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Abstract

We propose a contrastive meta-objective to enable meta-learners to emulate human-1

like rapid learning capability through enhanced alignment and discrimination. Our2

proposed approach, dubbed ConML, exploits task identity as additional supervision3

signal for meta-training, benefiting meta-learner’s fast-adaptation and task-level4

generalization abilities. This is achieved by contrasting the outputs of meta-learner,5

i.e, performing contrastive learning in the model space. Specifically, we introduce6

metrics to minimize the inner-task distance, i.e., the distance among models learned7

on varying data subsets of the same task, while maximizing the inter-task distance8

among models derived from distinct tasks. ConML distinguishes itself through9

versatility and efficiency, seamlessly integrating with episodic meta-training meth-10

ods and the in-context learning of large language models (LLMs). We apply11

ConML to representative meta-learning algorithms spanning optimization-, metric-,12

and amortization-based approaches, and show that ConML can universally and13

significantly improve conventional meta-learning and in-context learning.14

1 Introduction15

Meta-learning [37, 42], or learning to learn, is a powerful paradigm that aims to enable a learning16

system to quickly adapt to new tasks. Meta-learning has been widely applied in different fields, like17

few-shot learning [17, 50], reinforcement learning [56, 26] and neural architecture search [16, 38]. In18

meta-training, a meta-leaner mimics the learning processes on many relevant tasks to gain experience19

about how to make adaptation. In meta-testing, the meta-trained adaptation process is performed20

on unseen tasks. The adaptation process is achieved by generating task-specific model by the meta-21

learner, which is given a set of training examples and returns a predictive model. People prefer22

meta-learning to equip models with human’s fast learning ability, so that a good model can be23

achieved with a few examples [50].24

The combination of two cognitive capabilities, namely, alignment and discrimination, is essential25

for human’s fast learning ability [23, 12, 13]. A good learner possesses the alignment [27] ability to26

align different partial views of a certain object, which means they can integrate various aspects or27

perspectives of information to form a coherent understanding. On the other hand, discrimination [34]28

refers to the learner’s capacity to distinguish between one stimulus and similar stimuli, responding29

appropriately only to the correct stimuli. This is a fundamental ability that allows learners to30

differentiate between what is relevant and what is not, ensuring that their responses are accurate31

and based on the correct understanding of the stimuli presented. With alignment and discrimination,32

learners can synthesize fragmented information to construct a complete picture of an object or33

concept, while also being able to discern subtle differences between distinct but similar objects34

or ideas. Such learners are not only efficient in processing information but also in applying their35

knowledge accurately in varied contexts. This dual capability is crucial for effective learning.36

We expect meta-learners to emulate the above combination of alignment and discrimination capa-37

bilities to approach human’s fast learning ability. By equipping a meta-learner with the ability to38
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Figure 1: ConML is performing contrastive learning in model space, where alignment and discrimi-
nation encourage the meta-learner’s fast-adaptation and task-level generalize ability respectively.

align, we enable it to capture the core essence of a task and being invariant to noises. Meanwhile,39

discrimination ensures that a meta-learner can learn specific models for unique tasks, as it is a natural40

supposition that different tasks enjoy distinguishable models. This reflects the natural diversity of41

problems we encounter in the real world and the varied strategies we employ to solve them. Together,42

alignment and discrimination empower a meta-learner to not only grasp the subtleties of individual43

tasks but also to generalize its learning across a spectrum of challenges. This dual capability can44

makes a meta-learner robust, versatile, and more aligned with the nuanced nature of human learning45

and reasoning. However, existing meta-learning approaches conventionally follows the idea of "train46

as you test", to minimize the validation loss [46] of meta-training tasks as meta-objective, where47

supervision signal are directly produced by sample labels. To provide stronger supervision, there48

are works assuming that the task-specific target models of meta-training tasks are available, then49

the meta-training can be supervised by aligning the learned model and the corresponding target50

model, with model weights [51, 52] or knowledge distillation [55]. However, as the target models are51

expensive to learn, and even not available in many real world problems, meta-objectives requiring the52

target models have very restricted applications. Moreover, the importance of discrimination ability of53

meta-learner has not been noticed in the literature.54

To achieve this, we propose contrastive meta-learning (ConML), by directly contrasting the outputs55

of meta-learner in the model space, shown in Figure 1. Conventional contrastive learning (CL) [14,56

48, 44] learns an encoder in unsupervised manner by equipping the model with alignment and57

discrimination ability by exploiting the distinguishable identity of unlabeled samples. Considering58

tasks in meta-learning are also unlabeled but have distinguishable identity, we are inspired to adopt59

similar strategy in meta-learning. ConML exploits tasks as CL exploits unlabeled samples. Positive60

pairs in ConML are different subsets of the same task, while negative pairs are datasets of different61

tasks. In the model space output by meta-learner, inner-task distance can be measured between62

positive pairs and inter-task distance can be measured between negative pairs. The contrastive63

meta-objective is minimizing inner-task distance while maximizing inter-task distance, corresponding64

to the expected alignment and discrimination ability respectively. The proposed ConML is universal65

and cheap, as it can be plugged-in any meta-learning algorithms following the episodic training,66

and does not require additional data nor model training. In this paper, we widely study ConML on67

representative meta-learning algorithms from different categories: optimization-based (e.g., MAML68

[17]), metric-based (e.g., ProtoNet [39]), amortization-based (e.g., Simple CNAPS [6]). We also69

investigate in-context learning [8] with reformulating it into the meta-learning paradigm, and show70

how ConML integrates and helps.71

Our contributions are:72

• We propose to emulate cognitive alignment and discrimination capabilities in meta-learning, to73

narrow down the gap of fast learning ability between meta-learners and humans.74

• We generalize contrastive learning from representation space of unsupervised learning to model75

space of meta-learning. The exploiting task identity as additional supervision benefits meta-learner’s76

fast-adaptation and task-level generalize abilities.77

• ConML is algorithm-agnostic, that can be incorporated into any meta-learning algorithms with78

episodic training. We empirically show ConML can bring universal improvement with cheap79

implementation on a wide range of meta-learning algorithms and in-context learning.80
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2 Related Works81

2.1 Learning to Learn82

Meta-learning learns to improve the learning algorithm itself [37], i.e., learns to learn. Popular83

meta-learning approaches can be roughly divided into three categories [7]: optimization-based,84

metric-based and amortization-based. Optimization-based approaches [4, 17, 28] focus on learning85

better optimization strategies for adapting to new tasks. For example MAML [17] learns initial86

model parameters, where few steps of gradient descent can quickly make adaptaion for specific87

tasks. Metric-based approaches [46, 39, 41] leverages learned similarity metrics. For example,88

Prototypical Networks [39] and Matching Networks [46] learn global shared encoders to map training89

set to embeddings, based on which task-specific model can be built. Amortization-based approaches90

[19, 33, 6] seek to learn a shared representation across tasks. They amortize the adaptation process91

by using neural networks to directly infer task-specific parameters from training set. Examples are92

CNPs [19] and CNAPs [33].93

In-context learning (ICL) [8] is designed for large language models, which integrates examples94

(input-output pairs) in a task and a query input into the prompt, thus the language model can answer95

the query. Recently, ICL has been studied as a general approach of learning to learn [2, 18, 47, 1],96

which reduces meta-learning to conventional supervised learning via training a sequence model. It97

considers training set as context to be provided along with the input to predict, forming a sequence to98

feed the model. Training such a model can be viewed as an instance of meta-learning [18].99

2.2 Contrastive Learning100

Contrastive learning is a powerful technique in representation learning [29, 10, 48]. Its primary goal101

is to learn useful representations, which are invariant to unnecessary details, and preserve as much102

information as possible. This is achieved by maximizing alignment and discrimination (uniformity)103

in representation space [48]. In conventional contrastive learning, alignment refers to bringing104

positive pairs (e.g., augmentations of the same sample [54, 22, 5, 21, 10]) closer together in the105

learned representation space. By maximizing alignment, the representations are encouraged to be106

invariant to unneeded noise factors. Discrimination refers to separating negative pairs (e.g., different107

samples) farther. Maximizing discrimination without any other knowledge results in uniformity, i.e.,108

uniform distribution in the representation space. By maximizing discrimination, the representations109

are encouraged to preserve as much information of the data as possible [43, 5], benefiting the110

generalization ability.111

3 Meta-Learning with Contrastive Meta-Objective112

Meta-learning is a methodology considered with "learning to learn" machine learning algorithms.113

Define L(D;h) as the loss obtained by evaluating model h on dataset D with function ℓ(y, ŷ) (e.g.,114

cross entropy or mean squared loss), g(; θ) is a meta-learner that maps a dataset D to a model h,115

i.e, h = g(D; θ). Given a distribution of tasks p(τ), where each task τ consists of a training set116

Dtr
τ = {(xτ,i, yτ,i)}ni=1, and a validation set Dval

τ = {(xτ,i, yτ,i)}mi=n+1, the goal of meta-learning is117

to learn g(; θ) to perform well on new task τ ′ sampled from p(τ ′), evaluated by L(Dval
τ ′ ; g(Dtr

τ ′ ; θ)).118

3.1 A Unified View of Episodic Training119

We aim to introduce "learning to align and discriminate" to
universally improve the meta-learning process. The most
conventional way of meta-training is taking the validation
loss as meta-objective to optimize θ:

min
θ

Eτ∼p(τ)L(Dval
τ ; g(Dtr

τ ; θ)). (1)

Different meta-learning algorithms tailor the function in-
side g, while sharing the same episodic meta-training to
achieve (1). Shown as Algorithm 1, in each episode, B
tasks are sampled from p(τ) to form a batch b, and valida-
tion loss of each task is aggregated as the supervision signal
Lv = 1

B

∑
τ∈b L(Dval

τ ; g(Dtr
τ ; θ)) to update θ. By specify-

ing the function inside g, Algorithm 1 can generalize the
meta-training process of different meta-learning algorithms.

Algorithm 1 Mini-Batch Episodic
Meta-Training (Conventional)

while Not converged do
Sample a batch of tasks b ∼
pB(τ).
for All τ ∈ b do

Get task-specific model hτ =
g(Dtr

τ ; θ);
Get validation loss L(Dval

τ ;hτ );
end for
Lv = 1

B

∑
τ∈b L(Dval

τ ; g(Dtr
τ ; θ))

Update θ by θ ← θ −∇θLv .
end while

120
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Table 1: Specifications of ConML.
Category Examples g(D; θ) ψ(g(D; θ))

Optimization
-based

MAML[17],
Reptile[28]

Update model weights
θ −∇θL(D;hθ) θ −∇θL(D;hθ)

Metric
-based

ProtoNet[39],
MatchNet[46]

Build classifier with
{({fθ(xi)}xi∈Dj

, j)}Nj=1

Concatenate
[ 1
|Dj |

∑
xi∈Dj

fθ(xi)]
N
j=1

Amortization
-based

CNPs[19],
CNAPs[33]

Map D to model weights
by Hθ(D) Hθ(D)

Specifications of optimization-based, metric-based and amortization-based algorithms are summa-121

rized in Table 1.122

We design ConML to be integrated with Algorithm 1 without specifying g, thus to be universally123

applicable for meta-learning algorithms following the episodic manner. In Section 3.2, we introduce124

how to measure the objective. Then in Section 3.3, we introduce specifications of ConML on a wide125

range of meta-learning algorithms.126

3.2 Integration with Episodic Meta-Training127

To equip meta-learners with the desired alignment and discrimination ability, we design contrastive128

meta-objective measured in the output space of meta-learner, i.e., the model space of h. Alignment129

is achieved by minimizing inner-task distance, which is the distance among models generated from130

different subsets of the same task. Discrimination is achieved by maximize the inter-task distance,131

which is the distance among models generated from different tasks. Here we introduce how to132

measure the contrastive objective and perform optimization.133

Obtaining Model Representation. To train the meta-learner g, the distances Din, Dout are mea-134

sured in the output space of g, i.e., the model space H. A feasible way is to first represent model135

h = g(D; θ) ∈ H as fixed length vectors e ∈ Rd, then measure by explicit distance function ϕ(·, ·)136

(e.g., cosine distance). Note that H is algorithm-specific. Here we only introduce a projection137

ψ : H → Rd to obtain model representations e = ψ(h). The H and ψ will be elucidated and138

specified for different meta-learning algorithms in Section 3.3.139

Obtaining Inner-Task Distance. During meta-training, Dtr
τ ∪ Dval

τ contains all the available in-140

formation about task τ . The meta-learner is expected to learn similar model given any subset κ of141

the task. Meanwhile those models from subsets are expected to be similar to the model learned142

from the full supervision Dtr
τ ∪ Dval

τ . We design the following inner-task distance to minimize that143

encourages g to learn a generalizable model even from a set containing only few or biased samples.144

For ∀κ ⊆ Dtr
τ ∪ Dval

τ , we expect eκτ = e∗τ , where eκτ = ψ(g(κ; θ)), e∗τ = ψ(g(Dtr
τ ∪ Dval

τ ; θ)). The145

inner-task distance Din
τ of task τ is defined as:146

Din
τ =

1

K

∑K

k=1
ϕ(eκk

τ , e∗τ ), s.t., e
κk
τ ∼ πκ(Dtr

τ ∪ Dval
τ ), (2)

where {κk}Kk=1 are K subsets sampled from Dtr
τ ∪ Dval

τ by certain sampling strategy πκ. In each147

episode given a batch of task b containing B tasks, inner-task distance is averaged by Din =148
1
B

∑
τ∈bD

in
τ .149

Obtaining Inter-Task Distance. Since the goal of meta-learning is improving the performance on150

unseen tasks, it is important that the g is generalizable for diverse tasks. With a natural supposition151

that different tasks enjoy different task-specific models, it is necessary that g can learn different152

models from different tasks, i.e., discrimination. We define the following inter-task distance to153

maximize to improve the task-level generalizability of g. For two tasks τ ̸= τ ′ during meta-training,154

we expect to maximize the distance between e∗τ and e∗τ ′ . To be practical under the mini-batch episodic155

training paradigm, we consider to measure inter-task distance among a batch of tasks:156

Dout =
1

B(B − 1)

∑
τ∈b

∑
τ ′∈b\τ

ϕ(e∗τ , e
∗
τ ′). (3)

4



Training Procedure. ConML mea-
sures Din by (2) and Dout by (3) in each
episode, and minimizes a combination
of the validation loss Lv and contrastive
meta-objective Din −Dout:

L = Lv + λ(Din −Dout). (4)

The training procedure of ConML is pro-
vided in Algorithm 2. Comparing with
Algorithm 1, ConML introduces addi-
tional computation ψ(g(D; θ)) forK+1
times in each episode. Note that we im-
plement ψ with very cheap function such
as obtaining model weights (or a sin-
gle probing, i.e., feeding-forward, for
ICL), and g(D; θ) already exists in Al-
gorithm 1 while multiple g(D; θ) can be
parallel-computed. ConML could have
very comparable time consumption.

Algorithm 2 Meta-Learning with Contrastive Meta-Object
(ConML)

while Not converged do
Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

for k = 1, 2, · · · ,K do
Sample κk from πκ(Dtr

τ ∪ Dval
τ );

Get model representation eκk
τ = ψ(g(κk; θ));

end for
Get model representation e∗τ = ψ(g(Dtr

τ∪Dval
τ ; θ));

Get inner-task distance Din
τ by (2);

Get task-specific model hτ = g(Dtr
τ ; θ);

Get validation loss L(Dval
τ ;hτ );

end for
Get Din = 1

B

∑
τ∈bD

in
τ and Dout by (3);

Get loss L by (4);
Update θ by θ ← θ −∇θL.

end while

157

3.3 Instantiations of ConML158

Here we demonstrate specifications ofH and ψ(g(D, θ)) to obtain model representation to implement159

ConML. We show examples on representative meta-learning algorithms from different categories:160

optimization-based, metric-based and amortization-based. They are explicitly represented by model161

weights, summarized in Table 1.162

With Optimization-Based Methods. The representative algorithm of optimization-based meta-163

learning is MAML. It meta-learns an initialization from where gradient steps are taken to learn164

task-specific models, i.e., g(D; θ) = hθ−∇θL(D;hθ). As g directly generates the model weights, we165

explicitly take the model weights as model representation. The representation of model learned166

by g given a dataset D is ψ(g(D; θ)) = θ − ∇θL(D;hθ). Note that there are optimization-based167

meta-learning algorithms which are based on first-order approximation of MAML, thus they do not168

strictly follows Algorithm 1 to minimize validation loss (e.g., FOMAML [17] and Reptile [28]).169

ConML can also be incorporated as long as it follows the episodic manner.170

With Metric-Based Methods. Metric-based algorithms are feasible for classification tasks. Given171

dataset D of a N -way classification task, metric-based algorithms can be summarized as classifying172

according to distances with {{fθ(xi)}xi∈Dj
}Nj=1 and corresponding labels, where fθ is a meta-173

learned encoder and Dj is the set of inputs belongs to class j. We design to represent this metric-174

based classifier with the concatenation of mean embedding of each class in label-aware order. For175

example, ProtoNet [39] computes the prototype cj , i.e., mean embedding of samples in each class.176

cj = 1
|Dj |

∑
(xi,yi)∈Dj

fθ(xi). Then classifier hθ,D is built by giving prediction p(y = j | x) =177

exp(−d(fθ(x), cj))/
∑

j′ exp(−d(fθ(x), cj′)). As the outcome model hθ,D depends on D through178

{cj}Nj=1 and corresponding labels, the representation is specified as ψ(g(D; θ)) = [c1|c2| · · · |cN ],179

where [·|·] means concatenation.180

With Amortization-Based Methods. Amortization-based approaches meta-learns a hypernetwork181

Hθ, which aggregates information from D to task-specific parameter α and serves as weights of182

main-network h, resulting in task-specific model hα. For example, Simple CNAPS [6] adopts the183

hypernetwork to generate only a small amount of task-specific parameter, which performs feature-wise184

linear modulation (FiLM) on convolution channels of the main-network. For contrasting we represent185

hα by α, i.e., the output of hypernetwork Hθ: ψ(g(D; θ)) = Hθ(D). The detailed procedures of186

different meta-learning algorithms with ConML are provided in Appendix A.187

4 In-Context Learning with Contrastive Meta-Objective188

In-context learning (ICL) is first proposed for large language models [8], where examples in a task189

are integrated into the prompt (input-output pairs) and given a new query input, the language model190

can generate the corresponding output. This approach allows pre-trained model to address new tasks191

without fine-tuning the model. For example, given "happy->positive; sad->negative; blue->", the192

model can output "negative", while given "green->cool; yellow->warm; blue->" the model can193

output "cool". ICL has the ability to learn from the prompt. Training ICL can be viewed as learning194
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to learn, like meta-learning [25, 18, 24]. More generally, the input and output are not necessarily195

to be natural language. In ICL, a sequence model Tθ (typically transformer [45]) is trained to map196

sequence [x1, y1, x2, y2, · · · , xm−1, ym−1, xm] (prompt prefix) to prediction ym. Given distribution197

P of training prompt t, then training ICL follows an auto-regressive manner:198

min
θ

Et∼P (t)
1

m

∑m−1

i=0
ℓ(yt,i+1, Tθ([xt,1, yt,1, · · · , xt,i+1])). (5)

It has been mentioned that the training of ICL can be viewed as an instance of meta-learning [18, 2]199

as Tθ learns to learn from prompt. In this section we first formally reformulate Tθ to meta-learner200

g(; θ), then introduce how ConML can be integrated with ICL.201

4.1 A Meta-learning Reformulation202

Denote a sequentialized D as D⃗ where the sequentializer is default to bridge p(τ) and P (t). Then203

the prompt [xτ,1, yτ,1, · · · , xτ,m, yτ,m] can be viewed as D⃗tr
τ which is providing task-specific infor-204

mation. Note that ICL does not specify an explicit output model h(x) = g(D; θ)(x); instead, this205

procedure exists only implicitly through the feeding-forward of the sequence model, i.e., task-specific206

prediction is given by g([D⃗, x]; θ). Thus we can reformulate the training of ICL (5) as:207

min
θ

Eτ∼p(τ)
1

m

∑m−1

i=0
ℓ(yτ,i+1, g([D⃗τ,0:i, xτ,i+1]; θ)). (6)

Equation (6) can be regarded as the validation loss (1) in meta-learning, where each task in each208

episode is sampled multiple times to form Dval
τ and Dtr

τ in an auto-regressive manner. The training209

of ICL thus follows the episodic meta-training (Algorithm 1), where the validation loss with deter-210

mined Dtr
τ and Dval

τ : L(Dval
τ ; g(Dtr

τ ; θ)), is replaced by loss validated in the auto-regressive manner:211
1
m

∑m−1
i=0 ℓ(yτ,i+1, g([D⃗τ,0:i, xτ,i+1]; θ)).212

4.2 Integration with ICL213

Since the training of ICL could be reformulated as episodic meta-training, the three steps to measure214

ConML proposed in Section 3.2 can be also adopted for ICL, but the first step to obtain model215

representation ψ(g(D, θ)) needs modification. Due to the absence of an inner learning procedure for216

a predictive model for prediction h(x) = g(D; θ)(x), representation by explicit model weights of h217

is not feasible for ICL.218

To represent what g learns from D, we design to incorporate D⃗ with a dummy input u, which219

functions as a probe and its corresponding output can be readout as representation:220

ψ(g(D; θ)) = g([D⃗, u]; θ), (7)

where u is constrained to be in the same shape as x, and has consistent value in an episode. The221

complete algorithm of ConML for ICL is provided in Appendix A. From the perspective of learning222

to learn, ConML encourages ICL to align and discriminate like it does for conventional meta-learning,223

while the representations to evaluate inner- and inter- task distance are obtained by probing output224

rather than explicit model weights. Thus, incorporating ConML into the training process of ICL225

benefits the fast-adaptation and task-level generalization ability. From the perspective of supervised226

learning, ConML is performing unsupervised data augmentation that it introduces the dummy input227

and contrastive objective as additional supervision to train ICL.228

5 Experiments229

In this secrion, we first empirically investigate the alignment and discrimination empowered by230

ConML. Then we show the effect of ConML that it significantly improve meta-learning performance231

on a wide range of meta-learning algorithms on few-shot image classification, and the effect of232

ConML-ICL with in-context learning general functions. Additionally, by applying ConML we provide233

a SOTA approach for few-shot molecular property prediction problem, provided in Appendix B.234

Code is provided in supplementary materials.235

5.1 Impact of Alignment and Discrimination236

There are two important questions to understand the way ConML works: First, does ConML equip237

meta-learners with better alignment and discrimination as expected? Second, what is the contribution238

of inner-task and inter-task distance respectively? We take ConML-MAML as example and investigate239

above questions with few-shot regression problem following the same settings in [17], where each240

task involves regressing from the input to the output of a sine wave. We use this synthetic regression241
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Table 2: Meta-testing and clustering performance of few-shot sinusoidal regression.
Method MSE (5-shot) MSE (10-shot) Silhouette DBI CHI

MAML .6771± .0377 .0678± .0022 .1068± .0596 .0678± .0021 31.55± 2.52

ConML-MAML .3935± .0100 .0397± .0009 .1945± .0621 .0397± .0009 39.22± 2.61

dataset to be able to sample data and vary the distribution as needed for investigation. The implement242

of ConML-MAML is consistent with Section 5.2. Firstly the meta-testing performance in Table 2243

shows that ConML is effective for the regression problem.244

(a) Model distribution of MAML. (b) Inner-task distance distribution. (c) Varying test shots.

(d) Model distribution of ConML-
MAML.

(e) Inter-task distance distribution. (f) Varying test distribution.

Figure 2: Investigating the way ConML works.
Clustering. If ConML enhances the alignment and discrimination abilities, ConML-MAML can245

generate more similar models from different subsets of the same task, while generating more separable246

models from different tasks. This can be verified by evaluating the clustering performance for model247

representations e. During meta-testing, we randomly sample 10 different tasks, inside each we sample248

10 different subsets, each one contains N = 10 samples. Taking these 100 different Dtr as input,249

meta-learner generates 100 models. Figure 2(a) and 2(d) show the visualization of model distribution.250

It can be obviously observed ConML-MAML performs better alignment and discrimination than251

MAML. To quantity the results, we also evaluate the supervised clustering performance, where task252

identity is used as label. Table 2 shows the supervised clustering performance of different metrics:253

Silhouette score [35], Davies-Bouldin index (DBI) [15] and Calinski-Harabasz index (CHI) [9],254

where ConML-MAML shows much better performance.255

Decoupling Inner- and Inter-Task Distance. In conventional unsupervised contrastive learning,256

where objective only relies on contrasting of positive pairs and negative pairs, positive and negative257

pairs are both necessary to avoid learning representations without useful information. However, in258

ConML, there is validation loss Lv plays a necessary and fundamental role in "learning to learn",259

and the contrastive objective is introduced as additional supervision to enhance alignment and260

discrimination. Thus, distance of positive pairs (Din) and negative pairs (Dout) in ConML could be261

decoupled and incorporated with Lv respectively. We aim to understand howDin andDout contributes262

respectively. This gives birth to two variants of ConML: in-MAML which optimize Lv and Din,263

out-MAML which optimize Lv and Dout. During meta-testing, we randomly sample 1000 different264

tasks, inside each we sample 10 different subsets each one contains N = 10 samples. We aggregate265

different subsets from the same task to form a N = 100 set to obtaining e∗τ for each task. The266

distribution of Din and Dout are shown in Figure 2(b) and 2(e) respectively, where the dashed lines267

are mean values. We can find that: the alignment and discrimination ability corresponds to optimizing268

Din and Dout respectively; the alignment and discrimination capabilities are generalizable; ConML269

shows the couple of both capabilities. Figure 2(c) shows the testing performance given different270

numbers of examples per task (shot), while the meta-leaner is trained with fixed N = 10. We can find271

that the improvement brought by Din is much more significant than Dout under few-shot scenario,272

which indicates that alignment is closely related to the fast-adaptation ability of the meta-learner.273
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Table 3: Meta-testing accuracy on miniImageNet.
Category Algorithm Setting (5-way) w/o ConML ConML- Relative Gain Relative Time

Optimization-
Based

MAML 1-shot 48.75± 1.25 56.25± 0.94
9.16% 1.1×5-shot 64.50± 1.02 67.37± 0.97

FOMAML 1-shot 48.12± 1.40 57.64± 1.29
12.65% 1.2×5-shot 63.86± 0.95 68.50± 0.78

Reptile 1-shot 49.21± 0.60 52.82± 1.06
5.58% 1.5×5-shot 64.31± 0.97 67.04± 0.81

Metric-
Based

MatchNet 1-shot 43.92± 1.03 48.75± 0.88
10.59% 1.2×5-shot 56.26± 0.90 62.04± 0.89

ProtoNet 1-shot 48.90± 0.84 51.03± 0.91
3.31% 1.2×5-shot 65.69± 0.96 67.35± 0.72

Amortization-
Based SCNAPs 1-shot 53.14± 0.88 55.73± 0.86

3.12% 1.3×5-shot 70.43± 0.76 71.70± 0.71

Figure 2(f) shows the out-of-distribution testing performance. While meta-trained on tasks with274

amplitudes that uniformly distribute on [0.1, 5], meta-testing is performed on tasks with amplitudes275

that uniformly distribute on [0.1 + δ, 5 + δ] (the distribution shift δ is indicated as x-axis). We can276

find that the improvement brought by Dout is notably more significant as the distribution gap grows277

than Din. This indicates that discrimination is closely related to the task-level generalization ability278

of meta-learner. ConML takes both advantages brought by Din and Dout.279

5.2 Few-Shot Image Classification280

To evaluate ConML on conventional meta-learning approaches, we follow existing works [46, 17, 39,281

28, 6] to evaluate the meta-learning performance with few-shot image classification problem. We282

consider representative meta-learning algorithms from different categories, including optimization-283

based: MAML [17], FOMAML [17], Reptile [28]; metric-based: MatchNet [46], ProtoNet [39];284

and amortization-based: SCNAPs (Simple CNAPS) [6]. We evaluate their original meta-learning285

performance (w/o ConML) and performance meta-trained with the proposed ConML (ConML-). The286

implementation of ConML- follows the general Algorithm 2 and the specification for corresponding287

category in Section 3.3.288

Datasets and Settings. We consider two few-shot image classification benchmarks: miniImageNet289

[46] and tieredImageNet [32]. 5-way 1-shot and 5-way 5-shot tasks are trained and evaluated290

respectively. Note that we focus on the improvement comparing ConML- and the corresponding291

algorithm without ConML, rather than performance comparison across different algorithms. So we292

conduct the experiment on each algorithm following the originally reported settings. All baselines293

share the same settings of hyperparameters related to the measurement of ConML: task batch294

size B = 32, inner-task sampling K = 1 and πκ(Dtr
τ ∪ Dval

τ ) = Dtr
τ , ϕ(a, b) = 1 − a·b/∥a∥∥b∥295

(cosine distance) and λ = 0.1. For other settings of hyperparameters about model architecture and296

training procedure, each baseline is consistent with its originally reported. Note that K = 1 and297

πκ(Dtr
τ ∪ Dval

τ ) = Dtr
τ is the most simple and efficient implementation, provided as Efficient-ConML298

in Appendix A. In this case, considering the consumption of feeding-forward neural networks in each299

task, Algorithm 1 takes h = g(Dtr
τ ; θ) and L(Dval

τ ;h), while ConML only introduces an additional300

g(Dtr
τ ∪ Dval

τ ; θ), which results in very comparable time consumption.301

Results. Table 3 and 4 show the results on miniImageNet and tieredImageNet respectively. The302

relative gain is calculated in terms of the summation of 1-shot and 5-shot accuracy. The relative303

time is comparing the total time consumption of meta-training. Significant relative gain and very304

comparable relative time consumption show that ConML brings universal improvement on different305

meta-learning algorithms with cheap implementation.306

5.3 In-Context Learning General Functions307

Following [18], we investigate ConML on ICL by learning to learn synthetic functions including308

linear regression (LR), sparse linear regression (SLR), decision tree (DT) and 2-layer neural network309

with ReLU activation (NN). We train the GPT-2 [30]-like transformer for each function with ICL and310

ConML-ICL respectively and compare the inference (meta-testing) performance. We follow the same311

model structure, data generation and training settings [18]. We implement ConML-ICL with K = 1312

and πκ([x1, y1, · · · , xn, yn]) = [x1, y1, · · · , x⌊n
2 ⌋, y⌊n

2 ⌋]. To obtain the implicit representation (7),313

we sample u from a standard normal distribution (the same with x’s distribution) independently in314
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Table 4: Meta-testing accuracy on tieredImageNet.
Category Algorithm Setting (5-way) w/o ConML ConML- Relative Gain Relative Time

Optimization-
Based

MAML 1-shot 51.39± 1.31 58.75± 1.45
10.07% 1.1×5-shot 68.25± 0.98 72.94± 0.98

FOMAML 1-shot 51.44± 1.51 58.21± 1.22
9.78% 1.2×5-shot 68.32± 0.95 73.26± 0.78

Reptile 1-shot 47.88± 1.62 55.01± 1.28
10.78% 1.5×5-shot 65.10± 1.13 70.15± 1.00

Metric-
Based

MatchNet 1-shot 48.74± 1.06 53.29± 1.05
11.00% 1.2×5-shot 61.30± 0.94 67.86± 0.77

ProtoNet 1-shot 52.50± 0.96 54.62± 0.79
3.94% 1.2×5-shot 71.03± 0.74 73.78± 0.75

Amortization-
Based SCNAPs 1-shot 62.88± 1.04 65.06± 0.95

2.91% 1.3×5-shot 79.82± 0.87 81.79± 0.80

Table 5: Performance comparison of ConML-ICL and ICL.
Function (max prompt len.) LR (10 shot) SLR (10 shot) DT (20 shot) NN (40 shot)

Rel. Min. Error 0.42± 0.09 0.49± .06 0.81± 0.12 0.74± 0.19

Shot Spare −4.68± 0.45 −3.94± 0.62 −4.22± 1.29 −11.25± 2.07

each episode. Since the output of (7) is a scalar, i.e., representation e ∈ R, we adopt distance measure315

ϕ(a, b) = σ((a− b)2), where σ(·) is sigmoid function to bound the squared error. λ = 0.02.316

(a) LR. (b) SLR. (c) DT. (d) NN.
Figure 3: In-context learning performance.

Results. Figure 3 shows that varying the number of in-context examples during inference, ConML-317

ICL always makes more accurate predictions than ICL. Table 5 collects the two values to show the318

effect ConML brings to ICL: Rel. Min. Error is ConML-ICL’s minimal inference error given different319

number of examples, divided by ICL’s; Shot Spare is when ConML-ICL obtain an error no larger320

than ICL’s minimal error, the difference between the corresponding example numbers. Note that the321

learning of different functions (different meta-datasets) share the same settings about ConML, which322

shows ConML can bring ICL universal improvement with cheap implementation. We notice that323

during training of LR and SLR ⌊n2 ⌋ = 5, which happens to equals to the dimension of the regression324

task. This means sampling by πκ would results in the minimal sufficient information to learn the325

task. In this case, minimizing Din is particularly beneficial for the fast-adaptation ability, shown as326

Figure 3(a) and 3(b). This indicates that introducing prior knowledge to design the hyperparameter327

settings of ConML could bring more advantage. The effect of ConML for ICL is without loss of328

generalizability to real-world applications like pretraining large language models.329

6 Conclusion330

In this work, we propose ConML that introduce an additional supervision for episodic meta-training331

by exploiting task identity. The contrastive meta-objective is designed to emulate the alignment and332

discrimination embodied in human’s fast learning ability, and measured by performing contrastive333

learning in the model space. Specifically, we design ConML to be integrated with the conventional334

episodic meta-training, and then give specifications on a wide range of meta-learning algorithms.335

We also reformulate training ICL into episodic meta-training to design ConML-ICL following the336

same principle. Empirical results show that ConML can universally and significantly improve meta-337

learning performance by benefiting the meta-learner’s fast-adaptation and task-level generalization338

ability. This work lays the groundwork for contrastive meta-learning, by identifying the importance339

of alignment and discrimination ability of meta-learner, and practicing contrastive learning in model340

space. There also exists certain limitations, such as lack of investigating advanced contrastive strategy,341

batch- and subset- sampling strategies. We would consider these as future directions.342
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A Specifications of ConML493

Algorithm 3 ConML

Input: Task distribution p(τ), batch size B, inner-task sample times K and sampling strategy πκ.
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

for k = 1, 2, · · · ,K do
Sample κk from πκ(Dtr

τ ∪ Dval
τ );

Get model representation eκk
τ = ψ(g(κk; θ));

end for
Get model representation e∗τ = ψ(g(Dtr

τ ∪ Dval
τ ; θ));

Get inner-task distance Din
τ by (2);

Get task-specific model hτ = g(Dtr
τ ; θ);

Get validation loss L(Dval
τ ;hτ );

end for
Get Din = 1

B

∑
τ∈bD

in
τ and Dout by (3);

Get loss L by (4);
Update θ by θ ← θ −∇θL.

end while

Algorithm 4 Efficient ConML

Input: Task distribution p(τ), batch size B (inner-task sample times K = 1 and sampling strategy
πκ(Dtr

τ ∪ Dval
τ ) = Dtr

τ ).
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

Get task-specific model hτ = g(Dtr
τ ; θ), and model representation eκk

τ = ψ(g(κk; θ));
Get model representation e∗τ = ψ(g(Dtr

τ ∪ Dval
τ ; θ));

Get inner-task distance Din
τ by (2);

Get validation loss L(Dval
τ ;hτ );

end for
Get Din = 1

B

∑
τ∈bD

in
τ and Dout by (3);

Get loss L by (4);
Update θ by θ ← θ −∇θL.

end while
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Algorithm 5 In-Context Learning with Contrastive Meta-Object (ConML-ICL)

Input: Task distribution p(τ), batch size B, inner-task sample times K and sampling strategy πκ,
dummy input u (probe).
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

for k = 1, 2, · · · ,K do
Sample κk from πκ(Dτ );
Get eκk

τ = g([κ⃗k, u]; θ);
end for
Get e∗τ = g([D⃗τ , u]; θ);
Get inner-task distance Din

τ by (2);
Get task loss 1

m

∑m−1
i=0 ℓ(yτ,i+1, g([D⃗τ,0:i, xτ,i+1]; θ));

end for
Get Din = 1

B

∑
τ∈bD

in
τ and Dout by (3);

Get loss L = 1
B

∑
τ∈b

1
m

∑m−1
i=0 ℓ(yτ,i+1, g([D⃗τ,0:i, xτ,i+1]; θ)) + λ(Din −Dout);

Update θ by θ ← θ −∇θL.
end while

Algorithm 6 ConML-MAML

Input: Task distribution p(τ), batch size B, inner-task sample times K = 1 and sampling strategy
πκ
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

for k = 1, 2, · · · ,K do
Sample κk from πκ(Dtr

τ ∪ Dval
τ );

Get model representation eκk
τ = θ −∇θL(κk;hθ);

end for
Get model representation e∗τ = θ −∇θL(Dtr

τ ∪ Dval
τ ;hθ).

Get inner-task distance Din
τ by (2);

Get task-specific model hθ−∇θL(Dtr
τ ;θ)

;
Get validation loss L(Dval

τ ;hθ−∇θL(Dtr
τ ;hθ));

end for
Get Din = 1

B

∑
τ∈bD

in
τ and Dout by (3);

Get loss L by (4);
Update θ by θ ← θ −∇θL.

end while

Algorithm 7 ConML-Reptile

Input: Task distribution p(τ), batch sizeB. (inner-task sample timesK = 1 and sampling strategy
πκ(Dtr

τ ∪ Dval
τ ) = Dtr

τ )
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

for k = 1, 2, · · · ,K do
Sample κk from πκ(Dτ );
Get model representation eκk

τ = θ −∇θL(κk;hθ);
end for
Get model representation e∗τ = θ −∇θL(Dtr

τ ∪ Dval
τ ;hθ).

Get inner-task distance Din
τ by (2);

end for
Get Din = 1

B

∑
τ∈bD

in
τ and Dout by (3);

Get loss L by (4);
Update θ by θ ← θ + 1

B

∑
τ∈b(e

∗
τ − θ)− λ∇θ(D

in −Dout).
end while
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Algorithm 8 ConML on SCNAPs

Note: Here hw corresponds to the feature extractor fθ; Hθ corresponds to the task encoder gϕ in
[6].
Input: Task distribution p(τ), batch size B, inner-task sample times K and sampling strategy πκ.
Pretrain hw with the mixture of all meta-training data;
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

for k = 1, 2, · · · ,K do
Sample κk from πκ(Dtr

τ ∪ Dval
τ );

Get model representation eκk
τ = Hθ(κk);

end for
Get model representation e∗τ = Hθ(Dtr

τ ∪ Dval
τ );

Get inner-task distance Din
τ by (2);

Get task-specific model by FiLM hτ = hw,Hθ(Dtr
τ )

;
Get validation loss L(Dval

τ ;hτ );
end for
Get Din = 1

B

∑
τ∈bD

in
τ and Dout by (3);

Get loss L by (4);
Update θ by θ ← θ −∇θL.

end while

Algorithm 9 ConML-ProtoNet (N -way classification)

Input: Task distribution p(τ), batch size B, inner-task sample times K = 1 and sampling strategy
πκ
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

for k = 1, 2, · · · ,K do
Sample κk from πκ(Dtr

τ ∪ Dval
τ );

Calculate prototypes cj = 1
|κk,j |

∑
(xi,yi)∈κk,j

fθ(xi) for j = 1, · · · , N ;
Get model representation eκk

τ = [c1|c2| · · · |cN ];
end for
Calculate prototypes cj = 1

|Dj |
∑

(xi,yi)∈Dj
fθ(xi) for j = 1, · · · , N ;

Get model representation e∗τ = [c1|c2| · · · |cN ];
Get inner-task distance Din

τ by (2);
Get task-specific model h[c1|c2|···|cN ], which gives prediction by p(y = j | x) =

exp(−d(fθ(x),cj))∑
j′ exp(−d(fθ(x),cj′ ))

;

Get validation loss L(Dval
τ ;h[c1|c2|···|cN ]);

end for
Get Din = 1

B

∑
τ∈bD

in
τ and Dout by (3);

Get loss L by (4);
Update θ by θ ← θ −∇θL.

end while
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B Few-shot Molecular Property Prediction494

Few-shot molecular property prediction (FSMPP) is an important real-world application where meta-495

learning has been widely applied recently [3, 20, 49, 11, 36]. Molecular property prediction, which496

predicts whether desired properties will be active on given molecules, plays a crucial role in many497

applications like computational chemistry [31] and drug discovery [53]. As wet-lab experiments498

to evaluate the actual properties of molecules are expensive and risky, usually only a few labeled499

molecules are available for a specific property. Molecular property prediction can be naturally500

modeled as a few-shot learning problem [3], and meta-learning approaches has been successfully501

adopted for FSMPP [3, 20, 49, 11].502

Dataset and Settings. We use FS-Mol [40], a widely studied FSMPP benchmark consisting of503

a large number of diverse tasks. We adopt the public data split [40]. Each training set contains 64504

labeled molecules, and can be imbalanced where the number of labeled molecules from active and505

inactive is not equal. All remaining molecules in the task form the validation set. The performance is506

evaluated by ∆AUPRC (change in area under the precision-recall curve) w.r.t. a random classifier [40],507

averaged across meta-testing tasks.508

Baselines. We consider the following meta-learning-based FSMPP approaches: MAML, ProtoNet,509

CNP, IterRefLSTM, PAR, ADKF-IFT. Note that MHNfs [36] is not included as it uses additional510

reference molecules from external datasets, which leads to unfair comparison, and ADKF-IFT is511

the SOTA approach in literature. All baselines share the same GNN-based encoder provided by the512

benchmark to meta-train from scratch, which maps molecular graphs to embedding vectors.513

Algorithm 10 Hypro

Note: The main-network consists of two modules [40]: the molecular encoder fθ and the prototyp-
ical network classifier hθ.
Input: Task distribution p(τ), batch size B.
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

Encode all molecules fθ(x) for x ∈ Dtr
τ ∪ Dval

τ
Get task-specific parameters ατ = Hθ({(fθ(xi), yi)}(xi,yi)∈Dtr

τ
);

Modulate all molecular embedding with ατ by FiLM, and classify with hθ; (denote the
function of this step as hθ,ατ

)
Get validation loss L(Dval

τ ;hθ,ατ
);

end for
Lv = 1

B

∑
τ∈b L(Dval

τ ;hθ,ατ )
Update θ by θ ← θ −∇θLv .

end while

We introduce a new baseline ConML-Hypro, which achieves SOTA performance by incorporating514

ConML with a simple backbone, Hypro. It is an amortization-based model built by modifying the515

ProtoNet backbone, by plugging-in a hypernetwork H with a set-encoder structure, i.e., H(D) =516

MLP2( 1
|D|

∑
D MLP1([xi | yi])). We input the embedding vectors in Dtr to the hypernetwork, and take517

the output to modulate embedding vectors through FiLM before classification. This hypernetwork518

and modulation is typical in amortization-based models. Viewing Hypro as an amortization-based519

model, we apply the specification of ConML to form ConML-Hypro. The detailed procedure to train520

Hypro and ConML-Hypro are provided in Algorithm 10 and 11. The structure of H is provided521

in Table 6, and two such hypernetworks are used for generate parameters for FiLM function. We522

implement ConML with B = 16, ϕ(a, b) = 1− a·b/∥a∥∥b∥ (cosine distance) and λ = 0.1. As for the523

sampling strategy πκ and times K, for every task, we sample subset with different sizes, including524

each m ∈ {4, 8, 16, 32, 64}, for 128/m times respectively. A m-sized subset contains m/2 positive525

and m/2 negative samples sampled randomly. The other hyperparameters of model structure and526

training procedure follow the benchmark’s default setting [40].527

Results. Table 7 shows the results. ConML-Hypro shows advantage over SOTA approach under528

all meta-testing scenarios with different shots. Comparing Hypro and ProtoNet, we can find the529
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Algorithm 11 ConML-Hypro

Note: Refer to Algorithm 10 for details about Hθ(D) and hθ,α.
Input: Task distribution p(τ), batch size B, inner-task sample times K and sampling strategy πκ.
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

for k = 1, 2, · · · ,K do
Sample κk from πκ(Dtr

τ ∪ Dval
τ );

Get model representation eκk
τ = Hθ(κk);

end for
Get model representation e∗τ = Hθ(Dtr

τ ∪ Dval
τ );

Get inner-task distance Din
τ by (2);

Get task-specific model hθ,Hθ(Dtr
τ )

;
Get validation loss L(Dval

τ ;hθ,Hθ(Dtr
τ )
);

end for
Get Din = 1

B

∑
τ∈bD

in
τ and Dout by (3);

Get loss L by (4);
Update θ by θ ← θ −∇θL.

end while

Table 6: Hypernetwork structure in Hypro and ConML-Hypro
Layers Output dimension

MLP1
input [xi | yi] (dim=2562), fully connected, LeakyReLU 2560
2× fully connected with with residual skip connection 2560

MLP2 2×fully connected with residual skip connection, LeakyReLU 2560

introduced hypernetwork can brings notable improvement. Comparing ConML-Hypro and Hypro,530

we can find the effect of ConML is significant.531

Table 7: Few-shot molecular property prediction performance (∆AUPRC) on FS-Mol. † indicates
result from [36]. ∗ indicates new approach proposed in this paper.

2-shot 4-shot 8-shot 16-shot

MAML .009± .006 .125± .009 .146± .007 .159± .009

PAR .124± .007 .140± .005 .149± .009 .164± .008

ProtoNet .117± .006 .142± .007 .175± .006 .206± .008

CNP .139± .004 .155± .008 .174± .006 .187± .009

Hypro∗ .122± .007 .150± .006 .185± .008 .216± .007

IterRefLSTM† - - - .234± .010

ADKF-IFT .131± .007 .166± .005 .202± .006 .234± .009

ConML-Hypro∗ .175± .006 .196± .006 .218± .005 .239± .007
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NeurIPS Paper Checklist532

1. Claims533

Question: Do the main claims made in the abstract and introduction accurately reflect the534

paper’s contributions and scope?535

Answer: [Yes]536

Justification: [TODO]537

Guidelines:538

• The answer NA means that the abstract and introduction do not include the claims539

made in the paper.540

• The abstract and/or introduction should clearly state the claims made, including the541

contributions made in the paper and important assumptions and limitations. A No or542

NA answer to this question will not be perceived well by the reviewers.543

• The claims made should match theoretical and experimental results, and reflect how544

much the results can be expected to generalize to other settings.545

• It is fine to include aspirational goals as motivation as long as it is clear that these goals546

are not attained by the paper.547

2. Limitations548

Question: Does the paper discuss the limitations of the work performed by the authors?549

Answer: [Yes]550

Justification: [TODO]551

Guidelines:552

• The answer NA means that the paper has no limitation while the answer No means that553

the paper has limitations, but those are not discussed in the paper.554

• The authors are encouraged to create a separate "Limitations" section in their paper.555

• The paper should point out any strong assumptions and how robust the results are to556

violations of these assumptions (e.g., independence assumptions, noiseless settings,557

model well-specification, asymptotic approximations only holding locally). The authors558

should reflect on how these assumptions might be violated in practice and what the559

implications would be.560

• The authors should reflect on the scope of the claims made, e.g., if the approach was561

only tested on a few datasets or with a few runs. In general, empirical results often562

depend on implicit assumptions, which should be articulated.563

• The authors should reflect on the factors that influence the performance of the approach.564

For example, a facial recognition algorithm may perform poorly when image resolution565

is low or images are taken in low lighting. Or a speech-to-text system might not be566

used reliably to provide closed captions for online lectures because it fails to handle567

technical jargon.568

• The authors should discuss the computational efficiency of the proposed algorithms569

and how they scale with dataset size.570

• If applicable, the authors should discuss possible limitations of their approach to571

address problems of privacy and fairness.572

• While the authors might fear that complete honesty about limitations might be used by573

reviewers as grounds for rejection, a worse outcome might be that reviewers discover574

limitations that aren’t acknowledged in the paper. The authors should use their best575

judgment and recognize that individual actions in favor of transparency play an impor-576

tant role in developing norms that preserve the integrity of the community. Reviewers577

will be specifically instructed to not penalize honesty concerning limitations.578

3. Theory Assumptions and Proofs579

Question: For each theoretical result, does the paper provide the full set of assumptions and580

a complete (and correct) proof?581

Answer: [NA]582
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Justification: [TODO]583

Guidelines:584

• The answer NA means that the paper does not include theoretical results.585

• All the theorems, formulas, and proofs in the paper should be numbered and cross-586

referenced.587

• All assumptions should be clearly stated or referenced in the statement of any theorems.588

• The proofs can either appear in the main paper or the supplemental material, but if589

they appear in the supplemental material, the authors are encouraged to provide a short590

proof sketch to provide intuition.591

• Inversely, any informal proof provided in the core of the paper should be complemented592

by formal proofs provided in appendix or supplemental material.593

• Theorems and Lemmas that the proof relies upon should be properly referenced.594

4. Experimental Result Reproducibility595

Question: Does the paper fully disclose all the information needed to reproduce the main ex-596

perimental results of the paper to the extent that it affects the main claims and/or conclusions597

of the paper (regardless of whether the code and data are provided or not)?598

Answer: [Yes]599

Justification: [TODO]600

Guidelines:601

• The answer NA means that the paper does not include experiments.602

• If the paper includes experiments, a No answer to this question will not be perceived603

well by the reviewers: Making the paper reproducible is important, regardless of604

whether the code and data are provided or not.605

• If the contribution is a dataset and/or model, the authors should describe the steps taken606

to make their results reproducible or verifiable.607

• Depending on the contribution, reproducibility can be accomplished in various ways.608

For example, if the contribution is a novel architecture, describing the architecture fully609

might suffice, or if the contribution is a specific model and empirical evaluation, it may610

be necessary to either make it possible for others to replicate the model with the same611

dataset, or provide access to the model. In general. releasing code and data is often612

one good way to accomplish this, but reproducibility can also be provided via detailed613

instructions for how to replicate the results, access to a hosted model (e.g., in the case614

of a large language model), releasing of a model checkpoint, or other means that are615

appropriate to the research performed.616

• While NeurIPS does not require releasing code, the conference does require all submis-617

sions to provide some reasonable avenue for reproducibility, which may depend on the618

nature of the contribution. For example619

(a) If the contribution is primarily a new algorithm, the paper should make it clear how620

to reproduce that algorithm.621

(b) If the contribution is primarily a new model architecture, the paper should describe622

the architecture clearly and fully.623

(c) If the contribution is a new model (e.g., a large language model), then there should624

either be a way to access this model for reproducing the results or a way to reproduce625

the model (e.g., with an open-source dataset or instructions for how to construct626

the dataset).627

(d) We recognize that reproducibility may be tricky in some cases, in which case628

authors are welcome to describe the particular way they provide for reproducibility.629

In the case of closed-source models, it may be that access to the model is limited in630

some way (e.g., to registered users), but it should be possible for other researchers631

to have some path to reproducing or verifying the results.632

5. Open access to data and code633

Question: Does the paper provide open access to the data and code, with sufficient instruc-634

tions to faithfully reproduce the main experimental results, as described in supplemental635

material?636
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/641

public/guides/CodeSubmissionPolicy) for more details.642

• While we encourage the release of code and data, we understand that this might not be643

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not644
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benchmark).646

• The instructions should contain the exact command and environment needed to run to647

reproduce the results. See the NeurIPS code and data submission guidelines (https:648

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.649

• The authors should provide instructions on data access and preparation, including how650

to access the raw data, preprocessed data, intermediate data, and generated data, etc.651

• The authors should provide scripts to reproduce all experimental results for the new652

proposed method and baselines. If only a subset of experiments are reproducible, they653

should state which ones are omitted from the script and why.654

• At submission time, to preserve anonymity, the authors should release anonymized655

versions (if applicable).656

• Providing as much information as possible in supplemental material (appended to the657

paper) is recommended, but including URLs to data and code is permitted.658

6. Experimental Setting/Details659

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-660

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the661

results?662

Answer: [Yes]663

Justification: [TODO]664
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Justification: [TODO]675

Guidelines:676

• The answer NA means that the paper does not include experiments.677
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• The method for calculating the error bars should be explained (closed form formula,684
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• The assumptions made should be given (e.g., Normally distributed errors).686

• It should be clear whether the error bar is the standard deviation or the standard error687

of the mean.688
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Answer:[Yes]726
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