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Abstract

Protein-protein interactions are crucial for drug discovery and understanding bio-
logical mechanisms. Despite significant advances in predicting the structures of
protein complexes, led by AlphaFold3, determining the strength of these interac-
tions accurately remains a challenge. Traditional low-throughput experimental
methods do not generate sufficient data for comprehensive benchmarking or train-
ing deep learning models. Deep mutational scanning (DMS) experiments provide
rich, high-throughput data; however, they are often used incompletely, neglecting
to consider the binding partners, and on a per-study basis without assessing the
generalization capabilities of fine-tuned models across different assays. To address
these limitations, we collected over ten million raw DMS data points and refined
them to half a million high-quality points from twenty-five assays, focusing on
protein-protein interactions. We intentionally excluded non-PPI DMS data pertain-
ing to intrinsic protein properties, such as fluorescence or catalytic activity. Our
dataset meticulously pairs binding energies with the sequences and structures of all
interacting partners using a comprehensive pipeline, recognizing that interactions
inherently involve at least two proteins. This curated dataset serves as a founda-
tion for benchmarking and training the next generation of deep learning models
focused on protein-protein interactions, thereby opening the door to a plethora of
high-impact applications including understanding cellular networks and advancing
drug target discovery and development.

1 Introduction

Protein-protein interactions (PPI) represent a vital component of the cellular language, mediating
communication within and between cells [1, 2]. The strength of these interactions is commonly
measured experimentally as the binding free energy, denoted ∆G, or referred to as binding affinity.
In antibody drug discovery, a primary optimization goal is to enhance affinity towards desired targets
(affinity maturation) while reducing affinity towards non-desired targets. For example, a broad-
spectrum neutralizing antibody drug should bind strongly to prevalent variants of COVID-19 virus
proteins to prevent immune escape, yet it should not be polyreactive [3, 4].

Despite its importance, progress in predicting binding affinity is limited by the scarcity of publicly
available data from low-throughput biophysical experiments. While high-throughput techniques such
as Yeast Two-Hybrid and affinity purification-mass spectrometry (AP-MS) provide extensive binary
PPI data, these methods only indicate whether proteins bind, lacking details on the strength of the
interactions [5, 6]. Additionally, due to the nature of AP-MS, binary PPI data may include pairs
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that do not directly interact but are connected through a third protein [7]. Another high-throughput
method, deep mutational scanning (DMS), maps genotype to phenotype by combining screening
techniques such as fluorescence-activated cell sorting (FACS) with next-generation sequencing (NGS)
[8, 9]. This method can produce quantitative fitness scores for millions of mutant proteins sequenced
by NGS. While DMS has been used to study a wide range of protein properties, including stability and
fluorescence, our dataset exclusively includes studies examining protein-protein interactions, where
the fitness score correlates with PPI binding affinity. Unlike previous protein-related datasets that only
include information about the mutated protein [10, 11, 12, 13], our dataset explicitly incorporates all
interacting proteins. The binding affinity between protein A and B differs from that between A and
C, and proteins rarely interact with only a single partner. Predicting the binding affinity based on a
single protein, such as protein A alone, is often not meaningful; models trained on such incomplete
data fail to capture residue-level interactions and struggle to generalize. Including information about
all interacting partners enables the training of a more generalizable PPI model across different assays.
Furthermore, in some studies, the binding affinities between a mutant protein and multiple distinct
interaction partners are individually measured [14]. Previously, this situation could result in multiple,
potentially conflicting affinity data points for each mutant. Now, with complete partner information
available, these data points become invaluable, enabling models to discern the intricate details of
interaction specificity.

Currently, DMS results are predominantly used by sequence-based methods, whereas structure-
based methods, traditionally preferred for estimating protein-protein binding energy, rarely leverage
such data. To enable structure-based models to also benefit from DMS results and to facilitate the
development of structure-based deep learning models, thus ensuring a level playing field between
structure and sequence-based approaches, we map the wild-type sequences documented in source
papers to their corresponding crystallized complex structures in the Protein Data Bank [15] through a
comprehensive pipeline. For sequences that do not precisely match with the sequences in the crystal
structures, we employ homology modeling using BioPython and OpenMM [16, 17]. Additionally, to
enable our dataset to support baseline models that require both the wild-type and mutant structures,
we use FoldX [18, 19] to generate the complex structure for each mutant.

In BindingGYM, we have assembled the largest collection of DMS-based PPI data available, gathering
over ten million raw DMS data points and refining them into half a million high-quality data points
from twenty research papers. Each entry includes complete data: the binding energy score, sequences
of all interacting proteins, and the structure of the entire complex. This completeness allows our
dataset to support a broad range of modeling approaches, including both sequence-based and structure-
based methods. Additionally, we have introduced two novel and practically important data-splitting
strategies: ’Central vs. Extremes Split’ and ’Inter-Assay Split’. The first strategy trains models on
entries with middle-range binding energies, from the 10th to the 90th percentile, and evaluates them
on the extremes, while the second strategy utilizes data from multiple assays to train models that
predict outcomes in unseen assays. Similar to how the ImageNet dataset [20] has been foundational
in advancing deep learning models for computer vision, and the high-throughput SELEX dataset
[21, 22] in training AlphaFold3 for protein-DNA structure prediction [23], BindingGYM is poised to
drive significant advancements in the field of protein-protein interactions. All scripts and data are
freely accessible at https://anonymous.4open.science/r/BindingGYM-602D/.

2 Related Work

Protein self properties Several datasets are available to evaluate model performance on a range
of protein properties, including secondary and tertiary structures, catalytic activity, stability, and
expression. Early work, such as TAPE [11], focused primarily on structural properties, designing
tasks for secondary structure prediction, contact prediction, and overall structure, as well as two
engineering properties: fluorescence and stability. Meanwhile, FLIP [12] introduced multiple splitting
schemes for evaluating protein engineering properties but limited its assessments to results from three
assays, focusing solely on sequence-based models.

ProteinGYM [13] provides a comprehensive collection of DMS and clinical variants data. It standard-
izes measurements under a single metric, the fitness score, which is effective for zero-shot evaluation
of models across a broad spectrum of protein properties. However, its fine-tuning capabilities are
confined to individual assays, lacking generalization to test cross-assay performance for fine-tuned
models. Importantly, while ProteinGYM includes binding-related assay results, it only provides data
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Table 1: Dataset Comparison: BindingGYM offers the most extensive collection of quantitative
protein-protein interaction data currently available. Additionally, each data is meticulously paired
with its corresponding protein complex structure, facilitating comparisons between sequence-based
and structure-based methods. Detailed definitions of each column are provided in SI. HT: High-
throughput Assay, C-Structure: Complex structure, PGYM: ProteinGYM, PW: ProtienWorkshop

Dataset # of HT C-Structure Quanti ML Multichain Design Usecase
data Available tative ready support

BindingGYM 10M ✓ ✓ ✓ ✓ ✓ protein-protein interaction
SKEMPI [30] 7K ✗ ✓ ✓ ✗ ✓ protein-protein interaction
STRING [35] 300M ✓ ✗ ✗ ✗ ✗ protein network
PGYM [13] 2.7M ✓ ✗ ✓ ✓ ✗ general protein fitness
FLIP [12] 320K ✓ ✗ ✓ ✓ ✗ general protein fitness
TAPE [11] 100K ✗ ✗ ✓ ✓ ✗ protein representation learning
PW [38] 2.3M ✓ ✗ ✓ ✓ ✗ protein representation learning
FLAb [39] 10K ✗ ✗ ✓ ✓ ✗ therapeutic antibody design

for the protein undergoing mutation, neglecting its interacting partners. Additionally, critical data
are often missing; for instance, although [14] conducted screenings for the KRAS protein against
seven different proteins, ProteinGYM includes results for only one. Similarly, while [24, 25] contain
multiple mutations, ProteinGYM only includes data for single mutations.

Low throughput quantitative PPI dataset Due to the importance of protein-protein interactions,
many datasets have been carefully curated, collecting binding affinity measurements from hundreds
of papers [26, 27, 28, 29]. However, constrained by the low throughput of conventional biophysical
methods, the most comprehensive dataset, SKEMPI [30], comprises only 7,085 data points and is
heavily biased toward Alanine substitutions. BindingGYM can be considered the next-generation
SKEMPI dataset; like SKEMPI, it includes the full complex structure with binding score but provides
orders of magnitude more data, enabling the training of advanced deep learning models, as listed in
Table 1 It is important to note that the DMS score does not directly equal ∆G but correlates with
it. Consequently, the absolute values of DMS scores are not comparable across different assays. To
address this, proper grouping of training samples is crucial, and methods such as learning-to-rank
techniques [31, 32, 33] should be employed.

High throughput binary PPI dataset Binary PPI provides protein network information at a
proteome scale, which is invaluable for identifying key proteins underlying diseases or catalytic
pathways. High-throughput methods yield binary (bind/non-bind) data for various model systems,
with databases such as STRING and BioGRID containing millions of binary PPI entries [34, 35].
However, the scores in these databases reflect confidence levels in the existence of interactions rather
than their strength. Consequently, models trained on this binary data tend to focus on protein-level
evolution instead of residue-level physics, which are crucial for generalizing predictions of mutational
effects [36]. While datasets like those in [37] exist, BindingGYM distinguishes itself by specifically
focusing on mutational effects, rather than broad proteomic network predictions.

3 The BindingGYM dataset

3.1 Data collection

We collected over ten million DMS data points for 41 unique protein-protein complexes from twenty
research papers, specifically focusing on protein-protein interactions. The complete list can be found
in the supplementary material. For each paper, we manually traced the raw NGS data whenever
possible, checked the data distribution to ensure consistency with the conclusions of the original
papers, and corrected any errors introduced during data processing. For example, we identified and
corrected misaligned entries in the processed data provided by Heredia et al. [40] by consulting the
original article and its raw data.

Unlike ProteinGYM [13], which uses UniProt [41] sequences as references, we ensure our reference
sequences are those actually used in the experiments by verifying against the original articles,
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Figure 1: A, left: When the interacting partner is not modeled as in most datasets focusing on protein
fitness, the same protein can have different binding scores across various assays, leading to confusion.
Right: Modeling the full complex, as in BindingGYM, clarifies differences in binding scores, aiding
the learning of the underlying physics of protein-protein interactions. B, We have implemented five
different splits to examine model generalization capabilities, notably ’central vs. extremes split’
and ’inter-assay split’ to mimic real-world scenarios. C, Ten baseline models are included across
three categories: structure-based, MSA-based, and sequence-based. D, Six evaluation metrics from
two groups, binary and non-binary, are used. ’UnbiasHit@10’ measures the difference between the
proportion of top ten scored mutants in the top 10% and those in the bottom 10%.
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appendices, and source codes. This required significant manual effort to identify the actual plasmids
and reference sequences used for screening experiments.

In BindingGYM, we find the closest complex structures in the PDB for articles that contain DMS
data but lack complex structures, facilitating the application of structure-based methods. When
discrepancies arose between PDB structures and actual reference sequences, we employed homology
modeling [17, 16] to align the structures with the reference sequences. To support baseline models
that require both wild-type and mutant structures, we used FoldX [18, 19] to generate the complex
structure for each mutant. The FLIP dataset [12] comprises data from three papers, including one on
binding interactions that we have incorporated into our study. Three assays [42, 43, 44] classified
as binding-related in ProteinGYM are not actually related to binding and were therefore excluded.
Additionally, we noted dataset coverage discrepancies: the original paper [14] reports mutant proteins
against seven targets, whereas ProteinGYM includes only one, and covers only single mutations
while multiple mutations are documented [24, 25]. We also developed a refined dataset with 508,962
data points, by setting higher NGS count thresholds and applying additional filters, as detailed in the
supplementary materials, to facilitate model benchmarking.

3.2 Data splits

As noted in [12, 13], the choice of data splitting scheme is crucial for a fair comparison between
models. Random splits often overestimate model generalization because realistic objectives typically
involve designing stronger-binding mutants, extrapolating to unexplored fitness landscapes, or ap-
plying models to new proteins. Consequently, alternative splitting schemes are necessary to ensure
more accurate evaluations. As depicted in Figure 1, we have implemented five distinct data splitting
schemes. The first, ’Conti Split’, separates continuous blocks in sequence space for both training and
testing. The second, ’Mod Split’, assigns every n-th residue in sequence space to the test set. The
third, ’Rand Split’, represents the commonly used random split. These initial three schemes are also
used in ProteinGYM.

The fourth scheme, ’Central vs. Extremes Split’, sorts the entries by binding score, using the middle
80% for training, while the lowest and highest 10% form the test set. This approach aligns with the
common optimization goal of using existing data to design variants with even higher scores. Including
the lowest 10% helps reduce bias in evaluation and prevents the trained model from indiscriminately
predicting high scores for new mutants.

The fifth, ’Inter-Assay Split’, is crucial, where a set of assays is used for training and a different set
of assays for testing. This split evaluates the models’ ability to generalize to new assays, which holds
significant practical significance.

3.3 Baseline models

We include ten baseline models across four categories. Language-based models are notably accessible,
requiring only protein sequences as input. These include ProGen2, ESM1v, and ESM2 [45, 46, 47],
which exclusively leverage protein sequence data.

Multi-sequence alignment (MSA)-based models such as EVE, Tranception, and TranceptEVE [48, 49,
50] extract evolutionary information from sequence databases. The latter two models also incorporate
elements from protein language models, thereby enhancing their prediction capabilities.

Additionally, our dataset includes the structures of protein complexes, supporting the use of structure-
based models such as ESM-IF1, ProteinMPNN, PPIformer, and SaProt [51, 52, 53, 54], which
leverage these structures to predict protein-protein interactions. With rapid advancements in deep
learning for structure prediction [55, 56, 23], the availability of structural data for protein monomers
and complexes is expanding, enhancing the applicability of these structure-based models.

For each protein-protein pair, the score for each mutant is defined as the log-ratio of the probability
of the mutant to the wild type, log pmut

pwt
following [13, 57].

3.4 Metrics

We use six metrics to assess model performance: Spearman, AUC, MCC, NDCG, AP, and a specially
designed metric called "UnbiasHit@10". AUC (Area Under the ROC Curve) measures the model’s
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Table 2: Zero-shot performance on predicting mutational effects on protein-protein interactions.

Category Model Spearman AUC MCC NDCG AP UnbiasHit@10

Structure-based ProteinMPNN 0.40 0.69 0.15 0.72 0.22 0.30
ESM-if1 0.34 0.66 0.14 0.70 0.20 0.22
PiFold 0.34 0.66 0.14 0.70 0.20 0.14
ByProt 0.28 0.62 0.10 0.67 0.17 0.02
PPIformer 0.19 0.61 0.06 0.59 0.14 0.04
SaProt 0.27 0.64 0.10 0.67 0.18 0.22

Protein ProGen2 0.25 0.61 0.09 0.66 0.16 0.14
Language-based ESM1v 0.26 0.62 0.08 0.66 0.16 0.20

ESM2 0.29 0.62 0.09 0.67 0.17 0.17
ESM3 0.27 0.61 0.09 0.66 0.17 0.06

MSA-based EVE 0.32 0.64 0.12 0.69 0.20 0.28

MSA+Protein Tranception 0.32 0.65 0.12 0.69 0.20 0.31
Language-based TranceptEVE 0.34 0.66 0.13 0.69 0.20 0.28

ability to discriminate between mutants with higher than binding affinity than the wild type and
mutant with lower binding affinity. MCC (Matthews Correlation Coefficient) evaluates the quality of
binary classifications, useful in imbalanced datasets. NDCG (Normalized Discounted Cumulative
Gain) assesses the ranking quality of the predictions, valuing the order of relevance, we set the
threshold at 10%, the same as [13]. AP (Average Precision) calculates the average precision value
across different recall levels, highlighting precision-recall trade-offs. "UnbiasHit@10" is useful
in practical scenarios where typically only about ten molecules undergo experimental testing with
low-throughput, high-accuracy methods. This metric measures the difference between the proportion
of the top 10 scored mutants that fall within the top 10% of actual performance and those that fall
within the bottom 10%. This metric simulates the situation where we propose ten mutants with the
highest predicted binding affinity for experimental validation.

4 Experiments

4.1 Evaluation of zero-shot performances

Due to the high costs associated with setting up experimental assays to quantitatively measure the
binding energy between specific protein-protein pairs, zero-shot capability is crucial for discovering
potential binders for a protein of interest (POI), studying the mutational effects on a POI, and
designing novel binders to a target protein. In this section, we benchmark ten baseline models
spanning three categories: structure-based, protein language based, and multiple sequence alignment
(MSA) based. Unlike previous studies where predicted monomer structures from AlphaFold were
used [13], we input full protein complex structures into our structure-based methods.

Table 2 indicates that models leveraging both evolutionary information from MSA and features from
protein language models across a broader sequence database outperform those using either source
alone. A structure-based method, ProteinMPNN, shows the best performance on our dataset. We
anticipate that integrating evolutionary and physical interaction data more effectively could further
enhance zero-shot performance.

4.2 Evaluation of intra-assay finetuned performances

In protein optimization, where some experimental data for candidate protein molecules are available,
fine-tuning is critical to enhance desirable properties, such as increased binding to target proteins
or reduced binding to undesired targets. Due to space constraints, we present the results for two
representative intra-assay split schemes here and provide additional results for two other splits in the
supplementary materials.

For finetuning all baseline models, we employ learning-to-rank techniques [31, 32], ensuring uni-
formity across experiments by using the same batch size for each model, with every batch drawn
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Table 3: Performance of fine-tuned models on predicting mutational effects in protein-protein
interactions, evaluated over five-fold random splits.

Category Model Mutational Depth Spearman AUC MCC NDCG AP

Structure-based ProteinMPNN-R ALL 0.58 0.78 0.25 0.78 0.31
<3 0.51 0.75 0.20 0.74 0.28
>=3 0.54 0.80 0.31 0.80 0.38

ProteinMPNN ALL 0.75 0.87 0.45 0.90 0.51
<3 0.73 0.87 0.43 0.88 0.49
>=3 0.63 0.85 0.45 0.88 0.50

Protein ESM2-R ALL 0.36 0.68 0.11 0.69 0.19
Language-based <3 0.29 0.65 0.08 0.65 0.17

>=3 0.33 0.69 0.14 0.71 0.23
ESM2 ALL 0.76 0.88 0.45 0.90 0.53

<3 0.74 0.88 0.45 0.89 0.52
>=3 0.66 0.86 0.43 0.87 0.52

OHE OHE ALL 0.76 0.89 0.49 0.90 0.56
<3 0.74 0.88 0.49 0.89 0.55
>=3 0.66 0.87 0.45 0.88 0.52

Table 4: Performance of fine-tuned models on predicting mutational effects in protein-protein
interactions, evaluated over five-fold contig splits.

Category Model Mutational Depth Spearman AUC MCC NDCG AP

Structure-based ProteinMPNN-R Single 0.22 0.61 0.07 0.61 0.16
ProteinMPNN Single 0.50 0.71 0.20 0.74 0.26

Protein ESM2-R Single 0.18 0.60 0.06 0.63 0.14
Language-based ESM2 Single 0.46 0.67 0.12 0.71 0.18

OHE OHE Single -0.15 0.44 0.00 0.45 0.10

exclusively from the same assay. Specifically, ESM2 and its randomly initialized variant, ESM2-R,
are finetuned using LoRA [58] to mitigate overfitting. For further details, refer to the supplementary
materials.

Table 3 shows the results for the random split, which is commonly used as a sanity check to verify
that the dataset is informative and that the experimental results are learnable, not arbitrary. We
randomly divided each assay’s data points into five folds. As demonstrated in Table 3, One-hot
encoding (OHE) successfully learns from randomly split data. This confirms the reasonableness of the
experimental outcomes and aligns with the established understanding that the majority of mutations
do not significantly affect the binding score [30]. Once the effects of key mutations are learned,
predicting outcomes for mutants with additional non-impacting mutations becomes straightforward.

Structure-based methods and protein language-based methods, such as ESM2, achieve similar
performances to OHE, with a Spearman correlation coefficient of 0.76, which approaches the upper
limit of what the quality of DMS data allows. Notably, when initialized with random weights, both
ProteinMPNN and ESM2 perform worse than One-hot encoding (OHE), likely due to overfitting.
Moreover, ESM2, with significantly more parameters, performs even worse.

The second split demonstrated here is the ’Contig Split’, where mutated residues are grouped into
five contiguous segments in sequence space. We restrict the mutational depth to single, the same as
ProteinGYM, to prevent information leak. This arrangement presents a significant challenge as there
is no overlap in mutated residues between any two groups, forcing the model to learn transferable
features. As shown in Table 4, One-hot encoding (OHE) fails to identify any transferable features.
Pre-training proves to be advantageous; both ProteinMPNN and ESM2 significantly outperform their
counterparts initialized with random weights.
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Table 5: Performance of fine-tuned models on predicting mutational effects in protein-protein
interactions, evaluated over five-fold inter-assay splits.

Category Model Mutational Depth Spearman AUC MCC NDCG AP

Structure-based ProteinMPNN-R ALL 0.16 0.57 0.05 0.59 0.14
<3 0.11 0.56 0.04 0.56 0.15
>=3 0.19 0.60 0.09 0.63 0.17

ProteinMPNN ALL 0.42 0.70 0.16 0.72 0.23
<3 0.43 0.70 0.16 0.72 0.22
>=3 0.30 0.70 0.17 0.69 0.25

Protein ESM2-R ALL 0.09 0.55 0.03 0.57 0.13
Language-based <3 0.09 0.55 0.02 0.56 0.13

>=3 0.05 0.54 0.03 0.55 0.14
ESM2 ALL 0.30 0.62 0.10 0.67 0.18

<3 0.31 0.61 0.08 0.68 0.17
>=3 0.15 0.60 0.08 0.60 0.18

OHE OHE ALL 0.00 0.50 0.00 0.00 0.10
<3 0.00 0.50 0.00 0.00 0.10
>=3 0.00 0.50 0.00 0.00 0.10

4.3 Evaluation of inter-assay finetuned performance

A key contribution of our work is the introduction of the inter-assay split, where assays are clustered
based on the sequences of the mutated proteins into five distinct groups. Data from one group are
used exclusively for testing, while data from the remaining four groups are used for training. This
approach aims to evaluate the generalizability of models to unseen protein-protein pairs, thereby
improving zero-shot performance in future PPI experiments.

We analyzed three levels of mutational depth: ALL, <3, and >=3, as presented in Table 5. Generally,
mutants with more mutations are harder to predict than those with fewer mutations. One-hot encoding
(OHE) struggles to transfer knowledge to unseen assays. Random initialization of weights for
ProteinMPNN and ESM2 reduces performance, yet these models manage to learn some transferable
features. ProteinMPNN achieves the best results, showing a slight improvement from zero-shot
performance. Although the improvements are marginal, we anticipate that with more sophisticated
model designs, improved quality filtering of existing data, and the continued accumulation of more
data, as shown in protein stability prediction[59], we may observe a scaling law effect: as data volume
increases, the performance of fine-tuned models also rises.

4.4 Comparison of model performance in zero-shot and finetuned setting

Using a five-fold inter-assay split allows us to generate predictions for all data, enabling a direct
comparison between the performance of inter-assay fine-tuned models and their original zero-shot
counterparts. As depicted in Fig 2, each dot represents an assay; in most cases, the fine-tuned models
outperform the zero-shot models. For this analysis, we have set the performance benchmark of
models initialized with random weights to zero in the zero-shot setting. ProteinMPNN demonstrates
superior generalization compared to others.

It is noteworthy that the two outlier points for ProteinMPNN, which fall below the diagonal line,
are derived from the same study on protein co-evolution [60]. This suggests that these instances
may involve more complex changes in interactions. For example, a mutation in protein A that is
harmful in the original interaction environment might become benign or neutral when a reciprocal
mutation occurs in protein B. Such dynamical change of protein structures underscore the complexity
of protein-protein interactions and highlight the need for models that can adequately account for these
protein dynamics.
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Figure 2: Each dot represents an assay. Finetuned models perform better than zero-shot, especially
true for ProteinMPNN, where the dots lie above the diagonal line.

5 Conclusions and Future Work

We have curated BindingGYM, the largest database of quantitative protein-protein interactions to
date, highlighting the importance of modeling entire protein complexes. Each assay is meticulously
paired with its corresponding complex structure. Five data split schemes were introduced, including
two designed to simulate real-world scenarios: the ‘Central vs. Extremes Split’ for optimizing mutant
binding and the ‘Inter-Assay Split’ for generalizing to new protein pairs. Our evaluation framework
includes ten baseline models and six key metrics. Despite the strengths of structure-based models,
which outperform sequence- or MSA-based methods and demonstrate superior generalization, there
is still room for improvement. Current limitations include noise in DMS-generated data and the
relatively limited number of protein-protein pairs studied. Nevertheless, structure-based approaches
offer insights into transferable residue-level interactions from numerous mutations.

Looking ahead, as innovations in DMS experiments continue and next-generation sequencing becomes
more affordable, the volume of available data will increase. We plan to update the BindingGYM
database annually to ensure it remains comprehensive, setting the stage for a unified effort to decode
the complex language of protein-protein interactions.
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A Appendix

A.1 Broader societal impacts

Our research primarily focuses on the fundamental biophysical aspects of protein-protein interactions
(PPI), which, by their nature, are not expected to directly result in negative societal impacts. While
the development of improved PPI models could theoretically be applied in various contexts, including
the design of proteins with potential biosecurity concerns, our study does not produce any new
models specifically tailored for such applications. It is important, however, to acknowledge that any
advancement in protein design technology carries potential dual-use concerns. Consequently, we
advocate for responsible research and adherence to ethical standards to prevent misuse of scientific
discoveries in this field.

A.2 Detailed definitions of each column in Table 1

• # of data: Represents the total number of data points in the dataset, each corresponding to a
unique entry derived from deep mutational scanning experiments, which capture variations
in protein sequences and their respective binding energies.

• HT (High Throughput): Indicates whether the data was generated using high-throughput
techniques. A ‘Yes’ suggests that the dataset includes a large volume of data collected
through automated processes, enabling comprehensive analysis at scale. A ‘No’ indicates
traditional, lower-scale data collection methods.

• C-Structure Available: Specifies whether the crystal structure of the protein complex is
available for the corresponding data entry. ‘Yes’ indicates that the complex structure data is
available. ‘No’ means the complex structure is not available.

• Quantitative: Describes whether the data includes quantitative measurements of binding
energies. ‘Yes’ indicates that the data provides numerical values representing binding
affinities. ‘No’ suggests the data is qualitative or binary.

• ML Ready: Indicates if the data has been pre-processed and formatted to be directly used in
machine learning models. ‘Yes’ means that the data is cleaned, normalized, and structured,
making it immediately suitable for training predictive models. ‘No’ means that additional
preprocessing might be required.

• Multichain Support: Indicates whether the dataset supports modeling of multiple protein
chains. ‘Yes’ signifies that the data includes entries involving complex multichain interac-
tions, which are essential for studying protein interactions. ‘No’ suggests that the dataset
only supports modeling of single protein chains.

• Design Usecase: Describes the specific applications for which the dataset is designed,
such as studying protein-protein interactions, protein networks, general protein fitness,
protein representation learning, and therapeutic antibody design. This column highlights the
potential research and development areas that can benefit from the dataset.

A.3 Training Details

A.3.1 Data Partitioning

• Intra_random: Data is randomly divided into 5 folds using the KFold method from
sklearn.model_selection, with a set seed of 42 to ensure reproducibility.

• Intra_contig: For assays with single-point mutation data count ≥ 100, the data is continu-
ously segmented into 5 sections along the sequence, striving to ensure each segment has a
similar amount of data.

• Intra_mod: For assays with single-point mutation data count ≥ 100, the data is divided
into 5 segments based on the position modulo 5 (pos % 5).

• Intra_two_extreme: The bottom 10% and top 10% of the data are used as the test set, with
the remaining data serving as the training set.

• Inter_assay: The target sequences are clustered using MMseqs2 [61] with a stringent
sequence identity cutoff of 25%, to ensure meaningful generalization across different assays.
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A.3.2 Training

• ProteinMPNN & ESM2: All models are trained using the AdamW optimizer (learning
rate = 0.001, weight decay = 0.05, epsilon = 0.00001) combined with the ListMLE loss
[32]. Training proceeds for 100 epochs with an early stopping patience of 3 epochs. During
training, all mutation positions are masked in the amino acids, and the predicted value is
calculated as the difference between the sum of mutant logit probabilities and wild-type
logit probabilities (

∑
(mt_logit_probs)−

∑
(wt_logit_probs)).

• OHE (One-Hot Encoding): Each sequence is transformed into a one-hot encoded feature
matrix of dimensions (seq_len × 20), where seq_len is the length of the sequence and 20
represents the number of amino acid types. A Ridge regression model with an alpha value
of 0.01 is then trained to directly predict the DMS scores, following methodologies similar
to those described in [51].

• OHE-AA (One-Hot Encoding of Amino Acid Mutations): Each sequence is encoded by
comparing mutations to the wild-type (WT) sequence, forming a 20x20 matrix for one-hot
encoding (e.g., a mutation from A to E at position 2 is encoded with ’1’ at the respective
position in the matrix). This encoded data is then used to train a Ridge regression model
with an alpha value of 0.01 to directly predict DMS scores.

A.4 Total Amount of Compute and Type of Resources Used

The computational resources used for training and analysis comprised one NVIDIA A100 GPU, 48
CPUs, and 1024 GB of RAM.

A.5 Ethical Considerations and Data Handling

• Consent for Data Usage: [Yes] Consent for using the data in the BindingGYM dataset
was obtained through appropriate channels. The data primarily comprises publicly available
deep mutational scanning (DMS) results, which are published in scientific literature. For
any unpublished or privately sourced data, explicit consent was secured from the original
contributors, ensuring compliance with ethical standards and data usage policies.

• Personal Information and Offensive Content: [No] The BindingGYM dataset does not
include any personally identifiable information.

A.6 Licensing Information

• Usage License: [Yes] The BindingGYM dataset is made available under the MIT License.
This license permits reuse, distribution, and modification for both academic and commer-
cial purposes, provided that proper credit is given to the original authors and the dataset.
The MIT License is chosen for its permissiveness in encouraging open and collaborative
scientific research, facilitating the widespread use and adaptation of the dataset in various
biotechnological and pharmaceutical applications.
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Table 6: Zero-shot std error, computed based on 1000 bootstrap samples from the set of assays.

Category Model Spearman Spearman Std. error AUC AUC Std. error

Structure-based ProteinMPNN 0.40 0.03 0.69 0.02
ESM-if1 0.34 0.04 0.66 0.02
PiFold 0.34 0.03 0.66 0.02
ByProt 0.28 0.04 0.62 0.02
PPIformer 0.19 0.04 0.61 0.02
SaProt 0.27 0.04 0.64 0.02

Protein ProGen2 0.25 0.04 0.61 0.02
Language-based ESM1v 0.26 0.04 0.62 0.02

ESM2 0.29 0.04 0.62 0.02
ESM3 0.27 0.05 0.61 0.03

MSA-based EVE 0.32 0.06 0.64 0.03

MSA+Protein Tranception 0.32 0.04 0.65 0.02
Language-based TranceptEVE 0.34 0.05 0.66 0.02

A.7 Zero-shot performance with standard error bars

To assess the reliability and consistency of our zero-shot predictions, we computed standard error
bars using a bootstrapping approach, as in Table 6. This method involved generating 1000 bootstrap
samples from each assay to estimate the variability and confidence intervals around the predicted
values.

A.8 Finetuned results for continuous split

Table 7 presents the finetuning results for baselines using the continuous split, where mutations within
certain contiguous segments of the sequence space are designated for training, with the remaining
segments used for testing. The effectiveness of the finetuned models is assessed on these test sets.

ProteinMPNN displayed the best finetuned results, underlining the advantage of pre-training; con-
versely, ProteinMPNN with randomly initialized weights showed inferior performance. One-hot
encoding, including OHE-AA, performed poorly, demonstrating limited ability to generalize to
previously unseen regions.

Table 7: Comparison of finetuning performance for continuous split

Category Model Mutational Depth Spearman AUC MCC NDCG AP

Structure-based ProteinMPNN-R Single 0.22 0.61 0.07 0.61 0.16
ProteinMPNN Single 0.50 0.71 0.20 0.74 0.26

Protein ESM2-R Single 0.18 0.60 0.06 0.63 0.14
Language-based ESM2 Single 0.46 0.67 0.12 0.71 0.18

OHE OHE Single -0.15 0.44 0.00 0.45 0.10
OHE-AA Single 0.12 0.55 0.02 0.59 0.13
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A.9 Finetuned results for modulo split

Table 8 demonstrates that one-hot encoding fails to generalize under the modulo split, while both
ESM2 and ProteinMPNN achieve similar performance. This similarity likely arises because adjacent
amino acids significantly influence the mutational effects on any specific amino acid.

Table 8: Comparison of finetuning performance for modulo split

Category Model Mutational Depth Spearman AUC MCC NDCG AP

Structure-based ProteinMPNN-R Single 0.26 0.63 0.08 0.63 0.16
ProteinMPNN Single 0.53 0.73 0.20 0.73 0.25

Protein ESM2-R Single 0.18 0.57 0.04 0.62 0.14
Language-based ESM2 Single 0.52 0.70 0.17 0.74 0.22

OHE OHE Single -0.05 0.46 0.01 0.49 0.10
OHE-AA Single 0.19 0.57 0.04 0.65 0.14

A.10 Finetuned results for central vs extremes split

Table 9 illustrates that all baselines provide reasonable predictions in the Central vs Extremes split,
where the strongest and weakest binders form the test set. This effectiveness largely stems from the
nature of DMS assays, where the test set consists of mutants at the two extremes, often with multiple
mutations. Since individual mutations present in test set mutants are likely already encountered in the
training set, models are effectively able to identify mutants with improved binding affinities. But as
shown in Table 7, 8 and 5 in the main text, generalizing to unseen positions or new assays is still very
challenging.

Table 9: Comparison of finetuning performance for central vs extremes split

Category Model TopHit@10 BottomHit@10 UnbiasHit@10

Structure-based ProteinMPNN-R 0.54 0.13 0.41
ProteinMPNN 0.82 0.02 0.80

Protein ESM2-R 0.55 0.10 0.45
Language-based ESM2 0.80 0.02 0.78

OHE OHE 0.73 0.02 0.71
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A.11 Distribution of DMS score by assay

In Figure 3, we present the histograms showing the distribution of DMS scores for each assay
included in the benchmark. These distributions are crucial for understanding the variability captured
by different assays. The experimental setups vary significantly among assays, leading to notable
differences in score distributions. In certain cases, the histogram peaks sharply at a specific value,
indicating a high frequency of scores around that point, which may suggest the score for the wild
type. Conversely, other assays exhibit bimodal distributions, where two distinct peaks suggest the
presence of two different predominant groups. Moreover, the range of scores varies across assays,
reflecting differences in the magnitude of mutational impacts or in the sensitivity of the assays. To
accommodate these differences effectively and improve the predictive accuracy of our models, we
employ ranking-based machine learning techniques, such as learning to rank. This approach allows
us to handle the heterogeneity between assays and learn meaningful interactions from the relative
rankings of mutations within each specific assay context.

Figure 3: DMS score distribution.
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A.12 Pairwise target sequence similarity

Some assays involve the same types of proteins, such as KRAS and its binding partners, leading to
shared similarities among entries. While a model trained on one such assay may perform well on
others, our primary interest lies in the model’s ability to generalize to new targets. Therefore, we
cluster target sequences and assess the inter-assay fine-tuned results exclusively across these clusters.
Figure 4 illustrates the pairwise sequence similarity among all assays, highlighting potential overlaps
and distinctions.

Figure 4: Target sequence similarity across all assays.
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A.13 Source and Target Amino Acids

Figure 5 displays the frequency of each specific amino acid being mutated to every other specific
amino acid.

Figure 5: Distribution of amino acid mutations.
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A.14 List of data sources

Various studies on protein functions and interactions have been compiled, gathering diverse protein-
protein interaction data, as in Table 10. These studies cover a wide range of protein types, including
immunoglobulins, chemokine receptors, cytokine receptors, growth factors, regulatory proteins, and
virus-related proteins. Additionally, the data includes interactions of the same protein with different
other proteins, helping models understand different interaction regions of the same protein and
enhancing the model’s generalization ability.

Table 10: List of data sources

Protein1 Protein2 Title DOI

KRAS PICK3CG-
RBD

The energetic and allosteric landscape for
KRAS inhibition[14]

10.1038/s41586-023-
06954-0

KRAS RAF1 The energetic and allosteric landscape for
KRAS inhibition[14]

10.1038/s41586-023-
06954-0

KRAS RAF1-
RBD

The energetic and allosteric landscape for
KRAS inhibition[14]

10.1038/s41586-023-
06954-0

KRAS RALGDS-
RBD

The energetic and allosteric landscape for
KRAS inhibition[14]

10.1038/s41586-023-
06954-0

KRAS SOS1 The energetic and allosteric landscape for
KRAS inhibition[14]

10.1038/s41586-023-
06954-0

KRAS DARPinK27 The energetic and allosteric landscape for
KRAS inhibition[14]

10.1038/s41586-023-
06954-0

CD19 FMC63 Retargeting CD19 Chimeric Antigen Re-
ceptor T Cells via Engineered CD19-
Fusion Proteins[24]

10.1021/acs.molpharmaceut.9b00418

CXCR4 CXCL12 Mapping Interaction Sites on Human
Chemokine Receptors by Deep Muta-
tional Scanning[40]

10.4049/jimmunol.1800343

Z-domain ZpA963 Deploying synthetic coevolution and ma-
chine learning to engineer protein-protein
interactions[60]

10.1126/science.adh1720

Z-domain ZSPA-1 Deploying synthetic coevolution and ma-
chine learning to engineer protein-protein
interactions[60]

10.1126/science.adh1720

CR6261 FluAH1 Binding affinity landscapes constrain the
evolution of broadly neutralizing anti-
influenza antibodies[62]

10.7554/eLife.71393

CR9114 FluAH3 Binding affinity landscapes constrain the
evolution of broadly neutralizing anti-
influenza antibodies[62]

10.7554/eLife.71393

hYAP65 peptide A fundamental protein property, ther-
modynamic stability, revealed solely
from large-scale measurements of protein
function[63]

10.1073/pnas.1209751109

PSD95 CRIPT The spatial architecture of protein func-
tion and adaptation[64]

10.1038/nature11500

Trastuzumab HER2 Baselining the Buzz Trastuzumab-HER2
Affinity, and Beyond[65]

10.1101/2024.03.26.586756

4D5 HER2 Meta learning addresses noisy and under-
labeled data in machine learning-guided
antibody engineering[66]

10.1016/j.cels.2023.12.003

Continued on next page
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Continued from previous page

Protein1 Protein2 Title DOI

5A12 Ang2 Meta learning addresses noisy and under-
labeled data in machine learning-guided
antibody engineering[66]

10.1016/j.cels.2023.12.003

5A12 VEGF Meta learning addresses noisy and under-
labeled data in machine learning-guided
antibody engineering[66]

10.1016/j.cels.2023.12.003

GB1 IgG-Fc A comprehensive biophysical description
of pairwise epistasis throughout an entire
protein domain[67]

10.1016/j.cub.2014.09.072

GB1 IgG-Fc Adaptation in protein fitness landscapes is
facilitated by indirect paths[68]

10.7554/eLife.16965

BH3 Mcl-1 Determinants of BH3 binding specificity
for Mcl-1 versus Bcl-xL[69]

10.1016/j.jmb.2010.03.058

BH3 Bcl-xL Determinants of BH3 binding specificity
for Mcl-1 versus Bcl-xL[69]

10.1016/j.jmb.2010.03.058

HLA-A2 TAPBPR Molecular determinants of chaperone in-
teractions on MHC-I for folding and anti-
gen repertoire selection[70]

10.1073/pnas.1915562116

SARS2-
RBD

ACE2 Deep Mutational Scanning of SARS-CoV-
2 Receptor Binding Domain Reveals Con-
straints on Folding and ACE2 Binding[25]

10.1016/j.cell.2020.08.012

ACE2 SARS2-
RBD

Engineering human ACE2 to optimize
binding to the spike protein of SARS coro-
navirus 2[71]

10.1126/science.abc0870

SARS2-
RBD

COVOX-
150

Omicron escapes the majority of existing
SARS-CoV-2 neutralizing antibodies[72]

10.1038/s41586-021-
04385-3

COV2-
2130

SARS2 Computationally restoring the potency of
a clinical antibody against Omicron[73]

10.1038/s41586-024-
07385-1

SARS2 ACE2 Full-spike deep mutational scanning helps
predict the evolutionary success of SARS-
CoV-2 clades[74]

10.1101/2023.11.13.566961

SARS2 ACE2 High-throughput screening of spike vari-
ants uncovers the key residues that al-
ter the affinity and antigenicity of SARS-
CoV-2[75]

10.1038/s41421-023-
00534-2

ACE2 SARS2 ACE2 decoy receptor generated by high-
throughput saturation mutagenesis effi-
ciently neutralizes SARS-CoV-2 and its
prevalent variants[76]

10.1080/22221751.2022.2079426
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Table 11: Zero-shot Performance of models with error bar.

Category Model Spearman AUC MCC NDCG AP UnbiasHit@10

Structure-based ProteinMPNN 0.40 ± 0.03 0.69 ± 0.02 0.15 ± 0.03 0.72 ± 0.02 0.22 ± 0.03 0.30 ± 0.05
ESM-if1 0.34 ± 0.04 0.66 ± 0.02 0.14 ± 0.03 0.70 ± 0.03 0.20 ± 0.02 0.22 ± 0.06
PiFold 0.34 ± 0.04 0.66 ± 0.02 0.14 ± 0.03 0.70 ± 0.02 0.20 ± 0.02 0.14 ± 0.06
PPIformer 0.19 ± 0.04 0.61 ± 0.02 0.06 ± 0.01 0.59 ± 0.02 0.14 ± 0.01 0.04 ± 0.05
SaProt 0.27 ± 0.04 0.64 ± 0.02 0.10 ± 0.02 0.67 ± 0.03 0.18 ± 0.02 0.22 ± 0.05

Protein ProGen2 0.25 ± 0.04 0.61 ± 0.02 0.09 ± 0.02 0.66 ± 0.03 0.16 ± 0.02 0.14 ± 0.06
Language-based ESM1v 0.26 ± 0.04 0.62 ± 0.02 0.08 ± 0.02 0.66 ± 0.03 0.16 ± 0.02 0.20 ± 0.06

ESM2 0.29 ± 0.04 0.62 ± 0.02 0.09 ± 0.03 0.67 ± 0.03 0.17 ± 0.02 0.17 ± 0.06
ESM3 0.27 ± 0.05 0.61 ± 0.03 0.09 ± 0.03 0.66 ± 0.03 0.17 ± 0.02 0.06 ± 0.06

MSA-based EVE 0.32 ± 0.06 0.64 ± 0.03 0.12 ± 0.03 0.69 ± 0.03 0.20 ± 0.02 0.28 ± 0.06

MSA+Protein Tranception 0.32 ± 0.04 0.65 ± 0.02 0.12 ± 0.03 0.69 ± 0.03 0.20 ± 0.02 0.31 ± 0.07
Language-based TranceptEVE 0.34 ± 0.05 0.66 ± 0.02 0.13 ± 0.03 0.69 ± 0.03 0.20 ± 0.02 0.28 ± 0.05

Table 12: Performance of models with error bar, evaluated over five-fold random splits.

Category Model Mutational Depth Spearman AUC MCC NDCG AP

Structure-based ProteinMPNN-R ALL 0.58 ± 0.04 0.78 ± 0.02 0.25 ± 0.03 0.78 ± 0.02 0.31 ± 0.03
<3 0.51 ± 0.04 0.75 ± 0.02 0.20 ± 0.03 0.74 ± 0.02 0.28 ± 0.02
>=3 0.54 ± 0.07 0.80 ± 0.04 0.31 ± 0.06 0.80 ± 0.04 0.38 ± 0.06

ProteinMPNN ALL 0.75 ± 0.04 0.87 ± 0.02 0.45 ± 0.03 0.90 ± 0.01 0.51 ± 0.03
<3 0.73 ± 0.04 0.87 ± 0.02 0.43 ± 0.03 0.88 ± 0.02 0.49 ± 0.03
>=3 0.63 ± 0.06 0.85 ± 0.04 0.45 ± 0.06 0.88 ± 0.03 0.50 ± 0.07

Protein ESM2-R ALL 0.36 ± 0.03 0.68 ± 0.02 0.11 ± 0.02 0.69 ± 0.02 0.19 ± 0.02
Language-based <3 0.29 ± 0.03 0.65 ± 0.02 0.08 ± 0.02 0.65 ± 0.02 0.17 ± 0.01

>=3 0.33 ± 0.05 0.69 ± 0.03 0.14 ± 0.04 0.71 ± 0.04 0.23 ± 0.03
ESM2 ALL 0.76 ± 0.04 0.88 ± 0.02 0.45 ± 0.03 0.90 ± 0.02 0.53 ± 0.04

<3 0.74 ± 0.04 0.88 ± 0.02 0.45 ± 0.03 0.89 ± 0.02 0.52 ± 0.03
>=3 0.66 ± 0.06 0.86 ± 0.04 0.43 ± 0.06 0.87 ± 0.03 0.52 ± 0.07

OHE OHE ALL 0.76 ± 0.03 0.89 ± 0.02 0.49 ± 0.04 0.90 ± 0.02 0.56 ± 0.04
<3 0.74 ± 0.04 0.88 ± 0.02 0.49 ± 0.04 0.89 ± 0.02 0.55 ± 0.04
>=3 0.66 ± 0.05 0.87 ± 0.03 0.45 ± 0.06 0.88 ± 0.03 0.52 ± 0.07
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Table 13: Performance of models with error bar, evaluated over five-fold contig splits.

Category Model Mutational Depth Spearman AUC MCC NDCG AP

Structure-based ProteinMPNN-R Single 0.22 ± 0.03 0.61 ± 0.02 0.07 ± 0.02 0.61 ± 0.02 0.16 ± 0.02
ProteinMPNN Single 0.50 ± 0.04 0.71 ± 0.03 0.20 ± 0.03 0.74 ± 0.02 0.26 ± 0.03

Protein ESM2-R Single 0.18 ± 0.02 0.60 ± 0.01 0.06 ± 0.02 0.63 ± 0.02 0.14 ± 0.01
Language-based ESM2 Single 0.46 ± 0.04 0.67 ± 0.02 0.12 ± 0.03 0.71 ± 0.02 0.18 ± 0.02

OHE OHE Single -0.15 ± 0.04 0.44 ± 0.03 0.00 ± 0.01 0.45 ± 0.03 0.10 ± 0.01

Table 14: Performance of models with error bar, evaluated over five-fold inter-assay splits.

Category Model Mutational Depth Spearman AUC MCC NDCG AP

Structure-based ProteinMPNN-R ALL 0.16 ± 0.03 0.57 ± 0.02 0.05 ± 0.02 0.59 ± 0.02 0.14 ± 0.02
<3 0.11 ± 0.02 0.56 ± 0.02 0.04 ± 0.02 0.56 ± 0.02 0.15 ± 0.02
>=3 0.19 ± 0.05 0.60 ± 0.04 0.09 ± 0.04 0.63 ± 0.04 0.17 ± 0.03

ProteinMPNN ALL 0.42 ± 0.04 0.70 ± 0.02 0.16 ± 0.03 0.72 ± 0.02 0.23 ± 0.02
<3 0.43 ± 0.04 0.70 ± 0.02 0.16 ± 0.02 0.72 ± 0.02 0.22 ± 0.02
>=3 0.30 ± 0.06 0.70 ± 0.04 0.17 ± 0.05 0.69 ± 0.04 0.25 ± 0.05

Protein ESM2-R ALL 0.09 ± 0.03 0.55 ± 0.02 0.03 ± 0.02 0.57 ± 0.02 0.13 ± 0.01
Language-based <3 0.09 ± 0.03 0.55 ± 0.02 0.02 ± 0.02 0.56 ± 0.02 0.13 ± 0.01

>=3 0.05 ± 0.06 0.54 ± 0.04 0.03 ± 0.03 0.55 ± 0.04 0.14 ± 0.03
ESM2 ALL 0.30 ± 0.04 0.62 ± 0.02 0.10 ± 0.02 0.67 ± 0.03 0.18 ± 0.02

<3 0.31 ± 0.05 0.61 ± 0.03 0.08 ± 0.03 0.68 ± 0.03 0.17 ± 0.02
>=3 0.15 ± 0.06 0.60 ± 0.04 0.08 ± 0.04 0.60 ± 0.04 0.18 ± 0.04
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