

BiomedGPT Acc. with adv. pairs 1.19 3.57 50.00 14.28 1.51
Avg. acc. 38.69 50.00 / 51.33 46.46

Med-Flamingo Acc. with adv. pairs 2.38 27.38 50.00 20.23 3.03
Avg. acc. 50.59 62.50 / 49.55 50.50

CheXagent Acc. with adv. pairs 0 26.19 50.00 11.9 10.6
Avg. acc. 19.04 56.54 / 49.20 49.62

GPT-4o Acc. with adv. pairs 91.66 67.85 64.28 21.42 39.39
Avg. acc. 95.83 81.54 / 55.30 70.51

GPT-4V Acc. with adv. pairs 86.9 75 50 27.38 25.75
Avg. acc. 92.26 85.71 / 58.58 58.77

Gemini Pro Acc. with adv. pairs 89.28 72.61 85.71 28.57 25.75
Avg. acc. 94.04 86.30 / 63.39 60.98

num 84 84 14 84 84

21



A.9 Brain X-ray

Table 14: Results of different models on Brain X-ray in ProbMed. The best-performing model in
each question category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 44.77 47.08

LLaVA-v1 Acc. with adv. pairs 45.56 26.58 50 0 0
Avg. acc. 72.78 51.89 / 48.10 50.00

LLaVA-v1.6 Acc. with adv. pairs 11.39 13.92 16.66 8.86 4.44
Avg. acc. 55.06 48.10 / 45.04 48.88

MiniGPT-v2 Acc. with adv. pairs 18.98 83.54 50 18.98 17.77
Avg. acc. 59.49 89.87 / 51.37 52.22

LLaVA-Med-v1 Acc. with adv. pairs 8.86 8.86 0 20.25 4.44
Avg. acc. 54.43 31.01 / 51.16 48.33

LLaVA-Med-v1.5 Acc. with adv. pairs 49.36 31.64 50.00 8.86 13.33
Avg. acc. 73.41 56.96 / 53.16 55.55

BiomedGPT Acc. with adv. pairs 12.65 6.32 50.00 11.39 2.22
Avg. acc. 53.16 49.36 / 52.95 43.33

Med-Flamingo Acc. with adv. pairs 8.86 0 50 22.78 8.88
Avg. acc. 54.43 15.18 / 50.73 48.33

CheXagent Acc. with adv. pairs 84.81 0 50 12.65 8.88
Avg. acc. 92.40 29.74 / 51.16 55.00

GPT-4o Acc. with adv. pairs 94.93 52.56 66.66 37.17 40.90
Avg. acc. 96.20 73.71 / 62.07 69.31

GPT-4V Acc. with adv. pairs 82.05 8.97 33.33 43.58 22.72
Avg. acc. 90.38 47.43 / 68.48 59.09

Gemini Pro Acc. with adv. pairs 89.87 51.89 50 31.64 31.11
Avg. acc. 93.03 74.05 / 61.81 63.88

num 79 79 6 79 79
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A.10 Chest X-ray

Table 15: Results of different models on Chest X-ray in ProbMed. The best-performing model in
each question category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 37.59 37.08

LLaVA-v1 Acc. with adv. pairs 28.75 36.57 50 0.12 0.11
Avg. acc. 64.37 68.25 / 34.41 50.05

LLaVA-v1.6 Acc. with adv. pairs 7.11 83.97 47.94 5.89 1.52
Avg. acc. 53.49 91.61 / 34.52 48.85

MiniGPT-v2 Acc. with adv. pairs 4.93 94.07 50.05 18.78 11.94
Avg. acc. 52.46 96.98 / 46.09 53.15

LLaVA-Med-v1 Acc. with adv. pairs 6.25 39.77 40.24 26.28 6.14
Avg. acc. 52.62 67.19 / 50.78 51.34

LLaVA-Med-v1.5 Acc. with adv. pairs 55.44 65.48 49.53 31.82 9.78
Avg. acc. 77.67 82.69 / 62.70 54.22

BiomedGPT Acc. with adv. pairs 91.34 86.05 50.00 16.92 9.08
Avg. acc. 95.46 92.93 / 43.00 41.46

Med-Flamingo Acc. with adv. pairs 80.92 90.00 50 35.83 5.24
Avg. acc. 90.46 95.00 / 63.47 48.00

CheXagent Acc. with adv. pairs 53.68 39.64 76.59 42.75 9.38
Avg. acc. 76.84 69.82 / 70.80 54.00

GPT-4o Acc. with adv. pairs 97.97 62.98 62.01 32.13 21.81
Avg. acc. 98.81 81.39 / 59.35 59.95

GPT-4V Acc. with adv. pairs 91.53 67.51 53.18 39.35 21.35
Avg. acc. 95.62 83.37 / 64.69 55.64

Gemini Pro Acc. with adv. pairs 98.07 76.74 61.29 25.83 15.31
Avg. acc. 98.94 88.32 / 52.22 54.97

num 3120 3120 1948 3120 3120
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A.11 Spine X-ray

Table 16: Results of different models on Spine X-ray in ProbMed. The best-performing model in
each question category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 30.95 30.99

LLaVA-v1 Acc. with adv. pairs 44.55 45.04 50 0.49 0
Avg. acc. 72.27 71.78 / 47.32 49.42

LLaVA-v1.6 Acc. with adv. pairs 4.45 82.67 33.33 1.48 0.57
Avg. acc. 52.22 90.84 / 35.87 42.02

MiniGPT-v2 Acc. with adv. pairs 2.97 52.47 58.33 16.33 4.02
Avg. acc. 51.48 71.78 / 53.84 51.07

LLaVA-Med-v1 Acc. with adv. pairs 8.41 7.92 33.33 17.82 5.74
Avg. acc. 52.72 28.96 / 52.82 47.58

LLaVA-Med-v1.5 Acc. with adv. pairs 46.53 71.78 50.00 14.85 13.32
Avg. acc. 73.01 85.89 / 55.78 54.79

BiomedGPT Acc. with adv. pairs 40.09 16.83 58.33 12.37 2.87
Avg. acc. 68.06 55.19 / 50.27 40.77

Med-Flamingo Acc. with adv. pairs 14.35 25.24 50 14.85 5.17
Avg. acc. 57.17 62.12 / 51.09 48.38

CheXagent Acc. with adv. pairs 82.17 20.29 62.5 16.83 0.57
Avg. acc. 91.08 50.74 / 52.70 48.70

GPT-4o Acc. with adv. pairs 95.54 79.70 47.82 34.15 25.86
Avg. acc. 97.02 89.60 / 68.99 66.03

GPT-4V Acc. with adv. pairs 85.57 72.13 47.82 29.85 18.49
Avg. acc. 92.03 85.32 / 65.20 57.18

Gemini Pro Acc. with adv. pairs 95.02 70.14 70.83 17.91 19.07
Avg. acc. 96.76 84.82 / 58.04 61.72

num 201 201 24 201 201
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A.12 Abdominal X-ray

Table 17: Results of different models on Abdominal X-ray in ProbMed. The best-performing model
in each question category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 36.55 37.46

LLaVA-v1 Acc. with adv. pairs 53.87 53.01 50 2.15 0.56
Avg. acc. 76.93 76.50 / 49.14 50.00

LLaVA-v1.6 Acc. with adv. pairs 5.17 56.46 46 6.46 1.12
Avg. acc. 52.15 75.64 / 47.63 48.16

MiniGPT-v2 Acc. with adv. pairs 4.74 38.79 50 18.53 5.64
Avg. acc. 52.37 67.24 / 53.65 50.23

LLaVA-Med-v1 Acc. with adv. pairs 7.75 42.24 60 14.65 4.51
Avg. acc. 53.23 68.96 / 47.47 50.87

LLaVA-Med-v1.5 Acc. with adv. pairs 52.58 50.86 50.00 6.46 14.68
Avg. acc. 76.07 73.49 / 52.02 54.75

BiomedGPT Acc. with adv. pairs 35.77 1.29 50.00 10.34 4.51
Avg. acc. 65.30 37.50 / 52.94 46.79

Med-Flamingo Acc. with adv. pairs 28.01 34.48 50 14.65 4.51
Avg. acc. 64.00 66.37 / 52.52 46.25

CheXagent Acc. with adv. pairs 77.15 23.70 70 12.93 2.25
Avg. acc. 88.57 52.80 / 51.30 49.64

GPT-4o Acc. with adv. pairs 98.26 61.47 70 27.27 21.46
Avg. acc. 99.13 79.22 / 61.83 59.81

GPT-4V Acc. with adv. pairs 84.84 50.21 60 31.16 23.16
Avg. acc. 92.42 71.42 / 59.63 57.03

Gemini Pro Acc. with adv. pairs 97.14 63.36 85 27.15 19.2
Avg. acc. 98.70 80.81 / 59.97 58.80

num 232 232 20 232 232

B Dataset Statistics

Table 18: Number of questions across each question type for each image. Ground-truth questions
were created based on available metadata, with "yes" answers. For each ground-truth question,
we also created a corresponding adversarial question by selecting random adversarial entities and
assigning "no" answers. For an image showing a normal organ without abnormality, since there
is no ground-truth information on the existence of the condition and position, we only construct
hallucinated questions for the condition/finding question type. For an image showing abnormality,
the number of question pairs per category equals the number of existing conditions or positions.

Question type Image with
Normal Organ

Image with
Abnormality

Modality 2 2
Organ 2 2
Abnormality 1 1
Condition/Finding 1 2 x number of existing conditions
Position 0 2 x number of existing positions

C Impact of Chain-of-Thought Prompts and Visual Descriptions on Model
Performance
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Figure 6: Accuracy of the LLaVA-v1 model across five diagnostic categories under three settings:
vanilla (blue), chain-of-thought (CoT, red), and CoT with GPT-4o Visual Understanding (green).
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Figure 7: Accuracy of the LLaVA-v1.6 model across five diagnostic categories under three settings:
vanilla (blue), chain-of-thought (CoT, red), and CoT with GPT-4o Visual Understanding (green).

D Prompt Details

The following is the prompt used for extracting medical conditions and their locations from image
captions:

You are a helpful assistant and you are given a caption
describing a medical image. Extract medical conditions and
diseases , along with their locations , if specified. Do not
include any information that cannot be directly inferred
from the image , for example , patient status or patient
history. Outputs should be in the format: "<condition/
disease1 > : <location1 >, <condition/disease2 > : <location2
>...". The term "<location >" should include at least one
positional descriptor and should be explicit in the
original caption along with the condition/disease.
Otherwise , it should be replaced with "None".
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Figure 8: Accuracy of the LLaVA-Med-v1 model across five diagnostic categories under three
settings: vanilla (blue), chain-of-thought (CoT, red), and CoT with GPT-4o Visual Understanding
(green).
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Figure 9: Accuracy of the LLaVA-Med-v1.5 model across five diagnostic categories under three
settings: vanilla (blue), chain-of-thought (CoT, red), and CoT with GPT-4o Visual Understanding
(green).
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Figure 10: Accuracy of the Med-Flamingo model across five diagnostic categories under three
settings: vanilla (blue), chain-of-thought (CoT, red), and CoT with GPT-4o Visual Understanding
(green).
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Figure 11: Accuracy of the GPT-4o model across five diagnostic categories under three settings:
vanilla (blue), chain-of-thought (CoT, red), and CoT with GPT-4o Visual Understanding (green).

For example , consider the caption: "Fig. 1. MRI abdomen and
pelvis showing the cervical mass." The output should be "<
cervical mass > : None". For the caption: "Chest radiograph
shows enlargement of the hilar mass with spread into the
left lower lobe." The output should be "<enlargement of the
hilar mass > : <left lower lobe >". Similarly , for the

caption: "Abdominal CT scan reveals an enhancing rounded
pseudo -aneurysm in the cystic artery , alongside high -
density material within the gallbladder ’s lumen and near
the gastrohepatic ligament ." The correct output is "<
enhancing rounded pseudo -aneurysm > : <cystic artery >, <high
-density material > : <lumen of the gallbladder and region
of the gastrohepatic ligament >".

Make sure that the response contains only the information in
the original caption without adding extra details.
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