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ABSTRACT

Whether deep neural networks (DNNs) memorize the training data is a funda-
mental open question in understanding deep learning. A direct way to verify the
memorization of DNNs is to reconstruct training data from DNNs’ parameters.
Since parameters are gradually determined by data throughout training, charac-
terizing training dynamics is important for reconstruction. Pioneering works rely
on the linear training dynamics of shallow NNs with large widths, but cannot
be extended to more practical DNNs which have non-linear dynamics. We pro-
pose Simulation of training Dynamics (SimuDy) to reconstruct training data from
DNNs. Specifically, we simulate the training dynamics by training the model
from the initial parameters with a dummy dataset, then optimize this dummy
dataset so that the simulated dynamics reach the same final parameters as the
true dynamics. By incorporating dummy parameters in the simulated dynamics,
SimuDy effectively describes non-linear training dynamics. Experiments demon-
strate that SimuDy significantly outperforms previous approaches when handling
non-linear training dynamics, and for the first time, most training samples can
be reconstructed from a trained ResNet’s parameters. Our code is available at
https://github.com/BlueBlood6/SimuDyl

1 INTRODUCTION

Deep neural networks (DNNs) have shown remarkable performance and generalization across var-
ious tasks (Hinton et al., [2012; |Devlin et al.,[2019; Wu et al., [2022), due to their powerful learning
capabilities. An intriguing question is what DNNss have learned or even memorized. This memoriza-
tion is closely related to the generalization capability (Feldman, 2020; Feldman & Zhang} [2020)), and
also raises concerns about the potential leakage of private information within training data (Shokri
et al.l [2017; |Carlini et al.| [2019; 2021}, 12023)).

During training, DNNs’ parameters are progressively adjusted by the training data. Roughly, when
the learning algorithm and the initial parameters are given, the final parameters are determined
by the training data. This mapping indicates that the training data may be memorized within the
DNNSs’ parameters. A direct way to support this guess is to reconstruct the training dataset from
parameters. However, this reconstruction task is challenging due to the complexity of the training
process, which involves disentangling parameter changes at each step and decoupling each sample’s
contribution from the cumulative sum of gradients. Gradient inversion attack (Zhu et al., [2019)
could recover data from the gradient of a single step on dozens of images. In fact, the two tasks
are related but essentially different. Reconstructing training data from parameters are more difficult
and necessitates a deep understanding of training dynamics, as it involves recovering data from the
cumulative effects of multiple training steps, rather than simply considering a single step’s gradient.
In other words, gradient inversion attack is the simplest case of reconstruction from parameters when
the training process contains only one step.

To reconstruct training data from parameters, we need to deeply study the training dynamics. The
simplest training dynamics are linear, meaning the directions of gradients for each data point remain
consistent, as seen in cases for shallow NNs with infinite widths. For an approximately linear sce-
nario: training a three-layer multilayer perceptron (MLP) model with 1000 neurons in each layer,
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Figure 1: Reconstructed training samples from a multi-class ResNet using our SimuDy(rows 1, 3),
and the corresponding nearest neighbors from the training set (rows 2, 4).

pioneer a reconstruction method based on the Karush-Kuhn-Tucker (KKT) con-
ditions of a certain max-margin problem (Lyu & Lil, 2020} Ji & Telgarskyl [2020) where gradient
flow converges in direction. This method successfully reconstructed about 50 out of 500 CIFAR-10
training images from the MLP’s final parameters. Similarly, Loo et al.|(2024) reconstruct the train-
ing data from NNs in the neural tangent kernel (NTK) (Jacot et al., 2018) regime, where the training
dynamics are also linear.

However, the reconstruction should not be limited to linear training dynamics, which are rarely
encountered in real-world applications. The key to dataset reconstruction is accurately describing the
gradients at each step since parameters and data are linked via these gradients. In linear dynamics,
the gradient directions remain consistent, so the training dynamics can be effectively characterized
by even only the final parameters. While for non-linear dynamics, (2024) make a step
by considering the linear combination of gradients from initial parameters and final parameters,
achieving better reconstructions from MLPs than [Haim et al.| (2022)). Nevertheless, using the sum
of gradients from initial and final static parameters to characterize dynamics, is still too simple for
popular and practical cases, i.e., DNNs such as ResNet trained with mini-batch
Stochastic Gradient Descent (SGD) 2010).

In this paper, we propose a novel framework called “Simulation of training Dynamics” (SimuDy) to
reconstruct the training data from parameters of trained DNNs. As the name suggested, our method
constructs the simulated training dynamics by training the model from the initial parameters with a
dummy dataset initialized with random Gaussian noise. Then, we optimize the dummy dataset to
make the simulated training dynamics converge to the same final parameters as the original training
dynamics, with the dummy dataset progressively refined towards the real dataset. The detailed
characterization of the non-linear training dynamics aids in data reconstruction from DNNs. Our
results demonstrate that SimuDy can reconstruct training data with high quality from a ResNet
trained using mini-batch SGD, where previous methods have failed. And an example using SimuDy
is shown in Fig. [I] For the first time, a large portion of the training data can be reconstructed from
a trained ResNet’s parameters. Also, the reconstruction performance remains excellent even with
unknown hyper-parameters of model training. Our contributions could be summarized as follows:

* We propose SimuDy to reconstruct training data from parameters of trained DNNs, which
are more practical than MLPs in realistic applications.

* Our method illustrates the importance of characterizing training dynamics for dataset re-
construction, which would provide insights for memorization of DNNs.
* Extensive experiments show that SimuDy outperforms previous methods when dealing

with non-linear training dynamics. Additionally, we demonstrate our method’s effective-
ness and robustness with unknown hyper-parameter settings of model training.

2 RELATED WORK

Dataset Reconstruction. The pioneering work (Haim et al., 2022) has shown that training data
can be reconstructed from trained homogeneous neural network parameters. They note that ho-
mogeneous neural networks converge in direction to the solution of a max-margin problem (Lyul
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& Li 2020; Ji & Telgarskyl [2020). By optimizing dummy images and dual parameters to match
Karush—Kuhn-Tucker (KKT) conditions of the max-margin problem, training data is reconstructed.
Then, |Buzaglo et al.| (2024) extend the reconstruction scheme of |Haim et al.| (2022) to a multi-class
setting and MLPs with a convolutional layer in the front. |Loo et al.|(2024) provably reconstruct the
entire training set for networks in the neural tangent kernel (NTK) (Jacot et al., [2018]) regime where
the directions of gradients for each data point does not change during training, i.e., the training dy-
namics are linear. Toward non-linear dynamics, they take a step to linearly combine the initial and
final gradients of data to represent parameter changes and get better reconstructions. Aforemen-
tioned methods mainly focus on shallow and wide MLPs where the training dynamics are linear.
Besides MLPs, we can reconstruct training data from practical DNNs with non-linear dynamics.

Gradient Inversion Attack. Gradient inversion attack aims to reconstruct training data from the
batch gradient and the model’s parameters. DLG (Zhu et al., 2019) is the pioneering optimization-
based method that minimizes the distance between the ground-truth gradients and the dummy gradi-
ents of a batch of dummy samples. iDLG (Zhao et al., 2020) derives the ground-truth label from the
gradient of the fully connected layer to improve the attack. |Geiping et al.| (2020) change previous
Euclidean distance loss to cosine similarity loss and add total variation (Rudin et al., [1992) as the
image prior to reconstruct higher resolution images from ResNet (He et al.||2016). With strong batch
normalization statistics, |Yin et al.|(2021)) propose group consistency regularization to recover partial
images at a larger batch size even up to 48. Recently, the following works (Jeon et al.| 2021 |Li et al.,
2022; |[Fang et al.l [2023; [Zhang et al., [2023)) leverage pre-trained generative models to better utilize
image prior and improve the quality of reconstructed images. Dataset reconstruction is related to
the gradient inversion attack, as both aim to recover images from different forms of gradients. How-
ever, dataset reconstruction presents a greater challenge because the gradients come from a dynamic
process, whereas gradient inversion attack only considers a single step’s gradient.

3  SIMULATING TRAINING DYNAMICS

Task definition. Given a neural network fg with the initial parameters 8, and the final parameters
0 for multi-class image classification tasks, dataset reconstruction aims to invert the parameters to
the training dataset D. Considering the learning algorithm A, which is characterized by the hyper-
parameters H, the training process maps D to 0;: 87 = Ay (D;6). In this point of view, the
dataset reconstruction is an inverse problem D = A; (6;60).

Revisiting training. The inverse problem D = Ay (6, 6,) is over-determined in the context of
deep learning because a DNN is usually over-parameterized, i.e., the dimension of 6 is significantly
higher than that of the entire dataset, providing sufficient supervision to reconstruct the training data.
However, the data information is embedded into the parameters by iteratively updating the network
parameters in the form of gradients. Therefore, to solve the inverse problem, we need to investigate
the training process, which can be described by the following differential equation,

de(t)

T = —vgﬁ(D,H(t)), (1)

with the constraints 8(0) = 6y and 0(T') = 6. In practical scenarios, this continuous process
is discretized, enabling the parameter updates to be performed in a series of discrete steps, which
makes it feasible to implement. Specifically, one of the most representative methods is SGD, where
parameters are updated iteratively by moving against the gradient of the loss function, calculated on
mini-batches of the data:
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where T is the total number of training epochs, N is the total number of batches, ¢ is the loss

function, By ; is the j-th batch of the k-th epoch, | By, ;| is the batch size of By ;, 6y ; is the model
parameters of k-th epoch after j-th batch, (, y) is a data point in By, ;, and 7 is the learning rate.

Linear training dynamics. The simplest case of dataset reconstruction is that the training dynamics
are linear or approximately linear. In this case, the direction of gradients Vg keeps almost the same
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Algorithm 1 Reconstructing training data using SimuDy.

Input: Network function fy, initial parameters 6, final parameters @y, dataset size n, training
learning rate 7, training steps 7', batch size |B|, dissimilarity function d(-, -), optimizer Opt im;
Output: Reconstructed images via SimuDy;

1: Initialize dummy images & with random noise
2: Assign labels to images randomly, ensuring an equal number of labels for each class
3: Randomly divide the dataset into batches of size |B|, and the number of batches is N
4: 91)1 ) > Begin with the initial parameters
5: repeat
6: fork=1toT do > Simulate the training process for 7" epochs
7: for j =1to N do > Perform N updates for each epoch
8: grj = Zi,ge&w ﬁv‘gé(féw (£),9) > Compute the gradient for each update
9: ék’j+1 +— é;w- —n-grad-clip(gs,;) > Clip gradients and update parameters
10: end for
11: 0k+1,1 — 0k,N+1
12:  end for
13: 0y < 07 Nt > Get simulated final parameters
14: Lrecon = d(07 — 69, ] r—600) +a- Lry(zx) > Compute reconstruction loss
15: &+ Optim(&,0Lrecon/O0T) > Update dummy images

16: until the reconstruction loss converges.

throughout the training process. Then, by leveraging the direction invariance, Eq.[2can be written as

0y — 01 = 212‘1 Xi - Vol (fo, (xi),yi), where \; is the scaling factor addressing the contribution
of x;. Thus, the linear combination of gradients computed from the initial or final model parameters
can effectively characterize training dynamics. In other words, with linear training dynamics, the
dataset reconstruction could be reduced to a problem of extracting images from the gradients of a
single step on a batch of data.

Simulation of training dynamics. However, the linear training dynamics exist only for some ideal
scenarios such as training a shallow MLP with sufficient width (Haim et al.| [2022). In practice,
the training dynamics are typically non-linear. To reconstruct the dataset from practical DNNs,
we should delve into the whole training dynamics traversing from initial parameters 6y to final
parameters 6, rather than solely relying on gradients of these two sets of parameters to characterize
the entire training process. Nevertheless, such training dynamics are usually inaccessible, which
makes reconstruction for non-linear dynamics seemingly impossible. In this paper, we propose
“Simulation of training Dynamics” (SimuDy) to reconstruct training data from practical DNNs with
non-linear dynamics, i.e., we will construct new training dynamics and optimize the dummy dataset
from noise to original data such that the simulated training dynamics converge to the real dynamics.
The pseudocode of our proposed SimuDy is specified in Alg. [l SimuDy introduces additional
simulated checkpoints in the training process, which would provide more accurate guidance than
only using the initial and final parameters. At a high level, our method can be presented as follows:

ﬁ(nel% d(An(X;60), Au(D;6y)), @)

where F denotes the set of possible images, and d(, -) is the non-negative dissimilarity function.

Loss design. Minimizing the dissimilarity between simulated final parameters 6 + and real final pa-
rameters O is to supervise the simulated dynamics to be similar to the underlying dynamics. We
choose the cosine similarity loss following (Geiping et al. (2020), as the high-dimensional direc-
tion of the gradient can carry significant information (Charpiat et al., [2019; [Koh & Liang [2017).
Moreover, the value of cosine similarity loss is bounded in [—1, 1], simplifying hyper-parameter
adjustment for reconstruction. An alternative type of loss could be the sum of element-wise dis-
tances, e.g., the Euclidean distance. And we show that cosine similarity loss outperforms Euclidean
distance loss for data reconstruction in Appendix

Incorporating prior knowledge, represented by X' € F abstractly, can further enhance reconstruction
quality. For natural image classification problems, total variation (TV) is a widely-used term to
describe the natural image manifold, which minimizes the variations between adjacent pixels to
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promote image smoothness. Thus, we apply TV loss with « as the scaling factor to make the
dummy images look more natural. Overall, the reconstruction loss is given as the following:

(67 — 60,07 — 6o)
107 — 00l||0f — 6ol

Erecon(w7éf;0050f) = - +aTV(w) (5)

We test the designed loss in the reconstruction from a Given the correct batch size = 20

ResNet-18 trained on 60 images. The model is trained T 033
with a batch size of 20 and a learning rate of 7e-3. Fig. ® Reconstruction Quality 4 to30
plots the relationship between the final loss value (in blue) ~  “**|**e -\‘.\‘ oo ' o
and reconstruction quality (in red) measured by average  § AN O'zsg
Structure Similarity Index Measure (SSIM) (Wang et al, &% L 020=
2004). In this figure, we fix the batch size but change the 2 P S , lsbﬁ
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Gradient clipping. We initialize dummy images with learning rate

Gaussian noise. In the early stages of optimization, fully
noisy images could cause gradient explosion. We apply
gradient clipping in simulating dynamics to effectively
prevent this issue. Additionally, even in the absence of gradient explosion, gradient clipping also
simplifies image optimization. Since the training gradients of natural images generally have rela-
tively small norms than noisy images, gradient clipping serves as a form of prior knowledge that
guides the training process. Thus, this strategic use of gradient clipping enhances both the stability
and efficiency of optimization for dataset reconstruction.

Figure 2: The relationship between final
loss value and reconstruction quality.

Hyper-parameter settings. The hyper-parameters H, including the batch-size |B| and the learning
rate 7, characterize the learning algorithm and thus partially influence the training process. Correct
knowledge of H facilitates reconstruction, while unknown H make reconstruction more complex.
In more practical cases, we need to design a strategy to set H for better reconstruction.

Fig. [2| preliminarily shows that when the batch size |B] is fixed, one can do grid search for a good
learning rate 1 by comparing the final loss. And the yellow suitable region indicates that using
learning rates within this area for simulating training can achieve good reconstruction. Here, we
change the |B| and plot SSIM values for different 7 in Fig. [3] Comparisons among the three figures
show that the peak SSIM values across different |B| are similar. In other words, for different |B|,
as long as a suitable 7 is paired, the quality is comparable to that obtained with the original H.
Intuitively, when |B| decreases and the corresponding 7 increases, similar final parameters can be
obtained for the same dataset, and vice versa. Using grid search for » suitable with a given |B|, we
can successfully reconstruct training data with unknown H.
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Figure 3: The relationship between the initial loss at 50 steps and the final reconstruction quality for
different given batch sizes.

However, the reconstruction loss might take much time to converge. We experimentally explore how
early decrease in loss within the first few dozen steps relates to the final reconstruction quality. As
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shown in Fig.[3] lower value of loss at 50 steps (in blue) indicates better reconstruction performance
(in red). In summary, we preset |5 and tune 7 by grid search based on the first dozens of steps’ loss.
Thus, suitable H for simulating the training dynamics can be identified effectively and efficiently.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Our task is to reconstruct training data from parameters of DNNs. The experimental pipeline is
as follows. First, we use the dataset D to train a model from the initial parameters @ to the final
parameters 8. Then, SimuDy is applied to reconstruct training data from the saved parameters 6
and ;. All training and reconstructing run on one RTX 4090 GPU. We provide the code in the
supplementary materials.

DNNs’ Parameters. We mainly consider the ResNet-18 model and will reconstruct data from its
parameters. Following the setting of (2024), we reconstruct dataset from the initial and
final model parameters. Consequently, We focus on the fine-tuning scheme, which is practical and
popular in current applications. We train the model on a subset of CIFAR-10
from pre-trained initial parameters 6 to the final parameters 8. The class distribution is
balanced and the training algorithm is mini-batch gradient descent with shuffle on.

Reconstructing. Following the reconstructing protocol of previous works
2024), the size of the original training set and the resolution of images are known for the
reconstruction. To quantitatively evaluate the quality of the reconstructed images, we use SSIM
(Wang et al},[2004) to measure the similarity between the reconstructed and original data, and pair
them based on the SSIM scores. The average SSIM score is shown below the reconstructions, and
the reconstructions are presented in descending order of SSIM scores.

4.2 RECONSTRUCTION PERFORMANCE

We first validate the effectiveness of our method on the reconstruction from MLPs, which are the

primary focus of previous approaches (Haim et al., 2022} [Buzaglo et al., 2024} [Loo et all, 2024).

The comparison is conducted to highlight the superiority of our approach. Since pre-training is
meaningless for MLPs, we train MLPs, which comprise three fully-connected layers with dimen-
sions d-1000-1000-1 (d is the dimension of the input), from scratch with SGD. As shown in Fig. [4]
SimuDy gets an average 0.3374 SSIM score for reconstructions from the MLP trained on 100 im-
ages, outperforming Loo et al.'s method significantly.

(a) Reconstructions from MLP tralned on 100 images using MS SSIM = 0.1384
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(b) Reconstructions from MLP trained on 100 images using SimuDy, SSIM = 0.3374

Figure 4: Top 40 images reconstructed from MLP trained on 100 images using [Loo et al[s and
SimuDy (rows 1, 3) respectively, and corresponding nearest neighbors from the dataset (rows 2, 4).
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The above shows that for MLPs, SimuDy has better reconstruction performance than those methods
which are based on linear training dynamics. For more practical DNNs, the large number of parame-
ters and complex structures, including convolutional layers and skip connections, make the training
dynamics much more non-linear than MLPs. In this case, [Loo et al[s method only gets 0.0774
and SimuDy gets 0.1982 when reconstructing training data from ResNet trained on 50 images. The
advantage on visual effect is also significant as shown in Fig.[5] And for a more comprehensive
comparison against baselines, the reconstruction results of [Buzaglo et al.s method are presented in

Appendix
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(b) Reconstructions from ResNet trained on 50 images using SimuDy, SSIM = 0.1982

Figure 5: Top 40 images reconstructed from ResNet trained on 50 images using [Loo et als and
SimuDy (rows 1, 3) respectively, and corresponding nearest neighbors from the dataset (rows 2, 4).

Intuitively, as the training dataset size increases, the dataset reconstruction becomes more challeng-
ing, thus resulting in a decline in the reconstruction quality. For the reconstruction of 20 images
shown in Fig.[T]and 50 images shown in Fig.[5] SimuDy can reconstruct nearly all data with high
quality. And for 120 images shown in Fig.[6] SimuDy can also reconstruct about even 80 images.
Moreover, as the size of dataset increases, the training dynamics become more non-linear, leading
to a rapid decline in the reconstructing performance of |Buzaglo et al./s and [Loo et al.]s method,
which even fails when the dataset size reaches 120. The qualitative reconstruction results across
variable-size datasets using different methods are presented in Appendix [C.8]

e
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Figure 6: Top 80 images reconstructed from ResNet trained on 120 images using SimuDy (rows 1,
3,5, 7), and their corresponding nearest-neighbors from the training dataset (rows 2, 4, 6, 8). The
average SSIM score is 0.1196.
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4.3 RECONSTRUCTIONS WITH UNKNOWN HYPER-PARAMETERS

In the above experiments, we assume that the batch size and the learning rate of the training process
are known, which helps to describe the relationship between parameters and data. For more practical
use, we design a strategy to identify a suitable learning rate for the given batch size which is specified
in Section [3] Here, we report the reconstruction results from ResNet trained on 60 images with
different training hyper-parameter settings in Fig.[7] from which one can observe that even the guess
on batch-size is not accurate, the performance keeps good.

!ﬂ...ﬂ
(5

Figure 7: Reconstructions from ResNet trained on 60 images with batch size |5| = 20. Different
guesses of the batch size yield similar and good performance: Rows 1 and 5 are the images recon-
structed by setting |B| = 20; rows 2 and 6 are by setting |B| = 32; rows 3 and 7 are by setting
|B| = 12, and rows 4 and 8 are the original training samples.

4.4 INITIALIZATION OF DUMMY IMAGES

Different initializations of dummy images would influence the reconstruction quality. In the above
experiments, we use random Gaussian noise as the initialization. Another seemingly reasonable
choice is to use other natural images. Fig. [8]illustrates the reconstruction process from the two dif-
ferent initialization. One can see that although the main object can reconstructed from natural image
initialization, the background seems be seriously influenced by the initialization. For example, the
background of the reconstructed cat (row 2) is more brighter since the initial image is a white dog.
The reason may be the fact that a trained classification model mainly focuses on the main object,
and changes in the background minimally affect the gradients, thus the parameter changes carry less
information of backgrounds than that of main body.

L
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Steps 0 1000 2000 5000 7500 12000 18000 24000 30000 Truth

Figure 8: The reconstruction process of different initializations. The last column shows the ground
truth, while in the other columns the top 2 images are intervals initialized from natural images, and
the bottom 2 images from random noise.
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4.5 RECONSTRUCTIONS OF DUMMY DATASETS OF DIFFERENT SIZES

In previous works (Haim et al.| 2022} [Buzaglo et al., 2024} [Loo et al, 2024), the size of training
dataset is necessitated for effective dataset reconstruction. In this section, We evaluate the effective-

ness of our method without known original dataset size.

Given parameters of the ResNet trained on 40 images, we construct dummy datasets of different
sizes for reconstructions. When the size of dummy dataset is 20, smaller than that of the original
datset, the cosine similarity loss of SimuDy fluctuates around 0.2 while good reconstructions always
have losses below 0.1. This suggests that no dataset with merely 20 samples can guide the model to
traverse from 6y to 8. The reconstructions are shown in the left of Fig.[9] Although these images
appear unconventional, they still contain clues of the original data. As shown in the right part of
Fig.[9] the reconstructed image seems like the fusion of two frog images from the original dataset.

Figure 9: Reconstructions from ResNet trained on 40 images using a dummy dataset of size 20.

With a larger dummy dataset of size 60, the loss value can be refined to about 0.08, indicating a
well match of training dynamics. The images from the original dataset are paired with their nearest
neighbors from the dummy dataset based on the SSIM scores, leaving remaining images in the
dummy dataset unmatched. As shown in Fig.[T0(a), we successfully reconstruct the original dataset
of size 40 using a dummy dataset of size 60. And the unmatched images are shown in Fig. [I0[b),
appearing also unconventional but different from those in Fig. [0 as there are few clues of original
data in unmatched images.

The contribution of each data point from the dummy dataset to the parameter changes is calculated
by the norm of overall gradients throughout the training dynamics. We observe that the matched
data’s average norm of total gradients is 1.5458, ranging from 1.1204 to 1.9478. In contrast, for
unmatched data, the average norm is only 0.5466, with extremes of 0.2172 to 0.8438. These findings
validate our approach’s ability to reconstruct dataset with a larger size setting and transform extra
dummy images from random noise to insignificant images which have relatively small gradients
during training.

o < SEBTRILL S " >R
(a) Top 40 images from the dummy dataset of size 60, SSIM = 0.2295

(b) Bottom 20 images from the dummy dataset of size 60

Figure 10: Reconstructions from ResNet trained on 40 images using a dummy dataset of size 60.

With a smaller dataset size, our approach tries to amalgamate multiple images’ information into
a single image, which compromises the quality of recovery. However, when handling unknown
dataset size, we can increase the size of dummy dataset as SimuDy can reconstruct original dataset
with high quality while optimizing extra dummy images into insignificant images.
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5 CONCLUSION, LIMITATION, AND FUTURE WORK

In this work, we propose SimuDy to reconstruct training data from the parameters of DNNs. This
reconstruction task may open up possibilities to the study on the memorization of models which is
quite challenging. Previous works are restricted to simple NNs with linear training dynamics, while
our method can be used for ResNet, towards more practical and meaningful reconstructing. The core
progress is that SimuDy simulates the training dynamics which are crucial for reconstructing training
data, since parameters are adjusted iteratively by data during training. Successful reconstructions
illustrate the importance of characterizing training dynamics for extracting data from parameters,
which provides insights for memorization of DNNs and helps better understand deep learning.

Our proposed method, SimuDy, successfully reconstructs training data from parameters of DNNZs,
though it does not completely solve dataset reconstruction. We acknowledge the limitations of our
approach and encourage further research.

One primary limitation is that our method’s performance declines as the dataset size increases, due
to the increased uncertainty in the optimization problem of decoupling gradients of more data. This
highlights the need for more effective solutions to more complex dataset reconstruction optimiza-
tion challenges. Additionally, the simulation of training dynamics necessitates the preservation of
the entire model training computation graph. Thus our method is restricted to the GPU memory
when dealing with large datasets. Future efforts should focus on characterizing training dynamics
more efficiently, thus minimizing computational resource demands, such as by leveraging the low-
dimensional nature of the model training process. Last but not least, although our method could
reconstruct about only 100 images from parameters, this is sufficient to show that indeed there is
memorization in DNNs, providing a promising tool for investigating deep learning memory. We
hope our work will illuminate deep learning interpretability and stimulate further exploration into
the relationship between memorization and generalization of DNNs on larger datasets.
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APPENDIX

A TRAINING DYNAMICS LINEARITY

Table 1: Comparison of training dynamics linearity metrics (My;,,) for 2-layer MLP with varying
widths and ResNet-18, all trained on 100 CIFAR-10 images with a fixed learning rate of 0.01 and
batch size 100. A higher M;, indicates a more linear training dynamics.

Model | Width My (1)

200 0.9134
500 0.9165
MLP 1000  0.9306
2000  0.9396
4000  0.9535

ResNet-18 |/ 0.5988

To measure the linearity of training dynamics, we calculate the cosine similarity between gradient
pairs for m samples across different training epochs in dataset D:

2 1 - (Gitrs Gista)
Miin = Em Z Z TP T— (6)

PR N | e

where g; ; represents the gradient of the i-th sample at ¢-th epoch. And My;, lies within [—1,1].
A value of 1 indicates that the gradients across different epochs are perfectly aligned, which is
characteristic of a completely linear network.

As illustrated in Tab. [I] the linearity of MLP increases as network width expands, which aligns
with the theoretical predictions of neural tangent kernel (NTK) 2018) that infinitely
wide MLP tends to a linear network. In contrast, ResNet-18 exhibits significantly lower linearity in
training, due to its deeper and more complex structure.

B Loss CHOICE

We use Euclidean distance loss to replace cosine similarity loss for reconstructions of 20 images.
Due to the large variations in Euclidean distance loss during optimization, it requires careful learning
rate adjustments, and the final reconstruction quality is low compared to cosine similarity loss. The
qualitative results of Euclidean distance loss is shown in Fig. [IT] with an average SSIM score of
0.2437, while results of cosine similarity loss shown in Fig. [T]get 0.3140 SSIM score.
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Figure 11: Reconstructed training samples from a multi-class ResNet (rows 1, 3) using Euclidean
distance loss, and the corresponding nearest-neighbors from the training dataset (rows 2, 4).
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C ADDITIONAL EXPERIMENTS

C.1 RECONSTRUCTIONS FOR LARGER IMAGES

While previous experiments are conducted on CIFAR-10 with a resolution of 32 x 32, SimuDy can
be scaled to higher resolutions. As shown in Fig. the reconstruction results on the 64 x 64 Tiny
ImageNet demonstrate the potential of our approach at higher resolutions.

Figure 12: Reconstructions from ResNet-18 trained on Tiny ImageNet (rows 1, 3) using SimuDy,
and the corresponding nearest-neighbors from the training dataset (rows 2, 4).

C.2 RECONSTRUCTIONS ON OTHER DATASET AND ARCHITECTURE

To further demonstrate that SimuDy maintains its effectiveness across various datasets and diverse
network architectures, we extend our experiments to SVHN with ResNet-18 and CIFAR-10 with
ResNet-50. The reconstruction results are presented in Fig. [I3] and Fig. [T4] respectively. Addition-
ally, we conduct experiments on ImageNet with ViT and an NLP task, as shown in Appendix
and Appendix In all these experiments, SimuDy consistently achieves strong performance,
highlighting its robustness across different data distribution and network architectures.
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Figure 13: Reconstructions from ResNet-18 using SimuDy on SVHN, SSIM = 0.2083.
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Figure 14: Reconstructions from ResNet-50 using SimuDy on CIFAR-10, SSIM = 0.2125.

14



Published as a conference paper at ICLR 2025

C.3 AFFECTION OF TV Loss

We test how the coefficient of TV loss affects the quality by discretely selecting the coefficient on
reconstructing 20 images from a trained ResNet-18. We set the coefficients to 0, Se-4, 2e-3, and
Se-2, respectively. When the coefficient is 2e-3, the average SSIM score can reach 0.3140, with
qualitative results shown in Fig.[T] And other quantitative and qualitative reconstruction results are

shown in Fig. [I3] Fig.[I6]and Fig.[I7}
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Figure 15: Reconstructions from ResNet with TV loss coefficient of 0, SSIM = 0.1835.
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Figure 16: Reconstructions from ResNet with TV loss coefficient of Se-4, SSIM = 0.2555.
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Figure 17: Reconstructions from ResNet with TV loss coefficient of Se-2, SSIM = 0.2255.

The coefficient of TV loss has affects on the final reconstruction quality. Incorporating TV loss will
help achieve better compared to not using it. Also, an appropriate coefficient is important, as both
overly large and small values can degrade the reconstruction quality. To be noticed, an excessively
large coefficient can cause reconstructed images to become blurry, and may even result in color
shifts compared to original training images, as shown in Fig.[T7]

C.4 COMPARISON WITH|BUZAGLO ET AL.'S METHOD

To achieve a comprehensive comparison against baseline methods, we test the performance of
[glo et al.s method on reconstructing images from parameters of models. We first present the quan-
titative and qualitative reconstructions from MLPs trained on 100 images in Fig. [T§] serving as a
comparative counterpart to Fig. [
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Figure 18: Top 40 images reconstructed from MLP trained on 100 images using Buzaglo et al.[s,
SSIM = 0.1426.

As illustrated in Fig. [T8] while Buzaglo et al[s method demonstrates the capability to partially
reconstruct training dataset from the parameters of MLPs, it falls short of our SimuDy in terms of

both reconstructing quantity and quality. Subsequently, we demonstrate the performance of
let alJs method when applied to deep neural networks. The reconstruction results from ResNet-
18 trained on 20 images are presented in Fig. [[9] enabling direct comparison with Fig. [T, while
reconstructions from ResNet-18 trained on 50 images are shown in Fig.[20} corresponding to Fig.[3}
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Figure 19: Reconstructions from ResNet using |Buzaglo et al./s method, SSIM = 0.0476.
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Figure 20: Top 40 images reconstructed from ResNet trained on 50 images using Buzaglo et al.[s,
SSIM = 0.0297

When applied to ResNet-18 with non-linear training dynamics, [Buzaglo et al.| (2024) use only gra-
dients of final models to characterize the whole dynamics, which is inadequate and degrades re-
construction quality. Also, their method requires very small initial parameters or the use of weight
decay in training, and the absence of these factors could further degrade the performance.

C.5 RECONSTRUCTIONS OF BINARY CLASSIFICATION SETTING

In this section, we manage to reconstruct training dataset from models trained for the binary classifi-
cation task. Following the pioneering work 2022), we use CIFAR-10 dataset and set the
labels to vehicles vs. animals. Also, we make sure that the class distribution in the training and test
sets is balanced. For a comprehensive comparison with baselines, we use s method,
let al.’'s method and SimuDy to reconstruct dataset from a MLP trained on 20 images, with quantita-
tive and qualitative results shown in Fig.[2Ta] Fig.2Tband Fig. respectively. Both quantitative
and qualitative results show that SimuDy can well applied to binary classification setting.
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(c) Reconstructions in binary classification setting using SimuDy, SSIM = 0.5378

Figure 21: Reconstructions from a trained binary MLP trained on 20 images using different methods.

C.6 RECONSTRUCTIONS FOR VISION TRANSFORMERS

To evaluate the generalizability of SimuDy, we conduct experiments on Vision Transformers (ViTs)
(Dosovitskiyl, [2021), which are larger and have different architectures compared to ResNet. For the
original training dataset, we choose ImageNet with a resolution of 224 x 224. Inspired by APRIL
2022) , we noticed that the input z of the self-attention module is important for reconstruction
but is invisible from attacker’s side. However, for a transformer-based model with learnable position
embedding E,,s, the derivative of loss w.r.t. E,,s can be given by:

o ﬁ
O0FEpos T 9z

Based on this, we update the reconstruction loss for ViTs as following:

R R 0 -0 Orp.. —6op,,.
Lvir(z,04;00,04) = Lrccon(x,05;00,0;) — 5 (61.50. — 0.5y 61,5, LR

~ b)
10,5,0. — 00,E,,.107,5,,. — 00,5,,. |

where 6o g, represents the initial parameters of the position embedding module, and 8 g, refers
to the final parameters of the position embedding module after training. The second term of the loss
function effectively helps in ensuring the correct positioning of the patches.

Both training and reconstructing are conducted on one RTX 4090 GPU. We successfully reconstruct
10 ImageNet images from the parameters of a trained ViT, with the qualitative reconstruction results
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shown in Fig. The successful reconstructions validate the scalability of SimuDy to larger images
and transformer architectures.

Figure 22: Reconstructions of 10 ImageNet images from a trained ViT.

C.7 RECONSTRUCTIONS IN NLP REGIME

In this section, we extend dataset reconstruction from image classification task to the natural lan-
guage processing (NLP) regime. We choose TinyBERT as model and CoLA
(Warstadt et al.} 2018)) as dataset, with sentence classification as the training task. Both training and
reconstructing run on one RTX 4090 GPU. Following the state-of-the-art gradient inversion attack
method in NLP (Balunovic et al.,[2022)), which recovers a size-of-4 batch of data from the gradient,
we apply SimuDy to simulate the training dynamics and successfully reconstruct sentence data from
parameters of trained TinyBERT parameters. The qualitative reconstructions are shown in Tab. 2|

C.8 QUALITATIVE RESULTS FOR ORIGINAL DATASETS OF VARIOUS SIZES

In this section, we vary the size of original training dataset and show the qualitative and quantitative
results placed side by side for each baseline method and our proposed SimuDy, as illustrated from
Fig.[23]to Fig. Also, we report GPU memory usage and reconstruction time of SimuDy on one
RTX 4090 GPU for CIFAR-10 datasets with different sizes in Tab.
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Original Initial Reconstructed

[CLS] who do you think that | [CLS]quistanger  fixingimeter | [CLS] who do you think
will question seamus first? | cpc forbidden nehru tread termi- | will do first question sea-
[SEP] nology [SEP] mus? [SEP]

[CLS] the boy ran. [SEP] [CLS] [PAD] [PAD] [SEP] | [CLS] the boy ran. [SEP]
[PAD] foo nightmares [PAD]
[PAD] 102 drawer [PAD]

[CLS] i wonder who bill saw | [CLS] essays carltonomy crest- | [CLS] i saw mary won-
and liked mary. [SEP] edhiskhandnac [SEP] vita gail | der who liked bill anything.
[PAD] [SEP]

[CLS] harriet alternated folk | [CLS] donetsk dominance gross- | [CLS] harriet alternated al-
songs and pop songs to- | edlok ass somerset registrar | ternate folk and pop songs

gether. [SEP] rochdale ins cher [SEP] together. [SEP]
[CLS] they have no old. | [CLS] [PAD]Joric [PAD] re- | [CLS] they have no old.
[SEP] vealing [PAD] destroyer [PAD] | [SEP]

louisiana [PAD] [SEP] [PAD]

[CLS] which goddess helped | [CLS] [PAD] [PAD] pathways | [CLS] goddess which helped
us? [SEP] [PAD] [PAD] macon [PAD]emy | us? [SEP]

theresa [PAD] [PAD] [PAD]rod
[PAD] [SEP] [PAD] [PAD]

[CLS] who has seen my | [CLS][PAD][PAD] 2011 [PAD] | [CLS] who seenkel
snorkel? [SEP] [SEP] articulated caslink [PAD] | mynorkel? [SEP]

[PAD] implementskins [PAD]
via [PAD] [PAD]

[CLS] that the king or queen | [CLS] sorbonne citationsimeter | [CLS] the queen or a require-
be present is a requirement | tsar citizens state accumulate | ment on all that present is the
on all royal weddings. [SEP] | jared sorbonne racecourse por- | royal weddings. [SEP]

traying perkins differ deco [SEP]

[CLS] i saw these dancers | [CLS] feminism diagnosticnell | [CLS] i saw these dancers
and those musicians smok- | andover delicately strikingcade | and those musicians smok-

ing something. [SEP] directorxing vfl [SEP] ing something. [SEP]
[CLS] andy promised that | [CLS] [PAD] laurent unconstitu- | [CLS] we promised that
we would go. [SEP] tionalhony [PAD] demi duncan | andy would go. [SEP]

kristin [SEP] [PAD]

[CLS] the cat tries to be out | [CLS] [PAD] unless denoted lei- | [CLS] the be the cat tries out

of the bag. [SEP] den harm answering [SEPJides | of the bag. [SEP]
[PAD]ible  hoffman [PAD]
[PAD] plata [PAD]

[CLS] we talked about that | [CLS] siena tomatoes shakeettes | [CLS] we talked about that
he had worked at the white | sachsaseacy mosesasco flinders | he had worked at the white

house. [SEP] [SEP] house. [SEP]
[CLS] jessica sprayed paint | [CLS] [PAD] reborn [PAD] zhao | [CLS] jessica spray under
under the table. [SEP] [SEP] leukemia braking vamp | sprayed table paint. [SEP]
[PAD] matchkled [PAD]olar
[PAD]

[CLS] mary noticed john’s | [CLS] onward atoms macro | [CLS] and noticed mary.
excessive appreciation of | undo sweets rounding sparse- | s excessive appreciation of

himself. [SEP] lyde cornerbackomorphic [SEP] | john himself [SEP]
[CLS] kim alienates cats and | [CLS] qui barred posed reverend | [CLS] kim alienates cats and
beat his dog. [SEP] wasn disputetilityphysics rabbis | beat his dog. [SEP]

[SEP] [PAD]

Table 2: Reconstructed samples in NLP regime. The first column contains the original sentences
of the training dataset, the second column contains the initializations of dummy sentences, and the
third column presents the corresponding reconstructed sentences.

19



Published as a conference paper at ICLR 2025

T USRS B RS OB R R B SR

o s @ S0 B Y I e e R T By
SR B AR B S N T S S
- o El By I .

= A ALy
T e T e i e
e ¥ B wEES <l e | a0

Figure 23: Reconstructions from ResNet trained on 60 images using [Buzaglo et al.’s method, SSIM
=0.0285.
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Figure 24: Reconstructions from ResNet trained on 60 images using [Loo et al.s method, SSIM =
0.0423.

iy

R 3. e ]
Iﬂﬂiﬁlﬁﬂﬂﬂ R RIS
W LEI DSl SNl

Figure 25: Reconstructions from ResNet trained on 60 images using SimuDy, SSIM = 0.1998.
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Figure 26: Reconstructions from ResNet trained on 70 images using |[Buzaglo et al.’s method, SSIM
=0.0286.
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Figure 27: Reconstructions from ResNet trained on 70 images using [Loo et al.'s method, SSIM =
0.0424.

-HH-HﬁIﬁIﬁ
Rl = BT

Figure 28: Reconstructions from ResNet trained on 70 images using SimuDy, SSIM = 0.1800.
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Figure 29: Reconstructions from ResNet trained on 80 images using |[Buzaglo et al.’s method, SSIM
=0.0253.
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Figure 30: Reconstructions from ResNet trained on 80 images using [Loo et al.'s method, SSIM =
0.0462.
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Figure 31: Reconstructions from ResNet trained on 80 images using SimuDy, SSIM = 0.2165.
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Figure 32: Reconstructions from ResNet trained on 90 images using |[Buzaglo et al.’s method, SSIM
=0.0249.

Figure 33: Reconstructions from ResNet trained on 90 images using [Loo et al.’s method, SSIM =
0.0442.
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Figure 34: Reconstructions from ResNet trained on 90 images using SimuDy, SSIM = 0.1289.
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Figure 35: Reconstructions from ResNet trained on 100 images using Buzaglo et al.’s method, SSIM
=0.0267.
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Figure 36: Reconstructions from ResNet trained on 100 images using [Loo et al.|s method, SSIM =
0.0476.
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Figure 37: Reconstructions from ResNet trained on 100 images using SimuDy, SSIM = 0.0948.
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Figure 38: Reconstructions from ResNet trained on 120 images using Buzaglo et al.’s method, SSIM
=0.0239.

Figure 39: Reconstructions from ResNet trained on 120 images using [Loo et al.|s method, SSIM =
0.0482.
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Figure 40: Reconstructions from ResNet trained on 120 images using SimuDy, SSIM = 0.1197.

Dataset Size GPU Memory Reconstruction Time
20 4334 MB 1.06 h
30 6852 MB 332h
40 8170 MB 4.67h
50 10518 MB 6.07 h
60 12668 MB 8.46 h
70 14002 MB 11.37h
80 15728 MB 12.77h
90 16814 MB 12.92 h
100 19016 MB 13.70 h
120 22272 MB 15.39 h

Table 3: GPU memory usage and reconstruction time for training CIFAR-10 datasets with different
sizes on one RTX 4090 GPU.

27



	Introduction
	Related Work
	Simulating Training Dynamics
	Experiments
	Experiment Setup
	Reconstruction Performance
	Reconstructions with Unknown Hyper-parameters
	Initialization of Dummy Images
	Reconstructions of Dummy Datasets of Different Sizes

	Conclusion, Limitation, and Future Work
	Training Dynamics Linearity
	Loss Choice
	Additional Experiments
	Reconstructions for Larger Images
	Reconstructions on Other Dataset and Architecture
	Affection of TV Loss
	Comparison with buzaglo2024deconstructing's Method
	Reconstructions of binary classification setting
	Reconstructions for Vision Transformers
	Reconstructions in NLP Regime
	Qualitative Results for Original Datasets of Various Sizes


