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Abstract

Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, reduce adaptation
cost by injecting low-rank updates into pretrained weights. However, LoRA’s down-
projection is randomly initialized and data-agnostic, discarding potentially useful
information. Prior analyses show that this projection changes little during training,
while the up-projection carries most of the adaptation, making the random input
compression a performance bottleneck. We propose IPA, a feature-aware projection
framework that explicitly preserves information in the reduced hidden space. In
the linear case, we instantiate IPA with algorithms approximating top principal
components, enabling efficient projector pretraining with negligible inference
overhead. Across language and vision benchmarks, IPA improves over LoRA
and DoRA, achieving on average 1.5 points higher accuracy on commonsense
reasoning and 2.3 points on VTAB-1k, while matching best baseline performance
with roughly half the trainable parameters when the projection is frozen.

1 Introduction

Adapting large foundation models is challenging since full fine-tuning is costly (Houlsby et al.,
2019; Hu et al., 2022). To address this bottleneck, the community has developed a range of
parameter-efficient fine-tuning (PEFT) methods that reduce the number of trainable parameters
by an order of magnitude compared to the base model (see surveys, e.g., Han et al., 2024; Zhang
et al., 2025). Among these, Low-Rank Adaptation (LoRA; Hu et al., 2022) has gained significant
traction due to its simplicity and effectiveness in the large-language-model community. In LoRA,
each target weight matrix is reparameterized as the sum of the original pre-trained weight W and a
low-rank update ∆W = BA, where A (the “down” projection) maps inputs into a lower-dimensional
space and B (the “up” projection) maps them back.

Although there has been a flurry of follow-up works to LoRA, most focus on alternative initializations
(Meng et al., 2024; Yang et al., 2024) or extended structures (Liu et al., 2024; Huang et al., 2025;
Albert et al., 2025) by restricting their analysis to the pretrained weight matrix, while paying little
attention to the distribution of input features. In contrast, we broaden the focus to explicitly account
for the role of input features. In the original LoRA formulation, the down-projection matrix A is
randomly initialized and thus data-agnostic. Analyses of LoRA’s inherent asymmetry show that
during adaptation, this down-projection A remains close to its initialization, whereas the up-projection
B adapts more effectively to the data (Tian et al., 2024; Hayou et al., 2024b). This suggests that a
data-agnostic input projection can become a performance bottleneck, motivating its replacement with
a feature-aware, data-dependent alternative that better aligns with the intrinsic structure of the inputs.

In this paper, we pursue this direction and introduce IPA, an input-feature-aware projection scheme
designed to preserve information in the adapter’s hidden feature space. Our contributions are: • We
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formulate adaptation with a dedicated feature-projection pretraining objective that maximizes in-
formation preservation in the bottleneck dimension through an encoder–decoder formulation. • We
instantiate this framework in the linear setting using efficient forward-only pretraining algorithms.
• We empirically validate IPA on language and vision-language tasks, showing consistent improve-
ments over random linear projections. On several architectures, IPA matches the performance of fully
trained LoRA while requiring roughly half as many trainable parameters.

2 IPA: Information Preserving Input Projection for Adaptation

2.1 Preliminaries: LoRA

Given a pretrained weight W ∈ Rdout×din defining fW (x) = Wx, LoRA augments it with two
low-rank maps: fA : x 7→ Ax ∈ Rr, fB : xh 7→ Bxh ∈ Rdout , where A ∈ Rr×din , B ∈ Rdout×r, and
r ≪ min(din, dout). At step t, the adapted forward pass is

z = fW (x) + λfBt(fAt(x)) = Wx+ λBtAtx, (1)

The elements of A0 are drawn from a zero-mean Gaussian (or uniform) distribution and B0 = 0. The
positive scalar λ rescales the low-rank residual update. In the original LoRA formulation, λ = α

r with
α > 0. Training LoRA thus implies computing gradients only for At and Bt, leaving W unchanged.

2.2 Asymmetric Behaviors in LoRA

While LoRA has been widely adopted for efficient fine-tuning of large pretrained models, we observe
a notable asymmetry between its two projection matrices: the down-projection matrix A primarily
serves to compress input features into a low-dimensional subspace, whereas the up-projection matrix
B plays the critical role of recombining those features to adapt the final model outputs. Notably,
tuning B alone while keeping A fixed and randomly initialized often yields performance comparable
to tuning both. This suggests that B is mainly responsible for adapting the output, whereas A serves
as a feature projector. We provide an empirical analysis in Appendix B.

Implications. These observations indicate that the down-projection matrix A in standard LoRA
operates primarily as a random feature projector, rather than encodes the task-specific distinctions.
Recent studies of LoRA (Hayou et al., 2024b; Tian et al., 2024) arrive at similar conclusions, showing
that standard LoRA induces pronounced asymmetries in both learning dynamics and representational
behavior. Consequently, replacing this data-agnostic projector with a more expressive, task-aware
map could yield richer hidden representations and improve adaptation performance.

2.3 The IPA Framework
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Figure 1: IPA vs. LoRA. IPA adds pretrained pro-
jectors P,Q for reconstruction, keeping only P
during adaptation.

We reinterpret the adaptation scheme by intro-
ducing a general function P and write

z = fW (x)+λfBt
(P(x)) = Wx+λBtP(x),

where P : Rdin → Rdh projects the input x into a
hidden feature xh = P(x) ∈ Rdh and B0 = 0.

Information preserving input projection.
When dh < din, the projection P must com-
press x, which risks discarding task-relevant in-
formation. Standard LoRA initializes P as a
random linear map, thus ignoring the input distribution. To address this, we instead seek P (and a
complementary decoder Q : Rdh → Rdin ) that minimize the reconstruction error:

min
P,Q

Ex∼p(x)∥x− x̃∥2, where x̃ = Q(P(x)). (2)

This objective encourages P to preserve as much information from the original input as possible, as
measured by the L2 reconstruction loss. Fig. 1 contrasts IPA with LoRA.

Forward-only pretraining of projector. Eq. (2) corresponds precisely to the objective of an
autoencoder. One could therefore imagine training it with either linear or nonlinear functions for P
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and Q. However, doing so for each modulated layer via backpropagation is impractical: the loss is
difficult to integrate into the adapter training pipeline and incurs significant computational overhead
compared to LoRA. Instead, we propose to learn the projector in a forward-only manner.

2.4 Instantiation: Linear Case

To instantiate the framework in practice, we must specify (i) the distribution of features used to
pretrain the projector P , (ii) the form of the projector P , and (iii) the algorithm used to pretrain it.

Pretraining distribution. We pretrain P using target-domain hidden representations. Concretely,
we pass training tokens through the frozen pretrained model and collect the resulting layer-wise
intermediate features, forming a pretraining set X̂ = [x̂i]

N
i=1 ∈ RN×din . This ensures that X̂ reflects

both the model’s internal feature and the target-domain data distributions.

Projector architecture. To preserve LoRA’s inference-time efficiency, we restrict P and its decoder
Q to linear maps defined by a shared matrix U ∈ Rdh×din : P(x) = Ux,Q(xh) = U⊤xh. Solving
Eq. (2) then reduces to computing the top-dh eigenvectors of the empirical covariance Σ = 1

N X̂⊤X̂ .

Pretraining algorithm. Full PCA over all hidden states is infeasible due to storage and compute
costs. Instead, we adopt incremental PCA (IPCA; Ross et al., 2008), which processes feature mini-
batches sequentially and updates a low-rank approximation of Σ. Alternatives such as the generalized
Hebbian algorithm (GHA; Sanger, 1989) also approximate principal components, but we found IPCA
both more efficient and slightly more accurate in practice (see Appendix C.2).

Default Configuration. Unless otherwise specified, we use target-domain hidden representations
as input, a linear projector, and IPCA for pretraining. All main experiments adopt IPCA, and IPA
refers to this implementation unless noted otherwise. The projector U can optionally be refined by
backpropagating the task loss. We analyze the effect of projector fine-tuning in Section 3.

3 Experiments

3.1 Experimental Setting

Language tasks. We follow the instruction-following protocol of Hu et al. (2023) on the
commonsense-170k dataset, adapting four LLMs (LLAMA-2 7B (Touvron et al., 2023), LLAMA-
3 8B (Grattafiori et al., 2024), QWEN-2.5 7B (Qwen et al., 2024), GEMMA-3 4B (Gemma Team
et al., 2025)) for 3 epochs and evaluating on their test splits.

Vision tasks. For open-vocabulary classification we use VTAB-1k (Zhai et al., 2019), grouped into
Natural, Specialized, and Structured, with 1000 examples per task. We adapt the SIGLIP-2 backbone
(Tschannen et al., 2025) by tuning only the vision encoder with cross-entropy on image-text similarity
scores. Evaluation follows Zhang et al. (2022), we report the best test accuracy over 100 epochs.

Baselines. We compare IPA with: (i) LoRA (Hu et al., 2022), low-rank adapters with random down-
projection; (ii) DoRA (Liu et al., 2024), which decomposes weights into magnitude and direction,
applying LoRA to the latter. Both have fixed (✗) and trainable (✓) projector variants.

Hyperparameters. We use Adam (Kingma & Ba, 2015) with linear warm-up, fixing all settings
except base learning rate (aligned with Liu et al. (2024) for LLAMA-2/3; tuned for newer models).
Details are in Appendix C.1. All methods use the same adapter dimensions (dh = 32 for language,
dh = 8 for vision), ensuring differences stem only from projector training. For projector pretraining,
IPA uses 10% of commonsense-170k and the full VTAB-1k sets (see Appendix C.2).

3.2 Main Results

IPA improves adaptation over random projection. Tables 1 and 2 summarize our accuracy results
on the instruction-following benchmark and the open-vocabulary classification tasks, respectively.
On the instruction-following benchmark, at hidden dimension dh = 32 IPA outperforms both LoRA
and DoRA across most configurations and base models. For example, in Table 1, on LLAMA-3 8B
without projector fine-tuning, IPA achieves an average accuracy of 85.6%, outperforming LoRA
(85.0%) by 0.6 points and DoRA (84.7%) by 0.9 points. Even with projector fine-tuning, IPA still
leads with 85.9%, compared to 85.5% for LoRA and 85.1% for DoRA. Similar gains are observed

3



Table 1: Comparison of instruction-following answer accuracy (%) on commonsense reasoning
benchmarks. All methods are compared in the configuration with (✓) and without (✗) projector
finetuning. We highlight the best and the second scores under the same projector finetuning setting.

Base model Method
Proj.
FT

Trainable Params
(%) BoolQ

PIQA
SocialIQA

HellaSwag

WinoGrande

ARC-easy

ARC-challenge

OpenbookQA

Avg.

LLAMA-2 7B

LoRA ✗ 28.0M (0.41%) 60.5 78.7 74.5 76.3 75.1 82.8 66.1 76.8 73.8
DoRA ✗ 28.9M (0.43%) 58.0 82.0 33.5 12.8 42.1 64.9 43.9 68.4 50.7
IPA (Ours) ✗ 28.0M (0.41%) 71.7 83.2 80.0 89.0 82.0 84.8 70.1 79.0 80.0
LoRA ✓ 56.1M (0.83%) 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
DoRA ✓ 57.0M (0.84%) 71.8 83.7 76.0 89.1 82.6 83.7 68.2 82.4 79.7
IPA (Ours) ✓ 56.1M (0.83%) 71.1 84.4 80.9 90.5 82.7 85.6 71.5 81.4 81.1

LLAMA-3 8B

LoRA ✗ 25.2M (0.31%) 73.6 88.1 80.3 95.0 85.2 90.4 80.1 87.4 85.0
DoRA ✗ 26.0M (0.32%) 74.3 87.9 79.7 95.3 84.2 90.3 79.5 86.2 84.7
IPA (Ours) ✗ 25.2M (0.31%) 74.8 88.6 81.1 95.4 85.6 91.7 79.9 87.8 85.6
LoRA ✓ 56.6M (0.70%) 75.4 88.6 80.7 95.4 86.2 91.2 80.1 86.1 85.5
DoRA ✓ 57.4M (0.71%) 75.3 89.3 80.8 95.3 85.8 89.9 79.3 85.6 85.1
IPA (Ours) ✓ 56.6M (0.70%) 75.0 89.9 81.2 96.0 85.9 91.2 79.6 88.4 85.9

QWEN-2.5 7B

LoRA ✗ 24.3M (0.32%) 62.8 89.3 79.9 94.6 83.1 95.9 88.6 91.4 85.7
DoRA ✗ 25.1M (0.33%) 62.0 89.8 78.6 94.6 83.0 96.1 88.9 89.8 85.3
IPA (Ours) ✗ 24.3M (0.32%) 73.3 90.0 80.2 95.0 85.2 95.8 88.8 92.4 87.6
LoRA ✓ 54.1M (0.71%) 63.5 89.8 79.5 95.4 85.9 95.9 88.3 92.2 86.3
DoRA ✓ 54.9M (0.72%) 74.5 90.0 80.2 95.4 85.9 95.7 87.7 91.8 87.6
IPA (Ours) ✓ 54.1M (0.71%) 74.5 90.0 79.7 95.3 85.5 96.2 88.7 92.0 87.7

GEMMA-3 4B

LoRA ✗ 21.4M (0.49%) 69.3 84.4 78.2 90.6 80.3 89.5 76.4 82.0 81.3
DoRA ✗ 22.0M (0.51%) 69.1 84.2 77.9 91.0 80.5 89.4 78.1 82.2 81.5
IPA (Ours) ✗ 21.4M (0.49%) 68.7 85.0 78.5 90.0 81.5 90.3 78.0 84.4 82.0
LoRA ✓ 46.6M (1.07%) 70.3 86.0 79.7 93.1 82.3 89.7 79.7 84.4 83.1
DoRA ✓ 47.3M (1.09%) 70.6 85.3 80.0 92.9 82.8 90.0 77.6 85.4 83.1
IPA (Ours) ✓ 46.6M (1.07%) 69.8 86.3 78.8 93.4 83.3 90.7 80.3 86.0 83.6

Table 2: Accuracy of vision encoder adaptation on VTAB-1k with the SIGLIP-2 base model.
“Vision QV FT” tunes the query/value projections, while “Vision Full FT” tunes the whole vision
encoder. We highlight the best and second scores under the same setting. We report per-group
averages, the Macro Avg. (mean of group averages), and the Micro Avg. (mean over all tasks).

Method

Group 1: Natural Group 2: Specialized Group 3: Structured
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Zero-shot — 0 (0.00%) 84.4 73.9 63.0 84.1 94.9 61.2 28.6 70.0 50.9 40.0 62.8 5.0 39.7 27.9 20.0 17.0 4.2 6.4 4.8 5.2 10.4 12.0 40.5 36.7
Vision QV FT — 14.2M ( 3.8%) 94.2 78.3 80.2 98.2 93.3 66.6 93.2 85.2 85.3 96.5 91.0 74.8 86.9 85.0 60.2 48.5 85.1 88.2 52.2 37.2 43.6 62.5 78.2 75.5
Vision Full FT — 92.9M (24.8%) 94.8 81.5 81.3 98.3 94.7 67.7 93.2 86.1 85.0 96.3 91.5 75.1 87.0 84.1 60.8 42.8 86.1 51.5 83.0 29.7 41.8 60.0 77.7 74.7

LoRA ✗ 0.15M (0.039%) 89.0 81.8 75.4 94.3 95.3 64.6 89.9 84.3 79.2 95.8 87.0 72.5 83.7 85.0 52.2 26.8 71.4 65.9 17.5 8.8 24.0 43.9 70.7 66.0
DoRA ✗ 0.17M (0.044%) 89.6 82.0 76.0 94.5 95.4 64.8 90.3 84.7 79.3 95.7 86.8 72.5 83.6 84.8 54.5 28.3 67.2 68.0 17.6 9.1 25.8 44.4 70.9 66.3
IPA (Ours) ✗ 0.15M (0.039%) 93.1 81.7 77.7 95.3 95.1 65.2 90.7 85.5 81.5 95.7 87.3 73.3 84.5 83.5 59.7 29.2 81.4 75.0 25.1 15.8 38.6 51.0 73.7 69.5
LoRA ✓ 0.29M (0.079%) 94.8 80.8 75.4 95.8 95.2 65.6 91.4 85.9 82.4 96.1 88.0 74.0 85.1 91.8 58.5 34.7 83.1 76.8 38.4 18.2 38.0 54.9 75.3 71.5
DoRA ✓ 0.33M (0.083%) 94.5 81.1 78.1 95.8 95.2 65.6 91.4 85.7 83.5 96.0 87.6 74.1 85.3 91.5 60.6 35.3 84.5 78.4 35.3 17.0 37.1 55.0 75.3 71.5
IPA (Ours) ✓ 0.29M (0.079%) 94.8 81.3 79.8 96.3 94.7 65.6 91.8 86.3 83.0 96.5 88.5 74.4 85.6 90.0 62.5 39.5 82.1 79.5 40.8 22.3 44.3 57.6 76.5 72.9

across other base models, yielding an average gain of 1.5 points. On the VTAB-1k benchmark
(Table 2), at dh = 8, IPA reaches 73.7% group-level macro average accuracy without projector
fine-tuning, surpassing LoRA by 3.0 points and DoRA by 2.8 points. With projector fine-tuning,
performance improves to 76.5%, a 1.8-point gain over both baselines.
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Figure 2: Comparison of IPA and baselines on the com-
monsense benchmark, with (⃝) and without (⊗) projector
finetuning. The red dashed line marks the best baseline.

IPA suffers less from fixing input
projectors. As shown in Fig. 2, IPA
degrades much less when projectors
are fixed: on LLAMA-2 7B the drop
is 1.1 points (vs. 3.8 for LoRA and
29.0 for DoRA), and on QWEN-2.5
7B only 0.1 (vs. 0.6 and 2.3). More-
over, IPA without projector finetuning
matches or exceeds the best finetuned
baseline in 3 of 4 models while using
over 50% fewer parameters, surpassing both baselines on LLAMA-2 7B, and slightly outperforming
them on LLAMA-3 8B.
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4 Conclusion

We introduced IPA, a framework for parameter-efficient adaptation that replaces random input
projection with an information-preserving one. Using a simple batched PCA pretraining, IPA
learns meaningful projections without backpropagation. Across language and vision benchmarks,
IPA consistently outperforms PEFT baselines with minimal extra cost, showing that data-driven
projections enable more expressive and adaptable models.
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A Related Work

Parameter efficient adapters. PEFT techniques address the high computational cost of fine-tuning
large foundational models by updating only a small set of parameters, rather than the full original
network. A prominent class of PEFT methods is adapter-based: small trainable modules are added to
a frozen ed model. Early work inserted bottleneck adapters between layers to enable task-specific
tuning without altering original weights (Houlsby et al., 2019; Rebuffi et al., 2017); later designs
placed adapters in parallel to existing layers for improved adaptation (He et al., 2022a). Recent work
have explored structured parameterizations, e.g., Kronecker-factored matrices (Mahabadi et al., 2021).
Li et al. (2024) employ block-specific adapter designs, dynamic parameter sharing, and mixtures of
experts to improve efficiency and generalization. At the matrix level, LoRA and its variants constrain
weight updates to a low-dimensional subspace for memory and compute-efficient tuning (Hu et al.,
2022; Liu et al., 2024). Indeed, He et al. (2022a) show that many PEFT methods can be viewed
through a unified lens of adapter.

Beyond architectural modifications, other PEFT strategies focus on minimizing the number of updated
weights directly. These include sparse update methods (Guo et al., 2021; Sung et al., 2021; He et al.,
2022b), which identify and tune only the most critical parameters. Recent work has even explored
extremely low-precision adapters through quantization (Jie et al., 2023), demonstrating that 1-bit
adapters can rival or surpass other PEFT strategies in both parameter efficiency and performance.

LoRA methods and insights. Among PEFT techniques, LoRA-based methods have emerged as
particularly prominent due to their simplicity, inspiring a wide range of follow-up studies.

Several works aim to improve LoRA’s design. Some focus on alternative initialization schemes.
PiSSA (Meng et al., 2024) and CorDA (Yang et al., 2024) leverage spectral decompositions of
the pretrained weights to initialize LoRA modules more effectively. Shuttleworth et al. (2024)
observe that LoRA introduces novel singular directions absent in full fine-tuning. Building on
this, LoRA-Null (Tang et al., 2025) initializes adapters in the nullspace of pretrained activations to
reduce forgetting. Other approaches propose architectural modifications. DoRA (Liu et al., 2024)
decomposes pretrained weights into basis and scaling components and applies LoRA on the basis.
VeRA (Kopiczko et al., 2024) further simplifies this by fixing both A and B to random bases and
learning only scaling coefficients. RandLoRA (Albert et al., 2025) aggregates multiple VeRA-like
components to achieve higher-rank updates. HiRA (Huang et al., 2025) follows a different route,
applying element-wise multiplication between the LoRA module and the pretrained weight. These
methods are all motivated by structural properties of the pretrained weights.

A parallel line of work investigates LoRA’s learning behavior. Hayou et al. (2024b,a) analyze how
imbalanced initialization affects feature-level dynamics during training. Zhu et al. (2024) report an
asymmetry between the down- and up-projection matrices induced by standard initialization, which
motivates subsequent variants such as HydraLoRA (Tian et al., 2024) and MALoRA (Wang et al.,
2025). We refer the reader to Mao et al. (2025); Han et al. (2024) for more comprehensive overviews
of LoRA and its many variants.

Our method differs from prior architectural improvements in that it also analyzes the input features to
the target layers, rather than focusing solely on the pretrained weights. Drawing inspiration from
studies on LoRA’s learning behavior, our approach introduces a feature-aware projection objective
that preserves information in the input representation before applying the low-rank update.

B Empirical Study on LoRA’s Asymmetric Learning Behavior

To empirically illustrate this asymmetry, we conduct an adaptation experiment across multiple tasks.
Following Huang et al. (2023), we choose the few-shot adaptation setting on the BIG-Bench Hard
benchmark (BBH; Suzgun et al., 2023), which comprises 27 diverse tasks. We use Flan-T5 (Chung
et al., 2024) as the base pretrained model. For each task j, we either fully fine-tune the pretrained
model or learning LoRA adapters on a set of target layer Λ for a fixed number of steps T , reaching
zero training loss in both cases. All LoRA adapters are initialized with the same random seed across
tasks, ensuring that A(ℓ)

0,j = A
(ℓ)
0 for every target layer ℓ ∈ Λ. This facilitates comparison of the

learned LoRA matrices across tasks.
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To analyze inter-task similarity, across all target layers Λ, we flatten and concatenate full-fine-tune
updates and the trained LoRA matrices, yielding vectors for each task j: θA,j =

∥∥
ℓ∈Λ

vec
(
A

(ℓ)
T,j

)
,

θB,j =
∥∥
ℓ∈Λ

vec
(
B

(ℓ)
T,j

)
, and ∆θW,j =

∥∥
ℓ∈Λ

vec
(
W

(ℓ)
T,j − W (ℓ)

)
. Fig. 3 then presents cosine-

similarity matrices for two cases: in panel (a) (“Task–Init, LoRA-A”) we compare each trained
vector θA,j to their common LoRA-A initialization; panels (b)–(d) (“Task–Task, LoRA-A”,
LoRA-B and Full FT, respectively) show pairwise similarities cos(θA,i, θA,j), cos(θB,i, θB,j), and
cos(∆θW,i,∆θW,j).

Remarkably, Fig. 3a shows that A matrices are still pretty similar to their initialization, while Fig. 3b
is largely uniform across tasks. This indicates that the learned A matrices undergo little change during
adaptation and capture minimal task-dependent variation. In contrast, Figures 3c and 3d reveal nearly
identical block structures, suggesting that the task-specific information recovered by full fine-tuning
is almost entirely absorbed by the B matrices.
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12: Movie Recommendation
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14: Navigate
15: Object Counting

16: Penguins In A Table
17: Reasoning About Colored Objects
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27: Word Sorting
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LoRA-A
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Figure 3: Cosine-similarity matrices for LoRA and full fine-tune updates on BIG-Bench Hard
tasks. (a) shows the similarity between each trained LoRA-A vector and its initialization; panels (b-d)
show pairwise task–task similarities for LoRA-A, LoRA-B, and full fine-tune updates, respectively.

C Experimental Detail

C.1 Hyperparameters

The hyperparameters used across all models are summarized as follows. For instruction-following
tasks, we adopt a batch size of 16, aligning with Hu et al. (2023) and Liu et al. (2024). For open-
vocabulary image classification, we use a batch size of 64.

We use a learning rate of 3× 10−4 for LLAMA-2 7B, and 1× 10−4 for LLAMA-3 8B, QWEN-2.5
7B, and GEMMA-3 4B. For all, LoRA and DoRA use a scaling factor (λ = α

dh
) of 2, while IPA uses

0.25, except for GEMMA-3 4B, where it is 0.4. For SIGLIP 2, we apply a learning rate of 1× 10−3,
scaling factors of 2 (LoRA/DoRA) and 0.5 (IPA), with a dropout rate of 0.1 across all variants.

C.2 Ablation Studies

All ablations use LLAMA-3 8B on the instruction-following fine-tuning task (see Section 3.1).

Projector pretraining algorithm. As introduced in Section 2.4, we compare two online algorithms
for estimating the top principal components: IPCA and GHA. Both optimize the same autoencoding
objective eq. (2). Table 3 reports results with and without projector fine-tuning. Across all settings,
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IPA-IPCA achieves higher downstream accuracy and converges more reliably than its GHA-based
counterpart, making it our default choice. Detailed per-task results are provided in Table 3.

Table 3: Comparison of instruction-following answer accuracy (%) between IPCA and GHA algo-
rithms on commonsense reasoning benchmark.

Method Proj. FT BoolQ
PIQA

SocialIQA
HellaSwag

WinoGrande

ARC-easy

ARC-challenge

OpenbookQA

Avg.

IPA-IPCA ✗ 74.8 88.6 81.1 95.4 85.6 91.7 79.9 87.8 85.6
IPA-GHA ✗ 73.3 88.1 80.3 95.0 85.1 91.0 80.0 87.2 85.0

IPA-IPCA ✓ 75.0 89.9 81.2 96.0 85.9 91.2 79.6 88.4 85.9
IPA-GHA ✓ 74.9 89.3 81.3 95.8 86.3 90.4 80.1 86.2 85.6

Projector pretraining set size. The commonsense-170k dataset is large enough to investigate
how the size of the projector pretraining set affects downstream performance. In Fig. 4b, we pretrain
the projector on randomly shuffled subsets ranging from 1% to 100% of the data, using a fixed seed
for reproducibility. We select the first X% of examples from the shuffled split. Although performance
generally improves up to around 10% of the data, we observe mitigated results beyond that point,
which is likely due to variance in sample composition and/or randomized version of IPCA. Pretraining
the feature projector on the full feature set takes roughly 1.7 hours on a NVIDIA H100 GPU, which
is about ten times longer than using a 10% subset (≈10 minutes). Note that adapter tuning on the
full dataset requires about 5 hours for 3 epochs. Despite the substantially lower cost, the full dataset
yields negligible or no accuracy improvement (and occasionally slight degradation due to variance),
so we conclude that 10% is a practical sweet spot for efficient pretraining on commonsense-170k
dataset without sacrificing downstream performance. Detailed results are provided in Table 5.

Projected feature dimension. In our ablation study, we vary the hidden dimension dh for IPA,
LoRA, and DoRA, while keeping the learning rate, pretraining set size, and scaling ratio fixed. Fig. 4a
shows a characteristic bell-shaped curve for both IPA and LoRA: accuracy falls off steeply at very low
dimensions, reaches a maximum over an intermediate range, then gradually declines as dh increases
further. Importantly, IPA is more robust than LoRA: at dh = 8, it matches LoRA’s performance at
dh = 16, whereas LoRA’s accuracy drops sharply. DoRA maintains a relatively flat performance
profile across all tested dimensions but underperforms IPA once dh ≥ 8. For intermediate dimensions
(dh = 16, 32, 64), LoRA still outperforms DoRA. Detailed per-task results are provided in Table 4.
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Figure 4: Average accuracy of LLAMA-3 8B models fine-tuned on commonsense benchmark with
(a) varying hidden dimension dh for IPA, compared to LoRA and DoRA, both with input projection
fine-tuning •••, and (b) IPA (with projection fine-tuning • or without ×) with varying percentage of
the training dataset to obtain the projection pretraining feature set.

Tables 4 and 5 show the detailed results of the ablation studies in Figs. 4a and 4b in Appendix C.2.
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Table 4: Detailed results of the ablation study on different hidden dimensions.

Method
Proj.
FT

Hidden
Dim. BoolQ

PIQA
SocialIQA

HellaSwag

WinoGrande

ARC-easy

ARC-challenge

OpenbookQA

Avg.

LoRA ✓

4 62.1 87.9 78.9 91.3 84.0 89.9 79.4 86.6 82.5
8 62.1 88.8 80.5 92.3 83.0 90.2 80.7 84.8 82.8
16 74.7 87.4 80.9 95.4 86.7 90.0 79.4 87.2 85.2
32 75.4 88.6 80.7 95.4 86.2 91.2 80.1 86.1 85.5
64 75.1 88.4 81.0 93.0 86.9 90.4 79.7 86.8 85.1
96 74.9 88.4 79.8 94.6 86.3 89.6 78.8 85.4 84.7

DoRA ✓

4 73.6 88.6 79.8 95.5 85.1 90.2 80.3 86.2 84.9
8 75.6 89.1 80.7 95.6 85.2 90.9 78.7 85.8 85.2
16 73.5 88.9 80.2 95.3 86.1 90.5 78.6 85.6 84.8
32 75.3 89.3 80.8 95.3 85.8 89.9 79.3 85.6 85.1
64 74.8 88.6 80.9 94.9 85.3 89.4 79.9 86.2 85.0
96 74.6 89.0 80.0 95.3 85.9 90.4 79.0 88.8 85.4

IPA ✓

4 73.7 88.0 79.2 95.0 84.0 89.9 79.7 85.8 84.4
8 73.7 89.0 81.1 95.6 86.3 91.0 80.1 85.2 85.2
16 74.6 88.9 80.6 96.0 85.1 91.0 80.3 88.6 85.6
32 75.0 89.9 81.2 96.0 85.9 91.2 79.6 88.4 85.9
64 75.9 88.4 80.4 95.9 87.5 91.5 81.0 87.8 86.1
96 75.6 88.2 81.4 95.9 86.6 91.0 80.5 86.8 85.7

Table 5: Detailed results of the ablation study on projector pretraining set size.

Method
Proj.
FT

Proj. Pre-
training
Set BoolQ

PIQA
SocialIQA

HellaSwag

WinoGrande

ARC-easy

ARC-challenge

OpenbookQA

Avg.

IPA

✓

1% 75.2 88.8 81.0 95.6 86.5 91.3 79.6 87.2 85.7
10% 75.0 89.9 81.2 96.0 85.9 91.2 79.6 88.4 85.9
25% 75.4 89.4 81.8 96.0 88.1 91.1 79.9 87.4 86.1
50% 74.9 89.2 81.5 95.9 87.6 91.1 80.7 86.6 85.9

100% 75.1 88.8 80.8 96.1 86.9 90.9 79.9 87.6 85.7

✗

1% 74.1 88.5 80.9 95.3 86.1 91.4 80.8 87.6 85.6
10% 74.9 88.5 81.0 95.7 85.6 91.0 80.0 88.2 85.6
25% 73.6 88.2 80.5 95.5 85.8 91.0 80.1 88.4 85.4
50% 74.3 88.2 80.7 95.3 85.4 90.2 80.4 88.2 85.3

100% 73.7 88.0 81.1 95.2 86.6 90.7 80.1 88.8 85.5
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