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Abstract

Vision-language tracking (VLT) enhances traditional visual object tracking by inte-
grating language descriptions, requiring the tracker to flexibly understand complex
and diverse text in addition to visual information. However, most existing vision-
language trackers still overly rely on initial fixed multimodal prompts, which strug-
gle to provide effective guidance for dynamically changing targets. Fortunately,
the Complementary Learning Systems (CLS) theory suggests that the human mem-
ory system can dynamically store and utilize multimodal perceptual information,
thereby adapting to new scenarios. Inspired by this, (i) we propose a Memory-
based Vision-Language Tracker (MemVLT). By incorporating memory modeling
to adjust static prompts, our approach can provide adaptive prompts for tracking
guidance. (ii) Specifically, the memory storage and memory interaction modules
are designed in accordance with CLS theory. These modules facilitate the storage
and flexible interaction between short-term and long-term memories, generating
prompts that adapt to target variations. (iii) Finally, we conduct extensive experi-
ments on mainstream VLT datasets (e.g., MGIT, TNL2K, LaSOT and LaSOText).
Experimental results show that MemVLT achieves new state-of-the-art perfor-
mance. Impressively, it achieves 69.4% AUC on the MGIT and 63.3% AUC on the
TNL2K, improving the existing best result by 8.4% and 4.7%, respectively. The
code and models will be released at: https://github.com/XiaokunFeng/MemVLT.

1 Introduction

The vision-language tracking (VLT) task [1] aims to locate a user-defined object in a video sequence
using multimodal prompts, which comprise a template patch and a language description. As an
extension of traditional visual single object tracking (SOT) task [2, 3, 4], VLT can harness the
complementary advantages of multiple modalities. Therefore, vision-language trackers (VLTs)
have the potential to achieve more promising tracking performance, which has recently attracted
widespread attention [5, 6, 7, 8].

Similar to SOT, VLT still adopts the one-shot setting [9], providing prompts only at the initial moment.
However, these fixed prompts struggle to provide continuous reference for targets in video sequences
due to their inherent dynamic variability [10]. As shown in Fig. 1 (a), the initial prompts depict a
gun placed on a table. However, when the target is subsequently picked up, there is a significant
deviation in the target’s state from given prompts. Regarding the target state in different frames, we
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Figure 1: (a) Illustration of a video sequence. Given the initial prompts, we respectively plot
consistency curves between prompts of two modalities and the subsequent searched target. (b)
Framework of previous vision-language trackers (VLTs). They primarily obtain tracking results
by matching the search image with the initial prompts based on similarity. (c) Framework of our
proposed MemVLT (left) by modeling Complementary Learning Systems (CLS) Theory (right).
MemVLT effectively models the storage and interaction of long-term and short-term memories,
resulting in prompts that adapt to the search image.

quantitatively evaluate its consistency with the initial multimodal prompts (implementation details
are introduced in Sec. B.1). It is evident that the consistency is poor most of the time, indicating that
the initial prompts are ineffective as a reference.

Despite this, most existing VLTs [11, 12, 13, 14, 15, 16] overly rely on these static prompts. As
illustrated in Fig. 1 (b), they identify the target in each frame that is most similar to the initial prompts
as the tracking result. Despite achieving some success, the difficulty lies in the limited generalizability
of static prompts to subsequent frames, thereby impacting tracking performance.

Unlike existing VLTs, humans can adaptively locate a target, even when the target appears in a form
vastly different from its initial perception state [17]. Neuroscientists have long been interested in this
ability and have conducted studies using the visual search task [18, 19], which is similar to the VLT.
Numerous research findings reveal that human adaptive visual search capability can be attributed to
the sophisticated memory mechanisms [20, 21].

The Complementary Learning Systems (CLS) theory [22], as a well-known memory model, has
recently revealed the relationship between human generalization adaptability and memory [23].
Generally speaking, humans continuously adjust their memory by integrating perceived information
to better adapt to the environment. As shown in Fig. 1 (c), the human brain achieves memory through
two complementary systems: the hippocampus and the neocortex. The hippocampus plays a primary
role in short-term memory, which is subsequently consolidated into long-term memory stored in the
neocortex [24, 23]. The interaction between short-term and long-term memories enables humans to
adapt to different environments [23, 8]. Given the advantages of this memory mechanism, a critical
question arises: How can we incorporate it into the design of trackers?

To achieve that, we propose a Memory-based Visual-Language Tracker named MemVLT. As
depicted in Fig. 1 (c), the core insight of MemVLT lies in efficiently adapting to the dynamic
changes of the target by emulating the storage and interaction of memory information, thereby
enabling effective tracking. Specifically, (i) we first develop a memory storage module to simulate
the functioning of short-term and long-term memory systems. Inspired by the system consolidation
process [23], we introduce an efficient long-term memory storage method named section-top. (ii)
Drawing upon the stored memory, we incorporate a memory interaction module to emulate the
interaction between short-term and long-term memories [25], generating adaptive visual and textual
prompts. These adaptive prompts then guide subsequent tracking by integrating with the search feature.
Through these modules, MemVLT facilitates adaptive tracking by utilizing memory information.

In summary, our contributions are as follows: (i) Inspired by the CLS theory, we introduce a
novel tracker named MemVLT. Leveraging memory mechanism modeling, this approach facilitates
the generation of adaptive prompts to effectively guide the tracking process. (ii) In the proposed
MemVLT, we incorporate memory storage and memory interaction modules. They faithfully model
the storage and flexible interaction processes between short-term and long-term memories in the
human brain, yielding multimodal prompts that adapt to dynamically evolving targets. (iii) We
evaluate the performance of MemVLT on the MGIT [5], TNL2K [26], LaSOT [27] and LaSOText

[28] and achieve state-of-the-art tracking results. Notably, MemVLT achieves 69.4% AUC on MGIT
and 63.3% AUC on TNL2K, improving the existing best result by 8.4% and 4.7%, respectively.
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2 Related Work

2.1 Vision-Language Tracking

Vision-language tracking is an emerging multimodal task that aims to achieve tracking by utilizing
a given language description and an initial template patch. Adhering to the principle of similarity-
matching [9], most existing VLTs [11, 12, 13, 14, 15, 16] leverage the static given prompts as
reference to identify the most similar target in the search frame. Among them, SNLT [11] introduces
a universal language region proposal network, which improves tracking performance through a
dynamic aggregation module. MMTrack [16] designs an effective tracking pipeline that treats the
VLT as a token generation task. While these VLTs perform well in simple scenes, they overlook the
dynamic nature of targets, making it challenging to track when targets undergo significant changes.

To address this limitation, certain VLTs attempt to utilize temporal information to obtain the dynamic
reference. GTI [29] and AdaSwitcher [26] locate the target by integrating tracking and grounding
results at each time step. Their reliance on pre-defined threshold can lead to error accumulation.
JointNLT [14] incorporates temporal information in the form of a temporal query during the prediction
stage. Since the length of the query tokens is much shorter than that of the static prompt tokens, it
indicates that static prompts still dominate the tracking process. Differing from them, we depart from
human memory mechanisms to utilize temporal information. Building upon initial static prompts,
we inject dynamic features by incorporating memory information, which not only avoids the error
accumulation but also generates prompts adapted to the dynamic changes of the target.

By treating temporal information as memory, some trackers [30, 31, 32] have incorporated memory
mechanism modeling. Extensive previous studies confirm that memory modeling is a viable approach,
which is the paradigm our work follows. Distinguishing our work from existing research, to our
knowledge, MemVLT is the first to apply CLS theory to tracker design. Recent research in CLS
theory [33, 23] underscores the importance of the interaction between long and short-term memories.
Motivated by this insight, we develop the memory interaction module to generate adaptive prompts.
In contrast, existing approaches, such as DecoupleTNL [32], focus solely on modeling long and
short-term memories but overlook the interaction process. In addition to memory interaction, we
propose the section-top memory storage method, which is inspired by the system consolidation
process [23, 24] within the CLS theory. Compared to the sliding window storage method commonly
used by existing trackers [14, 32], it demonstrates more effective tracking performance (see Sec. 4.3).

2.2 Prompt Learning

In the natural language processing field, prompt learning [34] refers to the automatic learning of
instructions in the form of sentences, thereby enabling better task understanding. Considering the
significant advantages of this approach in enhancing model adaptability, recent studies have extended
it to vision-language tasks [35, 36]. CoOp [35] efficiently fine-tunes CLIP [37] for few-shot transfer
by constructing language branch inputs using a set of learnable vectors. Bahng [36] performs prompt
tuning on CLIP by prompting on the vision branch. In this work, we exploit the core idea of prompt
learning by introducing learnable vectors to model the memory information. These vectors are used
to adjust the initial static prompts, making them adaptive to the dynamic changes of the target.

Recently, several vision-only trackers [38, 39, 40] have attempted to model temporal information
using learnable vectors. These vectors, also referred to as temporal queries, are utilized to capture
global information at each moment and guide the subsequent tracking process. What sets us apart is
that, (i) we focus on the vision-language multimodal scenario, not only modeling temporal queries but
also emphasizing their adjustment to static prompts to comprehensively leverage temporal information.
(ii) We design a novel multimodal query storage method called section-top to enhance the existing
sliding window storage approach.

3 Methodology

3.1 Overview

The framework of MemVLT is depicted in Fig. 2 (a). Given two static prompts (text description and
template patch) and the search image at a general time step (t > 0), the text and vision encoders first
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Figure 2: (a) Framework of our proposed MemVLT. Given a language description and a template
patch as references, MemVLT tracks the target in search images at time t. The input is first encoded
using text and vision encoders. Subsequently, the memory interaction module processes static prompt
features based on stored memory, generating adaptive prompts. After incorporating these prompts,
the search features are fed into the prediction head to obtain the tracking results. Additionally, the
memory storage module utilizes processed data to represent and store memory information. (b)
Diagram of memory interaction. To illustrate the process of memory interaction, we organize
the memory information from the perspectives of long-term and short-term memories. Through the
interaction between these memories, adaptive visual and textual prompts are obtained.

embed them into specific feature spaces, denoted as f t
l , f t

z , and f t
x, respectively. Concurrently, we

obtain the global visual and textual semantic representation tokens (i.e., f t
gv and f t

gl). Subsequently,
these encoded features, along with the memory information M t−1 obtained from the memory storage
module (MSM), are fed into the memory interaction module (MIM). Through the mutual interaction
of long-term and short-term memories, we obtain the latest visual and textual short-term memories
(i.e., mt

v and mt
l), as well as the adaptive prompts (i.e., f t

av and f t
al). These adaptive prompts then

undergo feature fusion with the search feature, yielding the target-related feature f t
r . Next, f t

r is
fed into the prediction head to obtain the tracking result and its corresponding confidence score ptc.
Finally, ptc and the short-term memory are used to update the MSM, providing memory information
M t for tracking in the next time step (t + 1). In the following sections, we will provide detailed
introductions to each module and the dimensions of the above variables.

3.2 Input Encoder

Vision Encoder. For the visual input of the search image and template patch, we adopt the encoding
paradigm of the one-stream network [41], implementing it with the HiViT [42, 39, 40]. Specifically,
the template patch z ∈ R3×Hz×Wz and search image xt ∈ R3×Hx×Wx are first projected into the
feature space and flattened to produce token embeddings. Additionally, we introduce a [CLS] token1

to capture global semantic feature [43]. This token is concatenated with the template-search tokens
and then fed into transformer layers for feature modeling. Finally, we obtain the search feature
f t
x ∈ RNx×D, template feature f t

z ∈ RNz×D, and global visual feature f t
gv ∈ R1×D.

Text Encoder. Since being proposed, the BETR [43] series models have been widely used for
text representation. Therefore, we utilize RoBERTa [44], a classic pre-trained model, as our text
encoder. Specifically, for a given input sentence, we tokenize it into a sequence of text tokens. The
token sequences then are fed into the RoBERTa to extract the text embedding feature f t

l ∈ RNl×D.
Additionally, we perform pooling on f t

l to obtain the sentence-level global feature f t
gl ∈ R1×D.

3.3 Memory Interaction Module

Due to the constraints of initial static visual-textual prompts, the f t
l and f t

z derived from them face
challenges in offering consistent references for dynamically changing targets [9]. To alleviate this
limitation, MIM attempts to leverage the long-term memory M t−1 stored in MSM to inject dynamic

1It is worth noting that the symbols CLS and [CLS] represent two distinct concepts in this paper. The former
denotes the Complementary Learning Systems theory, while the latter represents the classification token [43].
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feature reflecting target variations into the static prompts, thereby better guiding the tracking. As
shown in Fig. 2 (a), under the influence of long-term memories (i.e., M t−1

l and M t−1
v ), we first

integrate with the current features to acquire the latest short-term memories (i.e., mt
l and mt

v). Then,
through the interaction between the memory information mt and the initial prompts, we obtain
adaptive prompts and fuse them with the search features f t

x, yielding target-related features f t
r .

Corresponding to the two modal prompts of given cues, we utilize both modalities to represent
memory. Before explaining the specific construction of memory, we reiterate the short-term and
long-term memory information that our model focuses on, as shown in Fig. 2 (b). For the long-term
memory provided by MSM, denoted as M t =

{
mi

}Lm

i=1
, it consists of Lm short-term memory units

mi = (mi
v,m

i
l). Here, mi

v ∈ R1×D and mi
l ∈ R1×D represent the i-th short-term visual and textual

memory, respectively. Additionally, we also consider the initial given prompts as a form of long-term
memory due to their role throughout the tracking process.

3.3.1 The Acquisition of the Short-Term Memory

To begin with, we introduce the generation of short-term memory under the influence of long-term
memory. Initially, we concatenate the long-term visual memory

{
mi

v

}Lm

i=1
and textual memory{

mi
l

}Lm

i=1
with the current global semantic features f t

gv and f t
gl respectively. This process yields

more comprehensive visual and textual memory information, Ht−1
v ∈ R(Lm+1)×D and Ht−1

l ∈
R(Lm+1)×D.

Ht−1
v = [∗M t−1

v ; f t
gv] = [m1

v; . . . ;m
Lm
v ; f t

gv], (1)

Ht−1
l = [∗M t−1

l ; f t
gl] = [m1

l ; . . . ;m
Lm

l ; f t
gl]. (2)

where ∗ denotes extracting all elements in the set, and [;] indicates concatenation along the first
dimension. Following this, we introduce the memory query to associate long-term memory with
the current information, enabling the generated short-term memory to consider both historical and
current features simultaneously.

Considering the remarkable capability of the transformer network in feature interaction [45], we
design the short-term memory generation (SMG) layer by modifying it. In each SMG layer, the
memory query sequentially interacts with long-term memory information and corresponding modality
features to generate short-term memory. Taking the visual branch as an example, the computational
process of the visual query q0v ∈ R1×D is as follows:

qkv′ = Norm(qkv +ΦCA(q
k
v , H

t−1
v )), (3)

qkv′′ = Norm(qkv′ +ΦCA(q
k
v′ , [f t

z; f
t
x])), (4)

qk+1
v = Norm(qkv′′ + FFN(qkv′′)). (5)

Here, ΦCA(·, ·) denotes the cross-attention operation where the first element serves as Q and the
second element serves to obtain K and V [46]. Norm represents the layer normalization operation
and FFN denotes the feed-forward network. qkv denotes the query after being processed by the k-th
layer. For brevity, we omit the positional encoding.

After passing through Lv stacked SMG layers, we obtain the visual short-term memory mt
v = qLv

v .
Similarly, we utilize the textual query q0l ∈ R1×D to obtain the textual short-term memory mt

l = qLl
v .

qkl′ = Norm(qkl +ΦCA(q
k
l , H

t−1
l )), (6)

qkl′′ = Norm(qkl′ +ΦCA(q
k
l′ , [f

t
l ; f

t
x])), (7)

qk+1
l = Norm(qkl′′ + FFN(qkl′′)). (8)

3.3.2 The Generation and Fusion of the Adaptive Prompts

Based on the acquired short-term memory (i.e., mt = (mt
v,m

t
l)), on one hand, we feed it into MSM

to update the long-term memory (see Sec. 3.4). On the other hand, we utilize it to modulate the
long-term memory represented by the initial visual-textual prompts, enabling them to adapt to the
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variations of the target. For the textual branch, we first utilize mt
l to modulate the initial textual

feature f t
l , then use the adjusted textual feature to guide the search feature f t

x.

f t
al = TransDec(f

t
l ,m

t
l), (9)

f t
xl = TransDec(f

t
x, f

t
al). (10)

Where TransDec denotes the vanilla transformer decoder layer [46] (see Sec. A.2 for detailed
computation process). f t

xl represents the search features fused with the adaptive textual prompts f t
al.

For the visual branch, we adopt a similar approach. As shown in Eq.11 and Eq.12, we ultimately
obtain the search feature f t

xlv integrated with adaptive visual and textual prompts, simplified as f t
r .

We treat f t
r as the target-related features fed into the prediction head.

f t
av = TransDec(f

t
z,m

t
v), (11)

f t
r = f t

xvl = TransDec(f
t
x, f

t
av). (12)

3.4 Memory Storage Module

In this section, we will introduce the construction of long-term memory M t. Given a video sequence
of length T , MIM generates a short-term memory mt at each time step. Typically, due to the
computational burden of integrating all short-term memories, Lm is much smaller than T . Therefore,
the key to long-term memory storage is to design a short-term memory selection mechanism.

Prior trackers, e.g., JointNLT and AQATrack, commonly use the sliding window approach to store
temporal information, which can be considered a form of long-term memory. Specifically, when
t > Lm, short-term memories are selected from the most recent Lm frames (i.e., from t−Lm to t−1)
for storage. While achieving some effectiveness, the redundancy of video frames leads to redundant
memories being stored, and it can only consider a limited temporal range. The CLS theory refers to
the process of integrating short-term memory into long-term memory as system consolidation [24].
Relevant studies [33, 23] indicate the long-term memory system primarily stores short-term memory
conducive to generalization. We adhere to this principle to propose a novel long-term memory storage
method called section-top. It first uniformly divides past time intervals into Lm sections and then
stores the most representative short-term memory within each section.

To establish a short-term memory selection criterion, we design a confidence prediction module to
obtain the confidence score ptc ∈ [0, 1] corresponding to the tracking result, which will be introduced
in Sec. 3.5. Intuitively, a higher confidence score suggests that the current tracking result is more
conducive for subsequent tracking and should thus be stored. The thorough storage process is
provided in Sec. A.3. Compared to the sliding window, this method can consider a longer temporal
range. Additionally, the stored memories are not adjacent to each other, which reduces redundancy.

3.5 Prediction Head and Loss

Based on the target-related search feature f t
r ∈ RNx×D, the prediction head is used to predict the final

bounding box bt and its corresponding confidence score ptc. We employ a classic CNN-based tracking
head [41, 40]. First, f t

r is transformed into a 2D spatial feature map. Subsequently, after passing
through the stacked Conv-BN-ReLU layers, we obtain a classification score map P ∈ [0, 1]1×Hs×Ws ,
the size of the bounding box B ∈ [0, 1]2×Hs×Ws , and the offset size O ∈ [0, 1)2×Hs×Ws . Based
on these features, we predict the centroid position and scale of the target, yielding the predicted
bounding box bt. Additionally, we employ an additional CNN-based branch to predict ptc.

For the bt, we employ the focal loss Lcls [47], L1 loss, and the generalized IoU loss Liou [48] for
supervision, which are widely used in tracker design. Regarding the confidence score ptc, we first
calculate the IoU value between the tracking result and the ground truth, and utilize the L2 loss
between IoU and ptc for supervision. The overall loss function is formulated as follows:

Lall = λLcls
Lcls + λiouLiou + λL1

L1 + λL2
L2, (13)

where λLcls
= 1, λiou = 2, λL1

= 5 and λL2
= 1 are the regularization parameters.
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Table 1: Comparison with state-of-the-arts on four popular benchmarks: MGIT [5], TNL2K [26],
LaSOT [27] and LaSOText [28]. The best two results are highlighted in red and blue, respectively.

Method
MGIT (Action) TNL2K LaSOT LaSOText

AUC PNorm P AUC PNorm P AUC PNorm P AUC PNorm P

Wang [50] - - - - - - 27.7 - 30.4 - - -
Feng [51] - - - 25.0 34.0 27.0 50.0 - 56.0 - - -
Feng [52] - - - 25.0 33.0 27.0 35.0 - 35.0 - - -
GTI [29] - - - - - - 47.8 - 47.6 - - -
TNL2K-II [26] - - - 42.0 50.0 42.0 51.3 - 55.4 - - -
SNLT [11] 3.6 22.6 0.4 - - - 54.0 63.6 57.4 - - -
Li [12] - - - 44.0 52.0 45.0 53.0 56.0 - - - -
VLTTT [13] 46.8 60.2 31.8 54.7 71.8 55.3 67.3 80.2 71.5 48.4 59.9 54.3
TransVLT [53] - - - 56.0 61.7 - 66.4 - 70.8 - - -
JointNLT [14] 61.0 78.6 44.5 56.9 73.6 58.1 60.4 69.4 63.6 - - -
TransNLT [15] - - - 57.0 75.0 57.0 60.0 - 63.0 - -
DecoupleTNL [32] - - - 56.7 - 56.0 71.2 - 75.3 - - -
MMTrack [16] - - - 58.6 75.2 59.4 70.0 82.3 75.7 49.4 59.9 55.3
QueryNLT [54] - - - 56.9 73.6 58.1 59.9 69.6 63.5 - - -
Ours 69.4 81.3 63.7 63.3 80.9 67.4 72.9 85.7 80.5 52.1 63.3 59.8

4 Experiments

4.1 Implementation Details

We use RoBERTa-Base [44] as our text encoder and HiViT-Base [42, 39, 40] as our vision encoder,
with the token dimension D set to 512. The sizes of template patches and search images are 192×192
and 384× 384, respectively. For the acquisition of short-term memory, both the visual and textual
branches consist of three SMG layers. For the generation and fusion of adaptive prompts, all
TransDec operations are conducted using a single transformer decoder layer. Additionally, in the
memory storage module, the default length for long-term memory is set to eight.

We use the training splits of LaSOT [27], TNL2K [26], RefCOCOg [49], and OTB99-Lang [1] to
train our model. Each training sample consists of a text description, along with one template patch
and eight search frames from the same video sequence. Utilizing the text description and template
patch as prompts, we iteratively train the model by selecting one search image at a time. We employ
the AdamW to optimize the network parameters and conduct a total of 200 training epochs. 20,000
image pairs are randomly sampled in each epoch. The model is trained on a server with four A5000
GPUs and tested on an RTX-3090 GPU. The tracking speed is about 32 FPS.

4.2 Comparison with State-of-the-art

We evaluate MemVLT on four benchmarks, including MGIT [5], TNL2K [26], LaSOT [27] and
LaSOText [28]. MemVLT is compared with existing state-of-the-art (SOTA) VLTs, which share the
similar task setting and training datasets configuration to ensure a fair comparison.

MGIT. MGIT is a novel large-scale benchmark [2, 5] specifically tailored for the VLT task. Each
sequence contains complex spatio-temporal causal relationships and is annotated with language
descriptions at three levels of granularity: action, activity, and story [5]. As shown in Tab. 1,
MemVLT demonstrates superior performance compared to other VLTs at the action granularity.
Particularly, MemVLT excels over the SOTA tracker JointNLT [14], surpassing it by 8.4%, 2.7%,
and 19.2% in area under the curve (AUC), normalized precision (PNorm), and precision score (P),
respectively. Although JointNLT is equipped with a temporal module, this temporal information
does not interact with the initial prompts. In other words, the initial static prompts still dominate the
tracking process. These results highlight that the utilization of adaptive prompts plays a crucial role
in complex scenarios. Additionally, our model also achieves optimal performance under the activity
and story text settings (see Tab. A1).
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Table 3: Ablation study on important model com-
ponents. The best results are shown in red.

# Visionadap Textadap AUC PNorm P

1 59.0 77.6 62.4
2 ✓ 62.3 79.5 66.2
3 ✓ 62.4 79.9 66.5
4 ✓ ✓ 63.3 80.9 67.4

Table 4: Comparison of different long-
term memory storage methods.

Method AUC PNorm P

sliding window 62.3 79.8 66.6
top-L 62.5 80.0 66.8

section-L 62.8 80.7 66.9
section-top 63.3 80.9 67.4

TNL2K. TNL2K is designed for the VLT task, and the introduction of attributes such as "adversarial
samples", "modality switch" and "cross-camera" significantly adds to the challenges[26]. In Tab. 1,
our proposed framework demonstrates superior performance compared to existing VLTs. When
compared with SOTA tracker MMTrack [16], which doesn’t utilize the temporal information, our
approach achieves gains of 4.7%, 5.7%, and 8.0% in AUC, PNorm, and P, respectively. These results
underscore the effectiveness of leveraging memory information for providing adaptive prompts.

Table 2: Results of efficiency analysis.

Model Params Speed AUC P

JointNLT 153M 31FPS 56.9 58.1
MMTrack 177M 37FPS 58.6 58.1
MemVLT 175M 32FPS 63.3 67.4

LaSOT and LaSOText. LaSOT and LaSOText

are extensions of traditional long-term visual
tracking benchmarks [27, 55] by adding lan-
guage annotations. In addition to the challenges
in long-term tracking, sequences in LaSOText

also include many similar distractors, further
complicating the tracking task. Nevertheless,
our method still achieves outstanding perfor-
mance, as demonstrated in Tab. 1. For instance,
our model outperforms the SOTA algorithms in
LaSOT and LaSOText by 1.7% and 2.7% in terms of AUC, respectively. The strong performance
across multiple benchmarks also reflects the generalization capability of MemVLT to diverse video
environments and corresponding linguistic annotation styles.

Efficiency analysis. In Tab. 2, we compare MemVLT with the two latest VLTs in terms of efficiency
(Params and Speed) and performance (AUC and P on TNL2K). Compared to JointNLT [14], which
only introduces temporal features in the decoder phase, MemVLT fully leverages memory information
during the feature fusion stage. Despite the increased number of parameters, the model performance
is significantly improved without compromising tracking speed. As for MMTrack [16], the absence
of temporal modeling accelerates its forward process but limits tracking performance. These results
underscore the trade-off between efficiency and performance achieved by MemVLT.

4.3 Ablation Study

In this section, we conduct comprehensive ablation studies on the TNL2K [26] benchmark.

Study on important model components. The core insight of our proposed model lies in the modeling
and utilization of memory information, which adjusts initial static visual-textual prompts to adapt
to the dynamic changes of the target. To investigate the effect of different model components, we
conduct ablation analyses based on whether the incorporation of memory information is utilized to
generate the adaptive visual or textual prompts, corresponding to the Visionadap and Textadap entries
in Tab. 3. Tab. 3 (#1) presents the performance without utilizing the memory information. Comparing
it with the results in Tab. 3 (#2, #3), we observe that utilizing memory information in any single
modality can enhance performance. For example, adaptive visual or textual prompts lead to a 3.3%
and 3.4% increase in AUC, respectively. Additionally, Tab. 3 (#4) further demonstrates that, under
the joint influence of adaptive visual-textual prompts, the model achieves optimal performance.

Study on memory interaction. The MIM plays a crucial role in the forward process, and we conduct
ablation analysis on specific model designs. Tab. 5 (#2) indicates that global visual and textual tokens
(i.e., f t

gv and f t
gl) are excluded from the construction of memory information. Comparing with the

baseline (Tab. 5 (#1)), it is evident that the inclusion of global tokens enhances tracking performance.
Tab. 5 (#3) shows that directly integrating search features with short-term memories significantly
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Table 5: Ablation study on memory interaction.

# Setting AUC PNorm P

1 baseline 63.3 80.9 67.4
2 remove global tokens 62.1 79.2 65.9
3 remove adaptive prompts 60.9 79.0 65.2

Table 6: Generalizability analysis on SOT.

# Setting AUC PNorm P

1 Naive 57.4 74.9 60.6
2 + MIM 58.3 76.1 61.0
2 + MSM 59.6 76.8 62.3

reduces the model’s performance. This indicates the importance of the adaptive prompts generation
process.

Study on long-term memory lengths. we employ a buffer M t with a length of Lm to represent long-
term memory. Here, we analyze the model’s performance under different buffer lengths. As shown
in Tab. 7, we observe that as the buffer length increases, the model’s performance initially rises and
then stabilizes. Notably, the model achieves optimal performance when the buffer length is set to 8.

Table 7: Ablation study on long-
term memory lengths.

Length AUC PNorm P

1 62.1 79.2 65.9
2 62.5 79.9 66.5
4 62.8 80.2 66.9
6 63.1 80.7 67.5
8 63.3 80.9 67.4
10 63.1 80.8 67.5

Study on long-term memory storage method. For our proposed
section-top method, we compare it with other storage methods.
As shown in Tab. 4, sliding window is commonly adapted by re-
cent trackers involving temporal saving [14, 30, 31, 32]; top-L
prioritizes storing the top L short-term memories with the highest
confidence; section-L divides historical memory into L sections,
with each section storing the latest short-term memory. It can be
observed that the performance of top-L is superior to sliding win-
dow, highlighting the significance of storing important short-term
memories. Additionally, section-L outperforms top-L, indicating
the benefits of considering a longer temporal range. By combin-
ing the advantages of section-L and top-L, section-top achieves
optimal performance.

Generalizability of our memory mechanism. Given that our proposed memory mechanism
modeling significantly enhances the performance of vision-language trackers, a natural question
arises: can this memory mechanism generalize to vision-only taskers? To explore this, it is necessary
to conduct relevant experimental analysis. Specifically, we remove the text-related components from
MemVLT, seamlessly converting it into a vision-only tracker. As shown in Tab. 6, our proposed
Memory Interaction Module (MIM) and Memory Storage Module (MSM) progressively improve the
performance of the vision-only tracker, demonstrating the strong generalizability of our method.

For more detailed implementation specifics and further comparative analysis, please refer to Sec. B
and Sec. C.
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Figure 3: (a)-(c): Heatmaps obtained during the forward
process of MemVLT, integrating various adaptive prompts.
(d): Heatmap guided solely by the initial fixed prompts.
The above process diagrams depict the types and sequence
of feature integration. We also illustrate the tracked result
bbox and groundtruth bbox. Better viewed with zoom-in.

Frame index
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lu
e

Confidence prediction
IoU

Figure 4: Comparison between con-
fidence prediction and IoU values
(taking the "advSamp_INF_bus6"
sequence as an Example).

4.4 Qualitative Analysis.
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#035 #165 #230

Language description : “the car in first place”

Ground Truth Ours JointNLT MMTrack

#100 #170 #470#001

#040 #070 #090
Language description : “the third girl on the second column”

Language description : “the old man wearing white shirt is riding in the middle of the road”

#001

#001

Template

Figure 5: Qualitative comparison results of our tracker with
other two latest VLTs (i.e., JointNLT [14] and MMTrack
[16]) on three challenging sequences from TNL2K [26]
benchmark. The first column indicates the provided initial
template information. Better viewed in color with zoom-in.

Fig. 3 (a)-(c) depict the variations of
heatmaps over the search region dur-
ing the forward process. Through the
integration of adaptive prompts, the
model ultimately directs its focus to-
wards the tracking target. Compared
to merely fusing initial fixed multi-
modal prompts (Fig. 3 (d)), MemVLT
demonstrates improved capability in
scenarios where the target state devi-
ates from the given static prompts.

Taking the "advSamp_INF_bus6" se-
quence from TNL2K as an exam-
ple, we showcase the model’s con-
fidence prediction scores against the
actual IoU values in Fig. 4. It can
be observed that their variations align
closely, indicating the effectiveness
of our confidence prediction module.
This facilitates the utilization of the confidence prediction score as criteria for selecting short-term
memory.

As shown in Fig. 5, we visualize the tracking results of our model and the previous two SOTA models
on three challenging sequences from TNL2K [26]. In these sequences, the scenes contain distractors,
and the state of the target undergoes significant changes. It is evident that our model exhibits greater
robustness [56] compared to others. This validates that our adaptive prompts contribute to addressing
these challenges, further demonstrating the efficacy of our proposed model.

5 Conclusion

We propose a novel vision-language tracker, MemVLT, which models memory mechanisms to provide
adaptive multimodal prompts for tracking guidance. Drawing from the Complementary Learning
Systems theory, we emphasize the importance of storing and interacting between short-term and long-
term memories for generalized adaptation. Therefore, we incorporate memory storage and memory
interaction modules. By comprehensively leveraging memory information to generate adaptive
prompts, MemVLT provides consistent references for dynamically changing targets, thus achieving
effective tracking performance. Extensive experiments demonstrate that our method achieves new
state-of-the-art performance on four widely used benchmarks, showcasing its generalization ability
across various video environments and linguistic annotation styles.

Limitations. Our proposed method leverages learnable queries to implicitly construct the relation-
ship between historical target information and the current situation, resulting in short-term memory
representations of the target. The notable results obtained demonstrate the effectiveness of this
memory modeling mechanism. However, these memory representations lack explicit supervision,
which diminishes their interpretability. To address this limitation, we believe that incorporating
tracking result data (such as target and background information at various time steps) into the memory
representation could be beneficial. This integration could enhance the comprehensiveness of the
memory representations and facilitate the design of diverse loss functions for explicit supervision.
We consider this approach a promising direction for our future research.
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Appendices

A More Details on the MemVLT Model

In the following sections, we will provide comprehensive details on the implementation of MemVLT.

A.1 Input Encoder

Vision Encoder. As discussed in Sec. 3.2, our vision encoder is based on HiVit [42], which is
constructed by stacking a series of transformer network layers. To obtain global semantic features,
we introduce the [CLS] token [43] in the last two layers. Specifically, the initial template and search
image tokens are concatenated and jointly modeled, aligning with the existing one-stream network
architecture [41]. After obtaining the initial encoded template-search features, we introduce the
[CLS] token. The [CLS] token is then concatenated with the obtained template-search features. This
concatenated feature is fed into the last two layers for further feature extraction and relationship
modeling. Finally, we obtain the search feature f t

x ∈ RNx×D, template feature f t
z ∈ RNz×D, and the

global visual feature f t
gv ∈ R1×D.

Text Encoder. We employ the RoBERTa [44] model as our text encoder. Existing VLTs typically set
a maximum text truncation length, e.g., JointNLT supports a maximum text length of 40. However,
for datasets providing detailed descriptions of target states, such as the MGIT dataset[5], the text
length often exceeds this threshold. Simply truncating the text would diminish its utility for the
tracker. Therefore, we do not set a maximum text truncation length and use sinusoidal position
encoding to accommodate variable text lengths.

A.2 Memory Interaction Module

As shown in Fig. 2, the Memory Interaction module mainly consists of two types of networks: the
short-term memory generation (SMG) layer and the transformer decoder layer. To facilitate a better
understanding of their specific computational processes, we illustrate their diagram in Fig. A1.

For the transformer decoder layer [46], we illustrate the detailed computation process corresponding
to Transdec (as shown in Eq. 9, Eq. 10, Eq. 11, Eq. 12) as follows:

x′ = Norm(x+ΦCA(x, y)), (A1)

z = Norm(x′ + FFN(x′)). (A2)
Here, ΦCA(·, ·) denotes the cross-attention operation where the first element serves as Q and the
second element serves to obtain K and V [46]. Norm represents the layer normalization operation
and FFN denotes the feed-forward network. For brevity, we omit the positional encoding.

Compared to the standard transformer decoder layer [46], we omit the initial self-attention operation.
This helps reduce computational overhead.

A.3 Memory Storage Module

For the section-top long-term memory storage method proposed in this work, the basic approach is to
first uniformly divide past time intervals into Lm sections and then select the most representative
short-term memory within each section to save.

To achieve this goal, we introduce two buffers, Bt and Bt
c, which are used to store all memory units

up to time t and their corresponding confidence scores, respectively. We initialize Bt and Bt
c as empty

sets. For the long-term memory information M t that we aim to obtain, we initialize each memory
unit with 0 ∈ R1×D. At time t (t ≥ 1), the detailed computation process is illustrated in Algorithm 1.

A.4 Prediction Head

The prediction head is used to predict the final bounding box bt and its corresponding confidence
score ptc. We employ a CNN-based tracking head [41, 40], which is widely adopted in tracker design.
Firstly, the target-related search feature f t

r ∈ RNx×D is transformed into a 2D spatial feature map.
Subsequently, after passing through Lh stacked Conv-BN-ReLU layers, we obtain a classification
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(a) Short-term Memory Generation Layer
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Figure A1: (a) The diagram of the short-term memory generation (SMG) Layer. Depending on the
input modality data, this module is capable of generating short-term memories for either visual or
textual inputs. (b) The diagram of the transformer decoder layer. It primarily consists of a cross-
attention operation and a fully connected operation.

score map P ∈ [0, 1]1×Hs×Ws , the size of the bounding box B ∈ [0, 1]2×Hs×Ws , and the offset size
O ∈ [0, 1)2×Hs×Ws .

Based on these features, we calculate the tracking bounding box bt and the confidence score ptc
through two branches. On one hand, the position with the highest classification score is considered to
be the target position, i.e., (xd, yd) = argmax(x,y) Pxy. The final target bounding box is obtained
as:

(x, y, w, h) = (xd +O(0, xd, yd), yd +O(1, xd, yd), S(0, xd, yd), S(1, xd, yd)). (A3)

On the other hand, we employ an additional branch to predict ptc. We first concatenate P , B, and O
along the first dimension. Then, this concatenated feature is processed through stacked Conv-BN-
ReLU layers. Finally, the processed features are flattened and passed through a softmax function to
produce a regression prediction value within the range [0,1].

B More Implementation Details on Experimental Analysis

In the following sections, we will present the implementation details of our experimental analysis,
including the consistency analysis between search images and prompts, as well as the implementation
methods for various model variants in the ablation study.

B.1 Consistency Analysis

As shown in Fig. 1 (a), to quantitatively analyze the consistency between multimodal prompts and the
search target, we calculate and plot the consistency curves. For determining the consistency between
the search target and the language description, we manually evaluate whether the target state matches
the language description, assigning a consistency value of 1 or 0 accordingly. For computing the
consistency between the search target and the template patch, we first crop the search target from
the search image based on the groundtruth bounding box. Then, we input both the cropped target
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Algorithm 1 Section-Top Long-term Memory Storage Algorithm
Input: Bt−1, Bt−1

c , M t−1, mt, ptc at time t
Output: M t

1: % save the latest memory unit and its corresponding confidence score.
2: Bt = Bt−1.append(mt), Bt

c = Bt−1
c .append(ptc)

3: M t = M t−1

4: if t ≤ Lm then
5: % select the latest memory to save.
6: M t[t] = mt

7: else
8: tm = t mod Lm, td = ⌊ t

Lm
⌋

9: Istart = (td + 1)× (tm − 1) + 1, Iend = Istart + td
10: % select most representative memory unit in each section
11: for i in tm to Lm do
12: Secm = Bt[Istart : Iend], Secc = Bt

c[Istart : Iend]
13: Imax = MaxIndex(Secc)
14: M t[i] = Bt[Imax]
15: Istart = Iend + 1, Iend = Istart + td − 1
16: end for
17: end if
18: return M t

and the template patch into a pretrained ResNet backbone network for feature encoding. Finally, the
consistency value is obtained by calculating the cosine similarity between the encoded features.

B.2 Effectiveness Analysis of Different Model Components

Corresponding to Tab. 3, we conduct ablation analyses to investigate the effect of different model
components, based on whether the incorporation of memory information is utilized to generate
adaptive visual or textual prompts. When adaptive visual prompts are not used (i.e., Visionadap is
not selected), the MIM module neither generates short-term visual memory nor subsequent adaptive
visual prompts. Instead, the search feature interacts only with the initial template feature, replacing
Eq. 3, Eq. 4, Eq. 5, Eq. 9 and Eq. 10 with Eq. A4. Additionally, to ensure a fair comparison, we set
the number of network layers used in Eq. A4 to be the sum of the network layers in Eq. 3, Eq. 4,
Eq. 5, Eq. 9 and Eq. 10.

f t
xl = TransDec(f

t
x, f

t
l ). (A4)

Additionally, not selecting Visionadap means that no short-term visual memory is stored in the MSM
module. Similarly, by not selecting Textadap, we can achieve this by replacing Eq. 6, Eq. 7, Eq. 8,
Eq. 11 and Eq. 11 with the following equation:

f t
r = TransDec(f

t
xl, f

t
z). (A5)

B.3 Variants of Memory Interaction Module

Corresponding to Tab. 5, we conduct ablation analyses on the relevant model designs in MIM. The
"remove global tokens" setting means that the global visual and textual tokens (i.e., f t

gv and f t
gl) are

excluded from the construction of memory information. Specifically, the modified expressions for
Ht−1

v and Ht−1
l are as follows:

Ht−1
v = [∗M t−1

v ] = [m1
v; . . . ;m

Lm
v ]. (A6)

Ht−1
l = [∗M t−1

l ] = [m1
l ; . . . ;m

Lm

l ]. (A7)

The "remove adaptive prompts" setting means directly integrating search features with short-term
memories, which removes the generation of adaptive prompts and their subsequent fusion with the
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Algorithm 2 Sliding Window Long-term Memory Storage Algorithm
Input: M t−1, mt, ptc at time t
Output: M t

1: M t = M t−1

2: if t ≤ Lm then
3: % select the latest memory to save.
4: M t[t] = mt

5: else
6: % sliding window process.
7: M t[1 : (Lm − 1)] = M t[2 : Lm]
8: M t[Lm] = mt

9: end if
10: return M t

Algorithm 3 Section-L Long-term Memory Storage Algorithm
Input: Bt−1, M t−1, mt, ptc at time t
Output: M t

1: % save the latest memory unit.
2: Bt = Bt−1.append(mt)
3: M t = M t−1

4: if t ≤ Lm then
5: % select the latest memory to save.
6: M t[t] = mt

7: else
8: tm = t mod Lm, td = ⌊ t

Lm
⌋

9: Istart = (td + 1)× (tm − 1) + 1, Iend = Istart + td
10: % select the latest memory unit in each section
11: for i in tm to Lm do
12: M t[i] = Bt[Iend]
13: Istart = Iend + 1, Iend = Istart + td − 1
14: end for
15: end if
16: return M t

search features. For the visual branch, we replace Eq. 9 and Eq. 10 with Eq. A8. Similarly, for the
textual branch, we replace Eq. 11 and Eq. 12 with Eq. A9

f t
xl = TransDec(f

t
x,m

t
l), (A8)

f t
r = TransDec(f

t
xl,m

t
v). (A9)

Additionally, to ensure a fair comparison, we set the number of network layers used in Eq. A8 to
be the sum of the network layers in Eq. 9 and Eq. 10, and set the number of network layers used in
Eq. A9 to be the sum of the network layers in Eq. 11 and Eq. 12.

B.4 Variants of Memory Storage Module

Corresponding to Tab. 4, we conduct ablation analyses on different long-term memory storage
methods in MSM. In addition to the section-top long-term memory storage method shown in Algo-
rithm 1, we also present the implementation processes of three other storage methods in Algorithm 2,
Algorithm 3, and Algorithm 4. For top-L method, we introduce a new variable M t

c , which stores the
confidence store corresponding to each memory unit in M t.
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Algorithm 4 Top-L Long-term Memory Storage Algorithm
Input: Mt−1

c , M t−1, mt, ptc at time t
Output: M t

1: M t = M t−1, M t
c = M t−1

c
2: if t ≤ Lm then
3: % select the latest memory to save.
4: M t[t] = mt

5: M t
c [t] = ptc

6: else
7: Imin = MinIndex(M t

c), pmin = Min(M t
c)

8: if t ≤ Lm then
9: Imax = MaxIndex(Secc)

10: M t[Imin] = mt

11: M t
c [Imin] = ptc

12: end for
13: end if
14: return M t

(a) Results on action granularity (b) Results on activity granularity (c) Results on story granularity

Figure A2: Screenshot of the Latest MGIT Leaderboard for action granularity, activity granularity,
and story granularity. Better viewed with zoom-in.

C Additional Experimental Analysis

C.1 Experimental Results of All Granularities on MGIT

MGIT is the latest large-scale benchmark specifically tailored for the VLT task, focusing on long-term
challenges with complex spatio-temporal causal relationships. Each sequence is annotated with
language descriptions at three levels of granularity: action, activity, and story [5]. Due to space
constraints, we only present the experimental results for the action granularity in Tab. 1. We have
anonymously submitted results for all three granularities on the official testing platform. As shown
in Fig. A2, our model achieves state-of-the-art performance across nearly all metrics for all three
granularities. Specifically, MemVLT surpasses the existing best results by 9%, 8%, and 3% in area
under the curve for the three granularities, respectively. We expect that our proposed MemVLT can
serve as a solid baseline.

C.2 Comparison with Visual-only Trackers

In line with the prevailing paradigm of vision-language tracking models [13, 14, 16], we provide
additional comparisons with visual-only trackers to comprehensively showcase the performance of
our model. As shown in Tab. A1, we organize and present the results of visual-only tracking models
to supplement Sec. 4.2.

TNL2K. Despite being proposed for the VLT task, TNL2K has become a commonly used bench-
mark for the visual tracking task (as shown in Tab. A1). The primary intention of TNL2K is to
exploit the complementarity of visual and textual modalities to achieve robust tracking performance,
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Table A1: Comparison with state-of-the-arts on three popular benchmarks: TNL2K [26], LaSOT [27]
and LaSOText [28]. The vision-only type of methods are evaluated by bounding box initialization,
while the vision-language (VL) type of methods are evaluated by joint bounding box and natural
language initialization. The best two results are highlighted in red and blue, respectively.

Type Method TNL2K LaSOT LaSOText

AUC PNorm P AUC PNorm P AUC PNorm P

V
is

io
n-

re
la

te
d

Mixformer [57] - - - 69.2 78.7 74.7 - - -
TransInMo [58] 52.0 58.5 52.7 65.7 76.0 70.7 - - -
OSTrack-256 [41] 54.3 - - 69.1 78.7 75.2 47.4 57.3 53.3
OSTrack-384 [41] 55.9 - - 71.1 81.1 77.6 50.5 61.3 57.6
AiATrack [59] - - - 69.0 79.4 73.8 47.7 55.6 55.4
SimTrack [60] - - - 69.3 78.5 - - - -
GRM [61] - - - 69.9 79.3 75.8 - - -
SeqTrack-B256 [62] 54.9 - - 69.9 79.7 76.3 49.5 60.8 56.3
SeqTrack-B384 [62] 56.4 - - 71.5 81.1 77.8 50.5 61.6 57.5
ARTrack-256 [63] 57.5 - - 70.4 79.5 76.6 46.4 56.5 52.3
ARTrack-384 [63] 59.8 - - 72.6 81.7 79.1 51.9 62.0 58.5
CiteTracker [64] 57.7 - 59.6 69.7 78.6 75.7 - - -
DropTrack [65] 56.9 - 57.9 71.8 81.8 78.1 52.7 63.9 60.2
ROMTrack-256 [66] - - - 69.3 78.8 75.6 48.9 59.3 55.0
ROMTrack-384 [66] - - - 71.4 81.4 78.2 51.3 62.4 58.6
F-BDMTrack-256 [67] 56.4 - 56.5 69.9 79.4 75.8 47.9 57.9 54.0
F-BDMTrack-384 [67] 57.8 - 59.4 72.0 81.5 77.7 50.8 61.3 57.8
EVPTrack-224 [39] 57.5 - 58.8 70.4 80.9 77.2 48.7 59.5 55.1
EVPTrack-384 [39] 59.1 - 62.0 72.7 82.9 80.3 53.7 65.5 61.9
ODTrack-B [38] 60.9 - - 73.2 83.2 80.6 52.4 63.9 60.1
ODTrack-L [38] 61.7 - - 74.0 84.2 82.3 53.9 65.4 61.7
AQATrack-256 [40] 57.8 - 59.4 71.4 81.9 78.6 51.2 62.2 58.9
AQATrack-384 [40] 59.3 - 62.3 72.7 82.9 80.2 52.7 64.2 60.8
ARTrackV2-256 [68] - - - 71.6 80.2 77.2 50.8 61.9 57.7
ARTrackV2-384 [68] - - - 73.0 82.0 79.6 52.9 63.4 59.1
HIPTrack [69] - - - 72.7 82.9 79.5 53.0 64.3 60.6
RTracker-L [70] 60.6 - 63.7 74.7 84.5 - 54.9 65.5 62.7
OneTracker [71] - - - 70.5 79.9 76.5 - - -

V
is

io
n-

L
an

gu
ag

e

Wang [50] - - - 27.7 - 30.4 - - -
Feng [51] 25.0 34.0 27.0 50.0 - 56.0 - - -
Feng [52] 25.0 33.0 27.0 35.0 - 35.0 - - -
GTI [29] - - - 47.8 - 47.6 - - -
TNL2K-II [26] 42.0 50.0 42.0 51.3 - 55.4 - - -
SNLT [11] - - - 54.0 63.6 57.4 - - -
Li [12] 44.0 52.0 45.0 53.0 56.0 - - - -
VLTTT [13] 54.7 71.8 55.3 67.3 80.2 71.5 48.4 59.9 54.3
TransVLT [53] 56.0 61.7 - 66.4 - 70.8 - - -
JointNLT [14] 56.9 73.6 58.1 60.4 69.4 63.6 - - -
TransNLT [15] 57.0 75.0 57.0 60.0 - 63.0 - - -
DecoupleTNL [32] 56.7 - 56.0 71.2 - 75.3 - - -
MMTrack [16] 58.6 75.2 59.4 70.0 82.3 75.7 49.4 59.9 55.3
QueryNLT [54] 56.9 73.6 58.1 59.9 69.6 63.5 - - -
Ours 63.3 80.9 67.4 72.9 85.7 80.5 52.1 63.3 59.8

especially in challenging video sequences where the target state changes drastically [26]. However,
recent vision-language trackers [14, 16] have shown inferior performance compared to vision-only
trackers [38, 70]. In contrast, our model outperforms SOTA vision-language trackers and visual-only
trackers. Specifically, we achieve improvements of 4.7 % in AUC over MMTrack [16] and 1.6 %
in AUC over RTracker [38]. These results highlight the importance of the various adaptive prompts
(visual and textual) we incorporated in addressing complex scenarios.

LaSOT and LaSOText. As the mainstream benchmarks for visual tracking tasks, LaSOT [27]
and LaSOText [28] are extended to the VLT task by incorporating language annotations. As shown
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in Tab. A1, our proposed MemVLT outperforms existing vision-language trackers on these two
benchmarks. Compared to SOTA tracker MMTrack [16], our model surpasses it by 2.9 % and 2.7 %
in area under the curve , respectively. However, we also notice that the performance of MemVLT
does not surpass existing SOTA visual-only trackers [38, 70]. We speculate that this may be related to
the quality of some language descriptions on these two benchmarks. For instance, some descriptions
may be too vague to effectively locate the target [14, 26], leading to misleading guidance instead of
facilitating tracking.

C.3 Comparison with All-in-one and OVLM

Table A2: Comparison with the OVLM.

Model TNL2K LaSOT Average
AUC P AUC P AUC P

OVLM 64.7 69.3 67.7 74.2 66.4 72.1
MemVLT 63.3 67.4 72.9 80.5 68.8 74.9

As emphasized in Sec. 4.2, MemVLT is com-
pared with existing state-of-the-art VLTs that
share similar task settings and training dataset
configurations to ensure a fair comparison. As
shown in Tab. 1 and Tab. A1, the VLTs we com-
pare against are primarily trained using the La-
SOT [27], TNL2K [26], RefCOCOg [49], and
OTB99-Lang [1] datasets. In addition, two re-
cent VLTs, namely OVLM [72] and All-in-one
[73], utilize training dataset configurations that differ significantly from ours. Therefore, we conduct
a separate comparison with these two VLTs.

OVLM. The comparison results are shown in Tab. A2. Our MemVLT significantly outperforms
OVLM on LaSOT (AUC +5.2%) but slightly falls short on TNL2K (AUC -1.4%). Overall, our
model demonstrates superior average performance (AUC +2.4%). Besides, although OVLM involves
memory mechanism modeling, there are key differences between our method:

1. Memory Representation: OVLM assumes the text prompt is a precise long-term cue, using
vision and text features to represent short and long-term memories, respectively. However,
it overlooks the misalignment between text information and video targets (see Fig. 1 (a)),
which can mislead the tracker [14]. Our method addresses this by using both text and vision
features to comprehensively represent short and long-term memories, and modulate them
with dynamic information.

2. Memory Interaction: OVLM focuses solely on the unidirectional modulation of short-term
memory features by textual long-term memory, whereas our method achieves bidirectional
modulation between long-term and short-term memories. The importance of bidirectional
interaction has been highlighted by recent research [23].

In summary, our model provides a more comprehensive representation and interaction of memory
information, resulting in superior performance.

Table A3: Comparison with the All-in-one.

Model TNL2K LaSOT LaSOText Average
AUC P AUC P AUC P AUC P

All-in-one 55.3 57.2 67.3 78.5 54.5 66.0 60.4 68.6
MemVLT 63.3 67.4 72.9 80.5 52.1 59.8 64.9 71.4

All-in-one. As shown in Tab. A3,
our tracker significantly outperforms
All-in-one on all benchmarks except
LaSOText. Overall, the average per-
formance of our model far exceeds
that of All-in-one (AUC +4.5%). Al-
though All-in-one uses a larger train-
ing dataset to align text and vision
modalities, it neglects the modeling
of dynamic temporal information. In contrast, MemVLT effectively models temporal information
through the memory mechanism, resulting in superior tracking performance.

C.4 Effect of the Confidence Prediction Module

To predict the confidence score ptc, we introduce a confidence prediction module and supervise it
using the L2 loss between ptc and the IoU value. As shown in Tab. A4, we analyze the impact of
this module on the model’s performance using the TNL2K dataset. Without confidence scores, we
lack a criterion for short-term memory selection. Therefore, we conduct tests using the sliding
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Table A4: Study on the Effect of the Confidence Prediction Module. Results are tested on TNL2K.
The best results are highlighted in red.

# Confidence Prediction Storage Method AUC PNorm P

1 sliding window 62.3 79.7 66.4
2 ✓ sliding window 62.3 79.8 66.6
3 ✓ section-top 63.3 80.9 67.4

Table A5: Study on the length of visual queries.
Results are tested on TNL2K.

Length AUC PNorm P

1 62.78 79.94 66.79
2 62.79 80.09 66.93
4 62.77 80.16 66.96

Table A6: Study on the length of textual
queries. Results are tested on TNL2K.

Length AUC PNorm P

1 62.78 79.94 66.79
2 62.75 80.67 66.92
4 62.62 80.54 66.73

window storage method (Tab. A4 (#1)). When the confidence prediction module is introduced but the
sliding window method is still used (Tab. A4 (#2)), we observe no significant change in performance.
However, when the section-top storage method is employed, we see a significant improvement in
model performance (Tab. A4 (#3)). This demonstrates that our proposed long-term memory storage
method effectively leverages the confidence prediction information.

C.5 The Impact of Query Length

In the process of generating short-term memories, we draw inspiration from the widely acknowledged
paradigm of prompt learning [35], which introduces learnable query tokens to understand and
represent corresponding features. Specifically, in the generation of visual and textual short-term
memories mt

v and mt
l , we incorporate corresponding query tokens qv and ql, respectively.

As shown in Tab. A5 and Tab. A6, we conduct the ablation analysis on the lengths of these query
tokens. Under the setting of a long-term memory length of 4, we test the influence of different
lengths of visual and textual queries on the model performance. The results indicate that there is
no substantial variation in model performance with changes in query length. This underscores the
adequacy of a query length of 1. Consequently, we default to a query length of 1 in the experiments
presented in the paper.

C.6 Ablation Study on the Backbone and Image Resolution

In Sec. 4, all our experiments are conducted using the HiViT-Base backbone and a 384×384 image
resolution. To provide a more comprehensive understanding of our model’s performance, we perform
ablation studies by evaluating the model under the ViT-Base backbone and a 256×256 resolution.

In Tab. A7, we not only evaluate the model’s performance using two different backbones but also
analyze the impact of our proposed memory mechanism. Comparing #1 and #2, it is evident that
the introduction of our memory mechanism improves the AUC by 4.3%. Comparing #1 and #3, we
observe that the HiViT backbone provides an AUC improvement of 1.1%, which is consistent with
previous research findings [40, 39]. Furthermore, the performance boost brought by our memory
mechanism surpasses that of the HiViT-based backbone, indicating that the superior performance of
our work primarily originates from the memory mechanism rather than the HiViT-based backbone.

In Tab. A8, we evaluate the performance of our model under two different search image resolutions.
As expected, reducing the image resolution slightly degrades performance. However, MemVLT-
256 still significantly outperforms several recent models with larger resolutions, such as MMTrack
[16] (384×384) and QueryNLT [54] (320×320) (see Tab. 4.2). This demonstrates that our method
maintains strong performance even at lower resolutions.

C.7 Ablation Study on the Number of SMG Layers
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Table A7: Ablation study on the backbone and
our memory mechanism. Results are tested on
TNL2K.

# Backbone Memory AUC PNorm P

1 HiViT ✓ 63.3 80.9 67.4
2 HiViT 59.0 77.6 62.4
3 ViT ✓ 62.2 79.8 66.4

Table A8: Ablation study on the image
resolution. Results are tested on TNL2K.

# Setting AUC PNorm P

1 MemVLT-256 63.3 80.9 67.4
2 MemVLT-384 59.0 77.6 62.4

Table A9: Ablation study on the number
of SMG layers. Results are tested on
TNL2K.

# Layers AUC PNorm P

1 1 60.9 78.3 64.8
2 3 63.3 80.9 67.4
3 5 63.2 81.0 67.5

In our proposed MemVLT, the SMG module, responsible
for generating short-term memory, plays a critical role. To
investigate its impact, we conduct ablation experiments
on the number of SMG layers. Specifically, we test the
performance of SMG with 1 and 5 layers, and compare
the results with the existing model using 3 layers.

As shown in Tab. A9, it is observed that using too few lay-
ers (comparing #1 and #2) significantly harms the model’s
performance, while increasing the number of layers (com-
paring #2 and #3) further does not provide noticeable per-
formance gains. Therefore, our model effectively demon-
strates performance convergence.

D Broader Impact

In this paper, we introduce a novel vision-language tracker named MemVLT. Inspired by the Comple-
mentary Learning Systems (CLS) theory, this model emulates human memory systems to adapt given
static prompts to dynamically changing targets, thereby achieving effective tracking. Generic object
tracking is one of the fundamental problems in computer vision with numerous applications such as
video surveillance, robotics, and autonomous vehicles. The vision-language tracking task extends
this field by incorporating text modality. Besides providing a new type of human-machine interaction,
this task leverages the complementary advantages of visual and language modalities to achieve more
promising tracking results. Our research can improve tracking performance while maintaining a
reasonable running speed (32 FPS). However, it is of particular concern that this tracker could be
misused for illegal surveillance and positioning. Despite achieving promising results, applying this
technology to real-world scenarios, such as autonomous driving, remains challenging. To mitigate
the risks associated with using MemVLT, we encourage researchers to thoroughly understand the
implications of using trackers in specific real-world scenarios.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction accurately summarize the key
contributions and scope of this paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are discussed in detail in Sec. 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results. The effectiveness of the model
is analyzed and validated through experiments.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed description of the proposed model in Sec. 3 and Sec. A.
These sections contain sufficient information to reproduce our model.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The data used in this paper are open-source datasets, which can be ac-
cessed through the references provided. The details for constructing the model are thor-
oughly described in Sec. 3 and Sec. A. For the code and models, they will be released at:
https://github.com/XiaokunFeng/MemVLT.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide a detailed description of the implementation details in Sec. 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: To the best of our knowledge, almost all tracker test results are based on
models that have been fully trained, typically requiring numerous iterations (e.g., several
hundred epochs) to converge. Considering the high cost of a single training process, the
expense of conducting multiple trainings for subsequent statistical analysis is prohibitive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide this information in Sec. 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We carefully review the NeurIPS Code of Ethics and ensure that the research
aligns with it in all aspects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts of this paper in Sec. D.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper focuses on the video tracking task, which does not pose such high
risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit the creators or original owners of all assets used in the
paper, and cite the relevant papers for each asset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We have not yet released the model proposed in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31


	Introduction
	Related Work
	Vision-Language Tracking
	Prompt Learning

	Methodology 
	Overview
	Input Encoder
	Memory Interaction Module 
	The Acquisition of the Short-Term Memory
	The Generation and Fusion of the Adaptive Prompts

	Memory Storage Module
	Prediction Head and Loss

	Experiments
	Implementation Details
	Comparison with State-of-the-art
	Ablation Study
	Qualitative Analysis.

	Conclusion
	More Details on the MemVLT Model
	Input Encoder
	Memory Interaction Module 
	Memory Storage Module
	Prediction Head

	More Implementation Details on Experimental Analysis
	Consistency Analysis
	Effectiveness Analysis of Different Model Components
	Variants of Memory Interaction Module
	Variants of Memory Storage Module

	Additional Experimental Analysis
	Experimental Results of All Granularities on MGIT
	Comparison with Visual-only Trackers
	Comparison with All-in-one and OVLM
	Effect of the Confidence Prediction Module
	The Impact of Query Length
	Ablation Study on the Backbone and Image Resolution
	Ablation Study on the Number of SMG Layers

	Broader Impact

