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ABSTRACT

Diffusion models excel at creating visually impressive images but often struggle
to generate images with a specified topology. The Betti number, which represents
the number of structures in an image, is a fundamental measure in topology. Yet,
diffusion models fail to satisfy even this basic constraint. This limitation restricts
their utility in applications requiring exact control, like robotics and environmen-
tal modeling. To address this, we propose TopoDiffusionNet (TDN), a novel ap-
proach that enforces diffusion models to maintain the desired topology. We lever-
age tools from topological data analysis, particularly persistent homology, to ex-
tract the topological structures within an image. We then design a topology-based
objective function to guide the denoising process, preserving intended structures
while suppressing noisy ones. Our experiments across four datasets demonstrate
significant improvements in topological accuracy. TDN is the first to integrate
topology with diffusion models, opening new avenues of research in this area.

1 INTRODUCTION

Over the past few years, diffusion models have become prominent for image generation tasks (Sohl-
Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Song et al., 2020a;b; Nichol & Dhari-
wal, 2021; Dhariwal & Nichol, 2021). Naturally, text-to-image (T2I) diffusion models are a popular
choice for creating high-quality images based on textual prompts (Saharia et al., 2022a; Rombach
et al., 2022; Avrahami et al., 2022; Ruiz et al., 2023; Nichol et al., 2021; Kim et al., 2022; Ramesh
et al., 2021; Midjourney; OpenAI, a). Despite their ability to generate visually impressive images,
T2I models are still far from the desired intelligence level. In particular, they often struggle to
interpret textual prompts that involve basic reasoning and logic. This includes preserving global
and semantic constraints, such as consistent number of objects as well as structural patterns (e.g.,
enclosed regions or loops). Improving this capability would be a step forward in the control and
precision of diffusion models, moving beyond qualitative attributes such as style and texture.

Topology, in a general sense, defines how different parts of an image interact with each other, dic-
tating their overall layout within an image. Preserving topology is essential for generating images
that not only look realistic but also adhere to correct semantics. The simplest measure in topology
is the Betti number, which is equivalent to the number of connected components (0-dimension) and
holes/loops (1-dimension). In natural images, 0-dimensional topology corresponds to the number of
distinct objects, while 1-dimensional topology refers to the number of enclosed regions. Yet, current
diffusion models fail to preserve even these basic topological properties. This is particularly evident
in applications such as urban planning, robotics, and environmental modeling, where it is crucial to
generate scenes with a specific topology or number of entities (like animals or road intersections).
Fig. 1(a-b) shows instances where popular T2I diffusion models fail to generate images with the
specified topology, such as specific numbers of animals, or holes/regions in road layouts.

Recognizing the limited spatial reasoning of T2I models, existing methods use spatial maps (such
as object masks, edge maps, etc) to control the generated images (Zhang et al., 2023; Bar-Tal et al.,
2023; Bashkirova et al., 2023; Huang et al., 2023; Mou et al., 2023; Li et al., 2023). These meth-
ods have indeed shown promise, offering a more guided approach to image generation that aligns
closely with the provided controls. Nonetheless, generating the spatial map itself is a bottleneck: an
automatic way to generate spatial maps with a desired topology is an unaddressed problem.
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Text prompt: "an image with exactly 5 giraffes" Prompts: 5, "giraffes"

(d) ADM-T + ControlNet(a) Stable Diffusion (b) DALL·E 3

Prompts: 5, "giraffes"

(e) TopoDiffusionNet (Ours) + ControlNet(c) AR

Text prompt: "aerial view of a road network creating exactly 4 distinct regions" Prompts: 4, "aerial view of a road network" Prompts: 4, "aerial view of a road network"

4 7 4 2 5

43>96

0-
di

m
 to

po
lo

gy
1-

di
m

 to
po

lo
gy

>6

Figure 1: Comparison of existing diffusion models in preserving topological constraints. Top
row: 0-dim topological constraint to generate exactly five giraffes. Bottom row: 1-dim topological
constraint to generate a road layout with exactly four distinct regions. Text-to-image methods like
(a) Stable Diffusion (Rombach et al., 2022) and (b) DALL·E 3 (OpenAI, a) struggle to respect both
0-dim and 1-dim constraints. (c) Attention Refocusing (AR) (Phung et al., 2024) requires bounding
boxes for each object but struggles with higher object counts and often creates partitioned images.
(d)-(e) shows a two-step process: mask generation followed by ControlNet (Zhang et al., 2023)
rendering. (d) ADM-T generates masks by fine-tuning ADM (Dhariwal & Nichol, 2021) with the
topological constraint as a condition, but this alone is insufficient. (e) Our TopoDiffusionNet, trained
with a topology-based objective function, generates masks with the precise number of objects or
regions, which when fed to ControlNet generates the desired image of five giraffes (top row) and
four regions (bottom row). Giraffe/region counts are noted in the bottom-right inset of each image.

In this work, we address the challenge of generating topologically faithful images using diffusion
models. Our focus is on generating images with a specific topology, defined by properties such as
the number of connected components (0-dimension) or loops/holes (1-dimension). These topologi-
cal structures, quantified by Betti numbers, serve as our topological constraints. Spatial maps such
as masks have shown success in guiding the semantics of the generated image. Leveraging this,
we propose using diffusion models to automate generating masks that satisfy the desired topological
constraint. A straightforward approach is to condition the diffusion model on the constraint informa-
tion and fine-tune it on enough samples. However, as shown in Fig. 1(d), we find that conditioning
on the constraint alone falls short of effectively preserving the topology of the generated masks.

We propose TopoDiffusionNet (TDN), a novel approach that incorporates topology to guide the
mask generation process. To ensure the final mask satisfies the topological constraint, a topology-
aware objective function is necessary for steering the denoising process so that each timestep is one
step closer to preserving the desired topological constraint. However, designing such a function is
not straightforward. The intermediate timesteps are very noisy – especially at larger timesteps –
so extracting meaningful information from them is challenging. We thus need tools that are robust
to noise. This leads us to persistent homology (Edelsbrunner et al., 2002; Edelsbrunner & Harer,
2010), a mathematical theory that can, amidst the noise, extract the topological structures within an
image. Using persistent homology, we can partition an image in terms of topology: separating out
the significant structures from the noisy ones. We can thus design a dedicated objective function to
preserve the significant structures and suppress the rest. The function guides the denoising process
to progress in such a way so as to ultimately preserve the topology at the final timestep, as we see
in Fig. 1(e). In summary, our contributions are as follows:

• To the best of our knowledge, we are the first to integrate topology with diffusion models
to address topologically faithful image generation in both 0-dimension and 1-dimension.
Specifically, we generate spatial maps (masks) to tackle the challenge of generating an
image with a specific number of structures.

• We present TopoDiffusionNet (TDN), which utilizes a topology-based objective function
to improve diffusion models’ ability to follow simple topological constraints. It serves as a
denoising loss, guiding the diffusion denoising process in a topology-aware manner.
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• We evaluate TDN on four datasets to demonstrate its versatility and effectiveness. TDN ex-
hibits large improvements in maintaining the topological integrity of the generated image.

The success of our method suggests a surprising harmony between diffusion models and topology.
Diffusion models are trained to denoise but are rather hard to control for preserving global semantics.
Meanwhile, topological methods such as persistent homology provide a principled solution to extract
global structural information from a noisy input, and can thus successfully guide the diffusion model.
We hope the coupling of diffusion models and topology, as well as the techniques developed in this
paper, will shed light on more sophisticated control of these generative models in the near future.

2 RELATED WORK

Diffusion models. Diffusion models, first introduced by Sohl-Dickstein et al. (2015), are now preva-
lent in image generation (Ho et al., 2020; Song et al., 2020a;b; Nichol & Dhariwal, 2021; Dhariwal
& Nichol, 2021), evolving from unconditional models, to conditional models using class labels (Ho
& Salimans, 2022; Dhariwal & Nichol, 2021), and later to text-to-image models (Saharia et al.,
2022a; Rombach et al., 2022; Avrahami et al., 2022; Ruiz et al., 2023; Nichol et al., 2021; Kim
et al., 2022; Ramesh et al., 2021; Midjourney; OpenAI, a). However, textual prompts have limi-
tations in controlling spatial composition, like layouts and poses. Recognizing this, several works
propose to use spatial maps (such as masks, edge maps, etc) as condition to guide the image genera-
tion process (Zhang et al., 2023; Qin et al., 2023; Zhao et al., 2024; Bar-Tal et al., 2023; Bashkirova
et al., 2023; Huang et al., 2023; Mou et al., 2023). These approaches aim to overcome the limitations
of text-based conditioning by providing more explicit spatial guidance.

Numeric control in diffusion models. Betti numbers quantify topological structures, such as the
number of connected components (0-dimension) or loops/holes (1-dimension), which is conceptu-
ally related to the task of counting. Recent works have explored approaches to enhance the counting
performance in diffusion models. Paiss et al. (2023) enhances CLIP’s (Radford et al., 2021) text
embeddings for counting-aware text-to-image (T2I) generation via Imagen (Saharia et al., 2022b).
While this results in some improvement, the performance is still limited, supporting our motivation
that T2I models often struggle with textual prompts involving semantic reasoning. Layout-based
methods (Chen et al., 2024; Phung et al., 2024; Farshad et al., 2023) use layout maps, that is, maps
containing bounding boxes of each object/entity, to guide the reverse diffusion process. While these
methods show promise, they are not scalable as their complexity increases with the number of ob-
jects. Furthermore, focusing on these boxes often results in images that appear partitioned, as shown
in Fig. 1(c) top row, where the backgrounds of each giraffe differ. Finally, all of the methods men-
tioned above are limited to 0-dimensional topological structures (i.e., discrete objects) and do not
extend to higher-dimensional topological constraints.

Deep learning with topology. Methods from algebraic topology, under the name of topological
data analysis (TDA) (Carlsson, 2009), have found use in various machine learning problems owing
to their versatility (handling data such as images, time-series, graphs, etc.) and robustness to noise.
The most widely-used tool from TDA, persistent homology (PH) (Edelsbrunner et al., 2002; Edels-
brunner & Harer, 2010), has been applied to several image classification (Peng et al., 2024; Wang
et al., 2021; Du et al., 2022; Hofer et al., 2017; Chen et al., 2019) and segmentation tasks (Abousamra
et al., 2021; Clough et al., 2019; Hu et al., 2019; Clough et al., 2020; Stucki et al., 2023; Byrne et al.,
2022; He et al., 2023) as it can track topological changes at multiple intensity values. Other TDA
theories like discrete Morse theory (Dey et al., 2019; Hu et al., 2021; 2023; Gupta et al., 2024;
Banerjee et al., 2020), topological interactions (Gupta et al., 2022), and center-line transforms (Shit
et al., 2021; Wang et al., 2022a), have also enhanced performance in these areas.

In the realm of generative models, TDA has been used with generative adversarial networks
(GANs) (Goodfellow et al., 2014) to evaluate performance through topology comparisons (Khrulkov
& Oseledets, 2018), and enhance image quality via topological priors (Brüel-Gabrielsson et al.,
2019) and PH-based loss functions (Wang et al., 2020). These methods have mainly focused on
quality enhancement without directly controlling the topological characteristics of the images. In
the case of diffusion models, incorporating TDA has not yet been explored. Our work, TopoDif-
fusionNet, represents a unique effort in this direction, employing PH within diffusion models to
control the topology of the generated images. This is a significant shift from existing applications
of TDA in generative models, moving beyond quality improvement to precise topological control.
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3 METHODOLOGY

(a) Four objects (b) Four holes

Figure 2: Illustration of
topological structures.

Given a topological constraint c, our goal is to generate a mask contain-
ing c number of structures. A structure can either correspond to an object
or a hole/region. We illustrate these structures in Fig. 2. In (a), the four
objects are in white. In (b), the four holes correspond to the four black
regions/partitions the white lines create with the border. In the formal
language of algebraic topology (Munkres, 2018), c is the Betti number,
that is, it is the rank of the homology group, in which objects (connected
components) correspond to the 0-dimensional (0-dim) homology classes
and holes/loops/regions correspond to the 1-dimensional (1-dim) homology classes.

To enforce the topological constraint c, the diffusion model needs to be conditioned on it. However,
c alone is not sufficient to control the topology of the final generated image1. Therefore, we propose
a topology-based objective function Ltop to guide the reverse denoising diffusion process at each
timestep during training. Ltop uses persistent homology (Edelsbrunner et al., 2002; Edelsbrunner &
Harer, 2010) to distinguish between the desired and the spurious structures, aiming to enhance the
former and reduce the latter to ensure the topology matches c closely. Fig. 3 provides an overview.

The rest of this section is organized as follows. We briefly discuss diffusion models in Sec. 3.1,
followed by a quick background on persistent homology in Sec. 3.2. We tie these concepts together
to finally introduce our method TopoDiffusionNet (TDN) in Sec. 3.3.

3.1 DIFFUSION MODELS

Diffusion models (Ho et al., 2020) are able to sample images from the training data distribution
p(x0) by iteratively denoising random Gaussian noise in T timesteps. The framework consists of a
forward and a reverse process.

In the forward process, at every timestep t ∈ T , Gaussian noise is added to the clean image x0 ∼
p(x0) until the image becomes an isotropic Gaussian. The forward noising process is denoted by
q(xt | x0) := N (xt;

√
ᾱtx0, (1− ᾱt) I), which can be rewritten as,

xt =
√
ᾱtx0 +

√
(1− ᾱt)ϵ (1)

ϵ ∼ N (0, I) is a noise variable, ᾱt is the noise scale at timestep t, and N is the normal distribution.

The reverse process aims to learn the posterior distribution q (xt−1 | xt, x0), using which we
can recover xt−1 given xt. This is typically done by training a denoising neural network (U-
Net (Ronneberger et al., 2015)) with network parameters θ. The denoising model ϵθ(xt, t) takes
the noisy input xt at timestep t and predicts the noise ϵ added in Eq. (1) of the forward pro-
cess. The model is trained using the simplified objective function Lsimple (Ho et al., 2020):
Lsimple = Et,x0,ϵ

[
∥ϵθ(xt, t)− ϵ∥22

]
. In our case, we additionally provide the topological constraint

c as a condition to control the topology of the generated image. Thus, the denoising model becomes
ϵθ(xt, c, t), where c is injected into the denoising neural network.

During training, although the denoising model predicts the noise ϵθ(xt, c, t) at timestep t, we can
deterministically (without iterative sampling) recover the predicted noiseless image x̂t

0 (an estimate
of the true x0) from Eq. (1) as,

x̂t
0 =

1√
ᾱt

(
xt −

√
1− ᾱtϵθ(xt, c, t)

)
(2)

This alternate form of the prediction will enable us to compute Ltop as we will see in Sec. 3.3.

3.2 PERSISTENT HOMOLOGY

Persistent homology (PH) (Edelsbrunner et al., 2002; Edelsbrunner & Harer, 2010), owing to its
differentiable nature, is an attractive candidate for integrating topological information into the train-
ing of deep learning methods. In the case of image data, it can detect the changes in topological
structures (connected components and holes) across a varying threshold (also called the filtration
value). More importantly, persistent homology is robust to noise, that is, it can extract these struc-
tures even in noisy scenarios. Structures that exist for a wide range of thresholds are salient, while
the remaining structures are deemed as noise in the image.

1In this section, we use ‘image’ to mean the mask.
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Figure 3: (a) TDN overview: We condition the diffusion model on the topological constraint c (here
c = 2). During training, we first add noise ϵ to the input x0 using the forward process (Eq. (1)) to
obtain xt, where t is sampled uniformly. The U-Net is trained as part of the reverse process, predict-
ing the added noise ϵθ(xt, c, t), with which we obtain the noiseless image x̂t

0 (Eq. (2)). Alongside
the standard loss Lsimple, we propose Ltop to enforce the topological integrity of x̂t

0. (b) To compute
Ltop, the persistence diagram D(x̂t

0) captures all the topological structures in x̂t
0, partitioning them

into salient/desired structures P and noisy ones Q. Terms Lpreserve and Ldenoise respectively amplify
P and suppress Q, guiding the training to eventually satisfy c.

In our setting, during training, we can apply persistent homology to every intermediate image x̂t
0

(from Eq. (2)) predicted by the diffusion model at timestep t. For ease of reference, we denote x̂t
0

by I , having size h×w. In practice, I has continuous probability values in a normalized range, say,
[0, 1]2. We now consider super-level sets of I , i.e., the set of pixels (i, j) for which Iij is above some
threshold value u. Let S denote the super-level set, then, S(u) := {(i, j) ∈ [1, h]×[1, w] | Iij ≥ u}.
This is nothing but thresholding, and we call the resulting binary image the super-level set at u, S(u).
Decreasing u continuously generates a sequence of sets, i.e. a filtration, which grows as the threshold
parameter u is brought down: ∅ ⊆ S(1) ⊆ S(u1) ⊆ S(u2) ⊆ · · · ⊆ S(0) = [1, h] × [1, w]. We
demonstrate this filtration in Fig. 4.

When u is high, only a few pixels can exceed the threshold, and hence the size of S(1) is small
(an almost black image). As u decreases, new pixels join the set, and topological structures in S
are created and destroyed. Eventually, at u = 0, the entire image is in the super-level set. In this
manner, persistent homology can track the evolution of all the topological structures.

The output of the persistent homology algorithm includes the birth and death threshold values for
each topological structure. We can keep track of the birth (creation) b and death (destruction) d
thresholds of all the topological structures and put the tuples (b, d) in a diagram – the persistence
diagram D – where the y-axis represents birth and the x-axis death.3 The persistence diagram is
thus a graphical representation of topological structures throughout the filtration process, consisting
of multiple dots in a 2-dimensional plane (see Fig. 4). These dots are called persistent dots, where
each dot corresponds to one topological structure. The persistence, or the lifetime of a structure, is
given by the difference between its death and birth times. Structures that persist over a wide range
of thresholds are considered significant or salient, indicating stable and prominent structures within
the image, while short-lived structures are the noise. The diagonal b = d represents structures of
zero persistence and dots far from the diagonal represent salient structures with high persistence.

With this information, we can identify noisy structures due to their low persistence and proximity to
the diagonal, allowing us to filter them out and retain the salient topological structures. The number
of salient structures we retain is precisely the number of structures we desire in the final image. As
we show in the next subsection, we compute the persistence diagram of the predicted image x̂t

0 to
optimize it from a topological perspective.

2The range is typically [−1, 1] in implementation.
3If using a sub-level instead of super-level set filtration, the diagram would have the x-axis as birth, and the

y-axis as death.
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Filtration, sequence of super-level sets Persistence diagram

Bi
rth

Death

0-dimensional topology (connected components)

Figure 4: Illustration of persistent homology and persistence diagrams of 0-dim topological struc-
tures (connected components). Despite the noise, we can visually see three prominent structures
α1, α2, α3 in I . In the topological space, α1, α2, α3 thus appear in the top-left corner of the per-
sistence diagram D(I), persisting through most of the filtration S. All the remaining connected
components are noisy, persisting over a short threshold in S, thus appearing closer to the diagonal
in D(I). Persistence diagrams are useful to distinguish between salient and noisy structures in an
image. The equivalent illustration for 1-dim topological structures (holes) is in Appendix A.

3.3 PROPOSED TOPODIFFUSIONNET (TDN)

Conditioning. We condition the diffusion model on c to enable it to generate a mask containing
exactly c number of structures. We follow Nichol & Dhariwal (2021) to inject the condition in-
formation. We first obtain an embedding of c from a trainable network composed of a few linear
layers. Next, we inject the embedding through the same pathway as the timestep embedding of t.
Consequently, both embeddings are passed to residual blocks throughout the denoising model.

Objective function Ltop. Conditioning alone is not sufficient to control the topology of the gen-
erated image. To address this, we introduce Ltop, a topology-based objective function to force the
predicted image at every timestep to preserve c as closely as possible. Since the diffusion model
is parameterized to predict in the noise space, directly analyzing topology from this noise is not
meaningful. We need to map the prediction from the noise space back to the image space in order to
infer the topology. From Eq. (2), we obtain x̂t

0 – an estimate of the noiseless image x0 at timestep
t – from ϵθ(xt, c, t). The estimate x̂t

0 is noisy, especially when t is large, making it ideal to use the
theory of persistent homology to separate out its salient structures from the noisy ones.

Given the prediction x̂t
0, we compute its persistence diagram D(x̂t

0) containing either 0-dim or 1-
dim information based on the desired topological structure (object or regions). Recall that we desire
c topological structures in the predicted image. For a persistent dot p ∈ D, with birth bp and death
dp, its persistence value, |bp − dp|, measures its significance, according to the theory. We rank
all dots in D by their persistence values in descending order. The top c dots are the structures
we aim to preserve, reflecting our desired topology, whereas the rest denote noisy structures to be
suppressed/denoised. Thus, we decompose the diagram D into two disjoint sets, D = P

⋃̇
Q, where

P contains the c largest persistence dots (|P| = c), while Q contains all the remaining dots.

To constrain x̂t
0 to have c structures in the image space, in the topological space we need to maximize

the persistence or saliency of the dots p ∈ P , and suppress all the noisy dots p ∈ Q. To achieve this,
we introduce two loss terms:

Lpreserve = −
∑
p∈P

|bp − dp|2 and Ldenoise =
∑
p∈Q

|bp − dp|2 (3)

Ltop = Lpreserve + Ldenoise (4)

Minimizing Ltop is equivalent to maximizing the saliency of the top c structures (via Lpreserve) and
suppressing the saliency of the rest (via Ldenoise). In the ideal case, Ltop = −c, as each of the top
c structures will have a persistence of 1, while all the noisy structures will have zero persistence.
The image x̂t

0 will then have exactly c topological structures as desired. In the absence of Ltop, if
the denoising process were to originally result in > c structures, now Ldenoise will suppress all the
extra/noisy structures, preventing them from appearing in the final clean image. One concern is
whether there could be less than c structures in total. In practice, at large timesteps t, x̂t

0 always
has several thousand noisy topological structures. Thus, if the denoising process were to originally
proceed with < c structures, Lpreserve will now increase the persistence of a less salient dot to ensure
the final image has exactly c structures.
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Figure 5: Illustration of Lpreserve and Ldenoise for 0-dim connected components and 1-dim holes,
with c = 2 as seen in x0. (a) After computing D(x̂t

0), we partition it into sets P (the top c
structures) and Q (remaining ones). For each dot p ∈ D(x̂t

0), the birth and death values re-
spectively correspond to local maxima mp and saddles sp in x̂t

0. In the terrain view of x̂t
0,

structures (m1, s1) and (m2, s2) belong to P; hence optimizing Lpreserve increases their saliency
by increasing x̂t

0(m1), x̂
t
0(m2) and decreasing x̂t

0(s1), x̂
t
0(s2). All the remaining n structures

(m3, s3), (m4, s4), · · · , (mn, sn) belong to Q. Optimizing Ldenoise suppresses these noisy struc-
tures by decreasing x̂t

0(m3), x̂
t
0(m4), · · · , x̂t

0(mn) and increasing x̂t
0(s3), x̂

t
0(s4), · · · , x̂t

0(sn). (b)
mirrors this process for holes, where Lpreserve enhances the saliency of the two holes (m1, s1) and
(m2, s2), and Ldenoise suppresses the appearance of all the remaining holes like (m3, s3).

Implementation and differentiability. For every topological structure, the birth and death values
b and d correspond to function values of a maximum-saddle pair; b and d are function values of a
local maximum m and a saddle point s, respectively. These pairs can be determined by the almost
linear union-find algorithm (Edelsbrunner & Harer, 2010; Ni et al., 2017) which locates and pairs
all local maxima and saddle points to reflect the birth and death of topological structures. For every
persistent dot p ∈ D, let mp and sp respectively denote the 2D coordinates of the corresponding
local maximum and saddle point in the prediction x̂t

0. Then, Eq. (3) and Eq. (4) can be rewritten as,
Ltop = −

∑
p∈P

|x̂t
0(mp)− x̂t

0(sp)|2 +
∑
p∈Q

|x̂t
0(mp)− x̂t

0(sp)|2 (5)

We illustrate this in Fig. 5. During training, for every topological structure to preserve, i.e., p ∈ P ,
the function Lpreserve increases the intensity value x̂t

0(mp) at the local maximum mp and decreases
x̂t
0(sp) at the saddle point sp. This strengthens the saliency of the desired structures. At the same

time, to prevent exceeding c structures in the final image, Ldenoise suppresses structures p ∈ Q
by reducing the intensity value x̂t

0(mp) at the local maximum mp while increasing x̂t
0(sp) at the

saddle point sp. Ldenoise forces x̂t
0(mp) to be equal to x̂t

0(sp), leading to a homogenous region. This
effectively eliminates the noisy structure, as it was neither born nor died, rendering it non-existent.

With this, we see that Ltop is differentiable, as Eq. (5) is written as polynomials of the prediction x̂t
0

at certain pixels. From Eq. (5) we can compute the gradient of Ltop with respect to x̂t
0, and via chain

rule, we can ultimately compute the gradient with respect to the denoising model’s parameters θ.
The training optimization adjusts θ to ensure that the topological space, i.e. the persistence diagram
D(x̂t

0), has exactly c persistent dots, in turn resulting in c structures in the image space x̂t
0.

End-to-end training. The overall training objective Ltotal of TDN is formulated as: Ltotal =
Lsimple + λLtop where λ is the loss weight. The standard denoising loss Lsimple produces visually
good results, whereas Ltop helps respect the topological constraint c.
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4 EXPERIMENTS

Datasets. We train ADM-T and TDN on four datasets: Shapes, COCO (Caesar et al., 2018),
CREMI (Funke et al., 2016), and Google Maps (Isola et al., 2017). The Shapes dataset is a synthetic
dataset created by us that contains objects such as circles, triangles, and/or rectangles. For CREMI,
COCO, and Google Maps, we train the diffusion models on their segmentation masks. For COCO,
we select masks which contain at least one instance of the super category ‘animal’. For COCO
and Shapes, we use 0-dim, the number of connected components, as the topological constraint. For
COCO, we also use the animal class as a condition to generate masks of specific animals. CREMI is
an Electron Microscopy dataset, and Google Maps contains aerial photos from New York City. For
CREMI and Google Maps, we use 1-dim, the number of holes, as the topological constraint. Each
of the datasets contains masks consisting of up to ten structures. More details are in Appendix B.

Baselines. Stable Diffusion (Rombach et al., 2022) and DALL·E 3 (OpenAI, a) are popular T2I
diffusion models. Attention Refocusing (AR) (Phung et al., 2024) uses layout maps (bounding
boxes for each object) generated by GPT-4 (Achiam et al., 2023) to guide the reverse process.

Implementation details. Our work extends the ADM (Dhariwal & Nichol, 2021) diffusion model.
We use ‘ADM-T’ to denote the modification of using a topological constraint as a condition. We
obtain an embedding of the constraint using an encoding network. Following the approach in Nichol
& Dhariwal (2021), we then feed this embedding to all the residual blocks in the network by adding it
to the timestep embedding. For COCO, we similarly inject animal class embedding to further control
the generated mask. For every dataset, we use 256 × 256 as the image resolution. Our diffusion
models use a cosine noise scheduler (Nichol & Dhariwal, 2021), with T = 1000 timesteps for
training. During inference, however, we use only 50 steps of DDIM (Song et al., 2020a) sampling.
For the ADM-T baseline, we load a pretrained checkpoint (OpenAI, b) and then fine-tune on our
datasets using the constraint information as condition. For TDN, we follow the same approach but
additionally use Ltop in the training. More details are listed in Appendix C.

Evaluation metrics. To evaluate whether the generated image satisfies the input constraint, we use
metrics such as Accuracy, Precision, and F1. We report the mean and standard deviation of the
results across different constraint values. To measure the performance, for 0-dim, we generate 50
samples per constraint c ∈ [1, 10] per animal/shape category (resulting in 5K images for COCO).
We similarly generate 50 images per constraint c ∈ [1, 10] for the 1-dim datasets. We perform the
unpaired t-test (Student, 1908) (95% confidence interval) to determine the statistical significance of
the improvement. In all the tables, performances that are statistically significantly better are in bold.

4.1 RESULTS

Qualitative and quantitative results for 0-dim. In Fig. 6 and Tab. 1, we present qualitative and
quantitative comparisons, respectively, of pretrained Stable Diffusion, DALL·E 3, AR, ADM-T,
and our proposed TDN. In Appendix D, we provide constraint-wise results. As ADM-T and TDN
produce masks, we employ pretrained ControlNet (Zhang et al., 2023; Lvmin Zhang) to create
textured images from these masks. In practice, any of the methods (Qin et al., 2023; Zhao et al.,
2024; Bar-Tal et al., 2023; Bashkirova et al., 2023; Huang et al., 2023; Mou et al., 2023) could also
be used for this purpose, but we chose ControlNet for its simplicity. From Fig. 6, we see that T2I
models Stable Diffusion and DALL·E 3 are unable to respect the explicit topological constraint of
generating c objects. Due to limited spatial and semantic reasoning, both methods have the lowest
performance in Tab. 1. AR uses layouts generated by GPT-4, which improves over T2I models, as
seen in Tab. 1. In general, however, GPT-4 does not have much spatial awareness and when the count
is high, the bounding boxes tend to either be too small or highly overlap with each other. This leads
to incorrect counts in the generated image as seen in Fig. 6. Additionally, when the object count
is high, AR often produces fragmented results, with objects isolated within assigned areas, leading
to a divided and visually disjointed image. ADM-T, despite being conditioned on the constraint c,
also falls short of satisfying the constraint. This indicates that the constraint alone is not powerful
enough to influence the global reasoning of the model. In contrast, TDN preserves the constraint
better than ADM-T, as evident from the quantitative results in Tab. 1. TDN demonstrates significant
improvements across all metrics. Lpreserve aims to retain at least c objects, while Ldenoise aims to
maintain atmost c objects. Thus optimizing both simultaneously via training with Ltop helps the
diffusion model to preserve c objects in the generated mask.
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Text prompt: "exactly 4 objects" ADM-T / TDN condition: 4 ; ControlNet text prompt: "objects"

ADM-T + ControlNet TDN (Ours) + ControlNetDALL·E 3Stable Diffusion

Text prompt: "exactly 5 zebras" ADM-T / TDN condition: 5, "zebra" ; ControlNet text prompt: "zebras"

Text prompt: "exactly 6 cats" ADM-T / TDN condition: 6, "cat" ; ControlNet text prompt: "cats"

Text prompt: "exactly 7 birds" ADM-T / TDN condition: 7, "bird" ; ControlNet text prompt: "birds"

62 6 2

2 10 3

4 8 2

431 14

4

5

6

7

AR

8

6

10

7

Figure 6: Qualitative results for 0-dim topological constraint. Row 1: Shapes dataset; Rows 2-4:
COCO dataset. ADM-T and TDN take the constraint as the condition (purple box), and also the
animal class for COCO. Stable Diffusion, DALL·E 3, and AR take the equivalent text prompt as
input. Object/animal counts are noted in the bottom-right inset of each image/mask.

ADM-T
+ ControlNet

TDN (Ours)
+ ControlNet

ADM-T / TDN condition: 3
ControlNet prompt: "biology cell neuron"

ADM-T / TDN condition: 6 
ControlNet prompt: "biology cell neuron"

ADM-T / TDN condition: 4
ControlNet prompt: "aerial view of roads"

ADM-T / TDN condition: 6
ControlNet prompt: "aerial view of roads"

2 8 3 5

4 663

Figure 7: Qualitative results for the 1-dim topological constraint. ADM-T and TDN take the con-
straint (in the purple box) as the condition. Columns 1-2: CREMI. Columns 3-4: Google Maps.
Number of holes within each mask is noted in its bottom-right inset.

Qualitative and quantitative results for 1-dim. In Fig. 7, we provide the qualitative compari-
son for ADM-T and TDN. We exclude results from Stable Diffusion, DALL·E 3, and AR as these
methods are limited to generating distinct objects (0-dim topology) and currently cannot handle
generating distinct holes/regions (1-dim topology). As holes are a complex topological constraint,
they are challenging to describe in words, and hence the performance of such methods is limited
(see Fig. 1 and Appendix E). Similar to the 0-dim case, ADM-T struggles with the topological con-
straint. The quantitative results in Tab. 1 highlight that preserving 1-dim topology, which involves
boundaries spanning across the mask, is more challenging than 0-dim topology. This complexity
necessitates powerful global reasoning capabilities from the diffusion model, an area where ADM-T
shows limited performance. However, with Ltop, TDN achieves substantial improvements across all
metrics, with Lpreserve and Ldenoise both working to retain exactly c holes in the generated mask.

Additional comparison. Paiss et al. (2023) enhances CLIP’s text embeddings for counting and uses
them to show counting-aware T2I generation via Imagen. We report the Accuracy of our TDN
results in their setting in Tab. 2, showing significant performance improvement. This supports our
motivation that T2I models often struggle with textual prompts involving semantic reasoning.
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Table 1: Quantitative comparison on preserving the topological constraint c
Dataset Method Accuracy ↑ Precision ↑ F1 ↑

Shapes

Stable Diffusion (Runway) 0.6381 ± 0.2559 0.6660 ± 0.1759 0.6537 ± 0.2198
DALL·E 3 (OpenAI, a) 0.6857 ± 0.2561 0.7059 ± 0.3198 0.6956 ± 0.2649
AR (Phung et al., 2024) 0.7384 ± 0.2178 0.7596 ± 0.2039 0.7474 ± 0.2165

ADM-T 0.7500 ± 0.1889 0.7809 ± 0.1582 0.7651 ± 0.1210
TDN (Ours) 0.9478 ± 0.0420 0.9499 ± 0.0492 0.9488 ± 0.0370

COCO (Animals)

Stable Diffusion (Runway) 0.4686 ± 0.2361 0.5154 ± 0.1747 0.4909 ± 0.1976
DALL·E 3 (OpenAI, a) 0.5162 ± 0.3674 0.5491 ± 0.2724 0.5194 ± 0.3256
AR (Phung et al., 2024) 0.6379 ± 0.2062 0.7360 ± 0.1658 0.6611 ± 0.1851

ADM-T 0.6685 ± 0.1485 0.6917 ± 0.1079 0.6799 ± 0.1931
TDN (Ours) 0.8557 ± 0.0805 0.8670 ± 0.0636 0.8613 ± 0.0970

Google Maps ADM-T 0.5494 ± 0.1386 0.5642 ± 0.1861 0.5567 ± 0.1185
TDN (Ours) 0.8318 ± 0.1159 0.8471 ± 0.1797 0.8394 ± 0.1969

CREMI ADM-T 0.5357 ± 0.1879 0.4777 ± 0.1797 0.4881 ± 0.1571
TDN (Ours) 0.7785 ± 0.1901 0.8142 ± 0.1925 0.7959 ± 0.1659

Table 2: Additional baseline
Method Accuracy ↑

Paiss et al. (2023) 0.5018
TDN (Ours) 0.7969

Table 3: Ablation on loss terms
Lpreserve Ldenoise Accuracy ↑

✗ ✗ 0.7500 ± 0.1889
✓ ✗ 0.8926 ± 0.1821
✗ ✓ 0.9186 ± 0.1129
✓ ✓ 0.9478 ± 0.0420

Table 4: Ablation on λ
Loss weight λ Accuracy ↑

0 0.7500 ± 0.1889
1e-3 0.9066 ± 0.0612
1e-5 0.9478 ± 0.0420
1e-7 0.9176 ± 0.0407

Min-SNR (5) 0.9286 ± 0.0320

Effect across timesteps. While we use 50 steps of DDIM (Song et al., 2020a) sampling for in-
ference, the training was conducted with T = 1000 timesteps using DDPM (Ho et al., 2020). To
understand the effect of Ltop throughout training, we analyze intermediate results from the DDPM
inference procedure. In Fig. 8, we visualize x̂t

0 across different timesteps on the Shapes dataset,
highlighting the impact of Ltop on denoising efficiency. Notably, TDN achieves a closer approxima-
tion to the true x0 by timestep 750, nearly 200 timesteps before ADM-T. Furthermore, we plot the
average Fréchet Inception Distance (FID) (Heusel et al., 2017) for 1000 samples per timestep. The
plot shows that Ltop accelerates denoising and enhances the quality of x̂t

0 at earlier stages, working
as intended. This demonstrates that Ltop improves both speed and accuracy of the denoising process.

4.2 ABLATION STUDIES

To demonstrate the efficacy of TDN, we conduct ablation studies on the loss components and the
effect of hyperparameter value changes. Appendix G includes an ablation study on the ‘Encoding
Network’ for the topological constraint c. All analyses are on 0-dim Shapes dataset.

Ablation study on Lpreserve and Ldenoise. In Tab. 3, we show the contribution of Ldenoise and Lpreserve
in meeting the topological constraint. While both terms individually improve performance, Ldenoise
has a more significant effect. This is because x̂t

0, especially at larger timesteps, has several spuri-
ous structures. Ldenoise works by suppressing the birth of these structures, leaving only the desired
number of structures in the mask. Meanwhile, Lpreserve is crucial when the model generates fewer
structures than expected. Naturally, combining both terms yields the optimal performance.

Ablation study on loss weight λ. In Tab. 4, we show experiments with different weights for Ltop,
including the Min-SNR (γ = 5) (Hang et al., 2023) strategy where the loss weight is a function of
timestep t. When λ = 1e− 5, TDN achieves the best performance. Nonetheless, a reasonable range
of λ always results in improvement, demonstrating the efficacy and robustness of Ltop.

5 CONCLUSION

We propose TopoDiffusionNet, the first method to integrate topology with diffusion models. Our
approach generates images that preserve topology by producing masks with a specified number
of structures (Betti number). Empirical results show significant improvement in preserving this
topological constraint, demonstrating that our method guides the denoising process in a topology-
aware manner. This paves the way for further research on topological control in image generation.

t = 1000

ADM-T

TDN

t = 850 t = 750 t = 650Constraint: 3 t = 550 t = 450 t = 0 FID of  vs timestep t

Figure 8: TDN has better FID of x̂t
0 at larger timesteps compared to ADM-T.
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Reproducibility Statement. We provide experimental details regarding the datasets, baselines,
evaluation metrics, and implementation in Sec. 4. Additional details on the dataset are provided
in Appendix B. In Appendix C, we provide additional details about the baselines, the implementation
of our method, and the computation resources used.
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The appendix is organized as follows.

Appendix A provides the illustration of super-level sets for 1-dim topology.

Appendix B provides additional details of the datasets.

Appendix C provides additional baseline and implementation details.

Appendix D contains 0-dim constraint-wise results on the COCO dataset.

Appendix E provides qualitative results of Stable Diffusion (Rombach et al., 2022; Runway),
DALL·E 3 (OpenAI, a), and AR (Phung et al., 2024) for 1-dim topological constraints.

Appendix F presents experiments on 1-dim topology where there are non-boundary (standalone)
holes.

Appendix G includes an ablation study on the ‘Encoding Network’ for the topological constraint c.

Appendix H provides a discussion on the limitations of our method.

A PERSISTENT HOMOLOGY

From Sec. 3.2, the equivalent of Fig. 4 for 1-dimensional topology is shown in Fig. 9.

Filtration, sequence of super-level sets Persistence diagram

Filtration, sequence of super-level sets Persistence diagram

Bi
rth

Death

(b) 1-dimensional topology (holes)

Bi
rth

Death

(a) 0-dimensional topology (connected components)

Figure 9: Illustration of persistent homology and persistence diagrams of both types of topological
structures, 0-dim connected components and 1-dim holes. (a) Despite the noise, we can visually see
three prominent structures α1, α2, α3 in I . In the topological space, α1, α2, α3 thus appear in the
top-left corner of the persistence diagram D(I), persisting through most of the filtration S. Similarly
in (b), β1, β2, β3 denote the prominent holes. All the remaining connected components and holes
are noisy, persisting over a short threshold in S, thus appearing closer to the diagonal in D(I).
Persistence diagrams are useful to distinguish between salient and noisy structures in an image.

B DATASET DETAILS

We provide the number of images per topological constraint c used for training on each dataset
in Tab. 5. For COCO (Caesar et al., 2018), since we also consider the animal class, each animal is
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Table 5: Dataset composition

Dataset Topological Constraint (Betti Number)
1 2 3 4 5 6 7 8 9 10

Shapes 2K 2K 2K 2K 2K 2K 2K 2K 2K 2K
COCO (Animals) 520 517 503 297 176 85 64 38 30 27

Google Maps 549 669 1099 1220 1343 1806 602 1470 1054 662
CREMI 2160 1992 3726 3505 1644 580 187 207 170 112

distributed unequally across the different constraint values. For example, there were more images
for ‘birds’ having c = 10 than compared to, say, ‘elephant.’ All the 10 animal classes are present in
the dataset; they are bear, bird, cat, cow, dog, elephant, giraffe, horse, sheep, and zebra.

When curating the dataset for CREMI (Funke et al., 2016) and Google Maps (Isola et al., 2017),
we manually added a (white) border to all the images. By definition of 1-dim topology, a hole
is completely surrounded by a boundary. Hence, we needed to add a border to obtain the correct
number of holes/regions.

C IMPLEMENTATION DETAILS

All ADM-T and TDN experiments were conducted on 1 NVIDIA RTX A6000 GPU, with a batch
size of 16 and a learning rate of 2 × 10−5. As mentioned in Sec. 3.3, our diffusion model is
parameterized to predict in noise space, and we use Eq. (2) to get an estimate of the noiseless image.
Although diffusion models can be parameterized to predict the noiseless state directly, we find from
existing works (Hang et al., 2023; Wang et al., 2022b) that their performance is poorer compared to
predicting the noise. Hence we stick to the configuration of predicting the noise. This also allows us
to load pretrained weights from OpenAI (b) for our experiments instead of training from scratch.

For training ADM-T and TDN, we use the PyTorch codebase from Dhariwal & Nichol (2021)4 and
use the LSUN Bedrooms pretrained model checkpoint (OpenAI, b) to fine-tune from. To compute
the birth death pairs of each topological structure, we use the Cubical Ripser (Kaji et al., 2020)
library. We will publicly release the code upon acceptance of the paper.

In Fig. 1, Fig. 6, Fig. 7, Fig. 11, and Fig. 12, the Stable Diffusion (Rombach et al., 2022) results are
generated using the Diffusers5 library with pretrained checkpoint from Runway. For DALL·E 3, we
generate images using the OpenAI API6. For Attention Refocusing (AR) (Phung et al., 2024), we
use their publicly available codebase7 alongwith GPT-4 (Achiam et al., 2023) from the OpenAI API
to generate the layout maps. For rendering images from masks via ControlNet (Zhang et al., 2023),
we use the Diffusers library with pretrained checkpoint from Lvmin Zhang. For Fig. 7, however, we
fine-tune ControlNet on the CREMI dataset (Funke et al., 2016) so as to generate appropriate results
for the corresponding text prompt.

D CONSTRAINT-WISE RESULTS

In Fig. 10, we plot the accuracy of the different methods on the COCO dataset. For smaller object
counts, that is, c <= 5, the performance of each method is better than c > 5. At higher object counts,
although the accuracy of each method reduces, TDN still significantly outperforms the baselines.

E ADDITIONAL 1-DIM QUALITATIVE RESULTS

In Fig. 11, we show qualitative results of pretrained Stable Diffusion (Rombach et al., 2022),
DALL·E 3 (OpenAI, a) and Attention Refocusing (AR) (Phung et al., 2024) for the same 1-dim
constraints shown in Fig. 7 of the main paper. As 1-dim topology is hard to describe in words, we
tried a lot of variations for the text prompts, and show the results from the best ones in the figure.

4https://github.com/openai/guided-diffusion
5https://huggingface.co/docs/diffusers/en/index
6https://platform.openai.com/docs/api-reference/introduction
7https://github.com/Attention-Refocusing/attention-refocusing
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Figure 10: Accuracy results on low and high object counts (COCO dataset).

As the pretrained Stable Diffusion, DALL·E 3, and AR are not trained on Electron Microscopy
images of cell neurons, their inaccurate results are understandable. For generating roads, however,
these methods do generate visually appropriate images but struggle to maintain the correct number
of holes/regions. AR additionally tends to generate images that appear to be divided into separate,
unconnected sections. This is due to the use of layout maps in the reverse process. All these methods
are limited to generating images with 0-dim topology (i.e., distinct objects), and do not extend to
1-dim topology. This shortcoming motivates our work on TopoDiffusionNet.

F ADDITIONAL EXPERIMENTS ON HOLES

In the main paper, we show experiments on 1-dim topology using the CREMI (Funke et al., 2016),
and Google Maps (Isola et al., 2017) datasets. In these datasets, it makes sense that the holes are
with respect to the image frame/boundary and span the whole image. However, TDN can handle
1-dim holes in general, not just those with respect to the boundary. To demonstrate this, we conduct
experiments on standalone holes (not relative to the boundary), and present the results in Tab. 6
and Fig. 12. We generate a synthetic dataset of circular rings (similar to the Shapes dataset) to train
TDN, and use the prompt ‘donuts’ in ControlNet to render the image. While generating c donuts
could also be achieved using the 0-dim topological constraint, this experiment highlights the 1-dim
generalizability of TDN.

Table 6: Standalone holes
Method Accuracy ↑ F1 ↑
ADM-T 0.79 ± 0.12 0.81 ± 0.11

TDN (Ours) 0.95 ± 0.03 0.96 ± 0.02

G ADDITIONAL ABLATION STUDY

We conduct an additional ablation study apart from the ones presented in the main paper.

Ablation study of the encoding network. In TDN, we use the topological constraint c as a condi-
tion. We do this by first obtaining an embedding of c via an Encoding Network (Fig. 3), and then
passing it to all the residual blocks in the denoising model.

In the results reported in the main paper, the Encoding Network is composed of a few linear layers.
We use ‘LL’ to denote this configuration.

Another way to configure the Encoding Network is to use the Transformer sinusoidal position em-
bedding (Vaswani et al., 2017). Let ‘PE’ denote this configuration. It uses the same code as the
network generating the sinusoidal timestep embedding.

We show results comparing LL and PE in Tab. 7 when using our proposed objective function Ltop.
We find that both configurations have comparable performance, with LL slightly outperforming PE.
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Stable Diffusion DALL·E 3

c = 3

c = 6

c = 4

c = 6

2

2

Text prompt: "a grayscale biology cell neuron having exactly <c> partitions"

> 10

> 10

Text prompt: "aerial view of a road network creating exactly <c> distinct regions"

> 7

8

9

> 7

AR

> 8

> 8

> 4

> 10

Stable Diffusion DALL·E 3 AR

Figure 11: Qualitative results for 1-dim topological constraint. Stable Diffusion, DALL·E 3 and AR
take text prompts as input (purple box). Rows 1-2: Results equivalent to CREMI. Rows 3-4: Results
equivalent to Google Maps. Number of holes within each image is noted in its bottom-right inset.

Text prompt: "exactly 6 donuts" ADM-T / TDN condition: 6 ; ControlNet text prompt: "donuts"

ADM-T + ControlNet TDN (Ours) + ControlNetDALL·E 3Stable Diffusion

12 9 4 6

AR

17

Figure 12: Results on standalone holes (holes not relative to the image frame/boundary). Number
of donuts within each mask/image is noted in its bottom-right inset.
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Table 7: Ablation study on Encoding Network for TDN

Dataset Encoding Accuracy ↑ Precision ↑ F1 ↑

Shapes LL 0.9478 ± 0.0420 0.9499 ± 0.0492 0.9488 ± 0.0370
PE 0.9011 ± 0.0730 0.9132 ± 0.0683 0.9033 ± 0.0385

COCO LL 0.8557 ± 0.0805 0.8670 ± 0.0636 0.8613 ± 0.0970
(Animals) PE 0.8395 ± 0.0952 0.8436 ± 0.1152 0.8411 ± 0.1014

H LIMITATIONS

Presently, TDN requires at least a few samples of each constraint in the training data and is not
guaranteed to extrapolate to unseen constraints. This limitation stems from the broader challenges
associated with state-of-the-art diffusion models, which require a large amount of training data.
Exploring the numeric relationships between the different constraints, instead of treating them inde-
pendently, has the potential to generalize to unseen constraints.
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I DETAILS ON PERSISTENT HOMOLOGY COMPUTATION

We expand on Sec. 3.2 regarding the persistent homology and persistence diagram (PD) compu-
tation. As mentioned in the implementation details (Appendix C), we use the Cubical Ripser li-
brary Kaji et al. (2020) for the homology computation. Their manuscript has details about the
optimized algorithms they implement for the computation. Here, we provide a summarized version
of the details.

Consider a 2D image I ∈ R2. We consider the 0-dim case in which we track the birth and death
of connected components (CC). As we construct a super-level filtration S, we start thresholding an
image I starting from the maximum value to the minimum value. For computational purposes, we
do not need to consider all threshold values u ∈ R, rather, since the image has size H × W , the
maximum number of unique values in the image is H ∗W . Hence we need to consider atmost H ∗W
values of threshold u to determine the birth and death times of all the CC in the image.

First, preprocessing is done to store all the intensity values in I along with their (x, y) location in
decreasing order in a sorted data structure. This allows for faster identification of the next threshold
value as well as the pixels that get newly included in the super-level set. Second, we utilize the
standard Union-Find data structure Tarjan (1975), which maintains a collection of disjoint sets. This
data structure supports the operation FIND((x,y)), which finds the highest-value representative
of the CC containing the pixel (x, y). It also supports the operation UNITE((x,y), (v,w)),
which unites the CCs represented by root pixels (x, y) and (v, w) and, assuming I(x, y) > I(v, w),
making (x, y) the representative of the merged components.

At each threshold value u, we use the sorted data structure to identify which pixels are included in
the set S(u). FIND is called on all these newly added pixels to determine if they belong to any
existing CC; if not, they are considered roots of a new CC, with a new entry to the list of disjoint
sets in the union-find data structure. Furthermore, this results in the creation of a dot (u,−∞) in
the persistence diagram whose birth time is u, and a default death time of −∞. Then, UNITE is
called for every pair of roots in the disjoint set list, to determine if any of the sets are in fact merged.
Consider if sets with roots (x, y) and (v, w) are merged, with I(x, y) > I(v, w). In that case, CC
with root (v, w) has now ‘died’, and so the persistence dot whose birth time was I(v, w) in the
diagram, will now have an updated death time of u. Hence, (I(v, w), u) will replace the old dot
(I(v, w),−∞) in the persistence diagram.

We show a walkthrough of this in Fig. 13. We start with an empty union-find data structure. In
(a), we start with u = 5, as 5 is the maximum value in the image. We call FIND and update the
union-find data structure with a new entry. Additionally, the persistence diagram (PD) in (e) has an
entry for (5,−∞). This CC is denoted as α1. Next, in (b) u = 4, all the blue and red pixels are
newly added to this filtration. FIND is called on each of them. The blue pixels indicate that they
were found to be a part of an existing CC. The red pixels indicate that no parent CC was found,
and hence are considered as creating new CCs. The PD includes two new dots α2(4,−∞) and
α3(4,−∞). Next, as intensity value 3 is not present in I , we do not need to compute S(3). The
sorted data structure directly leads us to the next u value which is u = 2 in (c). FIND is called on
all the blue pixels. UNITE is called on all pairs of root CC nodes, resulting True for the fact that
components α1 and α2 have now merged. Since the birth time of α1 is larger, the component α2

‘dies’ and becomes a part of α1. Thus, the persistent dot is updated from α2(4,−∞) to α2(4, 2)
as it was born at u = 4 has died at u = 2. Similarly in (d), at u = 1, FIND is called on all the
blue pixels. Then UNITE (α1, α3) is called, showing that they are actually merged. Thus, the
persistent dot is updated from α3(4,−∞) to α3(4, 1) as α3 was born at u = 4 and has now died at
u = 1. Thus, the final persistent dots we end up with are α1(5,−∞), α2(4, 2), α3(4, 1) as shown
in (e).

For 1-dimensional and higher features (e.g., loops and voids), while we do not go into details here,
the Cubical Ripser library constructs a sparse coboundary matrix that encodes relationships between
pixels. This matrix is reduced to upper-triangular form using column operations, optimizing the
identification of the birth and death of cycles. Each non-zero pivot in the reduced matrix corre-
sponds to a topological feature. This computational framework ensures the efficient generation of
persistence diagrams, leveraging union-find for 0-dim and matrix operations for higher dimensions.
More details are available in the Cubical Ripser Kaji et al. (2020) paper.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0 1 0 1 2 2
1 2 4 2 2 4
2 4 5 4 2 2
1 2 4 1 1 1
0 0 1 1 4 4
-1 0 1 2 2 2

0 1 0 1 2 2
1 2 4 2 2 4
2 4 5 4 2 2
1 2 4 1 1 1
0 0 1 1 4 4
-1 0 1 2 2 2

0 1 0 1 2 2
1 2 4 2 2 4
2 4 5 4 2 2
1 2 4 1 1 1
0 0 1 1 4 4
-1 0 1 2 2 2

0 1 0 1 2 2
1 2 4 2 2 4
2 4 5 4 2 2
1 2 4 1 1 1
0 0 1 1 4 4
-1 0 1 2 2 2

Bi
rt

h

(a) 𝑆(5) (b) 𝑆(4) (c) 𝑆(2) (d) 𝑆(1)

Death

(e) Persistence diagram

(5, -∞)

(4, 2)(4, 1)

α1

α2

α1

α3

α1

α3

α1

Th
re

sh
ol

de
d 

im
ag

e
Ac

tu
al

 im
ag

e 
in

te
ns

iti
es

α1

α3 α2

FIND((2,2)) FIND((1,5))

FIND((1,2))

FIND((2,1))

FIND((2,3))

FIND((3,2))

FIND((4,4))

FIND((4,5))

FIND((0,4))

FIND((0,5))

…

FIND((5,5))

UNITE((2,2),(1,5))

 > True

UNITE((2,2),(4,4))

 > False

FIND((0,1))

FIND((0,3))

…

FIND((5,2))

UNITE((2,2),(4,4))

 > True

U
ni

on
-F

in
d 

op
er

at
io

ns

Figure 13: Figure inspired from Kaji et al. (2020). The figure shows a sample 2D image, thresh-
olded at different values. (a)-(d) shows the sequence of super-level sets S(u), which is nothing but
thresholding the image at the value u. It shows how different connected components (CC) are cre-
ated or destroyed as u changes. White-background cells indicate pixels included in the set S(u).
Red indicates root pixels causing the birth of a CC. Blue indicates pixels that are newly added to the
set S(u) but are absorbed in existing CCs. Brown indicates root pixels whose CC has died, having
merged with another CC whose root had a higher birth time. (e) shows the corresponding 0-dim
persistence diagram.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

J QUALITY OF GENERATED MASKS

We provide FID scores across all the datasets in Tab. 8. Since our method TDN focuses on generating
masks, we report the FID of the mask [FID (Mask)] and the FID of the images [FID (Image)]
generated by ControlNet Zhang et al. (2023) when using these masks as condition.

Our analysis shows that the quality of the masks generated by TDN closely resembles the true masks,
that is, the ground truth (GT) masks annotated by humans, as evidenced by the consistently low FID
(Mask) scores across all datasets. Additionally, to evaluate the impact on final image quality, we
compare the FID (Image) metric between two scenarios: ControlNet using GT masks (ControlNet
+ GT) versus ControlNet using TDN-generated masks. The results demonstrate comparable FID
scores, indicating that using TDN-generated masks as conditioning does not degrade the image
quality. In other words, TDN-generated masks are as good as GT masks for generating real images.

Results from Tab. 1 and Tab. 8 highlight that TDN achieves improved topological control while
maintaining the overall visual quality of the generated images.

Table 8: Comparison of FID (Mask) and FID (Image) against baselines across all datasets.
For Shapes and Google Maps datasets, we cannot report FID (Image) as there is no ground truth
image dataset to compare to. For COCO and CREMI, we report FID (Image) against the respective
dataset images. ControlNet + GT indicates that ControlNet is using the GT masks as the condition.
ControlNet + FT indicates that it has been fine-tuned on the CREMI dataset to generate similarly
textured images. Bold denotes the best results, while italics denotes the second best. Note that
ControlNet + GT has been included as the upper bound performance; realistically, it cannot be used
during inference as the GT masks are not available

Dataset Method FID (Mask) ↓ FID (Image) ↓

Shapes ADM-T 0.092 -
TDN (Ours) 0.068 -

COCO (Animals)

Stable Diffusion - 29.41
DALL·E 3 - 17.49

AR - 35.05
ADM-T 0.267 21.72

TDN (Ours) 0.222 21.28
ControlNet + GT - 20.94

Google Maps ADM-T 0.198 -
TDN (Ours) 0.156 -

CREMI

Stable Diffusion - 48.18
DALL·E 3 - 54.72

AR - 69.86
ADM-T 0.518 3.322

TDN (Ours) 0.467 3.286
ControlNet + GT + FT - 3.126
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K USING 0-DIM AND 1-DIM SIMULTANEOUS TOPOLOGICAL CONSTRAINTS

In our work, we focused on using either 0-dim (number of objects) or 1-dim (number of holes)
constraints individually, depending on the property of the dataset. In this section, we conduct exper-
iments on synthetic data using both 0-dim and 1-dim constraints simultaneously. The constraint is
of the form (a, b) where a denotes 0-dim while b denotes 1-dim. Both are first separately encoded
and then added together to be fed as a condition. Sample images generated by TDN are shown
in Fig. 14. We report quantitative results in Tab. 9.

We find that TDN is capable of handling these joint constraints. While the performance is slightly
lower compared to using each constraint individually, TDN still significantly outperforms ADM-
T across all metrics. This shows that persistent homology (PH) can enhance the performance of
the base diffusion model, even under multi-constraint scenarios. This finding opens up interesting
possibilities for future work in handling even richer combinations of topological constraints.

Condition: (3,2) Condition: (4,4)

Figure 14: Images generated by TDN using both 0-dim and 1-dim topological constraints simulta-
neously. Condition (a, b) denotes a for 0-dim (#objects) and b for 1-dim (#holes).

Table 9: Quantitative performance of using both 0-dim and 1-dim topological constraints simulta-
neously. The FID (Mask) is reported once for each method. Best results are highlighted in bold

TopoDim Method Accuracy ↑ Precision ↑ F1 ↑ FID (Mask) ↓

0-dim ADM-T 0.7383 ± 0.1305 0.7997 ± 0.1268 0.7677 ± 0.1229 0.1279
TDN (Ours) 0.9183 ± 0.0731 0.9338 ± 0.0993 0.9261 ± 0.0906 0.0982

1-dim ADM-T 0.7616 ± 0.0905 0.7892 ± 0.1129 0.7752 ± 0.1082 -
TDN (Ours) 0.9233 ± 0.0705 0.9492 ± 0.0913 0.9360 ± 0.0720 -

K.1 GENERATING SPECIFIC TOPOLOGY LIKE DOUBLE ANNULUS

As mentioned above, we represent the joint constraints as pairs (a, b), where a specifies the number
of connected components (0-dim) and b specifies the number of holes (1-dim). A double annulus
consists of concentric circles, with (a, b) = (2, 2). Our loss, based on homology, cannot distinguish
whether two loops are positioned concentric or not, however, it can generate structures that are ho-
motopy equivalent to the double annulus. As shown in Fig. 15, by sampling for the (2, 2) condition,
TDN can generate nested circles (visually the closest constraint to a double annulus) and other ho-
motopy equivalent structures. This experiment demonstrates that our method can handle complex
topological specifications through the combination of constraints, though geometric relationships
(like equidistance and concentricity) remain an interesting direction for future work.

Condition: (2,2)

Figure 15: Sample images generated by TDN when using both 0-dim and 1-dim topological con-
straints simultaneously. With constraints (a, b) = (2, 2), we can generate nested circles which are
the closest to achieving a double annulus (two concentric circles) using our method.
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L COMPARISON AGAINST CVAE

In this section, we justify the motivation behind using diffusion models instead of other generative
models like Conditional Variational Autoencoders (CVAE) Sohn et al. (2015). We conduct exper-
iments using CVAE as the generative model for the same task of generating masks. Although we
trained on multiple image resolutions, CVAE performed poorly on larger image sizes. Hence we
report results on 64 × 64 images, using a latent embedding dimension of 128. We show results
in Tab. 10 and Fig. 16 for both standard CVAE and a version incorporating our proposed loss Ltop.

Our experimental results show significant limitations of the CVAE approach. From Fig. 16, we
see that the quality of the masks generated by CVAE, with and without Ltop, is severely degraded.
From Tab. 10, it has a significantly higher FID compared to our TDN masks, indicating a lower re-
semblance to the true masks. Additionally, CVAE also struggles to preserve topological constraints,
as evidenced by the low performance on evaluation metrics like Accuracy and F1. While CVAE
+Ltop slightly improves performance, it remains far weaker than diffusion models. Specifically, in
the 0-dim, CVAE generates fragmented objects and fails to preserve their overall shapes. In 1-dim,
it fails to generate connected structures. Although mask images seem easy because they are binary
images, they are in fact a challenge to generate. This is because of the difference in the number of
objects, their varied shapes and sizes, and unconstrained spatial locations (eg: not fixed to the center
of the image). Similarly, the diverse orientation and connection patterns make the 1-dim datasets
challenging. Such complexities make it difficult for the CVAE to generalize to these datasets.

Using diffusion models is critical to the success of TDN. First, the base diffusion model ADM-T
effectively captures spatial arrangements and object shapes (in 0-dim), and connectivity patterns in
1-dim. However, it struggles with the number of objects/holes. This is where our persistent ho-
mology loss brings big improvements. Preserving the number of structures requires heavy global
reasoning and detail. In contrast, CVAE’s bottleneck layer compresses information, losing signifi-
cant information in the image space. This limits their ability to preserve object shape and enforce
strict topological constraints. The significant gain of our loss in diffusion models is owing to the
gradual denoising steps, as well as intact image resolution. These experiments highlight the neces-
sity of diffusion models, making them critical to the success of our method in topological control.
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Figure 16: Qualitative comparison of using CVAE and diffusion models as the generative model.
Ground truth (GT) denotes the true masks used to train the models

Table 10: Quantitative comparison of using CVAE and diffusion models as the generative model.
We include ADM-T and TDN results from Tab. 1 for convenience. Best results are in bold

Dataset (TopoDim) Method Accuracy ↑ Precision ↑ F1 ↑ FID (Mask) ↓

Shapes (0-dim)

CVAE Sohn et al. (2015) 0.3133 ± 0.1321 0.3235 ± 0.1984 0.3078 ± 0.1443 2.231
CVAE +Ltop 0.3816 ± 0.0919 0.3444 ± 0.1276 0.3220 ± 0.1365 1.981

ADM-T 0.7500 ± 0.1889 0.7809 ± 0.1582 0.7651 ± 0.1210 0.092
TDN (Ours) 0.9478 ± 0.0420 0.9499 ± 0.0492 0.9488 ± 0.0370 0.068

COCO (0-dim)

CVAE Sohn et al. (2015) 0.2442 ± 0.0410 0.2696 ± 0.0285 0.2562 ± 0.0318 4.208
CVAE +Ltop 0.3094 ± 0.0967 0.3342 ± 0.0729 0.3213 ± 0.1165 4.083

ADM-T 0.6685 ± 0.1485 0.6917 ± 0.1079 0.6799 ± 0.1931 0.267
TDN (Ours) 0.8557 ± 0.0805 0.8670 ± 0.0636 0.8613 ± 0.0970 0.222

CREMI (1-dim)

CVAE Sohn et al. (2015) 0.2785 ± 0.4296 0.2267 ± 0.1156 0.2499 ± 0.1391 5.971
CVAE +Ltop 0.3267 ± 0.2834 0.3091 ± 0.1079 0.3176 ± 0.1447 5.751

ADM-T 0.5357 ± 0.1879 0.4777 ± 0.1797 0.4881 ± 0.1571 0.518
TDN (Ours) 0.7785 ± 0.1901 0.8142 ± 0.1925 0.7959 ± 0.1659 0.467
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M COMPARISON AGAINST BASIC MASKS

To justify the importance of our approach, we conduct experiments using simple shapes (circles and
squares) as conditioning masks for ControlNet Zhang et al. (2023). Quantitative results are shown
in Tab. 11, and qualitative examples are provided in Fig. 17.

Our experiments reveal several limitations when using simplified shapes as conditioning masks, as
they fail to provide sufficient spatial and structural guidance. This setup is comparable to AR Phung
et al. (2024) (shown in Tab. 1 and Fig. 6 of the main paper), which uses rectangular bounding boxes
with an additional attention step. From our observations, we detect multiple failure modes. First,
from Fig. 17, we see that such conditions tend to introduce visual artifacts in the generated images.
The images are often fragmented, with objects isolated within assigned areas, leading to a divided
and visually disjointed image. Second, the basic shapes also fail to constrain the number of objects
within them, often resulting in 0 objects or multiple objects per shape (see the ‘cats’ row). Finally,
for large animals like zebras, ControlNet struggles to complete the image beyond the boundary of
the shape—while the zebra texture is present within the shape, the overall image is not as desired.
Similarly, for even larger animals like giraffes, the discrepancy between the basic shape and the
natural object proportions leads to incomplete or distorted generations.

In contrast, the masks generated by TDN provide tighter spatial and structural control by offering
sufficient detail to guide the network effectively. This results in correct object counts and better
visual quality, as evidenced by superior FID scores and count metrics. TDN’s masks strike a balance
between oversimplification and unnecessary complexity, as generative models are powerful enough
to fill in finer textural details.

Our results highlight that relying solely on a text prompt and simplified masks is insufficient for
the model to generate visually coherent images. Instead, meaningful masks like those generated by
TDN are essential for ensuring reliable control over cardinality and topology in generative models.

Text prompt:
"exactly 5 zebras"

TDN condition: 5, "zebra"
ControlNet text prompt: "zebras"

Text prompt:
"exactly 6 cats"

TDN condition: 6, "cat"
 ControlNet text prompt: "cats"

5

6

6

7

Text prompt:
"exactly 5 giraffes"

TDN condition: 5, "giraffe"
ControlNet text prompt: "giraffes"

4

AR

5

ControlNet text prompt: "exactly 6 cats"

ControlNet text prompt: "exactly 5 zebras"ControlNet text prompt: "exactly 5 zebras"

ControlNet text prompt: "exactly 5 giraffes"

TDN (Ours) + ControlNetBasic circles mask + ControlNet Basic squares mask + ControlNet

5? 4

10 4

1? 7

Figure 17: Qualitative comparison of using different conditioning types, particularly masks contain-
ing basic shapes like circles/squares to guide cardinality.

Table 11: Quantitative comparison of using different conditioning types for the COCO dataset. We
include AR Phung et al. (2024) and TDN results from Tab. 1 for convenience. Best results in bold

Method / Mask condition type Accuracy ↑ Precision ↑ F1 ↑ FID (Image) ↓
Basic circles mask + ControlNet 0.2972 ± 0.3592 0.3194 ± 0.3046 0.3079 ± 0.2208 49.47
Basic squares mask + ControlNet 0.3123 ± 0.2114 0.3459 ± 0.2209 0.3282 ± 0.2618 47.16
AR (Bounding box w/ attention) 0.6379 ± 0.2062 0.7360 ± 0.1658 0.6611 ± 0.1851 35.05

TDN (Ours) 0.8557 ± 0.0805 0.8670 ± 0.0636 0.8613 ± 0.0970 21.28
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N FUTURE WORK

Our proposed TDN currently uses persistent homology to control the number of objects (in 0-dim)
and the number of holes (in 1-dim). However, persistent homology can theoretically be extended to
higher dimensions, as persistence diagrams can capture topological features in arbitrary dimensions.
For future work, we are looking into graph network generations, as well as 3D applications, where
we can control not just connected components (0-dim) and holes (1-dim), but also voids (2-dim).
3D point clouds and volumetric medical imaging data are important applications where maintaining
topology is crucial in generating realistic synthetic data.
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