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ABSTRACT

Estimation of heterogeneous treatment effects has gathered much attention in
recent years and has been widely adopted in medicine, economics, and marketing.
Previous studies assumed that one of the potential outcomes of interest could
be observed timely and accurately. However, a more practical scenario is that
treatment takes time to produce causal effects on the outcomes. For example, drugs
take time to produce medical utility for patients and users take time to purchase
items after being recommended, and ignoring such delays in feedback can lead
to biased estimates of heterogeneous treatment effects. To address the above
problem, we study the impact of observation time on estimating heterogeneous
treatment effects by further considering the potential response time that potential
outcomes have. We theoretically prove the identifiability results and further propose
a principled learning approach, known as CFR-DF (Counterfactual Regression
with Delayed Feedback), to simultaneously learn potential response times and
potential outcomes of interest. Results on both simulated and real-world datasets
demonstrate the effectiveness of our method.

1 INTRODUCTION

Heterogeneous treatment effects (HTE) estimation using observational data is a fundamental problem
that applies to a wide variety of areas (Alaa & Van Der Schaar, 2017; Alaa et al., 2017; Hannart et al.,
2016; LaLonde, 1986; Shalit et al., 2017). For example, in precision medicine, physicians decide
drug allocation by the treatment effect of the patient on the drug (Jaskowski & Jaroszewicz, 2012). In
online markets, the causal effect of recommending an item on a user’s purchase behavior is used for
personalized recommendations (Schnabel et al., 2016). Unlike using observed outcomes to make
decisions, HTE accounts for variations in both factual outcomes and counterfactual outcomes among
individuals or subgroups. The challenge lies in accurately estimating HTE due to the unobserved
counterfactual outcomes with alternative treatment (Holland, 1986).

Many methods have been proposed to estimate HTE from observational data. For instance, representa-
tion learning-based approaches learn a covariate representation that is independent of the treatment to
overcome the covariate shift between the treatment and control groups (Johansson et al., 2016; Shalit
et al., 2017; Shi et al., 2019; Yao et al., 2018). The tree-based approach generalizes Bayesian inference
and random forest methods for nonparametric estimation (Chipman et al., 2010; Wager & Athey,
2018). The generative model-based approaches use the widely adopted variational autoencoder and
generative adversarial network to generate individual counterfactual outcomes (Louizos et al., 2017;
Yoon et al., 2018). These studies have also been extended to continuous treatment scenarios (Bica
et al., 2020; Nie et al., 2021; Schwab et al., 2018; 2020).

Existing methods require that one of the potential outcomes of interest be observed timely and accurate.
However, interventions on individuals usually do not affect outcomes of interest immediately, and
treatment takes time to produce causal effects on the outcomes. For example, drugs take time to
produce medical utility for patients, with the long-term prognosis as the outcome of interest, which
benefits the treatment decision from the physicians. In online markets, a recommendation algorithm
focuses on whether or not the user will eventually purchase, but users take time to purchase items
after being recommended (Chapelle, 2014), which poses a critical challenge in practice: as in Figure
1(a), if the observation window is too short, some samples will be incorrectly marked as negative
whose conversion will occur in the future; but if it is too long, the recommendation algorithm will not
be able to guarantee its timely availability (Yoshikawa & Imai, 2018). In summary, ignoring such
delays in outcome response can lead to biased estimates of HTE.
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(a) Three types of delayed response scenarios.
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(b) Observed data with various potential outcomes.

Figure 1: Illustrations for false negative (left) and observed data format (right) under delayed response.

In this paper, we first formalize the HTE estimation problem in the presence of delayed response.
In contrast to previous studies that only considered the effect of treatment on outcome, we also
consider potential response times with different treatments, since treatment may affect response
time, e.g., users who receive item recommendations purchase more quickly. Therefore, as in Figure
1(a), given the treatment w for an individual, even if the eventual outcome of interest Y (w) is
positive, e.g., the user will eventually purchase the item, we can only observe the true positive
conversion (Y (w) = 1, Ỹ (w) = 1) when the potential response time is less than the observation time
(D(w) ≤ T ), while observing the false negative outcome (Y (w) = 1, Ỹ (w) = 0) vise versa. Instead,
when the eventual outcome Y (w) is negative, e.g., the user never purchases the item, then we observe
the negative outcome (Ỹ (w) = 0) regardless of the observation time. Figure 1(b) illustrates the
format of the observed data, which comes with an additional challenge, that is, we could not obtain
the exact value of the response time if the positive feedback did not occur before the observation time.

To address the above issues, we study the impact of observation time on estimating heterogeneous
treatment effects by further considering the potential response time that potential outcomes have.
Theoretically, we prove the eventual potential outcomes are identifiable in the whole population,
which is essential for treatment allocation. For subgroups in which individuals always have positive
eventual outcomes regardless of treatment, we also show the identifiability of potential response
times, which quantifies the causal effect of treatment on response times. Using the eventual outcomes
as hidden variables, we reconstruct the posterior distribution of a delayed response and provide
explicit solutions to estimate the parameters of interest within a modified EM algorithm. Furthermore,
we propose a principled learning approach that extends counterfactual regression (CFR) to delayed
feedback outcomes, named CFR-DF, to simultaneously predict potential outcomes and potential
response times. Finally, we discuss the importance of this work for policy learning and validate the
effectiveness of the proposed method on both synthetic and real-world datasets.

The main contributions of this paper are summarized as follows:

• We formalize the HTE estimation problem with delayed response, in which treatment takes
time to produce a causal effect on the outcome.
• We theoretically prove the eventual potential outcome is identifiable, and also show the

identifiability of potential response times on the always-positive stratum.
• We propose a principled learning algorithm, called CFR-DF, that utilizes the EM algorithm

to estimate both eventual potential outcomes and potential response times.
• We perform extensive experiments on both synthetic and real-world datasets to show the

effectiveness of the proposed approach in estimating HTE with delayed responses.

2 HETEROGENEOUS TREATMENT EFFECT WITH DELAYED RESPONSE

2.1 NOTATION AND SETUP

In this paper, we consider the case of binary treatment. Suppose a simple random sample of n units
from a super population P, for each unit i, the covariate and the assigned treatment are denoted as
Xi ∈ X ⊂ Rm and Wi ∈ W = {0, 1}, where Wi = 1 means receiving the treatment and Wi = 0
means not receiving the treatment, respectively. Different from the previous problem setup in both
standard HTE estimation (Johansson et al., 2016; Shalit et al., 2017; Shi et al., 2019; Yao et al., 2018)
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Table 1: The units are divided into four strata based on the joint potential outcomes (Y (0), Y (1)).

Group Y (0) Y (1) D(0) D(1) Preferred treatment

PP 1 1 ✓ ✓ Depends on τD(x)
NP 0 1 ∞ ✓ Treatment (W = 1)
PN 1 0 ✓ ∞ Control (W = 0)
NN 0 0 ∞ ∞ Either (W = 0 or 1)

and recent time-to-event studies related to survival analysis (Gupta et al., 2023; Chapfuwa et al.,
2021; Curth et al., 2021), we consider the response time from the imposing treatment to producing
influence on the outcome. Specifically, let Yi ∈ Y = {0, 1} be the binary outcome at the eventual
time, e.g., whether a user will eventually purchase, as the primary outcome of interest, and we call
unit with Yi = 1 as a positive sample. Without loss of generality, the time at which the treatment
Wi is imposed on unit i is taken as the start time, let Di be the response time for individuals with
Yi = 1 to produce positive feedback, and we set Di =∞ for individuals with Yi = 0. As shown in
Figure 1(a), given an observation time Ti, we see a positive feedback at Ti, denoted as Ỹ T

i = 1, if
and only if individual i is a positive sample Yi = 1 with the response time Di ≤ Ti, and marked as
true positive. However, for some other positive samples with Yi = 1, we would see false negative
feedback Ỹ T

i = 0 at the observation time Ti, when the response time is greater than the observation
time, i.e., Di > Ti, and marked as false negative. For samples that never yield positive outcomes, we
observe negative feedback Ỹ T

i = 0 for all observation times Ti, and marked as true negative.

To study the effect of treatment on the eventual outcome and the response time, we adopt the potential
outcome framework (Rubin, 1974; Neyman, 1990) in causal inference. Specifically, let Yi(0) and
Yi(1) be the eventual outcome of unit i had this unit receive treatment Wi = 0 and Wi = 1,
respectively. In addition, since treatment may have an effect on the response time, e.g., users purchase
more quickly when receiving ads about an item, we denote Di(0) and Di(1) be the potential response
time had unit i receive treatment Wi = 0 and Wi = 1, respectively. Therefore, given an observation
time Ti, the corresponding potential outcomes Ỹ T

i (0) and Ỹ T
i (1) can be analogously defined. Since

each unit can be only assigned with one treatment, we always observe the corresponding outcome
to be either Ỹ T

i (0) or Ỹ T
i (1), but not both, which is also known as the fundamental problem of

causal inference (Holland, 1986; Morgan & Winship, 2015). However, one should note that similar
conclusions no longer hold for the eventual potential outcomes (Yi(0), Yi(1)) and the potential
response times (Di(0), Di(1)), as we cannot observe the exact eventual outcome as well as the
response time due to the limited observation time.

We assume that the observation for unit i is Ỹ T
i = (1−Wi)Ỹ

T
i (0) +WiỸ

T
i (1). In other words, the

observed outcome at time Ti is the potential outcome corresponding to the assigned treatment, which
is also known as the consistency assumption in the causal literature. We assume that the stable unit
treatment value assumption (STUVA) assumption holds, i.e., there should not be alternative forms
of treatment and interference between units. Furthermore, we assume the positivity of treatment
assignment, i.e., η < P(Wi = 1|Xi = x) < 1− η, where η is a constant between 0 and 1/2.

We summarize the observed data formats in Figure 1(b), with the following three cases.

• True positive (Yi(w) = 1, Ỹ T
i (w) = 1) with observed (Wi = w,Di(w) = d ≤ Ti, Ỹ

T
i (w) = 1);

• False negative (Yi(w) = 1, Ỹ T
i (w) = 0) with observed (Wi = w, Ti = t, Ỹ T

i (w) = 0);

• True negative (Yi(w) = 0, Ỹ T
i (w) = 0) with observed (Wi = w, Ti = t, Ỹ T

i (w) = 0),

which leads to an additional challenge due to one cannot distinguish between false negative and true
negative directly from the observed data (Wi = w, Ti = t, Ỹ T

i (w) = 0).

2.2 PARAMETERS OF INTEREST

We consider two meaningful parameters of interest in the following. For simplification, we drop
the subscript i for a generic unit hereafter. First, unlike previous studies that focused on the HTE of
treatment on current observed outcomes, i.e., τT (x) = E[Ỹ T (1)− Ỹ T (0) | X = x], we focused on
the HTE of treatment on the eventual outcomes, i.e., τ(x) = E[Y (1)− Y (0) | X = x]. Notably, the
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latter poses two challenges: first, the confounding bias introduced by covariates, which is similar
to previous studies; second, how to recover the eventual outcome Y of interest from the observed
outcome Ỹ T at time T . When the observation time T is sufficiently long to exceed the response time
D for all individuals, the proposed causal estimand τ(x) degenerates to τT (x).

Next, we show that individuals can be divided into four strata by considering the joint potential
outcomes (Y (0), Y (1)), as shown in Table 1, and named as the always-positive stratum, useful
treatment stratum, harmful treatment stratum, and always-negative stratum accordingly. From a
policy learning perspective, it is clear that treatment should be given and not given to individuals in
useful treatment stratum and harmful treatment stratum, respectively. For individuals in the always-
negative stratum, for example, users who will never purchase or patients who will always be cured
regardless of treatment, either of the treatments is reasonable and results in no difference. When
considering individuals in the always-positive stratum, despite having both Y (0) = 1 and Y (1) = 1
for the eventual outcomes, it is meaningful to study the HTE of the treatment on the response times.
Formally, the causal estimand of interest is E[D(1)−D(0) | Y (0) = 1, Y (1) = 1, X = x]. For the
other three strata, since there exists a treatment w such that Y (w) = 0, the corresponding response
time can be regarded as D(w) =∞, resulting in HTE of treatment on response time being ill-defined.

We summarize the causal estimand of interest as follows.

• HTE on the eventual outcome: τ(x) = E[Y (1)− Y (0) | X = x];
• HTE on the response time: τD(x) = E[D(1)−D(0) | Y (0) = 1, Y (1) = 1, X = x].

2.3 IDENTIFIABILITY RESULTS

We then discuss the identifiability of the causal parameters of interest in Section 2.2. We adopt and
refer to the following assumptions.

Assumption 1 (Unconfoundedness). W ⊥⊥ (D(0), D(1), Ỹ t(0), Ỹ t(1)) | X for all t > 0.

Assumption 2 (Time Independence). T ⊥⊥ (D(0), D(1), Ỹ t(0), Ỹ t(1),W ) | X for all t > 0.

Assumption 3 (Time Sufficiency). inf{d : F
(w)
D (d | Y (w) = 1, X) = 1} < inf{t : FT (t) = 1} for

w = 0, 1, where F (·) is the cumulative distribution function (cdf).
Assumption 4 (Monotonicity). Y (0) ≤ Y (1).
Assumption 5 (Principal Ignorability). (W,Y (w)) ⊥⊥ D(1− w) | Y (1− w), X for w = 0, 1.

Among them, unconfoundedness is also known as no unmeasured confounders assumption as it
holds if all variables that affect both treatment and potential outcomes are included in X . Time
independence holds since the observation occurs after the treatment, and the observation does not
affect the potential response times D(w) and the potential outcomes Ỹ t(w) at a given time t > 0
for w = 0, 1. Time Sufficiency means that we need a subset of individuals (not all) with observed
outcomes Ỹ = 1 to identify eventual potential outcomes, which is a necessary condition for studying
survival analysis. Monotonicity assumption is plausible in many applications when the effect of the
decision on the outcome is non-negative for all individuals, e.g., the drug is not harmful to the patient
or recommendations do not have a negative effect on user purchases. Principal Ignorability requires
that the expectations of the potential outcomes do not vary across principal strata conditional on the
covariates. It is widely used in applied statistics (Imai & Jiang, 2020; Ben-Michael et al., 2022).

We next provide the identifiability results of three causal parameters (see Appendix A.2.1 for proofs).
Theorem 1. Under Assumptions 1-3, the HTE on the eventual outcome τ(x) is identifiable.

To identify the HTE of treatment on potential response times in the always-positive stratum, we
introduce the monotonicity assumption to identify the probability of belonging to this stratum.
Lemma 1. Under Assumptions 1-4, P(Y (0) = 1, Y (1) = 1 | X = x) is identifiable.

Following the previous studies (Imai & Jiang, 2020; Ben-Michael et al., 2022; Jiang et al., 2022), we
assume principal ignorability holds to identify the HTE of treatment on potential response times in
the always-positive stratum. Under all of the above assumptions, τD(x) is also identifiable.
Theorem 2. Under Assumptions 1-5, the HTE on the response time in the always-positive stratum
τD(x) = E[D(1)−D(0) | Y (0) = 1, Y (1) = 1, X = x] is identifiable.
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3 CFR-DF: COUNTERFACTUAL REGRESSION WITH DELAYED FEEDBACK

In this section, we propose a principled learning approach to perform CounterFactual Regression with
Delayed Feedback on outcomes, named CFR-DF. Specifically, CFR-DF consists of two sets of models
to predict the eventual potential outcomes, i.e., P(Y (0) = 1 | X = x) and P(Y (1) = 1 | X = x)
and the potential response times, i.e., P(D(0) = d | X = x, Y (0) = 1) and P(D(1) = d |
X = x, Y (1) = 1), respectively, the former of which can be flexibly exploited from previous
HTE estimation methods in the following framework, and we take the widely used counterfactual
regression (CFR) (Shalit et al., 2017) for illustration purpose.

Recall that in Figure 1(b), we show two possible observed data formats. On the one hand, the
probability of observing positive feedback Ỹ T = 1 with response time D = d at time T = t > d:

p(Ỹ T = 1, D = d | X = x,W = w, T = t) = p(Y = 1, D = d | X = x,W = w)

= P(Y (w) = 1 | X = x,W = w)p(D(w) = d | X = x,W = w, Y (w) = 1)

= P(Y (w) = 1 | X = x)p(D(w) = d | X = x, Y (w) = 1),

where the first equality follows from time independence, the second equality follows from the
consistency assumption, and the last equality follows from the unconfoundedness assumption.

On the other hand, by the law of total probabilities, and again using the conditional independence of
observation time, the probability of not having observed positive feedback at time T = t > d is:

P(Ỹ T = 0 | X = x,W = w, T = t)

= P(Y = 0 | X = x,W = w)P(Ỹ t = 0 | X = x,W = w, Y = 0)

+ P(Y = 1 | X = x,W = w)P(Ỹ t = 0 | X = x,W = w, Y = 1),

where P(Y = 0 | X = x,W = w) is equivalent to P(Y (w) = 0 | X = x) by unconfoundedness
assumption, with similar result holds for P(Y = 1 | X = x,W = w). In addition, we have
P(Ỹ t = 0 | X = x,W = w, Y = 0) = 1, due to eventual outcome Y = 0 implies Ỹ t = 0 for all
t > 0. Next we focus on the last item P(Ỹ t = 0 | X = x,W = w, Y = 1).

By noting the equivalence between (Ỹ t(w) = 0, Y (w) = 1) and (D(w) > t, Y (w) = 1), we have:

P(Ỹ t = 0 | X = x,W = w, Y = 1) = P(D(w) > t | X = x, Y (w) = 1)

=

∫ ∞

t

p(D(w) = u | X = x, Y (w) = 1)du.

With the above results, we have the probability of Ỹ T = 0 at time T = t is:

P(Ỹ T = 0 | X = x,W = w, T = t) = P(Y (w) = 0 | X = x)

+ P(Y (w) = 1 | X = x)

∫ ∞

t

p(D(w) = u | X = x, Y (w) = 1)du,

which can be represented by two sets of models in CFR-DF.

Different from CFR, an essential challenge is that we cannot observe the eventual outcomes Y , which
results in the unavailability to directly fit the potential outcomes of interest P(Y (w) = 0 | X = x)
and P(Y (w) = 1 | X = x) from the observed data. To address this problem, we treat the eventual
potential outcomes as latent variables, and estimate the parameters of interest using a modified EM
algorithm as below, which addresses both the confounding bias and the missing eventual outcomes.

Expectation Step. For a given data point (xi, wi, ti, y
t
i), we need to compute the posterior probability

of the hidden variable pi := P(Yi(wi) = 1 | X = xi,W = wi, T = ti, Ỹ
T = yti). If positive

feedback yti = 1 is observed at time T = t, then it is obvious that pi = 1 for unit i. Alternatively, if
yti = 0 is observed at time t for individual i, then the posterior probability pi can be expressed as:

pi = P(Yi(wi) = 1 | X = xi,W = wi, T = ti, Ỹ
T
i = 0)

=
P(Ỹ T

i (wi) = 0 | X = xi, Yi(wi) = 1, T = ti)P(Yi(wi) = 1 | X = xi)

P(Ỹ T
i = 0 | X = xi,W = wi, T = ti)

,

5
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Figure 2: Overview of CFR-DF Architecture. For the representation block, we use multi-layer neural
networks Φ with ELU activation function to learn representation and each network has two/three
layers with mX units, respectively. Then, we use a single-layer network hY with Sigmoid activation
to achieve P̂ (Y = 1) and a single-layer network hD with SoftPlus sigmoid activation to achieve λ̂.

which can be calculated from the maximization step of the models in CFR-DR in the following.

Maximization Step. Given the hidden variable values pi computed from the E step, let S = si
denote (X = xi,W = wi, T = ti), we maximize the expected log-likelihood during the M step:∑

i

pi logP(Yi(wi) = 1 | X = xi) +
∑
i

(1− pi) log(1− P(Yi(wi) = 1 | X = xi))

+
∑

i:ỹt
i=1

log p(Di(wi) = di | X = xi, Yi(wi) = 1)

+
∑

i:ỹt
i=0

pi log

∫ ∞

ti

p(D(wi) = u | X = xi, Yi(wi) = 1)du,

where the eventual potential outcome model P(Y (w) = 1 | X = x) and the potential response time
model p(D(w) = d | X = x, Y (w) = 1) can be optimized independently. Due to space limitations,
the computation details of parametric and non-parametric EM models are deferred to Appendix A.2.2.

Let hY (ΦY (x), w) be the prediction model for the eventual potential outcomes P(Y (w) = 1 | X =
x), and hD(ΦD(x), w, d) be the prediction model for the potential response times p(D(w) = d | X =
x, Y (w) = 1), where ΦY : X → RY and ΦD : X → RD are the covariate representations,RY and
RD are the representation spaces, and hY : RY × {0, 1} → Y and hD : RD × {0, 1} × R+ → R+

are the prediction heads, respectively. Inspired by CFR (Shalit et al., 2017), we take the Integral
Probability Metric (IPM) distance induced by the representations as a penalty term, to control the
generalization error caused by covariate shift between the treatment and control group.

Given the posterior probabilities pi computed from the E step, we train the eventual potential outcome
model by minimizing the derived negative log-likelihood in the M step with the IPM distance:

ℓ(hY ,ΦY | p1, . . . , pn) =−
∑
i

pi log h
Y (ΦY (xi), wi)

−
∑
i

(1− pi) log(1− hY (ΦY (xi), wi)) + αY · IPMGY ({ΦY (xi)}i:wi=0, {ΦY (xi)}i:wi=1),

where GY is a family of functions gY : RY → Y , and αY is a hyper-parameter. For two probability
density functions p, q defined over S ⊆ Rd, and for a function family G of functions g : S → R, the
IPM distance is IPMG(p, q) := supg∈G

∣∣∫
S g(s)(p(s)− q(s))ds

∣∣. Similarly, we train the potential

6
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Table 2: Performance comparison (MSE ± SD) on synthetic datasets with varying bD.

TOY (bD = 0) TOY (bD = 0.5) TOY (bD = 1)

Method ϵPEHE ϵATE ϵPEHE ϵATE ϵPEHE ϵATE

T-learner 0.535 ± 0.041 0.069 ± 0.024 0.514 ± 0.036 0.028 ± 0.017 0.523 ± 0.028 0.109 ± 0.017
CFR 0.536 ± 0.042 0.071 ± 0.025 0.517 ± 0.037 0.025 ± 0.016 0.523 ± 0.028 0.108 ± 0.016
SITE 0.630 ± 0.058 0.023 ± 0.041 0.646 ± 0.077 0.026 ± 0.020 0.654 ± 0.039 0.128 ± 0.045

Dragonnet 0.612 ± 0.080 0.101 ± 0.055 0.499 ± 0.023 0.028 ± 0.024 0.504 ± 0.018 0.095 ± 0.032
CFR-ISW 0.552 ± 0.057 0.064 ± 0.040 0.602 ± 0.084 0.034 ± 0.024 0.590 ± 0.081 0.122 ± 0.023
DR-CFR 0.539 ± 0.030 0.071 ± 0.032 0.521 ± 0.044 0.032 ± 0.026 0.524 ± 0.038 0.107 ± 0.035

DER-CFR 0.548 ± 0.051 0.051 ± 0.029 0.540 ± 0.037 0.066 ± 0.043 0.568 ± 0.034 0.162 ± 0.032
CEVAE 0.661 ± 0.077 0.123 ± 0.039 0.661 ± 0.077 0.122 ± 0.039 0.661 ± 0.077 0.122 ± 0.039

GANITE 0.672 ± 0.074 0.173 ± 0.037 0.662 ± 0.075 0.147 ± 0.036 0.655 ± 0.076 0.122 ± 0.035

T-DF 0.416 ± 0.019 0.021 ± 0.008 0.432 ± 0.013 0.017 ± 0.014 0.407 ± 0.016 0.013 ± 0.007
CFR-DF 0.409 ± 0.018 0.019 ± 0.008 0.404 ± 0.014 0.013 ± 0.009 0.395 ± 0.013 0.011 ± 0.009

Table 3: ϵPEHE of HTE estimations for potential response times with varying bD.

TOY (bD = 0) P(D(1) > d | Y (0) = 1, Y (1) = 1, X = x)− P(D(0) > d | Y (0) = 1, Y (1) = 1, X = x) τD(x)

D > d d = 0.1 d = 0.2 d = 0.5 d = 1.0 d = 2.0 d = 5.0 N/A

T-DF 0.017 ± 0.003 0.031 ± 0.005 0.056 ± 0.009 0.068 ± 0.012 0.055 ± 0.012 0.015 ± 0.007 0.190 ± 0.030
CFR-DF 0.014 ± 0.001 0.025 ± 0.003 0.045 ± 0.005 0.054 ± 0.007 0.042 ± 0.005 0.008 ± 0.002 0.152 ± 0.016

TOY (bD = 1) P(D(1) > d | Y (0) = 1, Y (1) = 1, X = x)− P(D(0) > d | Y (0) = 1, Y (1) = 1, X = x) τD(x)

D > d d = 0.1 d = 0.2 d = 0.5 d = 1.0 d = 2.0 d = 5.0 N/A

T-DF 0.025 ± 0.004 0.040 ± 0.007 0.055 ± 0.010 0.054 ± 0.013 0.041 ± 0.014 0.012 ± 0.007 0.321 ± 0.056
CFR-DF 0.024 ± 0.003 0.037 ± 0.005 0.048 ± 0.005 0.043 ± 0.006 0.030 ± 0.006 0.006 ± 0.002 0.314 ± 0.047

response time model using the training loss:

ℓ(hD,ΦD | p1, . . . , pn) =
∑

i:ỹt
i=1

log hD(ΦD(xi), wi, di)

+
∑

i:ỹt
i=0

pi log

∫ ∞

ti

hD(ΦD(xi), wi, u)du+ αD · IPMGD ({ΦD(xi)}i:wi=0, {ΦD(xi)}i:wi=1),

with GD and αD defined similarly. We summarize the whole algorithm including the detailed
backbone and hyper-parameters choosing, as well as provide the pseudo-code in Appendix A.3. In
addition, our work can be naturally extended to non-binary treatments with the identifiability results
of true HTE in all strata, i.e., E[Y (w) | X = x] for all w ∈ W . See Appendix A.4 for more details.

4 EXPERIMENTS

4.1 BASELINES AND EVALUATION PROTOCOLS

We evaluate our framework CFR-DF, and its variant without balancing regularization (T-DF),
in the task of (i) estimating HTE on the eventual outcome and (ii) estimating HTE on the re-
sponse time in the always-positive stratum. We compare our method with the following meth-
ods: T-learner (Künzel et al., 2019), representation-based algorithms including CFR (Shalit
et al., 2017), SITE (Yao et al., 2018), Dragonnet (Shi et al., 2019), CFR-ISW (Hassanpour
& Greiner, 2019), DR-CFR (Hassanpour & Greiner, 2020) and DER-CFR (Wu et al., 2022),
and generative algorithms CEVAE (Louizos et al., 2017) and GANITE (Yoon et al., 2018).
Following previous studies (Shalit et al., 2017; Wu et al., 2022), we evaluate the performance
of HTE estimation using ϵPEHE = 1

N

∑N
i=1 ((ŷi(1)− ŷi(0))− (yi(1)− yi(0)))

2 and ϵATE =

| 1N
∑N

i=1 (ŷi(1)− ŷi(0)− (yi(1)− yi(0)))|, where ŷi and yi are predicted and true outcomes.

4.2 DATASETS

Synthetic Datasets. Since the true potential outcomes are rarely available for real-world, we
conduct simulation studies using synthetic datasets as follows. The observed covariates are generated
from X ∼ N (0, ImX

), where ImX
denotes mX -degree identity matrix. The observed treatment

7
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(a) TOY (bD = 0).
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Figure 3: Effects of varying average observation time on synthetic datasets with varying bD.

W ∼ Bern(π(X)), where π(X) = P(W = 1 | X) = σ(θW · X), θW ∼ U(−1, 1), and σ(·)
denotes the sigmoid function. For the eventual potential outcomes, we generate the control outcome
Y (0) ∼ Bern(σ(θY 0 ·X2 + 1)), and the treated outcome Y (1) ∼ Bern(σ(θY 1 ·X2 + 2)), where
θY 0, θY 1 ∼ U(−1, 1). In addition, we generate the potential response time D(0) ∼ Exp(exp(θD0 ·
X)−1), and D(1) ∼ Exp(exp(θD1 ·X − bD)−1), where θD0, θD1 ∼ U(−0.1, 0.1), and bD controls
the heterogeneity of response time functions. The observation time is generated via T ∼ Exp(λ),
where λ is the rate parameter of the exponential distribution, and we set λ = 1 in our experiments,
i.e., the average observation time is T̄ = λ−1 = 1. Finally, the observed outcome is Ỹ T (W ) =
W ·Y (1) · I(T ≥ D(1))+(1−W ) ·Y (0) · I(T ≥ D(0)), where I(·) is the indicator function. Based
on the data generation process described above, we sample N = 20, 000 samples for training and
3, 000 samples for testing. We repeat each experiment 10 times to report the mean and standard
deviation of the results (ϵPEHE and ϵATE). Moreover, we vary the heterogeneity of response times by
setting bD ∈ {0, 0.5, 1}, named the dataset as TOY (bD = 0), TOY (bD = 0.5), and TOY (bD = 1),
respectively. Besides, we evaluate our algorithm on the TOY (bD = 0) and TOY (bD = 1) with the
average observation time T̄ ∈ {0.5, 1, 5, 10, 20, 50}.
Real-World Datasets. We also evaluate our CFR-DF on three widely-adopted real-world datasets:
AIDS1 (Hammer et al., 1997; Norcliffe et al., 2023), JOBS2 (LaLonde, 1986; Shalit et al., 2017),
and TWINS3 (Almond et al., 2005; Wu et al., 2022). The AIDS dataset collected between January
1996 and January 1997 involved 1,156 patients in 33 AIDS clinical trial units and 7 National
Hemophilia Foundation sites in the United States and Puerto Rico and was used to study the impact
and effectiveness of antiretroviral therapy on HIV-positive patients. The JOBS dataset is widely
used in the field of causal inference. It is built upon randomized controlled trials and aims to assess
the effects of job training programs on employment status. The TWINS dataset is derived from all
twins born in the USA between the years 1989 and 1991 and is utilized to assess the influence of
birth weight on mortality within one year, from which we obtain covariates X . Following the same
procedure for generating synthetic datasets, we generate treatment W , potential outcomes Y (0) and
Y (1), potential response times D(0) and D(1), observation time T and factual outcomes Ỹ T (W ).
Then we randomly split the samples into training/testing with an 80/20 ratio with 10 repetitions.

4.3 RESULTS

Performance Comparison. We compare our method with the baselines for estimating the HTE on the
eventual outcome with varying response time functions in Table 2. The optimal and second-optimal
performance are bold and underlined, respectively. First, the proposed CFR-DF stably outperforms
the baselines, as the previous methods do not take into account the delayed response, leading to
biased estimates of HTE. Second, the T-DF method without using balancing regularization slightly
degrades the performance compared to CFR-DF, due to the inability to resolve the confounding

1https://scikit-survival.readthedocs.io/
2http://www.fredjo.com/
3http://www.nber.org/data/
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Table 4: Performance comparison (MSE ± SD) on JOBS and TWINS datasets.

AIDS JOBS TWINS

Method ϵPEHE ϵATE ϵPEHE ϵATE ϵPEHE ϵATE

T-learner 0.525 ± 0.052 0.091 ± 0.064 0.528 ± 0.043 0.085 ± 0.041 0.390 ± 0.071 0.050 ± 0.029
CFR 0.531 ± 0.046 0.083 ± 0.058 0.510 ± 0.035 0.064 ± 0.039 0.378 ± 0.057 0.029 ± 0.018
SITE 0.601 ± 0.031 0.082 ± 0.056 0.568 ± 0.045 0.064 ± 0.053 0.495 ± 0.087 0.139 ± 0.053

Dragonnet 0.546 ± 0.051 0.105 ± 0.042 0.555 ± 0.060 0.084 ± 0.060 0.440 ± 0.103 0.096 ± 0.067
CFR-ISW 0.592 ± 0.053 0.098 ± 0.032 0.499 ± 0.035 0.058 ± 0.056 0.392 ± 0.048 0.039 ± 0.023
DR-CFR 0.577 ± 0.056 0.078 ± 0.044 0.525 ± 0.077 0.079 ± 0.060 0.390 ± 0.046 0.039 ± 0.027

DER-CFR 0.609 ± 0.076 0.081 ± 0.074 0.503 ± 0.037 0.072 ± 0.043 0.398 ± 0.068 0.080 ± 0.066
CEVAE 0.623 ± 0.042 0.143 ± 0.019 0.638 ± 0.062 0.102 ± 0.058 0.526 ± 0.055 0.139 ± 0.027

GANITE 0.605 ± 0.034 0.136 ± 0.020 0.629 ± 0.053 0.151 ± 0.067 0.509 ± 0.056 0.139 ± 0.040

T-DF 0.521 ± 0.042 0.077 ± 0.030 0.453 ± 0.066 0.058 ± 0.030 0.366 ± 0.027 0.030 ± 0.018
CFR-DF 0.499 ± 0.055 0.073 ± 0.031 0.438 ± 0.059 0.051 ± 0.031 0.357 ± 0.017 0.027 ± 0.015

bias from covariate shift. Third, we observe a decrease in ϵPEHE and ϵATE of 23% and 17%
in TOY (bD = 0), 21% and 48% in TOY (bD = 0.5), and 46% and 88% in TOY (bD = 1),
respectively, when comparing our CFR-DF method to the optimal baseline method. These results
highlight the scalability of our method to different levels of observation times, demonstrating its
potential for real-world applications. Table 3 shows the performance of our methods in estimating
HTE on the response times, as described in Section 2.2. We report the ϵPEHE on estimating
P(D(1) > d | Y (0) = 1, Y (1) = 1, X = x) − P(D(0) > d | Y (0) = 1, Y (1) = 1, X = x) and
τD(x), respectively, where the former has a more fine-grained description with varying d. We find
both T-DF and CFR-DF can effectively estimate the treatment effect on response time, and CFR-DF
with balancing regularization stably performs better, again demonstrating the need to adjust for
confounding bias. See Appendix A.5.2 for more experiment results with various number of features.

Ablation Studies. Figure 3 compares the proposed CFR-DF and its ablated versions for estimating
HTE on the eventual outcome with varying average observation time, where T-DF does not perform
balancing regularization, CFR does not consider delayed response, and neither is considered for
T-learner. We have the following findings. The proposed CFR-DF and T-DF have significantly
better performance when the observation time is shorter, due to their effective adjustment for delayed
response. When increasing the average observation time leads to more delayed responses being
observed, we find improved performance for all four methods. The ϵPEHE of CFR-DF stabilizes
when the average observation time is above 5, and the variance gradually decreases with increasing
observation time. When the observation time reaches 50, meaning all delayed responses have been
observed, our method performs similarly to the CFR algorithm, and T-DF is degenerate to T-learner.

Real-World Experiments. We conduct real-world experiments using AIDS, JOBS and TWINS
datasets. The AIDS (Hammer et al., 1997) contains people with HIV and SEER with Prostate
Cancer. The JOBS dataset (LaLonde, 1986) is based on the National Supported Work program and
examines the effects of job training on income and employment status after training. The TWINS
dataset (Almond et al., 2005) studies the effects of infant weight on the death rate. Notably, job
training takes time to cause changes in incomes, and infants also take time to observe their mortality
outcomes (and thus study the effect on mortality), therefore it is reasonable to study the delayed
response in such real-world applications. Table 4 demonstrates that CFR-DF outperforms all baselines
on these real-world datasets, showcasing its effectiveness.

5 CONCLUSION

This paper studies the HTE estimation problem by further considering the response time needed for a
treatment to produce a causal effect on the outcome. Specifically, we propose a principled learning
algorithm, called CFR-DF, to estimate both eventual potential outcomes and potential response times.
Considering the widespread delayed feedback outcomes, we believe such a study is meaningful for
real-world applications. A shortcoming of our study is the validity of the assumptions in practice, e.g.,
we need enough observation time to identify HTE on the eventual potential outcome, and principal
ignorability is further required to identify HTE on the response time. Studying how to weaken these
assumptions, and identifying and estimating HTE with delayed responses are served as future topics.
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A APPENDIX

A.1 RELATED WORK

In Heterogeneous treatment effect (HTE) estimation, non-random treatment assignments can result
in different probabilities of missing covariates in different treatment arms, which may introduce
confounding bias. To address this issue, most methods strive to balance covariates to estimate
HTE accurately, such as matching, stratification, outcome regression, weighting, and doubly robust
methods (Rosenbaum, 1987; Rosenbaum & Rubin, 1983; Li et al., 2016; Hainmueller, 2012). With
the advances in deep learning, Balancing Neural Network (BNN) (Johansson et al., 2016) and
CounterFactual Regression (CFR) (Shalit et al., 2017) propose to learn a covariate representation that
is independent of the treatment to overcome the covariate shift between the treatment and control
groups, in which the independence is measured by Integral Probability Metric (IPM) (Johansson
et al., 2016; Shalit et al., 2017). SITE (Yao et al., 2018) preserves local similarity and balances the
distributions of the representation simultaneously. Motivated by targeted learning (van der Laan
& Rose, 2011), DragonNet (Shi et al., 2019) proposed an adaptive neural network to end-to-end
model propensity scores and counterfactual outcomes. DR-CFR (Hassanpour & Greiner, 2020) and
DeR-CFR (Wu et al., 2022) propose a disentanglement framework to identify the representation of
confounders from all observed variables. By exploiting the generative models, CEVAE (Louizos
et al., 2017) and GANITE (Yoon et al., 2018) generate counterfactual outcomes for HTE estimation.
However, these algorithms rely on timely and accurate observation of the eventual potential outcomes.

In practice, interventions usually take time to have a causal effect on the outcome (Chapelle, 2014;
Yoshikawa & Imai, 2018). Despite the problem setup and the causal estimand of interest is different,
many studies have examined HTE estimation under time-to-event data. Curth et al. (2021) used
neural networks for discrete time analyses and Chapfuwa et al. (2021) used generative models
for counterfactual time-to-event data analysis in continuous time. Based on the Cox model (Cox,
1972), Schrod et al. (2022) proposed a treatment-specific semi-parametric Cox loss using time-to-
event data for treatment optimization. Gupta et al. (2023) derived a binary treatment evidence lower
bound (ELBO) for parametric survival analysis, and designed a neural network for learning the
per-individual survival density. Different from Chapfuwa et al. (2021); Curth et al. (2021), Curth
& van der Schaar (2023) considered time-to-event data with competing events, which can act as
an additional source of covariate shift. In addition, Nagpal et al. (2022) presented a latent variable
approach to mediate the base survival rates and help determine the effects of an intervention. Nagpal
et al. (2023) extended Nagpal et al. (2022) by proposing a statistical approach to recovering sparse
phenogroups (or subtypes) that demonstrate differential treatment effects as compared to the study
population. Though delayed response can be considered as a right-censored problem, rather than
focusing on the effect of treatment on survival curves, this paper assumes that it takes time to yield an
observable outcome that eventually has a positive outcome (e.g., conversion in uplift modeling) and
considers both conversion time and whether or not to convert as potential outcomes by utilizing a
hybrid model. By considering the joint potential outcome of individuals from a principal stratification
perspective (Frangakis & Rubin, 2002; Pearl, 2011), we theoretically prove that the potential response
times on subgroups in which individuals always have positive eventual outcomes regardless of
treatment are identifiable. It is also interesting to note that the problem studied in this paper can also
be considered as a noisy label on the eventual outcome of interest due to the limited observation time,
which causes the previous HTE methods to be biased.

A.2 THEOREMS AND PROOFS

A.2.1 THE PROOFS OF THEOREMS 1 AND 2

First, we recap the assumptions in Section 2.3 as below. Next, we provide formal proofs of Theorem
1, Lemma 1, and Theorem 2, respectively.

Assumption 1 (Unconfoundedness). There is no unmeasured confounders, W ⊥⊥
(D(0), D(1), Ỹ t(0), Ỹ t(1)) | X for all t > 0.

Assumption 2 (Time Independence). Time T is independent of potentials, T ⊥⊥
(D(0), D(1), Ỹ t(0), Ỹ t(1),W ) | X for all t > 0.
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Assumption 3 (Time Sufficiency). inf{d : F
(w)
D (d | Y (w) = 1, X) = 1} < inf{t : FT (t) = 1} for

w = 0, 1, where F (·) is the cumulative distribution function (cdf).

Assumption 4 (Monotonicity). Y (0) ≤ Y (1).

Assumption 5 (Principal Ignorability). (W,Y (w)) ⊥⊥ D(1− w) | Y (1− w), X for w = 0, 1.

Theorem 1. Under Assumptions 1-3, the HTE on the eventual outcome τ(x) is identifiable.

Proof of Theorem 1. For units with Y (w) = 0, we set D(w) =∞, for w = 0, 1. We first prove the
identifiability of P(D(w) > t | X = x) for w = 0, 1 and t > 0. Under Assumption 1, we have:

− d

dt
logP(D(w) > t | X = x) (1)

= lim
h→0+

1
hP(t < D(w) ≤ t+ h | X = x)

P (D(w) > t | X = x)

= lim
h→0+

1
hP(t < D(w) ≤ t+ h |W = w,X = x)

P(D(w) > t |W = w,X = x)
(2)

= lim
h→0+

1

h
P(t < D(w) ≤ t+ h |W = w,X = x,D(w) > t),

where the first equality follows from the definition of first-order derivative, the second equality
follows from the unconfoundedness assumption, and the third equality follows from the definition of
conditional probability. Under Assumption 2, we obtain the identifiability result in the following:

lim
h→0+

1

h
P(t < D(w) ≤ t+ h |W = w,X = x,D(w) > t)

= lim
h→0+

1

h
P(t < D(w) ≤ t+ h |W = w,X = x,D(w) > t, T > t)

= lim
h→0+

1

h
P(t < min{D(w), T} ≤ t+ h, I(D(w) ≤ T ) = 1 | cond)

= lim
h→0+

1

h
P(t < min{D,T} ≤ t+ h, I(D ≤ T ) = 1 | cond), (3)

where cond = {W = w,X = x,min{D,T} > t}, and the first equality follows from the time
independence assumption, the second equality follows from the equivalence between t < D(w) ≤
t + h and t < min{D(w), T} ≤ t + h and D(w) ≤ T , given the condition that T > t with
a sufficiently small time period h → 0+, the third equality follows from the unconfoundedness
assumption. Also, we can identify:

P(D(w) > t | X = x) = exp

{∫ t

0

d

du
logP(D(w) > u | X = x)du

}
(4)

for w = 0, 1, because we have − d
dt logP(D(w) > t | X = x).

We next show the identifiability of P(Y (w) = 1 | X = x). Under Assumption 3, we have

P(Y (w) = 1 | X = x) = 1− P(Y (w) = 0 | X = x)

= 1− lim
t→∞

P(D(w) > t | X = x)

= 1− P(D(w) > qd | X = x) = 1− P(D(w) > q | X = x) (5)

for qd ≤ q < qt, where qd = inf
{
d : F

(w)
D (d | Y (w) = 1, X) = 1

}
,

qt = inf {t : FT (t) = 1} and F (·) is the cumulative distribution function (cdf). Therefore,
P(Y (w) = 1 | X = x) is identifiable from observed data for w = 0, 1.

Lemma 1. Under Assumptions 1-4, P(Y (0) = 1, Y (1) = 1 | X = x) is identifiable.
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Proof of Lemma 1. Under Assumption 4, we have

P(Y (0) = 0, Y (1) = 0 | X = x) = P(Y (1) = 0 | X = x)

P(Y (0) = 0, Y (1) = 1 | X = x) = P(Y (1) = 1 | X = x)− P(Y (0) = 1 | X = x)

P(Y (0) = 1, Y (1) = 1 | X = x) = P(Y (0) = 1 | X = x). (6)

Then the identifiability of the left-hand side parameters follows directly from the identifiability of
P(Y (w) = 1 | X = x) for w = 0, 1 under Assumptions 1-3 as shown in Theorem 1.

Theorem 2. Under Assumptions 1-5, the HTE on the response time in the always-positive stratum
τD(x) = E[D(1)−D(0) | Y (0) = 1, Y (1) = 1, X = x] is identifiable.

Proof of Theorem 2. Under Assumption 5, i.e., (W,Y (0)) ⊥⊥ D(1) | Y (1), X , we have

P(D(1) < t | Y (0) = 1, Y (1) = 1, X = x) = P(D(1) < t | Y (1) = 1, X = x)

= P(D(1) < t | Y (1) = 1, X = x,W = 1) = P(D(1) < t | Y = 1, X = x,W = 1)

=
P(D < t | X = x,W = 1)

P(Y = 1 | X = x,W = 1)

=
1− exp

{∫ t

0
d
du logP(D(1) > u | X = x)du

}
1− limt→∞ exp

{∫ t

0
d
du logP(D(1) > u | X = x)du

} , (7)

which is identifiable, because we have proved the identifiability of − d
dt logP(D(1) > t | X = x) in

Theorem 1. Similarly, we can identify

P(D(0) < t | Y (0) = 1, Y (1) = 1, X = x) =

1− exp
{∫ t

0
d
du logP(D(0) > u | X = x)du

}
1− limt→∞ exp

{∫ t

0
d
du logP(D(0) > u | X = x)du

} . (8)

Then τD(x) is identifiable due to

τD(x) =E[D(1)−D(0) | Y (0) = 1, Y (1) = 1, X = x]

=−
∫ ∞

0

P(D(1) < u | Y (0) = 1, Y (1) = 1, X = x)du

+

∫ ∞

0

P(D(0) < u | Y (0) = 1, Y (1) = 1, X = x)du. (9)

A.2.2 COMPUTATION OF (NON-)PARAMETRIC POTENTIAL RESPONSE TIME MODELS

In this paper, we propose a principled learning approach called CFR-DF (CounterFactual Regression
with Delayed Feedback) that simultaneously predicts potential outcomes and potential response times
by employing an EM algorithm with eventual outcomes treated as latent variables. Due to space
limitations, we only provide the explicit solutions of the EM algorithm in a general functional form
for estimating the parameters of interest in Section 3 in the main text. However, in practice, empirical
computation requires model specification: either (i) a parametric model or (ii) a non-parametric
model based on weighted kernel functions.

Parametric model: One can assume that the potential delayed response times obey exponential
models for both treatment and control groups. Specifically, let P(D(w) = u | X = x, Y (w) = 1) =
λw(x) exp (−λw(x)u) for w = 0, 1. Then we have:∫ ∞

t

P(D(w) = u | X = x, Y (w) = 1)du

=

∫ ∞

t

λw(x) exp (−λw(x)u) du = exp (−λw(x)t) (10)
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in the derived pi in the E-step.

Non-parametric model based on weighted kernel functions: potential delayed response times can
be further extended to a nonparametric model using a set of weighted kernel functions. Specifically,
let the non-parametric hazard function is hw(d;x) =

∑L
l=1 α

w
l (x)k (tl, d) for w = 0, 1, where

k is a kernel function returning a positive value, and intuitively represents the similarity between
two time points. Here, one can use kernel functions as k such that k (tl, u) ,

∫ a

0
k (tl, u) du and∫∞

a
k (tl, u) du for tl, u, a ≥ 0 can be calculated analytically.

For example, a Gaussian kernel with bandwidth parameter h > 0 leads to

k (tl, u) = exp

(
− (tl − u)

2

2h2

)
, (11)

∫ a

0

k (tl, u) du = −h
√

π

2

[
erf

(
tl − a√

2h

)
− erf

(
tl√
2h

)]
(12)

∫ ∞

a

k (tl, u) du = h

√
π

2

[
1 + erf

(
tl − a√

2h

)]
, (13)

where leads to the analytical form pi in the E-step.

Given the hidden variable values pi computed from the E-step, we can plug them into the expected
log-likelihood during the M-step:∑

i:ỹt
i=1

logP(Ỹ T
i = 1, D = di | X = xi,W = wi, T = ti)

+
∑

i:ỹt
i=0

(1− pi) logP(Ỹ T
i = 0, Yi(wi) = 0 | X = xi,W = wi, T = ti)

+
∑

i:ỹt
i=0

pi logP(Ỹ T
i = 0, Yi(wi) = 1 | X = xi,W = wi, T = ti). (14)

From a similar argument as derived above, the expected log-likelihood is equal to:∑
i

pilogP(Yi(wi) = 1 | X = xi) + (1− pi) log(1− P(Yi(wi) = 1 | X = xi))

+
∑

i:ỹt
i=1

logP(Di(wi) = di | X = xi, Yi(wi) = 1)

+
∑

i:ỹt
i=0

pi log

∫ ∞

ti

P(D(wi) = u | X = xi, Yi(wi) = 1)du, (15)

in which the eventual potential outcome model P(Y (w) = 1 | X = x) and the potential response
time model P(D(w) = d | X = x, Y (w) = 1) can be optimized independently. In our experiments,
we used Parametric models for delay time modeling in the treated and control groups.

A.3 ALGORITHM, HYPER-PARAMETERS AND DISCUSSION

A.3.1 ALGORITHM DETAILS AND ENVIRONMENT CONFIGURATION

Motivation: In this paper, we study the problem of estimating HTE with a delayed response, which
can be seen as a censoring problem with imbalanced treatment assignment: the observation time T
refers to the ”time-to-censor”, the response time D refers to the ”time-to-event”, and the treatment
is not assigned at random. We must emphasize that simply applying the expectation-maximization
technique is insufficient to recover the delayed outcome without making additional assumptions and
identification guarantees. Because this problem involves not only missing data but also survival
analysis and confounding bias. To address these issues, we propose a novel CFR-DF approach that
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extends counterfactual regression to delayed feedback outcomes using a modified EM algorithm with
identification guarantees. In Appendix A.2.2, we provide the explicit solutions of the EM algorithm
with model specification: either (i) a parametric model or (ii) a non-parametric model based on
weighted kernel functions. In our experiments, we use Parametric models for delay time modeling in
the treated and control groups. Algorithm 1 shows the pseudo-code of our CFR-DF.

Implementation of CFR-DF. In the CFR-DF architecture (Figure 4), we use three-layer neural
networks ΦY

0 and ΦY
1 with ELU activation function and BatchNorm to learn representation of the

eventual outcome, and two-layer neural networks ΦD
0 and ΦD

1 with ELU activation function and
BatchNorm to learn representation of the delayed response time. Each layer in these networks consists
of mX neural units. Then, we use a single-layer network hY with Sigmoid activation to achieve
P̂ (Y = 1) and a single-layer network hD with SoftPlus sigmoid activation to achieve λ̂. Dropout is
not utilized in the CFR-DF architecture, but BatchNorm is applied in each layer of the representation
networks. Finally, we update

{
ΦY

0 ,Φ
Y
1 ,Φ

D
0 ,ΦD

1 , hD, hY
}

using Adam Ls optimizer.

Based on the developed EM algorithm in a general functional form for estimating the parameters
of interest, we now show the empirical computation details for both (i) parametric model and (ii)
non-parametric model based on weighted kernel functions.

• Parametric model: One can assume that the potential delayed response times obey exponential
models for both treatment and control groups. Specifically, let P(D(w) = u | X = x, Y (w) =
1) = λw(x) exp (−λw(x)u) for w = 0, 1, we have

∫∞
t

P(D(w) = u | X = x, Y (w) = 1)du =∫∞
t

λw(x) exp (−λw(x)u) du = exp (−λw(x)t) in the derived pi in the E-step.

• Non-parametric model based on weighted kernel functions: The estimation of poten-
tial delayed response times can be further extended to a nonparametric model using a set of
weighted kernel functions. Specifically, let the non-parametric hazard function is hw(d;x) =∑L

l=1 α
w
l (x)k (tl, d) for w = 0, 1, where k is a kernel function returning a positive value,

and intuitively represents the similarity between two time points. Here, one can use kernel
functions as k such that k (tl, u) ,

∫ a

0
k (tl, u) du and

∫∞
a

k (tl, u) du for tl, u, a ≥ 0 can be
calculated analytically. For example, a Gaussian kernel with bandwidth parameter h > 0

leads to k (tl, u) = exp
(
− (tl−u)2

2h2

)
,
∫ a

0
k (tl, u) du = −h

√
π
2

[
erf
(

tl−a√
2h

)
− erf

(
tl√
2h

)]
, and∫∞

a
k (tl, u) du = h

√
π
2

[
1 + erf

(
tl−a√

2h

)]
, where leads to the analytical form pi in the E-step.

Given the hidden variable values pi computed from the E-step, we can plug them into the expected
log-likelihood at the M-step:∑

i:ỹt
i=1

logP(Ỹ T
i = 1, D = di | X = xi,W = wi, T = ti)

+
∑

i:ỹt
i=0

(1− pi) logP(Ỹ T
i = 0, Yi(wi) = 0 | X = xi,W = wi, T = ti)

+
∑

i:ỹt
i=0

pi logP(Ỹ T
i = 0, Yi(wi) = 1 | X = xi,W = wi, T = ti).

From a similar argument as derived above, the expected log-likelihood is equal to:∑
i

pi logP(Yi(wi) = 1 | X = xi)

+
∑
i

(1− pi) log(1− P(Yi(wi) = 1 | X = xi))

+
∑

i:ỹt
i=1

log p(Di(wi) = di | X = xi, Yi(wi) = 1)

+
∑

i:ỹt
i=0

pi log

∫ ∞

ti

p(D(wi) = u | X = xi, Yi(wi) = 1)du,

in which the eventual potential outcome model P(Y (w) = 1 | X = x) and the potential response
time model p(D(w) = d | X = x, Y (w) = 1) can be optimized independently. Notably, in our
experiments, we used Parametric models for delay time modeling in the treated and control groups.
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Figure 4: Overview of CFR-DF Architecture. For the representation block, we use multi-layer neural
networks Φ with ELU activation function to learn representation and each network has two/three
layers with mX units, respectively. Then, we use a single-layer network hY with Sigmoid activation
to achieve P̂ (Y = 1) and a single-layer network hD with SoftPlus sigmoid activation to achieve λ̂.

Algorithm 1 CounterFactual Regression with Delayed Feedback Outcomes (CFR-DF)

Input: Observational data D = {xi, wi, ti, d̃i, ỹi}ni=1 (we set d̃i = −1 for all sub-
jects with ỹi = 0 in training process); hyper-parameters αY and αD; neural networks
{ΦY

0 (·),ΦY
1 (·),ΦD

0 (·),ΦD
1 (·), hD(·), hY (·)}; maximum number of iterations M = 3000; stop-

ping criterion ϵ = 0.002; initiation loss Ls=0 = 9999.9; and iteration counter s = 0.
Output: P̂i(Y = 1) = hY (ΦY (xi), wi), d̂i = λ̂−1

i , λ̂i = hD(ΦD(xi), wi, ti).
Loss function: L = Ỹ · L1

DY + (1− Ỹ ) · L0
DY + αD · LD

IPM + αY · LY
IPM .

CFR-DF:
s← s+ 1;
Ls = Ỹ · L1

DY + (1− Ỹ ) · L0
DY + αD · LD

IPM + αY · LY
IPM ;

while s ≤M and |Ls − Ls−1| > ϵ do
s← s+ 1;
ΦY (xi) = wiΦ

Y
1 (xi) + (1− wi)Φ

Y
0 (xi), ΦD(xi) = wiΦ

D
1 (xi) + (1− wi)Φ

D
0 (xi);

P̂i(Y = 1) = hY (ΦY (xi), wi), λ̂i = hD(ΦD(xi), wi, ti);
LY
IPM = IPM

(
{ΦY (xi)}i:wi=0, {ΦY (xi)}i:wi=1

)
;

LD
IPM = IPM

(
{ΦD(xi)}i:wi=0, {ΦD(xi)}i:wi=1

)
;

L0
DY (xi) = − ln(1− P̂i(Y = 1) + P̂i(Y = 1) exp(−λ̂iti));

L1
DY (xi) = −(ln(P̂i(Y = 1)) + ln λ̂i − λ̂id̃i);

Ls =
1
n ·
∑n

i=1

(
ŷiL

1
DY (xi) + (1− ŷi)L

0
DY (xi)

)
+ αD · LD

IPM + αY · LY
IPM ;

Update {ΦY
0 ,Φ

Y
1 ,Φ

D
0 ,ΦD

1 , hD, hY } ← Adam{Ls};
end while

Hardware used: Ubuntu 16.04.3 LTS operating system with 2 * Intel Xeon E5-2660 v3 @ 2.60GHz
CPU (40 CPU cores, 10 cores per physical CPU, 2 threads per core), 256 GB of RAM, and 4 *
GeForce GTX TITAN X GPU with 12GB of VRAM.

Software used: Python 3.8 with numpy 1.24.2, pandas 2.0.0, pytorch 2.0.0.

A.3.2 HYPER-PARAMETER OPTIMIZATION

In this paper, we adopt an early stopping criterion (ε) to select the best-evaluated iterate for each
model. The hyper-parameters αY and αD are selected from a range of values {1e− 4, 5e− 4, 1e−
3, 5e − 3, 1e − 2, 5e − 2, 1e − 1, 1.00} based on the mean squared error (MSE) of Y (1) on the
training data. We optimize the hyper-parameters in CFR-DF by minimizing the objective loss on
the training data. Taking TOY(mX = 20) as an example, as depicted in Figure 5, we determine the
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Table 5: Optimal Hyper-Parameters.

αY αD

TOY(mX = 5) 0.005 0.1
TOY(mX = 10) 0.01 0.1
TOY(mX = 20) 0.01 0.1
TOY(mX = 40) 0.01 0.1

AIDS 0.01 0.01
JOBS 0.005 0.05

TWINS 0.005 0.01

Table 6: Datasets Used for Evaluation.

No. instances No. features

TOY(mX = 5) 20000 5
TOY(mX = 10) 20000 10
TOY(mX = 20) 20000 20
TOY(mX = 40) 20000 40

AIDS 1156 11
JOBS 3212 17

TWINS 11400 39

hyper-parameters that correspond to the smallest MSE (Ŷ (1)− Y (1))2 on the training data, which
indicates the optimal hyper-parameters for ϵPEHE on TOY(mX = 20). The optimal hyper-parameters
for each dataset can be found in Table 5 in Appendix A.3.2.

A.3.3 DISCUSSION ON THE SCALABILITY TO ARBITRARY FORMS OF TREATMENTS

It should be noted that our work can be naturally extended to arbitrary forms of treatments and has
rigorous theoretical guarantees regarding the identifiability of true HTE in all strata, i.e., E[Y (w) |
X = x] for all w ∈ W . This way, by defining delayed response time D(w) for all w ∈ W similarly
and following a similar argument of our identifiability proof, and substitute Y (0) and Y (1) to Y (w)
for all w ∈ W , the true HTE E[Y (w) | X = x] for all w ∈ W can be identified similarly. Moreover,
in the proposed time-to-event based HTE problem setup with delayed responses, the outcome of
interest has to be binary to ensure well-definiteness. Specifically, an event may either occur or not
occur under any form of intervention (see the discussion in the previous paragraph), i.e., Y (w) = 1
or not Y (w) = 0. It is worth noting that only the former, i.e., Y (w) = 1, may be subject to delayed
response, leading to the ”false negative” samples. For the latter, Y (w) = 0, it is difficult to define a
delayed response because this event never occurs (hence we let D(w) =∞ for Y (w) = 0 ), and we
will never observe ”false positive” samples. To the best of our knowledge, this is the first work in
the field of causal inference to consider the potential delayed response time D(w) from intervention
to outcome, and we theoretically prove the identifiability of true HTE in all strata. Considering the
time it takes for an intervention to have an effect on an outcome, we believe this provides reasonable
motivation in the causal inference community.

A.4 EXTENSION TO NON-BINARY SCENARIO

Our work can be naturally extended to non-binary treatments with the identifiability results of true
HTE in all strata, i.e., E[Y (w) | X = x] for all w ∈ W . By defining delayed response time D(w) for
all w ∈ W similarly and following a similar argument of our identifiability proof, and substitute Y (0)
and Y (1) to Y (w) for all w ∈ W , the true HTE E[Y (w) | X = x] for all w ∈ W can be identified
similarly. Moreover, in the proposed time-to-event based HTE problem setup with delayed responses,
the outcome of interest has to be binary to ensure well-definiteness. Specifically, an event may either
occur or not occur under any form of intervention (see the discussion in the previous paragraph), i.e.,
Y (w) = 1 or not Y (w) = 0. Only the former, i.e., Y (w) = 1, may be subject to delayed response,
leading to the ”false negative” samples. For the latter, Y (w) = 0, it is difficult to define a delayed
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[ ]1e 4, 5 4, 1 3, 5 3, 1 2, 5 2, 1 1, 1.00Y e e e e e ea = - - - - - - -

αY=0.01
αD =0.1 PEHE on TOY (mX=20) 

1.00
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Figure 5: Hyper-Parameter Optimization: The smallest MSE on Train Data implies the best Hyper-
Parameters. The optimal hyper-parameters are αY = 0.01, αD=0.1 for TOY(mX = 20).

response because this event never occurs (hence we let D(w) = ∞ for Y (w) = 0 ), and we will
never observe ”false positive” samples. To the best of our knowledge, this is the first work in the
field of causal inference to consider the potential delayed response time D(w) from intervention to
outcome, and we theoretically prove the identifiability of true HTE in all strata.

A.5 DATASETS AND EXPERIMENTS

A.5.1 DATASETS USED FOR EVALUATION

Synthetic Datasets. Following the data generation process in Section 4.2, we generated data as
follows. The observed covariates are generated from X ∼ N (0, ImX

), where ImX
denotes mX -

degree identity matrix. The observed treatment W ∼ Bern(π(X)), where π(X) = P(W = 1 |
X) = σ(θW · X), θW ∼ U(−1, 1), and σ(·) denotes the sigmoid function. For the eventual
potential outcomes, we generate the control outcome Y (0) ∼ Bern(σ(θY 0 ·X2+1)), and the treated
outcome Y (1) ∼ Bern(σ(θY 1 ·X2 + 2)), where θY 0, θY 1 ∼ U(−1, 1). In addition, we generate the
potential response time D(0) ∼ Exp(exp(θD0 ·X)−1), and D(1) ∼ Exp(exp(θD1 ·X − bD)−1),
where θD0, θD1 ∼ U(−0.1, 0.1), where bD = 0.5 controls the heterogeneity of response time
functions. The observation time is generated via T ∼ Exp(λ), where λ refers to the rate parameter
of the exponential distribution. We set the rate parameter as λ = 1, i.e., the average observation
time is T̄ = λ−1 = 1. Finally, the observed outcome is given as Ỹ T (W ) = W · Y (1) · I(T ≥
D(1))+(1−W ) ·Y (0) · I(T ≥ D(0)), where I(·) is the indicator function. From the data generation
process described above, we sample N = 20, 000 samples for training and 3, 000 samples for testing.
We repeat each experiment 10 times to report the mean and standard deviation of the errors.

Real-World Datasets. In this paper, we use three wide-applied three widely-adopted real-world
datasets: AIDS (https://scikit-survival.readthedocs.io/ (Hammer et al., 1997;
Norcliffe et al., 2023)), JOBS(http://www.fredjo.com/ (LaLonde, 1986; Shalit et al., 2017)),
and TWINS(http://www.nber.org/data/ (Almond et al., 2005; Wu et al., 2022)). In Table
6 we provide details about the datasets used in our evaluation. The AIDS data collected between
January 1996 and January 1997 involved 1,156 patients in 33 AIDS clinical trial units and 7 National
Hemophilia Foundation sites in the United States and Puerto Rico, and was used to study the impact
and effectiveness of antiretroviral therapy on HIV-positive patients. The JOBS benchmark is widely
used in the field of causal inference. It is built upon randomized controlled trials and aims to assess
the effects of job training programs on employment status. The TWINS is derived from all twins born
in the USA between the years 1989 and 1991, and is utilized to assess the influence of birth weight
on mortality within one year.

Covariates X are obtained from AIDS, JOBS, and TWINS. Following the same procedure for
generating synthetic datasets, we generate treatment W , potential outcomes Y (0) and Y (1), potential
response times D(0) and D(1), observation time T and factual outcomes Ỹ T (W ). Then we randomly
split the samples into training/testing with an 80/20 ratio with 10 repetitions.
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Table 7: Performance comparison (MSE ± SD) on synthetic datasets with varying mX .

TOY (mX = 5) TOY (mX = 10)

Method ϵPEHE ϵATE ϵPEHE ϵATE

T-learner 0.442 ± 0.028 0.028 ± 0.014 0.514 ± 0.036 0.028 ± 0.017
CFR 0.441 ± 0.029 0.029 ± 0.015 0.517 ± 0.037 0.025 ± 0.016
SITE 0.568 ± 0.039 0.029 ± 0.025 0.646 ± 0.077 0.026 ± 0.020

Dragonnet 0.457 ± 0.031 0.053 ± 0.037 0.499 ± 0.023 0.028 ± 0.024
CFR-ISW 0.463 ± 0.053 0.030 ± 0.022 0.602 ± 0.084 0.034 ± 0.024
DR-CFR 0.445 ± 0.033 0.040 ± 0.018 0.521 ± 0.044 0.032 ± 0.026

DER-CFR 0.462 ± 0.029 0.037 ± 0.020 0.540 ± 0.037 0.066 ± 0.043
CEVAE 0.590 ± 0.038 0.126 ± 0.028 0.661 ± 0.077 0.122 ± 0.039

GANITE 0.591 ± 0.036 0.149 ± 0.026 0.662 ± 0.075 0.147 ± 0.036

T-DF 0.353 ± 0.057 0.022 ± 0.023 0.432 ± 0.013 0.017 ± 0.014
CFR-DF 0.329 ± 0.022 0.015 ± 0.013 0.404 ± 0.014 0.013 ± 0.009

TOY (mX = 20) TOY (mX = 40)

T-learner 0.593 ± 0.015 0.035 ± 0.014 0.677 ± 0.014 0.041 ± 0.010
CFR 0.588 ± 0.015 0.036 ± 0.017 0.678 ± 0.014 0.043 ± 0.011
SITE 0.716 ± 0.030 0.030 ± 0.017 0.760 ± 0.017 0.041 ± 0.014

Dragone 0.596 ± 0.016 0.034 ± 0.009 0.739 ± 0.021 0.041 ± 0.021
CFR-ISW 0.687 ± 0.033 0.056 ± 0.024 0.763 ± 0.030 0.070 ± 0.031
DR-CFR 0.633 ± 0.032 0.047 ± 0.035 0.754 ± 0.028 0.043 ± 0.022

DER-CFR 0.665 ± 0.030 0.086 ± 0.032 0.754 ± 0.025 0.053 ± 0.043
CEVAE 0.722 ± 0.030 0.098 ± 0.016 0.762 ± 0.028 0.078 ± 0.014

GANITE 0.717 ± 0.029 0.081 ± 0.016 0.762 ± 0.027 0.066 ± 0.015

T-DF 0.529 ± 0.011 0.018 ± 0.013 0.633 ± 0.008 0.018 ± 0.011
CFR-DF 0.498 ± 0.021 0.017 ± 0.010 0.612 ± 0.007 0.012 ± 0.007

A.5.2 MORE EXPERIMENTS ON VARYING FEATURE DIMENSIONS

To evaluate our CFR-DF on a wide range of scenarios, given bD = 0.5, we further tune the number
of features by varying the dimension mX ∈ {5, 10, 20, 40}, named the dataset as TOY (mX = 5),
TOY (mX = 10), TOY (mX = 20), and TOY (mX = 40), respectively.

Performance Comparison. Table 7 presents a comprehensive performance comparison between
our proposed method and the baselines in estimating the Heterogeneous Treatment Effect (HTE)
on the eventual outcome, considering varying feature dimensions. The optimal and second-optimal
performances are indicated as bold and underlined, respectively. Consistent with the observations
from Table 2, our CFR-DF consistently outperforms the baselines, demonstrating its efficacy in
addressing the label noise arising from delayed responses. In contrast, previous methods that do
not consider delayed responses often yield biased estimates of HTE. Additionally, the T-DF method
without using balancing regularization slightly degrades the performance compared to CFR-DF, due
to the inability to resolve the confounding bias from covariate shift. Overall, our method achieves
significant reductions in the ϵPEHE and ϵATE. Specifically, comparing CFR-DF to the optimal
traditional causal method in the ϵPEHE and ϵATE, we observe reductions of 25% and 46% in TOY
(mX = 5), 21% and 48% in TOY (mX = 10), 15% and 43% in TOY (mX = 20), and 10% and
70% in TOY (mX = 40), respectively. These results highlight the superior performance of CFR-DF
compared to the baselines and its scalability to different feature dimensions, further emphasizing its
potential for accurate and robust estimation of HTE in various practical settings.
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