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Abstract
We study differentially private (DP) optimization
algorithms for stochastic and empirical objectives
which are neither smooth nor convex, and propose
methods that return a Goldstein-stationary point
with sample complexity bounds that improve on
existing works. We start by providing a single-
pass (ε, δ)-DP algorithm that returns an (α, β)-
stationary point as long as the dataset is of size
Ω̃(
√
d/αβ3 + d/εαβ2), which is Ω(

√
d) times

smaller than the algorithm of Zhang et al. (2024)
for this task, where d is the dimension. We then
provide a multi-pass polynomial time algorithm
which further improves the sample complexity
to Ω̃

(
d/β2 + d3/4/εα1/2β3/2

)
, by designing a

sample efficient ERM algorithm, and proving that
Goldstein-stationary points generalize from the
empirical loss to the population loss.

1. Introduction
We consider optimization problems in which the loss func-
tion is stochastic or empirical, of the form

F (x) := E
ξ∼P

[f(x; ξ)] , (stochastic)

F̂D(x) :=
1

n

n∑
i=1

f(x; ξi), (ERM)

where P is the population distribution from which we sam-
ple a dataset D = (ξ1, . . . , ξn) ∼ Pn, and the component
functions f( · ; ξ) : Rd → R may be neither smooth nor
convex. Such problems are ubiquitous throughout machine
learning, where losses given by deep-learning based models
give rise to highly nonsmooth nonconvex (NSNC) land-
scapes.
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Due to its fundamental importance in modern machine learn-
ing, the field of nonconvex optimization has received sub-
stantial attention in recent years. Moving away from the
classical regime of convex optimization, many works aimed
at understanding the complexity of producing approximate-
stationary points (with small gradient norm) for smooth
nonconvex functions (Ghadimi & Lan, 2013; Fang et al.,
2018; Carmon et al., 2020; Arjevani et al., 2023). However,
smoothness rarely holds in modern practice, posing a major
challenge for large and highly expressive models such as
deep neural networks. Indeed, using ReLUs and MaxPool
layers is common practice (LeCun et al., 2015), and more-
over, stochastic gradient descent (SGD) with a large batch
size tends to converge to sharp minima (Keskar et al., 2017)

As it turns out, without smoothness, it is actually impossi-
ble to directly minimize the gradient norm without suffer-
ing from an exponential-dimension dependent runtime in
the worst case (Kornowski & Shamir, 2022). Nonetheless,
a nuanced notion coined as Goldstein-stationarity (Gold-
stein, 1977), has been shown in recent years to enable fa-
vorable guarantees. Roughly speaking, a point x ∈ Rd

is called an (α, β)-Goldstein stationary point (or simply
(α, β)-stationary) if there exists a convex combination of
gradients in the α-ball around x whose norm is at most β.1

Following the groundbreaking work of Zhang et al. (2020),
a surge of works study NSNC optimization through the lens
of Goldstein stationarity, with associated finite-time guar-
antees (Davis et al., 2022; Lin et al., 2022; Cutkosky et al.,
2023; Jordan et al., 2023; Kong & Lewis, 2023; Grimmer &
Jia, 2024; Kornowski & Shamir, 2024; Tian & So, 2024).

In this work, we study NSNC optimization problems under
the additional constraint of differential privacy (DP) (Dwork
et al., 2006). With the ever-growing deployment of ML
models in various domains, the privacy of the data on which
models are trained is a major concern. Accordingly, DP
optimization is an extremely well-studied problem, with a
vast literature focusing on functions that are assumed to be
either convex or smooth (Bassily et al., 2014; Wang et al.,
2017; Bassily et al., 2019; Wang et al., 2019; Feldman et al.,

1Previous works typically use the notational convention (δ, ε)-
stationarity instead of (α, β), namely where δ is the radius (instead
of α) and ε is the norm bound (instead of β). We depart from this
notational convention in order to avoid confusion with the standard
privacy notation of (ε, δ)-DP.
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2020; Gopi et al., 2022; Arora et al., 2023; Carmon et al.,
2023; Liu et al., 2024).

The fundamental investigation in this literature is the
privacy-utility trade-off, that is, assessing the minimal
dataset size n (referred to as the sample complexity) re-
quired in order to optimize the loss up to some error under
DP. Being able to improve utility while using less samples
has significant consequences, as in applications the amount
of available data is a serious bottleneck, or arguably soon to
become one (Villalobos et al., 2024).

For NSNC DP optimization, to the best of our knowledge the
only existing result is by Zhang et al. (2024), which provided
a zero-order algorithm (namely, utilizing only function value
evaluations of f( · ; ξ)) that preforms a single pass over the
dataset and returns an (α, β)-stationary point of F under
(ε, δ)-DP as long as

n = Ω̃

(
d

αβ3
+

d3/2

εαβ2

)
. (1)

1.1. Our contributions

In this paper, we provide several new algorithms for NSNC
DP optimization, which improve the previously best-known
sample complexity for this task. Equivalently, given the
same amount of data, they provide better utility. For con-
sistency with the previous result by Zhang et al. (2024),
throughout most of this paper we propose and analyze zero-
order algorithms, yet we later generalize our results to ac-
commodate first-order (i.e. gradient) oracles.

Our contributions, summarized in Table 1, are as follows:

1. Improved single-pass algorithm (Theorem 3.1): We
provide an (ε, δ)-DP algorithm that preforms a single
pass over that dataset, and returns an (α, β)-stationary
point as long as

n = Ω̃

( √
d

αβ3
+

d

εαβ2

)
, (2)

which is Ω(
√
d) times smaller than (1). Notably, the

“non-private” term
√
d/αβ3 has sublinear dimension de-

pendence, as opposed to Eq. (1), which was erroneously
claimed impossible by previous work (see Remark 3.2).

2. Better multi-pass algorithm (Theorem 4.1): In order
to further improve the sample complexity, we move to
consider ERM algorithms that go over the data polynomi-
ally many times, which we will later argue generalize to
the population loss. To that end, we provide an (ε, δ)-DP
ERM algorithm, that returns an (α, β)-Goldstein station-
ary point of F̂D as long as

n = Ω̃

(
d3/4

εα1/2β3/2

)
. (3)

Sample complexity empirical stochastic

(Zhang et al., 2024) (SP) d
αβ3 + d3/2

εαβ2

Theorem 3.1 (SP)
√
d

αβ3 + d
εαβ2

Theorem 4.1 (MP) d3/4

εα1/2β3/2
d
β2 + d3/4

εα1/2β3/2

Table 1. Main results (ignoring dependence on Lipschitz constant,
initialization, and log terms). SP=Single pass, MP=Multi-pass.

Notably, Eq. (3) substantially improves Eq. (2) (and thus,
Eq. (1)) in parameter regimes of interest (small ε, α, β,
large d) with respect to the dimension and accuracy pa-
rameters, and in particular is the first algorithm to per-
form private ERM with sublinear dimension-dependent
sample complexity for NSNC objectives.

In order to utilize our empirical algorithm for stochastic
objectives, we must argue that Goldstein-stationarity gen-
eralizes from the ERM to the population. No such result
appears in the literature, thus we proceed to prove it:

• Additional contribution: generalizing from ERM to
population in NSNC optimization (Proposition 5.1).
We show that with high probability, any (α, β̂)-
stationary point of F̂D is an (α, β)-stationary point
of F , for β = β̂ + Õ(

√
d/n). Hence, the empirical

guarantee Eq. (3) generalizes to stochastic losses with
an additional d/β2 additive term in n (up to log terms).

3. First-order algorithm with reduced oracle complexity
(Theorem 6.1): We provide a first-order (i.e., gradient-
based) algorithm with the same sample complexity de-
rived thus far, which requires Ω̃(d2) times less oracle
calls compared to the zero-order case. Overall, this es-
tablishes the best-known algorithm for NSNC DP both
in terms of sample efficiency and oracle efficiency.

1.2. Our techniques

One of the main techniques we use is constructing a better
gradient estimator with an improved effective sensitivity.
We consider the zero-order gradient estimator

∇̃fα(x; ξ) =
1

m

m∑
j=1

d

2α
(f(x+ αyj ; ξ)− f(x− αyj ; ξ))

(4)

for (yi)mi=1
iid∼ Unif(Sd−1), which is an unbiased estimator

of the smoothed gradient ∇fα(x; ξ) (cf. Section 2 for de-
tails), to which we then apply variance reduction. Zhang
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et al. (2024) considered this oracle specifically with m = d,
for which it is easy to bound the estimator’s sensitivity over
neighboring minibatches ξ1:B , ξ′1:B of size B by∥∥∥ 1

B

B∑
i=1

∇̃fα(x; ξi)−
1

B

B∑
i=1

∇̃fα(x; ξ′i)
∥∥∥ ≤ Ld

B
. (5)

Our key observation is that while this is indeed the worst-
case sensitivity, we can get substantially lower sensitivity
with high probability: For sufficiently large m, standard sub-
Gaussian concentration bounds ensure that ∇̃fα(x; ξi) ≈
∇fα(x; ξi) with high probability, and hence under this event
we show the sensitivity over a mini-batch can be decreased
to an order of L

B . This is a factor of d smaller than Eq. (5),
thus we can add significantly less noise in order to privatize,
leading to faster convergence to stationarity.

2. Preliminaries
Notation. We denote by ⟨·, ·⟩ , ∥ · ∥ the standard Euclidean
dot product and its induced norm. For x ∈ Rd and α > 0,
we denote by B(x, α) the closed ball of radius α centered at
x, and further denote Bα := B(0, α). Sd−1 ⊂ Rd denotes
the unit sphere. We make standard use of O-notation to hide
absolute constants, Õ, Ω̃ to hide poly-logarithmic factors,
and also let f ≲ g denote f = O(g).

Nonsmooth optimization. A function h : Rd → R is
called L-Lipschitz if for all x, y ∈ Rd : |h(x) − h(y)| ≤
L∥x−y∥. We call hH-smooth, if h is differentiable and∇h
is H-Lipschitz with respect to the Euclidean norm. For Lip-
schitz functions, the Clarke subgradient set (Clarke, 1990)
can be defined as

∂h(x) := conv{g : g = lim
n→∞

∇h(xn), xn → x},

namely the convex hull of all limit points of∇h(xn) over se-
quences of differentiable points (which are a full Lebesgue-
measure set by Rademacher’s theorem), converging to x.
For α ≥ 0, the Goldstein α-subdifferential (Goldstein,
1977) is further defined as

∂αh(x) := conv(∪y∈B(x,α)∂h(y)),

and we denote the minimum-norm element of the Goldstein
α-subdifferential by

∂αh(x) := argming∈∂αh(x) ∥g∥ .

Definition 2.1. A point x ∈ Rd is called an (α, β)-
Goldstein stationary point of h if

∥∥∂αh(x)
∥∥ ≤ β.

Throughout the paper we impose the following standard
Lipschitz assumption:
Assumption 2.2. For any ξ, f(· ; ξ) : Rd → R is L-
Lipschitz (hence, so is F ).

Randomized smoothing. Given any function h : Rd →
R, we denote its randomized smoothing hα(x) :=
Ey∼Bα h(x+y). We recall the following standard properties
of randomized smoothing (Flaxman et al., 2005; Yousefian
et al., 2012; Duchi et al., 2012; Shamir, 2017).

Fact 2.3 (Randomized smoothing). Suppose h : Rd →
R is L-Lipschitz. Then: (i) hα is L-Lipschitz; (ii)
|hα(x) − h(x)| ≤ Lα for any x ∈ Rd; (iii) hα is
O(L
√
d/α)-smooth; (iv)∇hα(x) = Ey∼Bα

[∇h(x+y)] =
Ey∼Sd−1 [ d

2α (h(x+ αy)− h(x− αy))y].

The following result shows that in order to find a Goldstein-
stationary point of a function, it suffices to find a Goldstein-
stationary point of its randomized smoothing:

Lemma 2.4 (Kornowski & Shamir, 2024, Lemma 4). Any
(α, β)-stationary point of hα is a (2α, β)-stationary point
of h.

Differential privacy. Two datasets D,D′ ∈ supp(P)n
are said to be neighboring if they differ in only one data
point. A randomized algorithmA : Zn → R is called (ε, δ)
differentially private (or (ε, δ)-DP) for ε, δ > 0 if for any
two neighboring datasets D,D′ and measurable E ⊆ R
in the algorithm’s range, it holds that Pr[A(D) ∈ E] ≤
eε Pr[A(D′) ∈ E] + δ (Dwork et al., 2006).

Tree mechanism. Next, we revisit the well-known tree
mechanism, detailed in Algorithm 1. In essence, the tree
mechanism enables the privatization of cumulative sums∑t

j=1 gj for all t ∈ [Σ], which, in our context, correspond
to summed gradient estimators. A naive approach would add
independent Gaussian noise ζj to each gj , leading to an error
that scales as

√
Σ. In contrast, the tree mechanism reduces

this error to O(log Σ) by introducing correlated Gaussian
noise. Broadly speaking, the mechanism generates a set of
independent Gaussian noise values and organizes them in a
tree-like structure, where each node corresponds to a specific
noise value. To compute any cumulative sum

∑t
j=1 gj ,

the mechanism selects at most O(log Σ) nodes (Function
NODE in Algorithm 1) from the tree and privatizes the sum
using the aggregated noise from these nodes (i.e., final noise
TREE(t) generated by Algorithm 1). The formal guarantee
associated with this mechanism is provided below.

Proposition 2.5 (Tree Mechanism Dwork et al., 2010; Chan
et al., 2011; Zhang et al., 2024). Let Z1, · · · ,ZΣ be dataset
spaces, suppose X ⊆ Rd, and letMi : X i−1×Zi → X be
a sequence of algorithms for i ∈ [Σ]. Let ALG : Z(1:Σ) →
XΣ be the algorithm that given a dataset Z1:Σ ∈ Z(1:Σ),
sequentially computes Xi =

∑i
j=1Mj(X1:j−1, Zj) +

TREE(i) for i ∈ [Σ], and then outputs X1:Σ. Sup-
pose for all i ∈ [Σ], and neighboring Z1:Σ, Z

′
1:Σ ∈

Z(1:Σ), ∥Mi(X1:i−1, Zi) −Mi(X1:i−1, Z
′
i)∥ ≤ s for all

auxiliary inputs X1:i−1 ∈ X i−1. Then setting σ =
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4s
√

log Σ log(1/δ)/ε, Algorithm 1 is (ε, δ)-DP. Further-
more, for any t ∈ [Σ] : E[TREE(t)] = 0 and
E ∥TREE(t)∥2 ≲ d log(Σ)σ2.

In our case, the “dataset spaces” Zi will be collections of
possible minibatches of some determined size, and Mi

will be a gradient estimator with respect to the sampled
minibatch at some current iterate.

Algorithm 1 Tree Mechanism
1: Input: Noise parameter σ, sequence length Σ
2: Define T := {(u, v) : u = j · 2ℓ−1 + 1, v = (j + 1) ·

2ℓ−1, 1 ≤ ℓ ≤ log Σ, 0 ≤ j ≤ Σ/2ℓ−1 − 1}
3: Sample and store ζ(u,v) ∼ N (0, σ2) for all (u, v) ∈ T
4: for t = 1, · · · ,Σ do
5: Let TREE(t)←

∑
(u,v)∈NODE(t) ζ(u,v)

6: end for
7: Return: TREE(t) for each t ∈ [Σ]
8:
9: Function NODE:

10: Input: index t ∈ [Σ]
11: Initialize S = {} and k = 0
12: for i = 1, · · · , ⌈log Σ⌉ while k < t do
13: Set k′ = k + 2⌈log Σ⌉−i

14: if k′ ≤ t then
15: S ← S ∪ {(k + 1, k′)}, k ← k′

16: end if
17: end for

2.1. Base algorithm: O2NC

Similar to Zhang et al. (2024), our general algorithm is
based on the so-called “Online-to-Non-Convex conversion”
(O2NC) of Cutkosky et al. (2023), which is generally an opti-
mal method for finding Goldstein-stationary points (without
the privacy constraint). We slightly modify previous proofs
by disentangling the role of the variance of the gradient
estimator vs. its second order moment, as follows:

Proposition 2.6 (O2NC). Suppose thatO( · ) is a stochastic
gradient oracle of some differentiable function h : Rd → R,
so that for all z ∈ Rd : E ∥O(z) − ∇h(z)∥2 ≤ G2

0 and
E ∥O(z)∥2 ≤ G2

1. Then running Algorithm 2 with η =
D

G1

√
M
, MD ≤ α, uses T calls to O( · ), and satisfies

E
∥∥∂αh(x

out)
∥∥ ≤ h(x0)− inf h

DT
+

3G1

2
√
M

+G0.

We provide a proof of Proposition 2.6 in Appendix B. Re-
calling that by Lemma 2.4 any (α, β)-stationary point of Fα

is a (2α, β)-stationary point of F , we see that it is enough to
design a private stochastic gradient oracle O of∇Fα, while
controlling its variance G0 and second moment G1. In the
next sections, we show how to construct such private oracles

and derive the corresponding guarantees through Proposi-
tion 2.6. As previously remarked, throughout most of the
paper, our oracles will be based on zero-order queries of the
component functions f( · , ξ), yet in Section 6 we construct
oracles with the same sample complexity using first-order
queries, leading to a lower oracle complexity overall.

Algorithm 2 Nonsmooth Nonconvex Algorithm (based on
O2NC (Cutkosky et al., 2023))

1: Input: Oracle O : Rd → Rd, initialization x0 ∈ Rd,
clipping parameter D > 0, step size η > 0, averaging
length M ∈ N, iteration budget T ∈ N.

2: Initialize: ∆1 = 0
3: for t = 1, . . . , T do
4: Sample st ∼ Unif[0, 1]
5: xt = xt−1 +∆t

6: zt = xt−1 + st∆t

7: g̃t = O(zt)
8: ∆t+1 = min{1, D

∥∆t−ηg̃t∥} · (∆t − ηg̃t)

9: end for
10: K = ⌊ T

M ⌋
11: for k = 1, . . . ,K do
12: xk = 1

M

∑M
m=1 z(k−1)M+m

13: end for
14: Sample xout ∼ Unif{x1, . . . , xK}
15: Output: xout.

3. Single-pass algorithm
In this section, we consider Algorithm 3, which provides an
oracle to be used in Algorithm 2. Algorithm 3 is such that
throughout T calls, it uses each data point once, and hence,
privacy is maintained with no need for composition. The
main theorem in this section is the following:

Theorem 3.1 (Single-pass algorithm). Suppose
F (x0) − infx F (x) ≤ Φ, that Assumption 2.2 holds,
and let α, β, δ, ε > 0 such that α ≤ Φ

L . Then setting B1 =

Σ, B2 = 1, M = α/4D, m = Õ(d2B2
1 +

dα2B2
2

D2 ), σ =

Õ( L
B1ε

+ LD
√
d

αB2ε
), Σ = Θ̃(( α

εD )2/3 + α
Dd1/2 ), D =

Θ̃(min{( Φ2α
L2T 2 )

1/3, (Φαε
dLT )

1/2, ( Φ3α2ε
d3/2L3T 3 )

1/5, ( Φ2α
L2T 2

√
d
)1/3}),

T = Θ(n), and running Algorithm 2 with Algorithm 3 as
the oracle subroutine, is (ε, δ)-DP. Furthermore, its output
satisfies E ∥∂2αF (xout)∥ ≤ β as long as

n = Ω̃

(
ΦL2
√
d

αβ3
+

ΦLd

εαβ2

)
.

Remark 3.2. It is interesting to note that the “non-private”
term ΦL2

√
d/αβ3 in Theorem 3.1 has sublinear depen-

dence on the dimension d. Not only is this the first such
result, this was even (erroneously) claimed impossible by
Zhang et al. (2024). The reason for this confusion is that
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Algorithm 3 Single-pass instantiation of O(zt) in Line 7 of
Algorithm 2

1: Input: Current iterate zt, time t ∈ N, period length Σ ∈
N, accuracy parameter α > 0, batch sizes B1, B2 ∈ N,
gradient validation size m ∈ N, noise level σ > 0.

2: if t mod Σ = 1 then
3: Sample minibatch St of size B1 from unused samples
4: for each sample ξi ∈ St do
5: Sample y1, . . . , ym

iid∼ Unif(Sd−1)
6: ∇̃f(zt; ξi) = 1

m

∑
j∈[m]

d
2α (f(zt + αyj ; ξi) −

f(zt − αyj ; ξi))yj
7: end for
8: gt =

1
B1

∑
ξi∈St

∇̃f(zt; ξi)
9: else

10: Sample minibatch St of size B2 from unused samples
11: for each sample ξi ∈ St do
12: Sample y1, . . . , y2m

iid∼ Unif(Bα)
13: ∇̃f(zt; ξi) = 1

m

∑
j∈[m]

d
2α (f(zt + αyj ; ξi) −

f(zt − αyj ; ξi))yj
14: ∇̃f(zt−1; ξi) = 1

m

∑2m
j=m+1

d
2α (f(zt−1 +

αyj ; ξi)− f(zt−1 − αyj ; ξi))yj
15: end for
16: gt = gt−1+

1
B2

∑
ξi∈St

(∇̃f(zt; ξi)−∇̃f(zt−1; ξi))
17: end if
18: Return g̃t = gt +TREE(σ,Σ)(t mod Σ)

while the optimal zero-order oracle complexity is d/αβ3

(Kornowski & Shamir, 2024), and in particular must scale
linearly with the dimension (Duchi et al., 2015), the sample
complexity might not.

Remark 3.3. Since Algorithm 2 uses T calls to O( · ), and
it easy to see that the amortized oracle complexity of O( · )
is O(m), the overall oracle complexity we get is O(Tm).
As previously mentioned, we set m to reduce the sensitivity
of O( · ), leading to an improvement in sample complexity.
More generally, our analysis allows trading-off sample and
oracle complexities in a Pareto-front fashion. We further
use this observation in Section 6, where we show that first-
order oracles allow setting a substantially smaller m while
maintaining the same reduced sensitivity.

In the rest of the section, we will present the basic prop-
erties of this oracle in terms of sensitivity (implying the
privacy), variance and second moment. We will then plug
these into Algorithm 2, which enables proving Theorem 3.1.
Corresponding proofs are deferred to Appendix A.

Lemma 3.4 (Sensitivity). Consider the gradient oracleO(·)
in Algorithm 3 when acting on two neighboring minibatches
St and S′

t, and correspondingly producing gt and g′t, re-
spectively. If t mod Σ = 1, then it holds with probability at

least 1− δ/2 that

∥gt − g′t∥ ≲
L

B1
+

Ld
√
log(dB1/δ)√

m
.

Otherwise, conditioned on gt−1 = g′t−1, we have with prob-
ability at least 1− δ/2 :

∥gt − g′t∥ ≲
L
√
dD

αB2
+

Ld
√
log(dB1/δ)√

m
.

With the sensitivity bound given by Lemma 3.4, we easily
derive the privacy guarantee of our oracle from the Tree
Mechanism (Proposition 2.5).

Lemma 3.5 (Privacy). Running Algorithm 3 with
m = O

(
log(dB2/δ)(d

2B2
1 +

dα2B2
2

D2 )
)

and σ =

O

(
L
√

log(1/δ)

B1ε
+

LD
√

d log(1/δ)

αB2ε

)
is (ε, δ)-DP.

We next analyze the variance and second moment of the
gradient oracle.

Lemma 3.6 (Variance). In Algorithm 3, for all t ∈ [T ] it
holds that

E ∥g̃t −∇Fα(zt)∥2 ≲
L2

B1
+

L2d2

B1m
+

L2dD2Σ

α2B2

+ σ2d log Σ +
L2d2Σ

mB2
,

E ∥g̃t∥2 ≲ L2 +
L2d2

B1m
+

L2dD2Σ

α2B2

+ σ2d log Σ +
L2d2Σ

mB2
.

Combining the ingredients that we have set up, we can
derive Theorem 3.1.

Proof of Theorem 3.1. The privacy guarantee follows di-
rectly from Lemma 3.5, by noting that our parameter assign-
ment implies B1T/Σ+B2T = O(n), which allows letting
T = Θ(n) while never re-using samples (hence no privacy
composition is required). Therefore, it remains to show the
utility bound. By applying Lemma 2.4 and Proposition 2.6,
we get that

E ∥∂2αF (xout)∥ ≤ E ∥∂αFα(x
out)∥

≤ Fα(x0)− inf Fα

DT
+

3G1

2
√
M

+G0

≤ 2Φ

DT
+

3G1

2
√
M

+G0, (6)

where the last inequality used the fact that Assumption 2.2
and Fact 2.3 together imply that Fα(x0) − inf Fα ≤
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F (x0) − inf F + Lα ≤ Φ + Lα ≤ 2Φ. Under our pa-
rameter assignment, Lemma 3.6 yields

G1 ≲ G0 + L, (7)

which plugged into Eq. (6) gives

E ∥∂2αF (xout)∥ = O

(
Φ

DT
+

L√
M

+G0

)
. (8)

Moreover, under our parameter assignment, Lemma 3.6 also
gives the bound

G0 ≲
L√
B1

+
LD
√
dΣ

α
√
B2

+ σ
√
d log Σ (9)

= Õ

(
L√
Σ

+
LDd1/2Σ1/2

α
+

Ld1/2

Σε
+

LDd

αε

)
,

which propagated into Eq. (8) and recalling that M =
Θ(α/D) shows that

E ∥∂2αF (xout)∥

= Õ

(
Φ

DT
+

LD1/2

α1/2
+

LDd1/2Σ1/2

α

+
L√
Σ

+
Ld1/2

Σε
+

LDd

αε

)
.

Plugging our assignments of Σ and D, and recalling that
n = Θ(T ), a straightforward calculation simplifies the
bound above to

E ∥∂2αF (xout)∥

= Õ

((ΦL2
√
d

nα

)1/3
+
(ΦdL
nαε

)1/2
+
(Φ2L3d3/2

n2α2ε

)1/5)
.

Bounding by β and solving for n results in

n = Ω̃

(
ΦL2
√
d

αβ3
+

ΦLd

εαβ2
+

ΦL3/2d3/4

ε1/2αβ5/2

)
.

To complete the proof, we simply note that ΦL3/2d3/4

ε1/2αβ5/2 ≤
ΦL2

√
d

αβ3 + ΦLd
εαβ2 by the AM-GM inequality, and so the third

term above is negligible.

4. Multi-pass algorithm
In this section, we consider a different oracle construction
given by Algorithm 4, to be used in Algorithm 2. The
main difference from the previous section is that this ora-
cle reuses data points a polynomial number of times, and
therefore cannot directly guarantee generalization to the
stochastic objective. Instead, in this section we analyze

Algorithm 4 Multi-pass instantiation of O(zt) in Line 7 of
Algorithm 2

1: Input: Current iterate zt, time t ∈ N, period length
Σ ∈ N, accuracy parameter α > 0, gradient validation
size m ∈ N, noise levels σ1, σ2 > 0.

2: if t mod Σ = 1 then
3: for each sample ξi ∈ D do
4: Sample y1, . . . , ym

iid∼ Unif(Sd−1)
5: ∇̃f(zt; ξi) = 1

m

∑
j∈[m]

d
2α (f(zt + αyj ; ξi) −

f(zt − αyj ; ξi))yj
6: end for
7: gt =

1
n

∑
ξi∈D ∇̃f(zt; ξi)

8: Return: g̃t = gt + χt, where χt ∼ N (0, σ2
1Id)

9: else
10: for each sample ξi ∈ D do
11: Sample y1, . . . , y2m

iid∼ Unif(Bα)
12: ∇̃f(zt; ξi) = 1

m

∑m
j=1

d
2α (f(zt + αyj ; ξi) −

f(zt − αyj ; ξi))yj
13: ∇̃f(zt−1; ξi) = 1

m

∑2m
j=m+1

d
2α (f(zt−1 +

αyj ; ξi)− f(zt−1 − αyj ; ξi))yj
14: end for
15: gt = g̃t−1 +

1
n

∑
ξi∈D(∇̃f(zt; ξi)− ∇̃f(zt−1; ξi))

16: Return: g̃t = gt + χt, where χt ∼ N (0, σ2
2Id).

17: end if

the empirical objective F̂D(x) := 1
n

∑n
i=1 f(x; ξi). After

establishing ERM results, in Section 5 we show that any
empirical Goldstein-stationarity guarantee generalizes to the
population loss.

Similarly to the single-pass oracle (Algorithm 3), we use
randomized smoothing and variance reduction. A difference
in the oracle construction is that we replace the tree mech-
anism with the Gaussian mechanism and apply advanced
composition for the privacy analysis (since now samples are
reused). The main theorem for this section is the following:

Theorem 4.1 (Multi-pass ERM). Suppose F̂D(x0) −
infx F̂

D(x) ≤ Φ, Assumption 2.2 holds, and let α, β, δ, ε >
0 such that α ≤ Φ

L . Then setting m = L2dΣ
nσ2

1
+ L2d

nσ2
2

,

σ1 = O(
L
√

T log(1/δ)/Σ

nε ), σ2 = O(
LD
√

Td log(1/δ)

αnε ), Σ =

Θ̃( α
D
√
d
), D = Θ̃(α

2β2

L2 ), T = Θ̃( ΦL2

α2β3 ), and running Algo-
rithm 2 with Algorithm 4 as the oracle subroutine is (ε, δ)-
DP. Furthermore, its output satisfies E ∥∂2αF̂

D(xout)∥ ≤
β as long as

n = Ω̃

(√
ΦLd3/4

εα1/2β3/2

)
.

Remark 4.2. As we will show in Section 5, Theorem 4.1 also
provides the same population guarantee for ∥∂2αF (xout)∥
with an additional L2d/β2 term (up to log factors) to the
sample complexity.
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To prove Theorem 4.1, we analyze the properties of the
oracle given by Algorithm 4. The sensitivity of gt in Algo-
rithm 4 directly follows from Lemma 3.4.2 By the standard
composition results of the Gaussian mechanism (e.g., Abadi
et al. 2016; Mironov 2017; Kulkarni et al. 2021), we have
the following privacy guarantee:
Lemma 4.3 (Privacy). Calling Algorithm 4 T times with

m = L2dΣ
nσ2

1
+ L2d

nσ2
2

, σ1 = O(
L
√

T log(1/δ)/Σ

nε ) and σ2 =

O(
LD
√

Td log(1/δ)

αnε ) is (ε, δ)-DP.

In terms of the oracle’s variance, we show:
Lemma 4.4 (Variance). In Algorithm 4, for any t ∈ [T ], we
have

E ∥g̃t −∇FD
α (zt)∥2 ≲

L2d2Σ

mn
+ σ2

1d+ σ2
2dΣ,

E ∥g̃t∥2 ≲ L2 +
L2d2Σ

mn
+ σ2

1d+ σ2
2dΣ.

The proof of Theorem 4.1, which we defer to Appendix A,
is a combination of the two lemmas and Proposition 2.6.

5. Empirical to population Goldstein-
stationarity

In this section, we provide a generalization result, showing
that our ERM algorithm from the previous section also
guarantees Goldstein-stationarity in terms of the population
loss. We prove the following more general statement:
Proposition 5.1. Under Assumption 2.2, suppose D ∼ Pn,
and consider running an algorithm on F̂D whose (pos-
sibly randomized) output xout ∈ X ⊂ Rd is supported
over a set X of diameter ≤ R. Then with probabil-
ity at least 1 − ζ : ∥∂αF (xout)∥ ≤ ∥∂αF̂

D(xout)∥ +
Õ
(
L
√
d log(R/ζ)/n

)
.

We remark that in all algorithms of interest, the output
is known to lie in some predefined set, such as a suffi-
ciently large ball around the initialization. As long as
the diameter R is polynomial in the problem parame-
ters, the log(R) in the result above is therefore negligi-
ble. For instance, Algorithm 2 is easily verified to out-
put a point xout ∈ B(x0, DT ) (since ∥xt+1 − xt∥ ≤ D
for all t). Hence, in our use case, Proposition 5.1 ensures
∥∂2αF (xout)∥ ≤ ∥∂2αF̂

D(xout)∥+ β for n = Õ(d/β2).

6. Improved efficiency with gradients
In this section, our goal is to show that the zero-order al-
gorithms presented thus far can be replaced by first-order

2In this section we use full-batch size for simplicity, yet using
smaller batches (of arbitrary size) and applying privacy amplifica-
tion by subsampling, yields the same results up to constants.

algorithms with the same sample complexity, and improved
oracle complexity.

The idea is to replace the zero-order gradient estimator from
Eq. (4) by the smoothed first-order estimator

∇̃fα(x; ξ) =
1

m

m∑
j=1

∇f(x+ αyj ; ξ) (10)

for (yi)mi=1
iid∼ Unif(Sd−1). While this estimator has the

same expectation as the zero-order variant, the key differ-
ence lies in the fact that its sub-Gaussian norm is substan-
tially smaller, and in particular, it does not depend on d.
Hence, smaller m suffices for similar concentration. This
observation enables reducing the oracle complexity, while
ensuring the same sample complexity guarantee as earlier.

We fully analyze here a single-pass first-order oracle pre-
sented in Algorithm 5, which can be used in Algorithm 2,
similarly to Section 3. We note that the same analysis can
be applied to the multi-pass oracle of Section 4, once again
by replacing Eq. (4) by Eq. (10), which we omit here for
brevity. The main result in this section is the following:

Theorem 6.1 (First-order). Suppose F (x0) −
infx F (x) ≤ Φ, that Assumption 2.2 holds, and
let α, β, δ, ε > 0 such that α ≤ Φ

L . Then setting

B1 = Σ, B2 = 1, M = α/4D, m = Õ(
B2

2α
2

D2d ), σ =

Õ( L
B1ε

+ LD
√
d

αB2ε
), Σ = Θ̃(( α

εD )2/3 + α
Dd1/2 ), D =

Θ̃(min{( Φ2α
L2T 2 )

1/3, (Φαε
dLT )

1/2, ( Φ3α2ε
d3/2L3T 3 )

1/5, ( Φ2α
L2T 2

√
d
)1/3}),

T = Θ(n), and running Algorithm 2 with Algorithm 5 as
the oracle subroutine, is (ε, δ)-DP. Furthermore, its output
satisfies E ∥∂2αF (xout)∥ ≤ β as long as

n = Ω̃

(
ΦL2
√
d

αβ3
+

ΦLd

εαβ2

)
.

Remark 6.2. Compared to the analogous zero-order result
given by Theorem 3.1, we see that the number of calls to
O( · ), namely T , is on the same order, and that in both cases
the amortized oracle complexity of O( · ) is O(m). The dif-
ference between the settings is that the first-order oracle
instantiation sets m to be Ω̃(d2) times smaller than its zero-
order counterpart, and hence we gain this multiplicative
factor in the overall oracle complexity. It is interesting to
compare this gain to non-private optimization, where the ra-
tio between zero- and first-order oracle complexities is Θ(d)
(Duchi et al., 2015; Kornowski & Shamir, 2024), whereas
here we obtain an even larger gap in favor of gradient-based
optimization.

As in Section 3, we will present the basic properties of this
oracle. We will then plug these into Algorithm 2, leading to
the main result of this section, Theorem 6.1. Corresponding
proofs are deferred to Appendix A.
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Algorithm 5 First-order instantiation of O(zt) in Line 7 of
Algorithm 2

1: Input: Current iterate zt, time t ∈ N, period length Σ ∈
N, accuracy parameter α > 0, batch sizes B1, B2 ∈ N,
gradient validation size m ∈ N, noise level σ > 0.

2: if t mod Σ = 1 then
3: Sample minibatch St of size B1 from unused samples
4: Sample y1, . . . , yB1

iid∼ Unif(Bα)
5: gt =

1
B1

∑
ξi∈St

∇f(zt + yi; ξi)
6: else
7: Sample minibatch St of size B2 from unused samples
8: for each sample ξi ∈ St do
9: Sample y1, . . . , y2m

iid∼ Unif(Bα)
10: ∇̃f(zt; ξi) = 1

m

∑m
j=1∇f(zt + yj ; ξi)

11: ∇̃f(zt−1; ξi) =
1
m

∑2m
j=m+1∇f(zt−1 + yj ; ξi)

12: end for
13: gt = gt−1+

1
B2

∑
ξi∈St

(∇̃f(zt; ξi)−∇̃f(zt−1; ξi))
14: end if
15: Return g̃t = gt +TREE(σ,Σ)(t mod Σ)

Lemma 6.3 (Sensitivity). Consider the gradient oracleO(·)
in Algorithm 5 when acting on two neighboring minibatches
St and S′

t, and correspondingly producing gt and g′t, re-
spectively. If tmod Σ = 1, then

∥gt − g′t∥ ≤
L

B1
.

Otherwise, conditioned on gt−1 = g′t−1, we have with prob-
ability at least 1− δ/2 :

∥gt − g′t∥ ≲
L
√
dD

αB2
+

L
√
log(dB2/δ)√

m
.

With the sensitivity bound given by Lemma 6.3, we easily
derive the privacy guarantee of our algorithm from the Tree
Mechanism (Proposition 2.5).

Lemma 6.4 (Privacy). Running Algorithm 5 with

m = O(log(dB2/δ)
B2

2α
2

D2d ) and σ = O(
L
√

log(1/δ)

B1ε
+

LD
√

d log(1/δ)

αB2ε
) is (ε, δ)-DP.

Proof. By Lemma 6.3 and our assignment of m, we know
that with probability at least 1− δ/2, for any t, we have

∥gt − g′t∥ ≲
L

B1
+

L
√
dD

αB2
.

Then the privacy guarantee follows from the Tree Mecha-
nism (Proposition 2.5).

We next provide the required oracle variance bound.

Lemma 6.5 (Variance). In Algorithm 5, for all t it holds
that

E ∥g̃t −∇Fα(zt)∥2 ≲
L2

B1
+

L2dD2Σ

α2B2

+ σ2d log Σ +
L2Σ

mB2
,

E ∥g̃t∥2 ≲ L2 +
L2dD2Σ

α2B2

+ σ2d log Σ +
L2Σ

mB2
.

Having set up the required bounds, we can prove our main
result for the first-order setting.

Proof of Theorem 6.1. The privacy guarantee follows di-
rectly from Lemma 6.4, by noting that our parameter as-
signment implies B1T/Σ+B2T = O(n), hence it allows
letting T = Θ(n) while never re-using samples.

As to the sample complexity, note that our parameter assign-
ment ensures that

G1 = O (G0 + L) ,

G0 = Õ

(
L√
Σ

+
LDd1/2Σ1/2

α
+

Ld1/2

Σε
+

LDd

αε

)
,

similarly to Eq. (7) and Eq. (9) in the proof of Theorem 3.1.
The rest of the proof is therefore exactly the same as for
Theorem 3.1.

7. Discussion
In this paper, we studied nonsmooth nonconvex optimiza-
tion, and proposed differentially private algorithms for this
task which return Goldstein-stationary points, improving
the previously known sample complexity for this task.

Our single-pass algorithm reduces the sample complexity
by at least a Ω(

√
d) factor compared to the previous such

result by Zhang et al. (2024). Furthermore, our result has a
sublinear dimension-dependent “non-private” term, which
was previously claimed impossible. Moreover, we propose a
multi-pass algorithm which preforms sample-efficient ERM
with sublinear dimension dependence, and show that it fur-
ther generalizes to the population.

It is interesting to note that our guarantees are in terms
of so-called “approximate” (ε, δ)-DP, whereas Zhang et al.
(2024) derive a Rényi-DP guarantee (Mironov, 2017). This
is in fact inherent to our techniques, since we condition on a
highly probable event in order to substantially decrease the
effective sensitivity of our gradient estimators. Further ex-
amining this potential gap between approximate- and Rényi-
DP for nonsmooth nonconvex optimization is an interesting
direction for future research.
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Another important problem that remains open is establish-
ing tight lower bounds for DP nonconvex optimization and
perhaps further improving the sample complexities obtained
in this paper. We note that the current upper and lower
bounds do not fully match even in the smooth setting. In
Appendix C, we provide evidence that our upper bound
can be further improved, by proposing a computationally-
inefficient algorithm, which converges to a relaxed notion of
stationarity, using even fewer samples than the algorithms
we presented in this work.
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A. Proofs
A.1. Proofs from Section 3

Proof of Lemma 3.4. Note that for any y ∈ Unif(Sd−1) : ∥ d
2α (f(z + αy; ξ)− f(z − αy; ξ))y∥ ≤ Ld due to the Lipschitz

assumption. Hence, for any ξ ∈ St, by a standard sub-Gaussian bound (Theorem D.2) we have

Pr

[
∥∇̃f(zt; ξ)−∇fα(zt; ξ)∥ ≤

Ld
√
log(8dB1/δ)√

m

]
≥ 1− δ/8B1. (11)

If t mod Σ = 1, then

∥gt − g′t∥ =

∥∥∥∥∥∥ 1

B1
(
∑
ξ∈St

∇̃f(zt; ξ)−
∑
ξ′∈S′

t

∇̃f(zt; ξ′))

∥∥∥∥∥∥
≤

∥∥∥∥∥∥ 1

B1
(
∑
ξ∈St

∇̃f(zt; ξ)−∇fα(zt; ξ))

∥∥∥∥∥∥+
∥∥∥∥∥∥ 1

B1
(
∑
ξ∈St

∇fα(zt; ξ)−
∑
ξ′∈S′

t

∇fα(zt; ξ′))

∥∥∥∥∥∥
+

∥∥∥∥∥∥ 1

B1
(
∑
ξ′∈S′

t

∇̃f(zt; ξ′)−∇fα(zt; ξ′))

∥∥∥∥∥∥ .
Further note that ∥ 1

B1
(
∑

ξ∈St
∇fα(zt; ξ) −

∑
ξ′∈S′

t
∇fα(zt; ξ′))∥ ≤ 2L/B1, hence by Equation Eq. (11) and the union

bound,

Pr

∥∥∥∥∥∥ 1

B1
(
∑
ξ∈St

∇̃f(zt; ξ)−
∑
ξ′∈S′

t

∇̃f(zt; ξ′))

∥∥∥∥∥∥ ≥ 2L

B1
+

Ld
√

log(8dB1/δ)√
m

 ≤ 1− δ/8,

which proves the claim in the case when t mod Σ = 1. The other case follows from the same argument.

Proof of Lemma 3.5. By Lemma 3.4 and our assignment of m, we know that with probability at least 1− δ/2, the sensitivity
of all t is bounded by O( L

B1
+ L

√
dD

αB2
), namely for all t :

∥gt − g′t∥ ≲
L

B1
+

L
√
dD

αB2
.

Then the privacy guarantee follows from the Tree Mechanism (Proposition 2.5).

Proof of Lemma 3.6. First, note that by Proposition 2.5 and the facts that E[gt] = ∇Fα(zt) and ∥∇Fα(zt)∥ ≤ L, we get

E ∥g̃t∥2 ≲E ∥gt∥2 + dσ2 log Σ ≲ E ∥gt −∇Fα(zt)∥2 + L2 + dσ2 log Σ,

and also

E ∥g̃t −∇Fα(zt)∥2 ≲ E ∥g̃t − gt∥2 + E ∥gt −∇Fα(zt)∥2 ≲ dσ2 log Σ + E ∥gt −∇Fα(zt)∥2.

Therefore, we see that in order to obtain both claimed bounds, it suffices to bound E ∥gt −∇Fα(zt)∥2. To that end, denote
by t0 ≤ t the largest integer such that t0 mod Σ = 1, and note that t− t0 < Σ. Further denote ∆j := gj − gj−1. Then we
have

E ∥gt −∇Fα(zt)∥2 = E

∥∥∥∥∥∥gt0 +
t∑

j=t0+1

∆j −

 t∑
j=t0+1

(∇Fα(zj)−∇Fα(zj−1)) +∇Fα(zt0)

∥∥∥∥∥∥
2

= E ∥gt0 −∇Fα(zt0)∥2︸ ︷︷ ︸
(I)

+

t∑
j=t0+1

E ∥∆j − (∇Fα(zj)−∇Fα(zj−1))∥2︸ ︷︷ ︸
(II)

, (12)

12
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where the last equality is due to the cross terms having zero mean. We further see that

(I) ≲ E

∥∥∥∥∥∥gt0 − 1

B1

∑
ξi∈St0

∇fα(zt0 ; ξi)

∥∥∥∥∥∥
2

+ E

∥∥∥∥∥∥ 1

B1

∑
ξi∈St0

∇fα(zt0 ; ξi)−∇Fα(zt0)

∥∥∥∥∥∥
2

≲
L2d2

B1m
+

L2

B1
, (13)

as well as

(II) = E

∥∥∥∥∥∥ 1

B2

∑
ξi∈St

(∇̃f(zj ; ξi)− ∇̃f(zj−1; ξi))− (∇Fα(zj)−∇Fα(zj−1))

∥∥∥∥∥∥
2

=
1

B2
2

∑
ξi∈St

E ∥(∇̃f(zj ; ξi)− ∇̃f(zj−1; ξi))− (∇Fα(zj)−∇Fα(zj−1))∥2

≲
1

B2
2

∑
ξi∈St

(
E ∥∇̃f(zj ; ξi)−∇fα(zj ; ξi)∥2 + E ∥∇̃f(zj−1; ξi)−∇fα(zj−1; ξi)∥2

+ E ∥(∇fα(zj ; ξi)−∇fα(zj−1; ξi))− (∇Fα(zj)−∇Fα(zj−1))∥2
)

≲
L2d2

mB2
+

dL2D2

α2B2
. (14)

Plugging Eq. (13) and Eq. (14) into Eq. (12) and recalling that t− t0 < Σ completes the proof.

A.2. Proofs from Section 4

Proof of Lemma 4.4. First, it suffices to prove the first bound, as

E ∥g̃t∥2 ≲ E ∥g̃t −∇FD
α (zt)∥2 + E ∥∇FD

α (zt)∥2 ≤ E ∥g̃t −∇FD
α (zt)∥2 + L2.

To that end, let t0 ≤ t be the largest integer such that t0 mod Σ ≡ 1, and note that t − t0 < Σ. Define ∆j :=
1
n

∑
ξi∈D(∇̃f(zj ; ξi)− ∇̃f(zj−1; ξi)). It holds that

E ∥g̃t −∇FD
α (zt)∥2 ≤ E ∥gt0 −∇FD

α (zt0)∥2︸ ︷︷ ︸
(I)

+

t∑
j=t0

E ∥∆j − (∇FD
α (zj)−∇FD

α (zj−1))∥2︸ ︷︷ ︸
(II)

+

t∑
j=t0

E ∥χj∥2︸ ︷︷ ︸
(III)

.

Similar to the proof of Lemma 3.6, we have that

(I) = E

∥∥∥∥∥∥gt0 − 1

n

∑
ξi∈D

∇fα(zt0 ; ξi)

∥∥∥∥∥∥
2

≲
L2d2

nm
,

(II) =
1

n2
E ∥

∑
ξi∈D

(∇̃f(zj ; ξi)− ∇̃f(zj−1; ξi))− (∇F̂D
α (zj)−∇F̂D

α (zj−1))∥2

≲
1

n2

∑
ξi∈D

(
E ∥∇̃f(zj ; ξi)−∇fα(zj ; ξi)∥2 + E ∥∇̃f(zj−1; ξi)−∇fα(zj−1; ξi)∥2

)
≲

L2d2

mn
,

(III) ≤ dσ2
1 + dσ2

2(Σ− 1),

overall completing the proof.

13
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Proof of Theorem 4.1. Setting m = L2dΣ
nσ2

1
+ L2d

nσ2
2

, σ1 = O(
L
√

T log(1/δ)/Σ

nε ) and σ2 = O(
LD
√

Td log(1/δ)

αnε ), the privacy
guarantee follows from Lemma 4.3. Moreover, by our parameter settings, we have

G2
0 := E ∥g̃t −∇FD

α (zt)∥2 ≲
L2dT log(1/δ)/Σ

n2ε2
+

L2D2Td2Σ log(1/δ)

α2n2ε2
,

G2
1 := E ∥g̃t∥2 ≲ L2 +

L2dT log(1/δ)/Σ

n2ε2
+

L2D2Td2Σ log(1/δ)

α2n2ε2
.

Therefore, setting Σ = Θ̃( α
D
√
d
), we see that G0 = Õ(L

√
DTd3/4

nε
√
α

) and G1 ≲ L+G0. By Proposition 2.6, we also know
that

E ∥∂2αF̂
D(xout)∥ ≤ E ∥∂αF̂

D
α (xout)∥ ≤ Fα(x0)− inf Fα

DT
+

3G1

2
√
M

+G0

≤ 2Φ

DT
+

3G1

2
√
M

+G0.

Recalling that M = Θ(α/D) and setting D = Θ̃(α
2β2

L2 ), T = Θ̃( ΦL2

α2β3 ), we have

E ∥∂αF̂
D
α (xout)∥ = Õ

(
Φ

DT
+

L
√
D√
α

+
L
√
DTd3/4

nε
√
α

)

=
β

2
+ Õ

(
Ld3/4

√
Φ

nε
√
αβ

)
.

The latter is bounded by β for n = Ω̃
(

L
√
Φd3/4

εα1/2β3/2

)
, hence completing the proof.

A.3. Proofs from Section 5

Proof of Proposition 5.1. Applying a gradient uniform convergence bound for Lipschitz objectives over a bounded domain
(Mei et al., 2018, Theorem 1), shows that with probability at least 1− ζ, for any differentiable x ∈ X :∥∥∥∇F̂D(x)−∇F (x)

∥∥∥ = Õ

(
L

√
d log(R/ζ)

n

)
. (15)

Therefore, given any x ∈ X , let y1, . . . , yk ∈ B(x, α) be points satisfying ∂αF̂
D(x) =

∑k
i=1 λi∇F̂D(yi) for coefficients

(λi)
k
i=1 ≥ 0,

∑k
i=1 λi = 1 — note that such points exist by definition of the Goldstein subdifferential. Noting that∑k

i=1 λi∇F (yi) ∈ ∂αF (x), and recalling that ∂αF (x) is the minimal norm element of ∂αF (x), we get that

∥∥∂αF (x)
∥∥ ≤ ∥∥∥∥∥

k∑
i=1

λi∇F (yi)

∥∥∥∥∥ =

∥∥∥∥∥
k∑

i=1

λi(∇F̂D(yi) + υi)

∥∥∥∥∥ = (⋆)

where υi := ∇F (yi)−∇F̂D(yi) satisfy ∥υi∥ = Õ

(
L
√

d log(R/ζ)
n

)
for all i ∈ [k] by Eq. (15). Hence

(⋆) ≤

∥∥∥∥∥
k∑

i=1

λi∇F̂D(yi)

∥∥∥∥∥+
∥∥∥∥∥

k∑
i=1

λiυi

∥∥∥∥∥
≤
∥∥∥∂αF̂

D(x)
∥∥∥+ k∑

i=1

λi ∥υi∥

≤
∥∥∥∂αF̂

D(x)
∥∥∥+ Õ

(
L

√
d log(R/ζ)

n

)
.

14
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A.4. Proofs from Section 6

Proof of Lemma 6.3. The case when t mod Σ = 1 trivially follows the Lipschitz assumption. Thus we will consider the
more involved case. For any ξ ∈ St, by a standard sub-Gaussian bound (Theorem D.2) we have

Pr

[
∥∇̃f(zt; ξ)−∇fα(zt; ξ)∥ ≤

L
√
log(8dB2/δ)√

m

]
≥ 1− δ/8B2,

so by the union bound, we get that with probability at least 1− δ/8, for all ξi ∈ St :

∥∇̃f(zt; ξ)−∇fα(zt; ξ)∥ ≤
L
√
log(8dB2/δ)√

m
. (16)

Hence,

∥gt − g′t∥ ≤

∥∥∥∥∥∥ 1

B2

∑
ξ∈St

(
(∇̃f(zt; ξ)− ∇̃f(zt−1; ξi))− (∇fα(zt; ξ))−∇fα(zt−1; ξ))

)∥∥∥∥∥∥
+

∥∥∥∥∥∥ 1

B2

∑
ξ∈St

(
(∇fα(zt; ξ)−∇fα(zt−1; ξ))−

∑
ξ′∈S′

t

(∇fα(zt; ξ′)−∇fα(zt; ξ′))
)∥∥∥∥∥∥

+

∥∥∥∥∥∥ 1

B2

∑
ξ′∈S′

t

(
(∇̃f(zt; ξ′)− ∇̃f(zt−1; ξ

′))− (∇fα(zt; ξ′)−∇fα(zt−1; ξ
′))
)∥∥∥∥∥∥

≲
L
√
dD

αB2
+

L
√
log(dB2/δ)√

m
,

where the last inequality step is due to the smoothness of fα (Fact 2.3) combined with the fact that ∥zt − zt−1∥ ≤ 2D, and
Eq. (16).

Proof of Lemma 6.5. Applying by Proposition 2.5, we have

E ∥g̃t −∇Fα(zt)∥2 ≲ E ∥g̃t − gt∥2 + E ∥gt −∇Fα(zt)∥2 ≲ dσ2 log Σ + E ∥gt −∇Fα(zt)∥2,

and also since E[gt] = ∇Fα(zt) and ∥∇Fα(zt)∥ ≤ L, we have

E ∥g̃t∥2 ≲ E ∥gt∥2 + dσ2 log Σ ≲ E ∥gt −∇Fα(zt)∥2 + L2 + dσ2 log Σ.

We therefore see that both claimed bounds will follow from bounding E ∥gt −∇Fα(zt)∥2.

To that end, denote by t0 ≤ t the largest integer such that t0 mod Σ = 1, and note that t − t0 < Σ. Further denote
∆j := gj − gj−1. Then we have

E ∥gt −∇Fα(zt)∥2 = E

∥∥∥∥∥∥gt0 +
t∑

j=t0+1

∆j −
( t∑
j=t0+1

(∇Fα(zj)−∇Fα(zj−1)) +∇Fα(zt0)
)∥∥∥∥∥∥

2

= E ∥gt0 −∇Fα(zt0)∥2 +
t∑

j=t0

E ∥∆j − (∇Fα(zj)−∇Fα(zj−1))∥2,

≲
L2

B1
+

t∑
j=t0

E ∥∆j − (∇Fα(zj)−∇Fα(zj−1))∥2︸ ︷︷ ︸
(⋆)

(17)

15
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where the second equality is due to the cross terms having zero mean. Moreover, we have

(⋆) = E

∥∥∥∥∥∥ 1

B2

∑
ξ∈St

(∇̃f(zj ; ξ)− ∇̃f(zj−1; ξ))− (∇Fα(zj)−∇Fα(zj−1))

∥∥∥∥∥∥
2

=
1

B2
2

∑
ξ∈St

E ∥(∇̃f(zj ; ξ)− ∇̃f(zj−1; ξ))− (∇Fα(zj)−∇Fα(zj−1))∥2

≲
1

B2
2

∑
ξ∈St

(
E ∥∇̃f(zj ; ξ)−∇fα(zj ; ξ)∥2 + E ∥∇̃f(zj−1; ξ)−∇fα(zj−1; ξ)∥2

+ E ∥(∇fα(zj ; ξ)−∇fα(zj−1; ξ))− (∇Fα(zj)−∇Fα(zj−1))∥
)2

≲
L2

mB2
+

dL2D2

α2B2
,

which plugged into Eq. (17) completes the proof by recalling that t− t0 ≤ Σ.

B. Proof of Proposition 2.6 (O2NC)
We start by noting that the update rule for ∆t which is given by

∆t+1 = min
{
1, D

∥∆t−ηg̃t∥

}
· (∆t − ηg̃t)

is precisely the online project gradient descent update rule, with respect to linear losses of the form ℓt(·) = ⟨g̃t, ·⟩, over
the ball of radius D around the origin. Accordingly, recalling that E ∥g̃t − ∇h(zt)∥2 ≤ G2

1, combining the linearity of
expectation with the standard regret analysis of online linear optimization (cf. Hazan, 2016) gives the following:

Lemma B.1. By setting η = D
G1

√
M

, for any u ∈ Rd with ∥u∥ ≤ D it holds that

E
g̃1,...,g̃M

[
M∑

m=1

⟨g̃m,∆m − u⟩

]
≤ 3

2DG1

√
M.

Back to analyzing Algorithm 2, since xt = xt−1 +∆t it holds that

h(xt)− h(xt−1) =

∫ 1

0

⟨∇h(xt−1 + s∆t),∆t⟩ ds

= E
st∼Unif[0,1]

[⟨∇h(xt−1 + st∆t),∆t⟩] = E
st
[⟨∇h(zt),∆t⟩] .

Note that ⟨∇h(zt),∆t⟩ = ⟨∇h(zt), u⟩+ ⟨g̃t,∆t − u⟩+ ⟨∇h(zt)− g̃t,∆t − u⟩, so by summing over t ∈ [T ] = [K ×M ],
we get for any fixed sequence u1, . . . , uK ∈ Rd :

inf h ≤ h(xT ) ≤ h(x0) +

T∑
t=1

E [⟨∇h(zt),∆t⟩]

= h(x0) +

K∑
k=1

M∑
m=1

E
[〈
g̃(k−1)M+m,∆(k−1)M+m − uk

〉]
+

K∑
k=1

M∑
m=1

E
[〈
∇h(z(k−1)M+m), uk

〉]
+

T∑
t=1

E[⟨∇h(zt)− g̃t,∆t − u⟩]

≤ h(x0) +
3
2KDG1

√
M +

K∑
k=1

M∑
m=1

E
[〈
∇h(z(k−1)M+m), uk

〉]
+G0DT,
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where the last inequality follows from applying Lemma B.1 to each M consecutive iterates, and combining the bias bound
E ∥g̃t −∇h(zt)∥ ≤ G0 with Cauchy-Schwarz.

Letting uk := −D
∑M

m=1 ∇h(z(k−1)M+m)

∥∑M
m=1 ∇h(z(k−1)M+m)∥ , rearranging and dividing by DT = DKM , we obtain

1

K

K∑
k=1

E

∥∥∥∥∥ 1

M

M∑
m=1

∇h(z(k−1)M+m)

∥∥∥∥∥ ≤ h(x0)− inf h

DT
+

3G1

2
√
M

+G0. (18)

Finally, note that for all k ∈ [K],m ∈ [M ] :
∥∥z(k−1)M+m − xk

∥∥ ≤ MD ≤ α since the clipping operation ensures each
iterate is at most of distance D to its predecessor, and therefore∇h(z(k−1)M+m) ∈ ∂αh(xk). Since the set ∂αh(·) is convex
by definition, we further see that

1

M

M∑
m=1

∇h(z(k−1)M+m) ∈ ∂αh(xk) ,

and hence by Eq. (18) we get

E
∥∥∂αh(x

out)
∥∥ =

1

K

K∑
k=1

E
∥∥∂αh(xk)

∥∥ ≤ h(x0)− inf h

DT
+

3G1

2
√
M

+G0.

C. Even better sample complexity via optimal smoothing
In this Appendix, our aim is to provide evidence that the sample complexities of NSNC DP optimization obtained in our
work are likely improvable, at least with a computationally inefficient method. This approach is inspired by Lowy et al.
(2024), which in the context of smooth optimization, showed significant sample complexity gains using algorithms with
exponential runtime. As as we will show, a similar phenomenon might hold for nonsmooth optimization. To that end, we
propose a slight relaxation of Goldstein-stationarity, and show it can be achieved using less samples via an exponential time
algorithm.

C.1. Relaxation of Goldstein-stationarity

Recall that x ∈ Rd is called an (α, β)-Goldstein stationary point of an objective F (x) = Eξ[f(x; ξ)] if there exist
y1, . . . , yk ∈ B(x, α) and convex coefficients (λi)

k
i=1 so that ∥

∑
i∈[k] λi Eξ[∇f(yi; ξ)]∥ ≤ β. Arguably, the two most

important properties satisfied by this definition are that

(i) If f(x; ξ) are L-smooth, any (α, β)-stationary point is O(α+ β)-stationary.

(ii) If
∥∥∂αF (x)

∥∥ ̸= 0, then F

(
x− α

∥∂αF (x)∥∂αF (x)

)
≤ F (x)− α

∥∥∂αF (x)
∥∥.

The first property shows that Goldstein-stationarity reduces to (“classic”) stationarity under smoothness. The second, known
as Goldstein’s descent lemma (Goldstein, 1977), is a generalization of the classic descent lemma for smooth functions.

It is easy to see that Goldstein-stationarity is equivalent to the existence of a distribution P supported over B(x, α), such
that ∥Eξ, y∼P [∇f(y; ξ)]∥ ≤ β. We will now define a relaxation of Goldstein-stationarity that is easily verified to satisfy
both of the aforementioned properties.
Definition C.1. We call a point x ∈ Rd an (α, β)-component-wise Goldstein-stationary point of F (x) = Eξ[f(x; ξ)] if
there exist distributions Pξ supported over B(x, α), such that ∥Eξ, y∼Pξ

[∇f(y; ξ)]∥ ≤ β.

In other words, the definition above allows the sampled points y1, . . . , yk in the vicinity of x to vary for different components,
and as before, the sampled gradient must have small expected norm. We next show that this relaxed stationarity notion
allows improving the sample complexity of DP NSNC optimization.

C.2. Optimal smoothing and faster algorithm

In the previous sections, given an objective f , we used the fact that Goldstein-stationary points of the randomized smoothing
fα correspond to Goldstein-stationary point of f , and therefore constructed private gradient oracles of fα, which is
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O(
√
d/α)-smooth. Consequently, the sensitivity of the gradient oracle had a

√
d dimension dependence (as seen in Lemma

3.4), thus affecting the overall sample complexity.

Instead of randomized smoothing, we now consider the Lasry-Lions (LL) smoothing (Lasry & Lions, 1986), a method that
smooths Lipschitz functions in a dimension independent manner, which we now recall. Given h : Rd → R, denote the
so-called Moreau envelope

Mλ(h)(x) := min
y

[
h(y) +

1

2λ
∥y − x∥2

]
,

and the Lasry-Lions smoothing:

h̃λLL(x) := −Mλ(−M2λ(h))(x) = max
z

min
y

[
h(z) +

1

4λ
∥z − y∥2 − 1

2λ
∥y − x∥2

]
. (19)

Fact C.2. [Lasry & Lions, 1986; Attouch & Aze, 1993] Suppose h : Rd → R is L-Lipschitz. Then: (i) h̃λLL is L-Lipschitz;
(ii) |h̃λLL(x)− h(x)| ≤ Lλ for any x ∈ Rd; (iii) argmin h̃λLL = argminh; (iv) h̃λLL is O(L/λ)-smooth.

The key difference between LL-smoothing and randomized smoothing is that the smoothness constant of LL-smoothing is
dimension independent. By solving the optimization problem in Eq. (19), it is clear that the values, and therefore gradients,
of f̃λLL(x; ξi) can be obtained up to arbitrarily high accuracy. Notably, it was shown by Kornowski & Shamir (2022) that
solving this problem requires, in general, an exponential number of oracle calls to the original function.

Nonetheless, computational considerations aside, a priori it is not even clear that the LL smoothing can help finding
Goldstein-stationary points of the original function, which was previously shown for randomized smoothing (Lemma 2.4).
This is the purpose of the following result, which we prove:

Lemma C.3. If h is L-Lipschitz, then any β-stationary point of h̃λLL is a (3λL, β)-Goldstein stationary point of h.

Given the lemma above, we are able to utilize smooth algorithms for finding stationary points, and convert the guarantee to
Goldstein-stationary points of our objective of interest. Specifically, we will invoke the following result.

Proposition C.4 (Lowy et al., 2024). Given an ERM objective F̃ (x) = 1
n

∑n
i=1 f̃(x; ξi) with L0-Lipschitz and L1-smooth

components, and an initial point x0 ∈ Rd such that dist(x0, argmin F̃ ) ≤ R, there’s an (ε, δ)-DP algorithm that returns

x̃out with E ∥∇F̃ (x̃out)∥ = Õ

(
R1/3L

2/3
0 L

1/3
1 d2/3

nε + L0

√
d

nε

)
.

We remark that we assume for simplicity that dist(x0, argmin F̂D) = dist(x0, argmin F̃ ) ≤ R, though the analysis
extends to that case where R is the initial distance to a point with sufficiently small loss (e.g., if the infimum is not attained).
Overall, by setting λ = α/3L, and combining Fact C.2, Lemma C.3 and Proposition C.4, we get the following:

Theorem C.5. Under Assumption 2.2, suppose dist(x0, argmin F̂D) ≤ R. Then there is an (ε, δ)-DP algorithm that
outputs xout satisfying (α, β)-component-wise Goldstein-stationarity (in expectation) as long as

n = Ω̃

(
R1/3L4/3d2/3

εα1/3β

)
.

C.3. Proofs from Appendix C

Proof of Lemma C.3. Suppose x is a β-stationary point of h̃λLL. Let z∗ ∈ Rd be the solution of the maximization problem
defining the LL smoothing. By (Attouch & Aze, 1993, Remark 4.3.e), z∗ is uniquely defined, and satisfies

∇h̃λLL(x) ∈ ∂(M2λ(h))(z
∗). (20)

Further denote Y∗ := argminy

[
h(y) + 1

4λ ∥z
∗ − y∥2

]
⊆ Rd. Rearranging the definition of the Moreau envelope by

expanding the square, we see that

M2λ(h)(z
∗) =

1

4λ
∥z∗∥2 − 1

2λ
max

y

[
⟨z∗, y⟩ − 2λh(y)− 1

2
∥y∥2

]
,
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from which we get

∂M2λh(z
∗) =

1

2λ
z∗ − 1

2λ
conv {y∗ : y∗ ∈ Y∗} = conv

{
1

2λ
(z∗ − y∗) : y∗ ∈ Y∗

}
. (21)

Furthermore, for any y∗ ∈ Y∗, by first-order optimality it holds that

0 ∈ ∂

[
h(y∗) +

1

4λ
∥y∗ − z∗∥2

]
⊆ ∂h(y∗) +

1

2λ
(y∗ − z∗),

and therefore
1

2λ
(z∗ − y∗) ∈ ∂h(y∗). (22)

By combining Eq. (20), Eq. (21) and Eq. (22) we conclude that

∇h̃λLL(x) ∈ ∂M2λh(z
∗) ⊆ conv {∂h(y∗) : y∗ ∈ Y∗} ⊆ ∂rh(x),

where the last holds for r := maxy∗∈Y∗ ∥x− y∗∥. Therefore, recalling that ∥∇h̃λLL(x)∥ ≤ β, all that remains is to bound
r.

To that end, it clearly holds that r ≤ ∥x− z∗∥+maxy∗∈Y∗ ∥z∗ − y∗∥. Furthermore, by (Attouch & Aze, 1993, Remark
4.3.e) it holds that z∗−x = λ∇h̃λLL(x) which implies ∥x−z∗∥ = λβ. As to the second summand, by Eq. (21) it holds that
maxy∗∈Y∗ ∥z∗ − y∗∥ ≤ 2λ ·maxg∈∂M2λh(z∗) ∥g∥ ≤ 2λL, by the fact that M2λ(h) is L-Lipschitz. Overall r ≤ λβ + 2λL,
and as we can assume without loss of generality that β ≤ L since otherwise the claim is trivially true (note that all points are
L stationary), this completes the proof.

D. Concentration lemma for vectors with sub-Gaussian norm
Here we recall a standard concentration bound for vectors with sub-Gaussian norm, which notably applies in particular to
bounded random vectors.

Definition D.1 (Norm-sub-Gaussian). We say a random vector X ∈ Rd is ζ-norm-sub-Gaussian for ζ > 0, if Pr[∥X −
EX∥ ≥ t] ≤ 2e−t2/2ζ2

for all t ≥ 0.

Theorem D.2 (Hoeffding-type inequality for norm-sub-Gaussian, Jin et al., 2019). Let X1, · · · , Xk ∈ Rd be random
vectors, and let Fi = σ(X1, · · · , Xi) for i ∈ [k] be the corresponding filtration. Suppose for each i ∈ [k], Xi | Fi−1 is
zero-mean ζi-norm-sub-Gaussian. Then, there exists an absolute constant c > 0, such that for any γ > 0 :

Pr

∥∥∥∥∥∥
∑
i∈[k]

Xi

∥∥∥∥∥∥ ≥ c

√
log(d/γ)

∑
i∈[k]

ζ2i

 ≤ γ.
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