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Abstract

Federated Learning has seen an increased deployment in real-world scenarios1

recently, as it enables the distributed training of machine learning models with-2

out explicit data sharing between individual clients. Yet, the introduction of the3

so-called gradient inversion attacks has fundamentally challenged its privacy pre-4

serving properties. Unfortunately, as these attacks mostly rely on direct data5

optimization without any formal guarantees, the vulnerability of real world systems6

remains in dispute and requires tedious testing for each new federated deployment.7

To overcome these issues, recently the SPEAR attack was introduced, which is8

based on a theoretical analysis of the gradients of linear layers with ReLU ac-9

tivations. While SPEAR is an important theoretical breakthrough, the attack’s10

practicality was severely limited by its exponential runtime in the batch size b. In11

this work, we fill this gap by applying State-of-the-Art techniques from Sparse12

Dictionary Learning to make the problem of gradient inversion on linear layers13

with ReLU activations tractable. Our experiments demonstrate that our new attack,14

SPEAR++, retains all desirable properties of SPEAR, such as robustness to DP15

noise and FedAvg aggregation, while being applicable to 10x bigger batch sizes.16

1 Introduction17

Federated Learning Conventional machine learning techniques require ever-increasing datasets to18

be collected and stored in centralized location for training, a practice that is often not viable due to19

institutional data-sharing policies or governmental privacy regulations such as General Data Protection20

Regulation (GDPR) and California Consumer Privacy Act (CCPA). Federated Learning [15] addresses21

this fundamental limitation by decoupling the model training from the need for direct access to raw22

data.23

Instead, in a typical federated protocol, a coordinating server distributes a global model to a set of24

clients. Each client computes an update to the model based exclusively on its local, private dataset.25

These updates, rather than the data itself, are then communicated back to the server that aggregates26

them into a new global model that can be shared with the clients in the next communication round.27

Gradient Inversion Attacks Unfortunately, recent work [24] has demonstrated that while federated28

clients do not explicitly share their data with the server, an honest-but-curious server can recover the29

clients’ private data from the shared updates through the so-called Gradient Inversion Attacks (GIAs).30

Currently, when such attacks pose realistic threat is poorly understood, as most SotA attacks rely on31

direct client data optimization [8] which provides no guarantees, is hard to theoretically analyze, and32

can only approximately recover the client data.33

Recently, Dimitrov et al. [5] demonstrated that exact GIAs are possible in the special case of34

linear layers with ReLU activations, providing a promising pathway toward theoretical analysis of35

Submitted to Workshop on Regulatable ML at the 39th Conference on Neural Information Processing Systems
(NeurIPS 2025). Do not distribute.



gradient leakage in this setting. Yet, the practicality of the introduced method, SPEAR, remains36

questionable due to its exponential complexity in the batch size b. In this work, we aim to alleviate37

this exponential complexity using techniques from Sparse Dictionary Learning [18], demonstrating38

the inherit vulnerability of doing federated learning in this setting.39

This Work: Gradient Inversion with Sparse Dictionary Learning Sparse Dictionary Learning40

is a classical computer science problem where one tries to find the best possible representation of41

a given dataset in terms of unknown sparse linear combinations of unknown dictionary elements.42

While Dimitrov et al. [5] already points out the deep connection between this problem and problem43

of GIAs on ReLU activated weights, the authors stop short of exploring the full potential of Sparse44

Dictionary Learning in this setting. In this work, we fill this gap by exploring the applications of SotA45

Sparse Dictionary Learning techniques to gradient inversion and demonstrate that to a large extend46

they alleviate the scalability issues demonstrated by SPEAR. This in turn exposes the fundamental47

vulnerability of gradient updates in these settings.48

Main Contributions:49

• Exploration of the connection between Sparse Dictionary Learning techniques and Gradient50

Inversion methods like SPEAR that take advantage of the gradient sparsity induced by ReLU51

activation.52

• Extensive experimental evaluation of Sparse Dictionary Learning methods within the frame-53

work of SPEAR, showing they scale much more favorably and thus pose much greater risk54

to practical FL deployments.55

• Experiments on FedAvg updates and gradient defended with DP noise, showing comparable56

robustness between the Sparse Dictionary Learning methods and SPEAR, while allowing57

for enhanced scalability of the attack.58

2 Prior Work59

Gradient inversion attacks fall into two categories — malicious ones, where the adversary tampers60

with the models sent to the clients [3, 7] and honest-but-curious ones [24, 8, 23, 5, 17, 6, 11], where61

the private data is reconstructed only based on observed gradients without any modifications to the62

federated protocol. In this work, we will focus on the latter. First GIAs in the honest setting focused63

on directly optimizing for the client inputs by minimizing the distance between the received and64

simulated gradients over dummy data [24, 8, 23], achieving approximate reconstructions.65

More recently, exact gradient inversion attacks have been introduced [5, 17, 6] that exploit the66

low-rank structure of the gradients of linear layers to exactly recover individual inputs from larger67

batches of data. In particular, Petrov et al. [17] and Drencheva et al. [6] leverage the low-rank68

to efficiently filter out incorrect text subsequences or subgraphs from a finite set of possibilities.69

However, this approach is limited to only discrete data modalities. Dimitrov et al. [5], in contrast,70

introduced SPEAR which is domain agnostic but hindered by exponential time complexity with71

respect to the client batch size. In this work we overcome this limitation by using techniques from72

complete dictionary recovery [19, 20, 18] achieving the first scalable and exact domain-agnostic GIA73

for non-discrete modalities. We lean on the insights of Sun et al. [20] that the problem is amenable to74

efficient non-convex optimization via loss relaxation and leverage a first-order optimization procedure75

to recover the sparse columns of the matrix ∂L
∂Z . For losses that induce approximate solutions, we76

"round" them to the true ones by sampling similarly to SPEAR, but guided by the inexact solution to77

ensure high success rate after just a few samples.78

3 Background79

In this section, we introduce the problem setting as well as the algorithms we build upon.80

3.1 Threat model81

We consider a fully-connected linear layer Z = WX + (b| . . . |b), with parameters W ∈ Rm×n and82

b ∈ Rm, anywhere in the client’s neural network model activated by Y = ReLU(Z). The attacker is83
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a participant in the federated learning protocol and hence the layer parameters W and b are known.84

Most importantly, the attacker has access to the gradients ∂L
∂W and ∂L

∂b of other participants and aims85

to restore the input X which generated them. We assume that each of the b input datum has been86

vectorized to a column vector Xi and the batch is formed as X = (X1| . . . |Xb).87

3.2 Exact Gradient Inversion for Batches88

Exact gradient inversion in the hones-but-curious setting for batches of size ≥ 1 was achieved by89

exploiting two key properties of the gradients of the network. Namely, the gradient can be explicitly90

expressed with respect to the client data through a low-rank decomposition:91

Theorem 3.1. Dimitrov et al. [5] The network’s gradient w.r.t. the weights W can be represented as92

the matrix product:93

∂L
∂W

=
∂L
∂Z

X⊤ (1)

Since neither X nor ∂L
∂Z are known apriori, the algorithm starts with an arbitrary low-rank decompo-94

sition based on SVD: ∂L
∂W = LR. Then, the problem of finding the inputs is reformulated as finding95

the unique disaggregation matrix restoring the desired decomposition:96

Theorem 3.2. Dimitrov et al. [5] If the gradient and ∂L
∂Z and the input matrix X are of full rank and97

b ≤ n,m, then there exists a unique matrix Q ∈ Rb×b of full rank s.t. ∂L
∂Z = LQ and X⊤ = Q−1R.98

The gradient of the activation ∂L
∂Z has a fraction of zero entries equal to 1

2 , induced by ReLU. To find99

the correct matrix, the algorithm leverages this naturally arising sparsity.100

Theorem 3.3. Dimitrov et al. [5] Let A ∈ Rb−1×b be a submatrix of ∂L
∂Z such that its i-th column101

is 0 for some i ∈ {1, . . . , b}. Further, let ∂L
∂Z , X , and A be of full rank and Q be as in Thm. 3.2.102

Then, there exists a full-rank submatrix LA ∈ Rb−1×b of L such that span(qi) = ker(LA) for the103

i-th column qi of Q = (q1| . . . |qb).104

Since ∂L
∂Z is not known apriori, SPEAR relies on a randomized sampling procedure to pick such105

a full-rank submatrix LA. For each such submatrix, q̂i ∈ ker(LA) is a potential candidate for an106

(unscaled) column of Q if Lq̂i is sparse enough. Since at the end of the sampling procedure one ends107

up with number of candidates larger than the batch size b, the algorithm applies two-stage filtering in108

order to select the final unscaled columns q̂i. A crucial part of this two-stage filtering is the greedy109

optimization of the sparsity matching score of the solution Q.110

Definition 3.4. Let λ− be the number of non-positive entries in Z whose corresponding entries in111
∂L
∂Z are 0. Similarly, let λ+ be the number of positive entries in Z whose corresponding entries in ∂L

∂Z112

are not 0. We call their normalized sum the sparsity matching coefficient λ:113

λ =
λ− + λ+

m · b

4 Complete Dictionary Recovery for Gradient Leakage114

Unfortunately, the number of submatrices SPEAR samples until it picks one satisfying the assumptions115

of Thm. 3.3 is exponential with respect to the batch size. Thus, a focus of this work is to substitute this116

procedure for an algorithm that is able to pick (unscaled) candidate columns of Q more efficiently117

and thus scale the method to previously impossible batch sizes. Due to the ReLU-induced sparsity118

of ∂L
∂Z , restoring Q fits neatly in the framework of the complete dictionary learning problem, which119

assumes efficient algorithms.120

4.1 Initial Decomposition121

In the spirit of SPEAR, our gradient leakage attack starts with an initial decomposition based on122

SVD:123

∂L
∂Z

= U:,:b︸︷︷︸
L

Σ:b,:bV
⊤
:b,:︸ ︷︷ ︸

R

= LR,
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Where U,Σ, V = SVD( ∂L
∂W ) is the full SVD decomposition of the observed gradient. The choice for124

decomposition has the following justification. SPEAR starts with ∂L
∂W = L′R′ for L′ = U:,:b

√
Σ:b,:b125

and R′ =
√
Σ:b,:bV

⊤
:b,:. We intend to compute Q by decomposing the left factor as L′ = ∂L

∂ZQ−1126

via complete dictionary recovery. A common preprocessing step to help the computation of the127

decomposition is to pre-condition the observed matrix such that it appears generated from the same128

sparse coefficient matrix ∂L
∂Z multiplied with an almost orthogonal dictionary. This preconditioning is129

carried out as L′ as L = L′((L′)⊤L′)−1/2. From here, it is straightforward to see that the processed130

left factor assumes the form L = U:,:b. We can derive the corresponding formula for the right factor131

by compensating for the preconditioning as R = ((L′)⊤L′)1/2R′.132

4.2 Disaggregation Matrix Search as Complete Dictionary Recovery133

Next, leaning on Thm. 3.2, we compute the disaggregation matrix Q, which restores the input by134

Q−1R. Instead of searching in the kernels of random submatrices of L, we look for (unscaled)135

columns of Q in the framework of complete dictionary learning. The problem is concerned with136

decomposing an observer matrix L into a sparse coefficient matrix, in our case ∂L
∂Z , multiplied with a137

square and invertible (complete) dictionary Q−1, i.e., L = ∂L
∂ZQ−1 ⇐⇒ LQ = ∂L

∂Z . Even though138

the problem is known to be NP-hard [16], polynomial-time algorithms have been devised, which139

succeed with high probability [21, 19, 1, 9, 13, 22]. Formally, the columns of Q are all local minima140

of:141

argmin
q ̸=0

∥Lq∥0.

However, the discrete nature of the ∥ · ∥0 loss hinders effective gradient-based optimization. A line142

of work [19, 21, 1, 9] focuses on finding the colums of the sparse coefficient matrix one-by-one by143

optimizing:144

argmin
q∈Sb−1

φ(Lq), (2)

where Sb−1 is the ℓ2 hypersphere and φ(·) is a convex surrogate of ∥ · ∥0. There are many options for145

the surrogate offering different levels of smoothness. Qu et al. [18] provides an extensive comparison146

between many possibilities. We compare the smooth hµ(x) = µ log ◦ cosh(x/µ), −ℓ4 and the147

sparsity-promoting loss ℓ1 and prefer the last one for its superior experimental performance. Its148

non-differentiability does not pose a practical issue, as subgradient descent methods can optimize it149

effectively. Furthermore, its local minima coincide with the minima of ∥ · ∥0, alleviating the need for150

rounding (Sec. 4.4) as with the smooth surrogates.151

To find a local minimum, we initialize a guess on the sphere uniformly at random. Then, we optimize152

with Riemannian Adam [2] as implemented in the Geoopt package [12]. Another possibility to carry153

out the optimization is through Projected Gradient Descent [14]. We compare the two methods in154

multiple settings in Tab. 2. After the optimizer has converged to a solution, like SPEAR, we add it155

to a candidate pool S only if it is sparse enough and S does not contain it already (or its negative156

equivalent).157

4.3 Filtering of False Candidates158

Even though the function landscape of Eq. 2 attains favorable properties when the sample size m is159

much greater than the batch size b [20, 1], the landscape gets more hostile when the ratio between160

m and b decreases. In this case, we observe an increase in false positives, indicating the possibility161

of spurious local minima, which do not correspond to any column of Q. To deal with the false162

positives, we apply the two-stage filtering of SPEAR. Firstly, we select the b sparsest candidates of S163

which form a full-rank matrix Q, and we proceed to optimize the sparsity matching score by greedily164

swapping columns of Q with directions from the rest of the solution set S when the sparsity matching165

score increases.166
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We note that a successful discovery of Q can correspond to the true disaggregation matrix Q only up167

to permutation and scaling of the columns. We fix the scaling of the columns using the gradient with168

respect to the bias ∂L
∂b as per the following result.169

Theorem 4.1. Dimitrov et al. [5] For any left inverse L† of L, we have170 s1...
sn

 = Q
−1

L† ∂L
∂b

We also note that the permutation of the columns is inconsequential, because it only leads to a171

permutation of the restored data in the batch. The input is finally reconstructed as X⊤ = Q−1R.172

4.4 Rounding via Sampling173

There is a discrepancy between the local minima of Eq. 2 when choosing φ(·) to be a smooth174

surrogate, such as hµ or −ℓ4, versus when using φ(·) = ∥ · ∥0 directly [18]. Hence, if we find a175

local minimum q̂ of the former, we have to round it to the true sparsity-inducing direction q∗, usually176

achieved through Linear Programming (LP) [4]. In practice, however, we found the LP rounding to177

scale poorly with problem size. Borrowing from SPEAR, we devise a scalable rounding procedure to178

recover the true sparse solution from the approximate one. We first compute the vector y = Lq̂. We179

then look at the r indices of y closest to 0 in absolute value. We randomly choose a subset I of those180

with |I| = b and acquire the exact solution q̂ ∈ ker(LA), where LA is the submatrix of L with rows181

given by the indices in I.182

Algorithm 1 RoundingViaSampling

Require: L, q̂ - an approximate solution
Ensure: Exact solution q∗

1: y ← Lq̂
2: C ← the indices of the r entries of y with least absolute value
3: I ← {i : i ∈ C} such that |I| = b
4: LA ← submatrix of L with rows indexed by I
5: return q∗ ∈ kerLA

4.5 Final algorithm183

We present the pseudocode for SPEAR++ in Alg. 2. We start with the initial low-rank decomposition184

of the gradient as described in Sec. 4.1. Next, we initiate first-order optimization through the185

OptimOnTheSphere routine, which runs either Riemannian Adam or PGD. We then round the186

solution via sampling if we use a smooth loss and finally add the result q∗ to the candidate set S187

only if the direction is sparse enough. At the end, after choosing the sparsest linearly independent188

candidates and storing them in B, we check if B has enough linearly independent directions. If not,189

we add the vectors corresponding to an orthonormal basis of span(B)⊥. This way we achieve partial190

reconstruction for batches where the algorithm isn’t able to find enough linearly-independent vectors.191

5 Evaluation192

Setup Unless stated otherwise, all of our experiments are conducted in the FedSGD setting using193

the gradients of the first layer of a fully-connected ReLU-activated neural network with three hidden194

layers, each m-neurons wide. The network is trained for classification on the CIFAR-10 dataset on195

batches of size indicated with b. We report the average PSNR computed across 100 reconstructed196

batches, as well as SPEAR++’s accuracy, which we define as the percentage of these batches with197

PSNR > 90. In all experiments, we use 1e6 different initialization for q to allow for fair comparisons198

between the methods. When using ℓ1 for the surrogate loss φ no rounding is applied, while for all199

other losses we use our rounding procedure, based on the original SPEAR paper. We optimize all200

initializations using Riemannian Adam on the sphere [2] for 500 iterations with learning rate 1e–1201

which is reduced to 1e–3 and 1e–5 at the 200th and the 400th steps respectively.202
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Algorithm 2 Main Routine

Require: ∂L
∂W , ∂L

∂b , W , b
1: L, R, b← InitialDecomposition( ∂L

∂W )
2: for i = 1 to N do
3: q̂ ← OptimOnTheSphere(L)
4: q∗ = RoundingViaSampling(L, q̂)
5: if Sparsity(Lq∗) ≥ τ ·m and q∗ ̸∈ S then
6: S ← S ∪ {q∗}
7: B ← initFilt(L, S)
8: c,X ′ ← GreedyFilt(L,R,W, b, ∂L

∂b ,B)
9: if c = 1 then

10: return X ′

11: B ← initFilt(L, S)
12: B ← B ∪ orthoBasisComplement(B)
13: c,X ′ ← GreedyFilt(L,R,W, b, ∂L

∂b ,B, S)
14: return X ′

SPEAR++ with ℓ1 loss

Original Images

SPEAR++ with ℓ1 loss

Original Images

Figure 1: All car images from a successfully reconstructed batch of size b = 210 from CIFAR10
on network with width m = 4000, reconstructed using SPEAR++ with ℓ1 loss and RAdam (top)
compared to the ground truth (bottom).

5.1 Comparing Different Dictionary Recovery Algorithm203

Inspired by Qu et al. [18], we analyze the effectiveness of different dictionary recovery methods204

based on their surrogate loss φ (Tab. 1) and optimization method (Tab. 2) used.205

In Tab. 1, we compare ℓ1 to other choices of losses, including the commonly used LogCosh loss hµ,206

which is a smooth surrogate to the ℓ1, as well as the −ℓ4 loss. For the hµ, we set µ = 300 for the207

m = 200 experiments and µ = 500 for the rest, as it worked the best in our experiments. For our208

rounding procedure we sample once per reconstruction from the smallest r = 1.5b entries in absolute209

value, with exception to m = 200 experiments, where we sampled from the r = 3b smallest entries,210

instead.211

We observe that ℓ1 scales favorably with m, allowing reconstructions from larger batch sizes. We212

also observe that for smaller m, LogCosh is a good alternative to ℓ1. Importantly, both versions213

of SPEAR++ are much more scalable compared to the original SPEAR algorithm, for which the214

runtime for b = 24 is already prohibitively large even for very large m (See Figure 4 in Dimitrov215

et al. [5]). These results demonstrate a polynomial runtime relationship in b, unlike the exponential216

relationship reported in SPEAR. We further note that for b = 100, SPEAR++ produces similar217

recovery rates to the SPEAR+Geiping combination which unlike SPEAR++ relies on image priors218

(See Table 5 in Dimitrov et al. [5]) at half the network width. This suggests that SPEAR++ is much219

more scalable than SPEAR, even when SPEAR is supplied with a very strong prior information.220

Finally, our preliminary results on the −ℓ4 loss suggest even worse reconstructions than SPEAR, and221

thus we didn’t experiment with it further.222
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Table 1: Comparison between the ℓ1 loss (no-rounding) and the LogCosh loss function, hµ, with
SPEAR-style rounding.

φ b m PSNR Acc (%)

hµ

20 200 121.499878 98
25 200 106.506889 86
30 200 30.695648 12

65 1000 54.976291 27
100 1000 18.764456 0
150 1000 12.243406 0

100 4000 93.630771 92
150 4000 32.626396 0
210 4000 13.802787 0

ℓ1

20 200 120.98 95
25 200 96.02 77
30 200 41.70 25

65 1000 125.18 100
100 1000 69.31 41
150 1000 10.42 0

100 4000 124.24 100
150 4000 120.86 100
210 4000 45.34 7

−ℓ4
15 200 83.02 62
20 200 14.29 0

Table 2: Comparison between reconstructions with the ℓ1 loss and different optimizers.

Optimizer b m PSNR Acc (%)

PGD

20 200 41.53 25
25 200 19.01 0
30 200 14.71 0

65 1000 93.91 93
100 1000 23.41 0
150 1000 12.06 0

100 4000 105.61 100
150 4000 104.46 100
210 4000 88.36 77

RAdam

20 200 120.98 95
25 200 96.02 77
30 200 41.70 25

65 1000 125.18 100
100 1000 69.31 41
150 1000 10.42 0

100 4000 124.24 100
150 4000 120.86 100
210 4000 45.34 7
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Table 3: Experiments on gradients protected with Differential Privacy at different noise levels σ and
clipping C.

C σ b m PSNR Acc (%)

2 1e–4 20 200 31.90 75
2 1e–6 150 4000 55.45 88

Table 4: Experiments on FedAvg updates computed with different number of epochs E, and different
mini-batch sizes bmini.

E bmini b m PSNR Acc (%)

3 5 20 200 67.81 75
15 30 150 4000 63.71 92

Next, we compared the reconstruction accuracy of our algorithm when optimizing the ℓ1 loss on223

the sphere using Riemannian Adam versus regular Adam where we project back to the sphere at224

each iteration in Tab. 2. The latter corresponds to the classical Projected Gradient Descent (PGD)225

algorithm [14]. For PGD, we use the same number of steps, but smaller initial learning rate of 1e–2.226

We again lower it to 1e–4 and 1e–6 at the 200th and 400th optimization step.227

We generally observe Riemannian Adam to be better across the board, except in the b = 210228

experiment. While investigating this phenomenon further remains a future work item, our preliminary229

experiments suggest that Riemannian Adam will be able to match and exceed the PGD performance230

if more initializations are provided to both algorithms.231

An important observation about our experiments, regardless of the optimizer used, is that for each232

m, we practically find a corresponding b, which acts as an upper bound after which reconstruction233

starts failing. The ratio between the upper bound on b and m seems to be slowly decreasing over234

time, suggesting slightly worse than linear relationship between the upper bound on b and m. This is235

consistent with recent theoretical analysis of the sparse dictionary recovery problem [10].236

Finally, we visualize a part of correctly recovered batch (b = 210) in Fig. 1, reaffirming the excellent237

quality of our reconstructions, similarly to the original SPEAR algorithm.238

5.2 Effectiveness under DP-SGD Noise239

A surprising feature of SPEAR is its effectiveness on gradients defended with DP-SGD. We consider240

the best-performing version of SPEAR++, which optimizes directly ℓ1 with RAdam and applies no241

rounding, and show in Tab. 3 that it matches SPEAR’s performance even in the case where the noise242

level is similar to the median of the absolute value of the entries in the gradient in the case where243

b = 20. Our algorithm is still robust to some considerable levels of noise even on very large batches244

b = 150, considering that the median of the gradients of a 4000-neurons-wide network is on the order245

of 1e–5.246

5.3 Effectiveness under FedAvg Aggregation247

Similarly to SPEAR, we experiment with the ability of SPEAR++to recover data from FedAvg248

updates, computed with learning rate of 1e–2. We note that SPEAR’s theoretical analysis and FedAvg249

extension (See Appendix F in Dimitrov et al. [5]) remain valid for SPEAR++, as well. We report the250

results in Tab. 4, where we observe that even under many local steps with unknown subsets of the251

client data our attack remains effective. Further, it seems that for larger m, the algorithm is more252

robust to large number of local gradient steps.253
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A Deferred Algorithms356

Algorithm 3 initFilt, adapted from Dimitrov et al. [5]

Require: L, S
B ← ∅
D ← ∅
while rank of B < b do

Select the sparsest vector q from S \ (B ∪ D)
B ← B ∪ {q}
if if B is not full rank then
B ← B \ {q}
D ← D ∪ {q}

return B

Algorithm 4 GreedyFilt, adapted from Dimitrov et al. [5]

Require: L, R, W , b, ∂L
∂b , B, S

1: Q initialized with columns from B
2: Q← fixScale(Q,L, ∂L

∂b )
3: c← computeScore(L,R,Q,W, b)
4: if c = 2 then
5: return c, (Q−1R)⊤

6: for s ∈ S \ B do
7: for doj ∈ {1, . . . , b}
8: Q′ ← Q
9: (Q′):,j ← s

10: if rank(Q′) < b then
11: continue
12: Q′ ← fixScale(Q′, L, ∂L

∂b )
13: c′ ← computeScore(L,R,Q′,W, b)
14: if c′ > c then
15: c← c′

16: Q← Q′

17: return c, (Q−1R)⊤

Algorithm 5 fixScale, adapted from Dimitrov et al. [5]

Require: Q, L, ∂L
∂b

1: d← Q−1L† ∂L
∂b

2: Q̂← Q · diag(d)
3: return Q̂
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Algorithm 6 computeScore, adapted from Dimitrov et al. [5]

Require: L, R, Q, W , b
1: Z ′ ←W (Q−1R)⊤ + (b| . . . |b)
2: ∂L

∂Z

′ ← LQ

3: c← sparsity matching score based on Z ′, ∂L
∂Z

′

4: return c
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