
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REWARD ADAPTATION VIA Q-MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we propose a new solution to reward adaptation (RA), the prob-
lem where the learning agent adapts to a target reward function based on one or
multiple existing behaviors learned a priori under the same domain dynamics but
different reward functions. RA has many applications, such as adapting an au-
tonomous driving agent that can already operate either fast (if transporting goods)
or comfortable (if carrying passengers) to operating both fast and comfortable (if
transporting goods with human passengers onboard). Learning the target behavior
from scratch is possible but often inefficient given the available source behaviors.
Our work represents a new approach to RA via the manipulation of Q-functions.
Assuming that the target reward function is a known function of the source reward
functions, our approach to RA computes bounds of the Q function. We introduce
an iterative process to tighten the bounds, similar to value iteration. This enables
action pruning in the target domain before learning even starts. We refer to such a
method as “Q-Manipulation” (Q-M). We formally prove that our pruning strategy
does not affect the optimality of the returned policy while empirically show that
it improves the sample complexity. Comparison with baselines is performed in a
variety of synthetic and simulation domains to demonstrate its effectiveness and
generalizability.

1 INTRODUCTION

Reinforcement Learning (RL) as described by Watkins (1989); Sutton and Barto (2018) represents
a class of learning methods that allow agents to learn from interacting with the environment. RL
has demonstrated great successes in various domains such as games like Chess in Campbell et al.
(2002), Go in Silver et al. (2016), and Atari games in Mnih et al. (2015), logistics in Yan et al. (2022),
biology in Angermueller et al. (2019), and robotics in Kober et al. (2013). However, applying RL to
many real-world problems still suffers from the issue of high sample complexity. Prior approaches
have been proposed to alleviate the issue from different perspectives, such as learning optimization,
transfer learning, modular and hierarchical RL, and offline RL.

The problem of reward adaptation (RA) was first introduced and addressed by Barreto et al. (2018;
2020), where the learning agent adapts to a target reward function given one or multiple existing
behaviors learned a priori (referred to as the source behaviors) under the same actions and transition
dynamics but different reward functions. RA has many useful applications, such as enabling a
vehicle’s driving behavior from two known behaviors (comfortable driving with passengers and fast
driving for goods delivery) to a new target behavior that combines comfort and speed, accommodating
both passengers and goods. Featuring such a special type of transfer learning, RA methods can benefit
from an ever-growing repertoire of source behaviors to create new and potentially more complex
target behaviors. Learning the target behavior from scratch is possible but often inefficient given the
available source behaviors. In this paper, we present a new approach that offers its unique benefits
compared to the previous work on RA.

To better conceptualize the RA problem, consider a grid-world as shown in Fig. 1, which is an
expansion of the Dollar-Euro domain described by Russell and Zimdars (2003). In this domain, the
agent can move to any of its adjacent locations at any step. The agent’s initial location is colored in
yellow and the terminal locations are colored pink or green, which correspond to the source reward
functions (i.e., collecting dollars and euros), respectively. Visiting the terminal location with a single
color returns a reward of 1.0 under the corresponding reward function, and visiting the terminal
location with split colors returns a reward of 0.6 under both reward functions. In RA, the assumption

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

is that the optimal behaviors under the source reward functions are given, referred to as the source
behaviors. A target domain may correspond to a reward function that awards both dollars and euros.

Under the assumption that the reward function is expressed in the form of feature weights such that
the source behaviors can be evaluated easily under the target domain, prior work for addressing RA
can be viewed as combining the best parts of the source behaviors to initialize learning, referred to as
Successor Feature Q-Learning (SFQL) by Barreto et al. (2018; 2020). Consequently, SFQL may not
work well for situations where the target behavior differs substantially from the source behaviors, such
as in the Dollar-Euro domain. Our approach, instead, reasons about the best/worse-case scenarios
under each source domain and combines such knowledge to compute upper/lower bounds of the
target Q-function to enable action pruning. It results in a more general knowledge transfer method
whose efficacy does not rely on the similarity between the source and target behaviors.

Figure 1: Dollar-Euro domain.

Our new approach to RA is referred to as “Q-Manipulation”
(Q-M). We assume the existence of a function, referred to
as the combination function, that relates the source reward
functions to the target reward function. In practice, we often
have a good idea about the functional relationship between
the source and target reward functions (e.g., linear in the
Dollar-Euro domain). Based on such a relationship, Q-M
computes an upper and lower bound of Q-function in the
target domain to identify actions that cannot contribute to
the optimal behavior via an iterative process similar to value
iteration. It enables us to prune those actions before learning
the target behavior without affecting its optimality. In our
evaluation, we empirically show that the effectiveness of
Q-M across simulated and randomly generated domains and analyze its limitations, focusing on
conditions under which its efficacy is negatively impacted. Furthermore, we demonstrate that Q-M
can still be effective in domains with continuous state spaces via discretization, even though the
optimality guarantee would be lost there. In general, Q-M requires additional computing resources
(i.e., CPU time and storage) to implement but its benefits outweigh the costs in practical applications,
especially in situations where accessing the target domain for samples is expensive.

Our core contributions are: We address the problem of reward adaptation (RA) via Q-Manipulation
(Q-M), which represents a new approach to RA that supports more general knowledge transfer than
the previous work. In domains with discrete state spaces, we formally prove the correctness of the
action pruning process under certain initialization conditions; otherwise, we suggest how Q-M may
be applied to expedite learning at the cost of guaranteed optimality. We extensively evaluate Q-M
with respect to baselines to validate its efficacy and analyze its limitations.

2 METHODOLOGY
In this section, we start with a brief introduction to reinforcement learning (RL) before discussing
reward adaptation (RA) and our approach. In RL, the task environment is modeled as an MDP
M = (S,A, T,R, γ), where S is the state space, A is the action space, T : S × A × S → [0, 1]
is the transition function, R : S × A × S → R is the reward function, and γ is the dis-
count factor. At every step t, the RL agent observes state st and takes an action at ∈ A.
As a result, the agent progresses to state st+1 according to the transition dynamics T (·|st, at),
and receives a reward rt. The goal is to search for a policy that maximizes the expected
cumulative reward or expected return. We use π to denote a policy as a mapping from S
to A. The Q function of the optimal policy π∗ is denoted by Q∗ and defined in Eq. 1.

Q∗(s, a) = max
π

[
E

[∞∑
t=0

γtrt|s0, π

]]
(1)

Qµ(s, a) = min
π

[
E

[∞∑
t=0

γtrt|s0, π

]]
(2)

To prepare us for later discussion, we
also introduce Qµ (Eq. 2) to repre-
sent the Q function of the “worst” pol-
icy that minimizes the expected return.
The following lemma establishes the
connection between Qµ and a variant
of Q∗:
Lemma 1.

Qµ
R(s, a) = −Q∗

−R(s, a) (3)
where Q∗

−R(s, a) denotes the Q function of the optimal policy under negative R or −R.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In this paper, we consider RL with discrete state and action spaces and deterministic policies.
Extending the discussion to the continuous cases and stochastic policies will be future work. Proofs
throughout the paper are included in the appendix.

2.1 REWARD ADAPTATION (RA)

Definition 1 (Reward Adaptation (RA)). Under M \R, denoting an MDP without the specification
of a reward function, RA is to determine the optimal policy for a target reward function R, given a
set of source behaviors trained under their respective source reward functions R1, R2 . . . Rn.

In RA, we assume the same transition dynamics, state and action spaces for the source and target
behaviors. Note that the source domains are no longer accessible while learning the target behavior.
Next, we provide the problem statement of RA under Q-M as follows:

Problem Statement [Reward Adaptation with Q-Variants]: Given an RA problem where variants of
the Q functions are accessible for the source domains (e.g., Q∗’s and Qµ’s under the source reward
functions), determine the optimal policy under a target reward function R that is a known function of
the source reward functions specified as follows:

R = f(R1, R2, . . . Rn) (4)

f above is also referred to as the combination function. When f is not known exactly but can be
modeled with an additional noise component, we will discuss later how Q-M can be adapted to handle
such situations at the cost of reduced efficacy.

To derive a solution to RA with Q-variants, we propose Q-M, an action-pruning strategy that ensures
that only unnecessary actions are pruned. To achieve this, we aim to compute an upper and lower
bound of Q∗ under the target reward function based on the Q variants from the source behaviors.
Intuitively, if the lower bound of an action a is higher than the upper bound of action â under a state s,
â can be pruned. In Q-M, we derive these bounds based on an iterative process that we describe next.

2.2 Q-MANIPULATION

In Q-M, we first initialize an upper and lower bound of Q∗
R and then iteratively refine them. To avoid

notation cluttering to improve clarity, we omit the subscript of Q for indicating the reward function
used. These two steps are formalized below (Note that we do not assume any knowledge of Q∗):

Upper Bound (UB)
QUB

0 (s, a) > Q∗ [Initialization] (5)

QUB
k+1(s, a) =min

(
QUB

k (s, a), max
s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QUB

k (s′, a′)
])

(6)

Lower Bound (LB)
QLB

0 < Q∗ [Initialization] (7)

QLB
k+1(s, a) =max

(
QLB

k (s, a), min
s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QLB

k (s′, a′)
])

(8)

T̂ (·|s, a) denotes reachable states (or neighbouring states) from s, a. This information is assumed to
be available in Q-M or can be obtained while training the source behaviors. Similarly, the source
reward functions or Ri’s are also assumed to be available so that R(s, a, s′) in the equations above
can be computed based on its known relationship with them (Eq. 4). The outermost max/min ensures
QUB ≥ Q∗ ≥ QLB throughout the iterative processes via simple induction. It is worth noting that
the updates above ensure that the upper and lower bounds are always decreasing and increasing,
respectively, as desired such that the bounds are tightening. When the source reward functions are
noisy, it requires their means to be used in the updates. Next, before discussing the initializations, we
show that such processes converge to a fixed point in Q-M, respectively.

Definition 2. The min and max Bellman operator for UB and LB in Q-M are mappings T : R|S×A| →
R|S×A| that satisfy, respectively:

(TminQ
UB
k)(s, a) = min

(
QUB

k (s, a), max
s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QUB

k (s′, a′)
])

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(TmaxQ
LB
k)(s, a) = max

(
QLB

k (s, a), min
s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QLB

k (s′, a′)
])

Since the theoretical results for the min and max operator are similar, we do not distinguish between
them below but provide separate proofs for them in the appendix.
Theorem 1 (Convergence). The iteration process introduced by the Bellman operator in Q-M satisfies

∥T Qk − T Qk+1∥∞ ≤ γ∥Qk −Qk+1∥∞,∀Qk, Qk+1 ∈ R|S×A|.

such that the Q function converges to a fixed point.

Formally, ∥f∥∞ = supx |f(x)| and it returns the maximum absolute difference between Qk(s, a)
and Qk+1(s, a) under any s, a above. The process converges to a fixed point, since the difference
between two consecutive iterations always decreases. However, it turns out that the fixed point may
not necessarily be unique as with value iteration.
Theorem 2. The Bellman operator in Q-M specifies only a non-strict contraction in general:∥∥∥T Q− T Q̂

∥∥∥
∞

≤
∥∥∥Q− Q̂

∥∥∥
∞

This result is interesting since it identifies another case where non-strict contraction results in a fixed
point other than the identity map.
Corollary 1 (Non-uniqueness). The fixed point of the iteration process in Q-M may not be unique.

In our evaluation, we observe that the fixed point found by the iteration process depends on the
initialization. Another observation is that the Bellman operator in Q-M appears almost identical to
that in value iteration when the MDP is deterministic. In such cases, we observe that Q-M often
results in zero-shot learning when the upper and lower bounds converge to Q∗

R.

2.3 INITIALIZING THE BOUNDS

A simple way to initialize the bounds would be to identify the most positive and negative rewards
and compute the sums of their geometric sequences via the discount factor, respectively. However,
these bounds are likely to be too conservative to be useful since the iteration processes may converge
undesirably due to non-unique fixed points. Intuitively, we would like the bounds to be tight initially
to yield the best results. However, computing bounds for the target behavior based on information
from the source behaviors only is not a trivial task. Next, we show situations where additional
assumptions hold such that we can provide more desirable initializations. In particular, we will show
next how different forms of the combination function f in Eq. 4 can affect the initializations.

Linear Combination Function: First, we consider the case when the target reward function is a
linear function of the source reward functions. In such cases, if the agent maintains both Qµ

i ’s and
Q∗

i ’s while learning the source behaviors, we propose the initializations as follows. Note that Qµ
i can

be obtained conveniently while learning the source behaviors based on Lemma 1.
Lemma 2. When R =

∑
ciRi where ci ≥ 0 , an upper and lower bound of Q∗

R are given,
respectively, by:

QUB
0 =

n∑
i=1

ciQ
∗
i

QLB
0 = max

i
[ciQ

∗
i +

∑
j

cjQ
µ
j] where j ∈ {1 : n} \ i

(9)

Nonlinear Combination Function: Handling nonlinear combination is more complicated and
deriving tight bounds that are guaranteed to be correct is difficult. Instead, we propose approximate
bounds for monotonically increasing and positive function f as follows:

QUB
0 = f(Q∗

|R1|, Q
∗
|R2|, . . . Q

∗
|Rn|) QLB

0 = −f(Q∗
|R1|, Q

∗
|R2|, . . . Q

∗
|Rn|) (10)

Using the bounds above requires the agent to maintain Q∗
|Ri|’s. Since these bounds are approximate,

they do not guarantee correctness in general, meaning that actions belonging to the optimal policy
may be pruned. However, we show that they work well in practice in our evaluation.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2.4 NOISY COMBINATION FUNCTION AND CONTINUOUS STATE SPACES

Noisy Combination Function: When the combination function is not known exactly but can be
modeled with an additional noise component such that R = f(R1 . . . Rn) +N , and we know the
range of the noise (i.e., Nmin and Nmax). We can consider such situations by augmenting the
R(s, a, s′) in Eqs. 6 and 8 with Nmax and Nmin, respectively. We must also update the initialization
of the bounds using QUB = QUB +Nmax× 1−γtmax

1−γ and QLB = QLB +Nmin× 1−γtmax

1−γ , where
tmax is the maximum steps in an episode. Note however that such modifications will likely reduce
the efficacy of Q-M.

Handling Continuous State Spaces: For domains with continuous state spaces, we resort to using
features (e.g., tile-coding) to discretize the state space and then apply the process of Q-M on such a
space to prune actions. We can then run any RL method that can handle continuous state spaces (such
as Deep Q-Learning) under the reduced action space per each discrete state. Although the optimality
guarantee is obviously lost due to the discretization, we aim to show how effective such a simple
adaption can be. The implementation details are discussed in Sec. 3. We will extend Q-M to natively
handle continuous state and action spaces in future work.

Action Pruning in Q-M: Intuitively, if an action a’s lower bound is higher than some other action
â’s upper bound under a state s, then â can be pruned for that state. This allows us to reduce the
action space per each different state, which contributes to faster convergence. When the upper and
lower bounds are sound, the optimal policies are preserved.

Theorem 3. [Optimality] For reward adaptation with Q variants, the optimal policies in the target
domain remain invariant under Q-M when the upper and lower bounds are initialized correctly.

3 EVALUATION
The primary objective here is to evaluate the performance of Q-M to analyze its benefits and
limitations. We compare Q-M with SFQL described by Barreto et al. (2018), the state-of-the-art
approach to reward adaptation. Q-M and SFQL initialize learning in different ways to transfer
prior knowledge from the source domains but otherwise both implement Q-Learning (QL) to learn
the target behavior. Hence, we also use QL without any knowledge transfer as a baseline. More
specifically, to initialize learning for SFQL, we evaluate the given source behaviors on the target
domain to compute a bootstrap Q-function as described in the generalized policy improvement
theorem in Barreto et al. (2018). Additional results analyzing Q-M (including where actions are
pruned) and running time comparisons are reported in Sec. A.3. We keep the hyperparameters for
Q-Learning (or DQN) the same across the different methods.

Since we are interested in demonstrating Q-M as a more general knowledge transfer method than
SFQL, we design the evaluation domains such that the target behaviors are substantially different
from the source behaviors in most of them (similar to the situation in Dollar-Euro). In such cases,
SFQL, initializing learning by combining the best parts of the source behaviors, is expected to not
perform well unless the target behavior happens to be characterized by some combination of the
source behaviors. Details on how the source and target behaviors are designed are in the appendix.

For Q-M, we use the initializations described in Sec. 2.3. One observation about Q-M is that the
computation of UB and LB is affected substantially by the stochastic branching factor (SBF) of a
domain, as evident in Eqs. 6 and 8. SBF here is defined as the maximum number of next states
reachable (or with a nonzero transition probability) from any state and action pair. Intuitively, the
less stochastic the domain is, the more the Bellman updates in Q-M resemble that in value iteration
(except for the outermost max/min). To demonstrate the influence of SBF, for each evaluation domain,
we gradually increase its SBF. At the same time, the number of reachable states from a given state
and action pair is allowed to vary and randomly chosen between 1 and a set SBF. We first evaluate
with simulation and randomly generated domains under linear combination functions and then move
on to the more challenging cases of nonlinear and noisy functions. To showcase the generality of
Q-M, we also consider randomizing the domains so that we evaluate with 1) given MDP \R and
designed rewards, 2) randomized MDP \R and designed rewards, and 3) randomized MDP \R and
randomized rewards. All evaluations are averaged over 30 runs. More details about the evaluation
settings along with a detailed description of all the domains, including the design of source and target
behaviors, are reported in the appendix.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.1 LINEAR COMBINATION FUNCTION

Given MDP \R and Designed Rewards:

Figure 2: Convergence plots for Dollar Euro (top) and Racetrack (bottom).

In this evaluation, we compared Q-M with the baselines in simulation domains that include Racetrack
and Dollar-Euro. The convergence plots are shown in Fig. 2. In each subfigure, we show the SBF
used (labeled at the top). We observe that Q-M converges substantially faster than the baselines
in both domains. However, as expected, the performance of Q-M is negatively impacted as SBF
increases. An interesting observation is the performance of SFQL. SFQL seems to struggle with these
domains, especially Racetrack. Since the sources behaviors differ much from the target behavior,
knowledge transfer in SFQL based on combining the source behaviors can actually misguide the
learning process. It is worth mentioning that SFQL eventually converged to the optimal policy after
we allowed it to train with more episodes. In addition, we also observe that Q-M in deterministic
scenarios (left most subfigures when SBF = 1) results in zero-shot learning: its iterative processes for
computing UB and LB both converge to Q∗

R. This result demonstrates that Q-M is indeed a more
general knowledge transfer method that does not depend on the similarity between the source and
target behaviors.

Randomized MDP \R and Designed Rewards: First, we evaluated with the Frozen Lake domain

Figure 3: Convergence plots for auto-generated domains (top) and Frozen Lake (bottom).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

while randomizing the hole locations (4 holes) in each run. Additionally, we evaluated with auto-
generated MDP\R’s where the numbers of states and actions are randomly generated, and terminal
states were randomly selected. The number of terminal states in both domains was held fixed as well
as their terminal rewards. The convergence plots are presented in Fig. 3. Similarly, we can observe
that Q-M performs the best in both domains. It demonstrates that Q-M can generalize to different
configurations of MDP\R.

Randomized MDP \R and Randomized Rewards: In this evaluation, we aim to push the results

Figure 4: Convergence plots for auto-generated domains.
from the previous evaluation further by analyzing the generality of Q-M with both randomized
MDP \R and rewards. Randomizing all of these factors simultaneously can introduce very different
behaviors, which represent more challenging situations to generalize. In this evaluation, MDP\R’s
with fixed numbers of states and actions were auto-generated in each run. A fixed number of terminal
states were selected randomly. Rewards for each transition, including terminal states, were generated
randomly. The convergence plots are presented in Fig. 4. Q-M still consistently performs better than
the baselines. However, we can also observe that SFQL performs better than QL, which is in contrast
to the previous evaluations. This is likely due to the fact that a high level randomization here results
in more similarities between the source and target behaviors that are taken advantage of by SFQL.

3.2 NONLINEAR COMBINATION FUNCTION

Figure 5: Convergence plots for auto-generated domains with a nonlinear f : R = (R1 +R2)
3.

We now extend our evaluation to nonlinear combination functions. The main aim here is to evaluate
the effectiveness of the initializations proposed even though the optimality guarantee is lost. In
this evaluation, we use the same setting as in Randomized MDP\R and Designed Rewards above.
The convergence plots are presented in Fig. 5. We observe that Q-M is still more efficient than the
baselines although the performance gain is not as obvious as in the previous evaluations, especially
as shown in the last subfigure. As expected, RA with nonlinear combination functions is to more
challenging than with linear functions, resulting in reduced action pruning. This is due in part to the
difficulty in establishing bounds that are tight while being sound.

3.3 NOISY COMBINATION FUNCTION
We aim to evaluate how Q-M would perform under noisy combination functions and how noise
affects its performance. We used the same setting as in Randomized MDP\R and Randomized
Rewards above. We consider a situation where the combination function is not exactly known but can
be modeled by using a noise component: R = R1 + R2 +N . Assuming the knowledge of Nmin

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 6: Convergence plots with auto-generated domains and a noisy combination function.

and Nmax, we updated the initializations and Bellman updates for Q-M. The convergence plots are
presented in Fig. 6 where the noise levels with respect to the mean of the rewards was labeled at the
top. As expected, we observe that noise has an impact on the efficacy of Q-M: the more noise, the
smaller the performance gain with respect to the baselines. However, it is promising to observe that
Q-M can still be effective under such noisy situations since it can greatly expand the applicability of
Q-M. For instance, when the functional relationship is unknown, we can apply regression to fit the
source reward functions to the observed target rewards under an assumed functional form based on
domain expertise; noise can be incorporated to handle regression error.

3.4 DOMAINS WITH CONTINUOUS STATE SPACES

Figure 7: Convergence plots for domains with continuous state spaces.

In environments with continuous state spaces, we applied both Q-M and SFQL with discretized state
spaces based on tile-coding, where each feature is discretized to produce the state space. The source
Q-functions are also discretized with values determined according to the midpoint of each discrete
state. For Q-M, we also maintained a fixed number of reachable states from any state and action pair
(assumed to be given or learned from training source behaviors) to compute the Bellman updates.
We used Deep Q-Network (DQN) as the underlying learning method after initializing learning for
both Q-M and SFQL. During learning in Q-M, pruned actions in a discrete state are not considered
for any state belonging to that state. Convergence plots are presented in Fig. 7. We observe that
Q-M (QM-DQN) performs only marginally better than the baselines in Cartpole and Lunar Lander,
suggesting that discretization has a significant negative impact on the performance of Q-M. This is
expected since discretization has the effect of adding substantial “noise” to the Q functions. It is
however encouraging to see that Q-M in such cases seems to have avoided pruning out the optimal
actions. In Pong, SF-DQN outperformed both QM-DQN and DQN. This was due to the choice of
source behaviors that are either keeping left or right. The target behavior requires the agent to move
to the left and right to catch the ball, which shares strong similarity with the source behaviors.

4 RELATED WORK
Reward and Q-Decomposition: The combination function in Q-M can be viewed in general as
specifying a structure of the target reward function based on the source functions. Reward structure
can significantly influence the effectiveness of an RL agent as discussed in Silver et al. (2021). Prior
approaches such as Lin et al. (2019); Marthi (2007); Ciardo and Trivedi (1993) have suggested novel
ways to exploit reward structure and decompose the reward function to better learn. For example,
Q-Decomposition as described by Russell and Zimdars (2003) involves a similar setting to ours

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

where it aims to learn a behavior under a reward function that is the linear sum of multiple sub-reward
functions. Each sub-agent for such a sub-reward function undergoes its own learning process and
supplies its Q values to an aggregator. The idea has also been extended to work with Deep Q Networks
(DQN) by Van Seijen et al. (2017). There, it is argued that reward decomposition enables faster
learning as separate value functions only depend on a subset of input features, resulting in simpler
domains. Similar ideas are developed in Sutton et al. (2011); Sprague and Ballard (2003). While these
ideas are inspirational to ours, they are mostly for learning from scratch. No transfer is considered.

Multi-Objective Reinforcement Learning: Multi-Objective Reinforcement Learning (MORL)
as described in Liu et al. (2014); Sprague and Ballard (2003); Roijers et al. (2013); Vamplew
et al. (2011) is a branch of RL that deals with learning trade-offs between multiple objectives. A
common approach to MORL is to search for the Pareto frontier, which is generally infeasible. A
more practical way to combine the objectives uses linear scalarization as discussed by Van Moffaert
et al. (2013). Often, the domain expert decides the weights for the objectives. Limitations have been
reported by Vamplew et al. (2008) and solutions to counter them are proposed such as using the
Chebyshev function. Our problem setting can be considered as a special case of MORL where the
different objectives must be combined in complex ways. However, our focus is on improving sample
complexity during learning by utilizing the existing behaviors for the individual objectives.

Hierarchical Reinforcement Learning: Hierarchical RL (HRL) as discussed in Dietterich (1998);
Vezhnevets et al. (2017); Barreto et al. (2020); Bacon et al. (2017); Barto and Mahadevan (2003);
Xiaoqin et al. (2009); Cai et al. (2013); Doroodgar and Nejat (2010) is the process of learning based
on a hierarchy of behaviors that is often assumed to be known or learned. A hierarchical structure
makes it possible to divide a learning problem into sub-problems, sometimes in a recursive manner.
At any point in time, a hierarchy of behaviors may be activated and the behavior at the lowest level
determines the output behavior. In HRL, the interaction between the behaviors is often assumed to
be simple, i.e., sequential execution, since they are considered to address different parts of the state
space. In contrast, the source and target behaviors in our work share the same state and action spaces
and their interactions can be arbitrarily complex via the correlations between their reward functions.

Transfer Learning and Multi-Task Learning: Transfer learning, with various applications such as
those described in Andreas et al. (2016); Bahdanau et al. (2016); Chang et al. (2015), is the process
of learning a target task by leveraging experiences from source tasks. As a transfer learning method
for reinforcement learning, multi-task reinforcement learning surveyed in Vithayathil Varghese and
Mahmoud (2020) deals with learning from multiple related tasks simultaneously to expedite learning.
In D’Eramo et al. (2019), for instance, individual learning agents learn from a related task and share
their weights with the global network at regular intervals. The global network also periodically
shares its parameters with individual learning agents. Our approach also deals with knowledge
transfer from the source to the target domains. However, it represents the class of indirect transfer
methods where the agent must “infer” useful information from the given information (i.e., source
behaviors) before using it. Furthermore, in contrast to domain adaptation discussed in Peng et al.
(2018); Eysenbach et al. (2020) for addressing the sim-to-real gap, reward adaptation is more about
transferring knowledge between different tasks (i.e., reward functions).

5 CONCLUSIONS
In this paper, we introduced reward adaptation, the problem where the learning agent adapted to a
target reward function based on the existing source behaviors under the same MDP \R. We proposed
an approach to reward adaptation, referred as Q-Manipulation (Q-M). The key was to maintain Q
variants for each of the source behaviors and apply Q-M iterations to compute bounds of the target Q
function and their initializations for action pruning before learning the target behavior. We formally
proved that our approach converged and retained optimality under correct initializations. Empirically,
we showed that Q-M was substantially more efficient than the baselines in domains where the source
and target behaviors differ, and generalizable under different randomizations. We also applied Q-M
to noisy combination functions and continuous state spaces to extend its applicability. As such, Q-M
represents a valuable contribution to advancing transfer learning for reinforcement learning. It is
worth mentioning that, given its unique way of knowledge transfer, Q-M can be combined with other
approaches (such as SFQL) to further improve learning. Our work also opens up many future research
opportunities, such as addressing continuous state and action spaces and handling different domain
dynamics (in addition to difference in reward functions) as in domain adaptation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artificial intelligence, 134
(1-2):57–83, 2002.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Yimo Yan, Andy HF Chow, Chin Pang Ho, Yong-Hong Kuo, Qihao Wu, and Chengshuo Ying.
Reinforcement learning for logistics and supply chain management: Methodologies, state of the art,
and future opportunities. Transportation Research Part E: Logistics and Transportation Review,
162:102712, 2022.

Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, and Lucy
Colwell. Model-based reinforcement learning for biological sequence design. In International
conference on learning representations, 2019.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, Hado van Hasselt, and
David Silver. Successor features for transfer in reinforcement learning, 2018.

André Barreto, Shaobo Hou, Diana Borsa, David Silver, and Doina Precup. Fast reinforcement
learning with generalized policy updates. Proceedings of the National Academy of Sciences, 117
(48):30079–30087, 2020.

Stuart J Russell and Andrew Zimdars. Q-decomposition for reinforcement learning agents. In
Proceedings of the 20th International Conference on Machine Learning (ICML-03), pages 656–
663, 2003.

David Silver, Satinder Singh, Doina Precup, and Richard S Sutton. Reward is enough. Artificial
Intelligence, 299:103535, 2021.

Zichuan Lin, Li Zhao, Derek Yang, Tao Qin, Tie-Yan Liu, and Guangwen Yang. Distributional reward
decomposition for reinforcement learning. Advances in neural information processing systems, 32,
2019.

Bhaskara Marthi. Automatic shaping and decomposition of reward functions. In Proceedings of the
24th International Conference on Machine learning, pages 601–608, 2007.

Gianfranco Ciardo and Kishor S Trivedi. A decomposition approach for stochastic reward net models,
1993.

Harm Van Seijen, Mehdi Fatemi, Joshua Romoff, Romain Laroche, Tavian Barnes, and Jeffrey Tsang.
Hybrid reward architecture for reinforcement learning. Advances in Neural Information Processing
Systems, 30, 2017.

Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski, Adam White,
and Doina Precup. Horde: A scalable real-time architecture for learning knowledge from unsuper-
vised sensorimotor interaction. In The 10th International Conference on Autonomous Agents and
Multiagent Systems-Volume 2, pages 761–768, 2011.

Nathan Sprague and Dana Ballard. Multiple-goal reinforcement learning with modular sarsa (0).
2003.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Chunming Liu, Xin Xu, and Dewen Hu. Multiobjective reinforcement learning: A comprehensive
overview. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(3):385–398, 2014.

Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-
objective sequential decision-making. Journal of Artificial Intelligence Research, 48:67–113,
2013.

Peter Vamplew, Richard Dazeley, Adam Berry, Rustam Issabekov, and Evan Dekker. Empirical
evaluation methods for multiobjective reinforcement learning algorithms. Machine learning, 84
(1):51–80, 2011.

Kristof Van Moffaert, Madalina M Drugan, and Ann Nowé. Scalarized multi-objective reinforcement
learning: Novel design techniques. In 2013 IEEE Symposium on Adaptive Dynamic Programming
and Reinforcement Learning (ADPRL), pages 191–199. IEEE, 2013.

Peter Vamplew, John Yearwood, Richard Dazeley, and Adam Berry. On the limitations of scalarisation
for multi-objective reinforcement learning of pareto fronts. In Australasian joint conference on
artificial intelligence, pages 372–378. Springer, 2008.

Thomas G Dietterich. The maxq method for hierarchical reinforcement learning. In ICML, volume 98,
pages 118–126. Citeseer, 1998.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International Conference on Machine Learning, pages 3540–3549. PMLR, 2017.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete event dynamic systems, 13(1):41–77, 2003.

Du Xiaoqin, Li Qinghua, and Han Jianjun. Applying hierarchical reinforcement learning to computer
games. In 2009 IEEE International Conference on Automation and Logistics, pages 929–932.
IEEE, 2009.

Yifan Cai, Simon X Yang, and Xin Xu. A combined hierarchical reinforcement learning based
approach for multi-robot cooperative target searching in complex unknown environments. In 2013
IEEE symposium on adaptive dynamic programming and reinforcement learning (ADPRL), pages
52–59. IEEE, 2013.

Barzin Doroodgar and Goldie Nejat. A hierarchical reinforcement learning based control architec-
ture for semi-autonomous rescue robots in cluttered environments. In 2010 IEEE International
Conference on Automation Science and Engineering, pages 948–953. IEEE, 2010.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Learning to compose neural
networks for question answering. arXiv preprint arXiv:1601.01705, 2016.

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. An actor-critic algorithm for sequence prediction. arXiv preprint
arXiv:1607.07086, 2016.

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daume, and John Langford. Learning
to search better than your teacher. In International Conference on Machine Learning, pages
2058–2066. PMLR, 2015.

Nelson Vithayathil Varghese and Qusay H Mahmoud. A survey of multi-task deep reinforcement
learning. Electronics, 9(9):1363, 2020.

Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, and Jan Peters. Sharing knowledge
in multi-task deep reinforcement learning. In International Conference on Learning Representa-
tions, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In 2018 IEEE international conference on robotics
and automation (ICRA), pages 3803–3810. IEEE, 2018.

Benjamin Eysenbach, Swapnil Asawa, Shreyas Chaudhari, Sergey Levine, and Ruslan Salakhutdinov.
Off-dynamics reinforcement learning: Training for transfer with domain classifiers. arXiv preprint
arXiv:2006.13916, 2020.

A APPENDIX

A.1 THEORETICAL PROOFS

Lemma 1

Qµ
R(s, a) = min

π

[
E

[∞∑
t=0

γtrt|s0, π

]]

=−max
π

[
E

[∞∑
t=0

−γtrt|s0, π

]]
= −Q∗

−R(s, a)

(11)

Lemma 2 When R =
∑

ciRi where ci ≥ 0 , an upper and lower bound of Q∗
R are given, respectively,

by:

QUB
0 =

n∑
i=1

ciQ
∗
i

QLB
0 = max

i
[ciQ

∗
i +

∑
j

cjQ
µ
j] where j ∈ {1 : n} \ i

(12)

Proof. From definition, we have:

ciQ
π
i = max

π
[E [ciri,0 + γciri,1 + . . .+ γnciri,n|s0, π]] (13)

By reorganizing the reward components, we have:∑
i

ciQ
π
i = Qπ∑

i ciRi (14)

Denote the optimal policy under the target reward function R as π∗, given ci ≥ 0, we can derive that∑
i

ciQ
∗
i ≥

∑
i

ciQ
π∗

i = Q∗
R (15)

For the lower bound, we have:

max
i

(ciQ
∗
i +

∑
j ̸=i

cjQ
µ
j) ≤ ckQ

∗
k +

∑
j ̸=k

cjQ
π∗
k

j

where k denotes the best choice of i from the left

≤ max
π

(ciQ
π
i +

∑
j ̸=i

cjQ
π
j)

= Q∗
R

(16)

Next, we present a few lemmas that are used in the proof of our theorems:
Lemma 3. ∣∣∣max

a
f(a)−max

a
g(a)

∣∣∣ ≤ max
a

|f(a)− g(a)|.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Proof. Assume without loss of generality that maxa f(a) ≥ maxa g(a), and denote a∗ =
argmaxa f(a). Then,∣∣∣max

a
f(a)−max

a
g(a)

∣∣∣ = max
a

f(a)−max
a

g(a) = f (a∗)−max
a

g(a) ≤ f (a∗)−g (a∗) ≤ max
a

|f(a)−g(a)|.

This concludes the proof.

Lemma 4. ∣∣∣min
a

f(a)−min
a

g(a)
∣∣∣ ≤ max

a
|f(a)− g(a)|.

Proof. Assume without loss of generality that f(a∗) = mina f(a) ≥ mina g(a) = g(b∗). Then,

max
a

|f(a)−g(a)| ≥ |f (b∗)− g (b∗)| ≥ f (b∗)−g (b∗) ≥ f (a∗)−g (b∗) =
∣∣∣min

a
f(a)−min

a
g(a)

∣∣∣
This concludes the proof.

Theorem 1 [Convergence] The iteration process introduced by the Bellman operator in Q-M satisfies

∥T Qk − T Qk+1∥∞ ≤ γ∥Qk −Qk+1∥∞,∀Qk, Qk+1 ∈ R|S×A|.

such that the Q function converges to a fixed point.

Proof. 1) Upper Bound

The operator Tmin for the upper bound is defined as follows:

QUB
k+1(s, a) = (TminQ

UB
k)(s, a) = min

(
QUB

k (s, a), max
s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QUB

k (s′, a′)
])

(17)
where T̂ (·|s, a) denotes reachable states from s, a.

We consider the change of difference between Q values between before and after the modified Bellman
update (i.e., the difference between

∣∣QUB
k (s, a)−QUB

k+1(s, a)
∣∣ and

∣∣QUB
k+1(s, a)−QUB

k+2(s, a)
∣∣):

Case 1: If the first elements were the smaller values for computing both QUB
k+1 and QLB

k+2 in Eq. 17:

QUB
k+1(s, a) = QUB

k (s, a)

QUB
k+2(s, a) = QUB

k+1(s, a)∣∣QUB
k+1(s, a)−QUB

k+2(s, a)
∣∣ = |QUB

k (s, a)−QUB
k+1(s, a)| = 0

Case 2: If the second element in min was the smaller value for computing QUB
k+1 and the first element

in min was the smaller value for QUB
k+2:

QUB
k+1(s, a) = max

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QUB

k (s′, a′)
]

QUB
k+2(s, a) = QUB

k+1(s, a)∣∣QUB
k+1(s, a)−QUB

k+2(s, a)
∣∣ = 0

Case 3: If the first element in min was the smaller value for computing QUB
k+1 and the second element

in min was the smaller value for QUB
k+2:

QUB
k+1(s, a) = QUB

k (s, a) ≤ max
s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QUB

k (s′, a′)
]

(Eq. 17) (18)

QUB
k+2(s, a) = max

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QUB

k+1(s
′, a′)

]

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

∣∣QUB
k+1(s, a)−QUB

k+2(s, a)
∣∣

= QUB
k (s, a)− max

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QUB

k+1(s
′, a′)

]
≤ max

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QUB

k (s′, a′)
]
− max

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QUB

k+1(s
′, a′)

]
(Eq. 18)

≤

∣∣∣∣∣ max
s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QUB

k (s′, a′)
]
− max

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QUB

k+1(s
′, a′)

]∣∣∣∣∣
≤ γ max

s′∈T̂ (·|s,a)

∣∣∣max
a′

QUB
k (s′, a′)−max

a′
QUB

k+1(s
′, a′)

∣∣∣ (Lemma 3)

≤ γ max
s′∈T̂ (·|s,a)

max
a′

∣∣QUB
k (s′, a′)−QUB

k+1(s
′, a′)

∣∣ (Lemma 3)

≤ γ∥QUB
k (s, a)−QUB

k+1(s, a)∥∞

Case 4: If the second elements in min were the smaller values for both QUB
k+1 and QUB

k+2:

QUB
k+1(s, a) = max

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QUB

k (s′, a′)
]

QUB
k+2(s, a) = max

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QUB

k+1(s
′, a′)

]
∣∣QUB

k+1(s, a)−QUB
k+2(s, a)

∣∣
=

∣∣∣∣∣ max
s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QUB

k (s′, a′)
]
− max

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QUB

k+1(s
′, a′)

]∣∣∣∣∣
≤ γ∥QUB

k (s, a)−QUB
k+1(s, a)∥∞ (similar to Case 3 above)

Since the above cases hold for any s, a, we therefore have:

∥QUB
k+1 −QUB

k+2∥∞ ≤ γ∥QUB
k −QUB

k+1∥∞ (19)

Since the distance decreases by gamma with every iteration, it will converge to 0 and hence QUB

converges to a fixed point.

2) Lower Bound

The operator Tmax for the lower bound is defined as follows:

QLB
k+1(s, a) = (TmaxQ

LB
k)(s, a) = max

(
QLB

k (s, a), min
s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QLB

k (s′, a′)
])

(20)

T̂ (·|s, a) denotes reachable states from s, a.

We consider the change of difference between Q values between before and after the modified Bellman
update (i.e., the difference between

∣∣QLB
k (s, a)−QLB

k+1(s, a)
∣∣ and

∣∣QLB
k+1(s, a)−QLB

k+2(s, a)
∣∣):

Case 1: If the first elements in max were the bigger values for both QLB
k+1 and QLB

k+2:

QLB
k+1(s, a) = QLB

k (s, a)

QLB
k+2(s, a) = QLB

k+1(s, a)∣∣QLB
k+1(s, a)−QLB

k+2(s, a)
∣∣ = |QLB

k (s, a)−QLB
k+1(s, a)| = 0

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Case 2: If the second element in max was the bigger value for QLB
k+1 and the first element in max

was the bigger value for QLB
k+2:

QLB
k+1(s, a) = min

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QLB

k (s′, a′)
]

QLB
k+2(s, a) = QLB

k+1(s, a)∣∣QLB
k+1(s, a)−QLB

k+2(s, a)
∣∣ = 0

Case 3: If the first element in max was the bigger value for QLB
k+1 and the second element in max

was the bigger value for QLB
k+2:

QLB
k+1(s, a) = QLB

k (s, a) ≥ min
s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QLB

k (s′, a′)
]

(21)

QLB
k+2(s, a) = min

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QLB

k+1(s
′, a′)

]
∣∣QLB

k+1(s, a)−QLB
k+2(s, a)

∣∣
= −

(
QLB

k (s, a)− min
s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QLB

k+1(s
′, a′)

])
(
since QLB

k+2(s, a) ≥ QLB
k+1(s, a) based on Eq. 20

)
≤ −

(
min

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QLB

k (s′, a′)
]
− min

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QLB

k+1(s
′, a′)

])
(Eq. 21)

≤

∣∣∣∣∣ min
s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QLB

k (s′, a′)
]
− min

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QLB

k+1(s
′, a′)

]∣∣∣∣∣
≤ γ max

s′∈T̂ (·|s,a)

∣∣∣max
a′

QLB
k (s′, a′)−max

a′
QLB

k+1(s
′, a′)

∣∣∣ (Lemma 4)

≤ γ max
s′∈T̂ (·|s,a)

max
a′

∣∣QLB
k (s′, a′)−QLB

k+1(s
′, a′)

∣∣ (Lemma 3)

≤ γ∥QLB
k (s, a)−QLB

k+1(s, a)∥∞

Case 4: If the second elements in max were the bigger values for both Qk+1 and Qk+2:

QLB
k+1(s, a) = min

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QLB

k (s′, a′)
]

QLB
k+2(s, a) = min

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QLB

k+1(s
′, a′)

]
∣∣QLB

k+1(s, a)−QLB
k+2(s, a)

∣∣
=

∣∣∣∣∣ min
s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QLB

k (s′, a′)
]
− max

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
QLB

k+1(s
′, a′)

]∣∣∣∣∣
≤ γ∥QLB

k (s, a)−QLB
k+1(s, a)∥∞ (similar to Case 3)

Since the above cases hold for any s, a, we therefore have:

∥QLB
k+1 −QLB

k+2∥∞ ≤ γ∥QLB
k −QLB

k+1∥∞ (22)

Since the distance decreases by gamma with every iteration, it will converge to 0 and hence QLB

converges to a fixed point.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Theorem 2 The Bellman operator in Q-M specifies only a non-strict contraction in general:∥∥∥T Q− T Q̂
∥∥∥
∞

≤
∥∥∥Q− Q̂

∥∥∥
∞

Proof. 1) For Tmin computing the upper bound:∣∣∣TminQ(s, a)− TminQ̂(s, a)
∣∣∣ =∣∣∣∣min

(
Q(s, a), max

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
(Q(s′, a′))

])

−min

(
Q̂(s, a), max

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
(Q̂(s′, a′))

]) ∣∣∣∣
≤

max

(∣∣∣Q(s, a)− Q̂(s, a)
∣∣∣ ,∣∣∣∣ max

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
(Q(s′, a′))

]
− max

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
(Q̂(s′, a′))

] ∣∣∣∣) (Lemma 4)

≤

max

(∣∣∣Q(s, a)− Q̂(s, a)
∣∣∣ ,

γ

∣∣∣∣ max
s′∈T̂ (·|s,a)

max
a′

[
Q(s′, a′)− Q̂(s′, a′)

] ∣∣∣∣) (Lemma 3)

≤ max

(∥∥∥Q− Q̂
∥∥∥
∞

, γ

∥∥∥∥Q− Q̂

∥∥∥∥
∞

)
=
∥∥∥Q− Q̂

∥∥∥
∞

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

2) For Tmax computing the lower bound:∣∣∣TmaxQ(s, a)− TmaxQ̂(s, a)
∣∣∣ =∣∣∣∣max

(
Q(s, a), min

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
(Q(s′, a′))

])

−max

(
Q̂(s, a), min

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
(Q̂(s′, a′))

]) ∣∣∣∣
≤

max

(∣∣∣Q(s, a)− Q̂(s, a)
∣∣∣ ,∣∣∣∣ min

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
(Q(s′, a′))

]
− min

s′∈T̂ (·|s,a)

[
R(s, a, s′) + γmax

a′
(Q̂(s′, a′))

] ∣∣∣∣) (Lemma 3)

≤

max

(∣∣∣Q(s, a)− Q̂(s, a)
∣∣∣ ,

γ

∣∣∣∣ max
s′∈T̂ (·|s,a)

max
a′

[
Q(s′, a′)− Q̂(s′, a′)

] ∣∣∣∣) (Lemma 4)

≤ max

(∥∥∥Q− Q̂
∥∥∥
∞

, γ

∥∥∥∥Q− Q̂

∥∥∥∥
∞

)
=
∥∥∥Q− Q̂

∥∥∥
∞

Since the above holds for any s, a and for both Tmin and Tmax, we have the conclusion holds.

Theorem 3 [Optimality] For reward adaptation with Q variants, the optimal policies in the target
domain remain invariant under Q-M when the upper and lower bounds are initialized correctly.

Proof. Let

Ap(s) = {â| ∃a QLB(s, a) > QUB(s, â); a ̸= â}
Ã(s) = A(s) \Ap(s)

where Ap(s) represents the set of pruned actions under set s and Ã represents the remaining set of
actions. To retain all optimal policies, it must be satisfied that none of the optimal actions under each
state are pruned.

Assuming that a pruned action â under s is an optimal action, we must have

∀a Q∗(s, a) ≤ Q∗(s, â)

Given that Q-M only prunes an action â under s when ∃a QLB(s, a) > QUB(s, â), we can derive
that

QLB(s, a) > QUB(s, â) ≥ Q∗(s, â) ≥ Q∗(s, a),

resulting in a contradiction that
QLB(s, a) > Q∗(s, a)

As a result, we know that all optimal actions and hence policies are retained.

Corollary 1 [Non-uniqueness] The fixed point of the iteration process in Q-M may not be unique.

Proof. This can be proved using the following example:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Consider a three state MDP with states s1, s2, s3, where from s1 agent can take an action that
transitions uniformly (0.5) to s2 and s3, from s2 agent can take an action that transitions uniformly
(0.5) to s1 and s3, and s3 is the terminal state. Reward is 1 for both actions. There is no reward for
the terminal state. Assuming a discount factor of 0.5.

For the upper bound, depending on how V(s3) is initialized, it may result in different fixed points:

• When V(s3) is initialized to a big value (say 4), a fixed point may be V(s1) = 3 and V(s2) =
3;

• When V(s3) is initialized to a small positive value (say 1), another fixed point could be V(s1)
= 3/2 and V(s2) =3/2.

A.2 ALGORITHM

Algorithm 1 Reward Adaptation via Q-Manipulation

1: Retrieve variants of Q’s, reachable states, and source reward functions from source domains.
2: Initialize QUB and QLB for the target behavior.
3: Tighten the bounds using the iteration process in Q-M.
4: Prune action.
5: Perform learning in the target domain with the remaining actions.

A.3 ADDITIONAL INFORMATION

A.3.1 DOMAIN INFORMATION

Detailed descriptions of the domains used for our evaluations are given below:
Dollar-Euro: A 45 states and 4 actions grid-world domain as illustrated in Fig. 1. Source Domain 1
with R1 (collecting dollars): The agent obtains a reward of 1.0 for reaching the location labeled
with “$", and 0.6 for reaching the location labeled with both $ and C. Source Domain 2 with R2

(collecting euros): The agent obtains a reward of 1.0 for reaching the location labeled with C, and
0.6 for reaching the location labeled with both $ and C. Target Domain with R: R = R1 +R2.

Frozen Lake: A standard toy-text environment with 36 states and 4 actions. An episode terminates
when the agent falls into any hole in the frozen lake (4 holes in total) or reaches the goal. Source
Domain 1 with R1: The agent is rewarded +1 for reaching any hole in a subset of holes (denoted by
H), −1 for reaching any hole in the remaining holes (denoted by Ĥ) and 0.5 for reaching the goal.
Source Domain 2 with R2: The agent is rewarded +1 for reaching any hole in Ĥ , −1 for reaching
any hole in H , and 0.5 for reaching the goal. Target Domain with R: Avoid all the holes and reach
the goal, or R = R1 +R2.

Race Track: A 49 states and 7 actions grid-world domain. The 7 actions correspond to different
velocities for going forward, turning left, or turning right. An initial location, a goal location, and
obstacles make up the race track. An episode ends when the agent reaches the goal position, crashes,
or exhausts the total number of steps. Source Domain 1 with R1 (avoid obstacles): The agent
obtains a negative reward of −0.5 for collision with a living reward of +0.2. Source Domain 2 with
R2 (terminate): The agent obtains a reward of +2 for reaching the goal, −0.3 living reward, and −4
for staying at the initial location. Source Domain 3 with R3 (stay put): The agent obtains a reward
of +3 for staying at the initial location. Target Domain with R: Reach the goal in the least number
of steps while avoiding all obstacles, or R = R1 +R2 +R3. This is the only domain where there
are three source behaviors.

Auto-generated Domains: We have two different settings for auto-generating domains. These
domains all feature two source domains and one target domain.

Setting 1 (Designed Rewards) Generate MDPs with the number of actions chosen randomly from
[9, 20] and the number of states chosen randomly from [|A|, 80] where |A| denotes the number of

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

actions. The transitions and transition distributions are then randomly generated. Initially, the number
of reachable states from any s, a is |A|. However, when an SBF is set for the generated MDP: for
each s, a pair, 1) we first randomly select a number k from [1, SBF] as the number of reachable states
from s, a, 2) we retain the state from the transition with the highest probability (which is often the
“intended” state) while randomly choosing k − 1 states (without replacement) from its remaining
reachable states; these are then considered as the new reachable states from s, a, and 3) re-normalize
the transition distribution for s, a based on these new reachable states. 3 states are randomly chosen to
be the terminal states. Rewards for the source domains (i.e., (R1, R2)) for two of those states are set
to (+1,−1) and (−1,+1), respectively; rewards for the third terminal state are set to (+0.5,+0.5).

Setting 2 (Randomized Rewards) Here, we fix the number of states (50) and actions (8) for the
generated MDPs. R1 is sampled from a uniform distribution between [-5,-1) and R2 is sampled from
a uniform distribution between [1,5). Otherwise, we follow Setting 1.

For domains with continuous-state spaces, please note that the target domain may or may not follow
the original environment’s reward as described below:

Ping-Pong: We use a pygame pong environment. Source Domain 1 (keep left): Agent is rewarded
to keep left, negatively rewarded for keeping right, positively rewarded for scoring and penalized for
opponent scoring. Source Domain 2 (keep right): Agent is rewarded for keeping right, negatively
rewarded for keeping left, positively rewarded for scoring and penalized for opponent scoring. Target
domain (win): The end goal is to keep scoring and prevent the opponent from scoring.

Cartpole: is a classic control gym environment. Source Domain 1 (θ ≤ −10): Agent is rewarded
for maintaining a large negative angle, penalized for a small negative angle, and mildly positively
rewarded for living. Source Domain 2 (θ ≥ 10): Agent is rewarded for maintaining a large positive
angle, penalized for a small positive angle, and mildly positively rewarded for living. Target domain:
Agent is rewarded for living (and thus maintaining the pole upright).

Lunar Lander: is a gym environment where we use: Source Domain 1 (clockwise): agent is
rewarded for tilting clockwise, penalized for tilting anti-clockwise, and positively rewarded for
landing safely in the center. Source Domain 2 (anti-clockwise): agent is rewarded for tilting
anti-clockwise, penalized for tilting clockwise, and positively rewarded for landing safely in the
center. Target Domain: the goal is to land safely in the center.

A.4 Q-VARIANT

It is important to note that Q-variants may be difficult to learn with the same samples as experienced
during a typical Q-learning process for Q∗. Some adaptation to Q learning must be made in order to
learn Q∗ and Qµ (or other Q-variant) via the same set of samples. Note that theoretically, Q learning
is guaranteed to converge regardless of the behavior policy, although that is inefficient and can result
in inaccuracy in practice due to that the behavior policy may result in visiting a different distribution
of the states from that of the optimal policy (distributional shift). To ensure that Q∗ and Qµ (or other
Q-variant) can both receive informative samples, one possible way is to alternate between training
Q∗ and Qµ (or other Q-variant) and use importance sampling while using samples from Qµ (or other
Q-variant) to training Q∗ (or vice versa), so that we can leverage samples from both Q∗ and Qµ (or
other Q-variant) to train both Q∗ and Qµ (or other Q-variant).

A.4.1 RUNNING TIME COMPARISON

We measured the running times taken to run each evaluation for each method for a fixed number
of training steps on an XPS 9500 laptop. The aim here is to show that Q-M adds, in most cases, a
reasonable amount of extra computation to the entire learning process. For Q-M, we considered the
time from two main steps for each run (averaged over 30 runs): the iterative processes for tightening
the bounds and Q-learning. For SFQL, we only considered the time taken for learning (the time
needed for policy evaluation in SFQL was excluded). |Ap| in the tables below, indicates actions
pruned summed over all states.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Domain SBF |Ap| Time (s)
|S| |A|Q-M QL SFQL

mean std mean std mean std mean std

Racetrack
1 177.00 0.00 31.89 5.17 29.96 5.20 127.89 32.27

49 75 58.20 12.85 36.88 6.57 30.13 5.25 104.89 22.85
7 44.57 8.29 38.91 6.80 30.20 5.02 100.90 21.91

Dollar-Euro
1 104.00 0.00 5.79 0.79 4.77 0.70 5.56 1.49

45 42 56.10 9.15 6.44 1.47 4.91 0.69 5.76 1.28
4 30.20 5.90 6.68 0.92 5.35 0.84 5.97 0.94

Table 1: Running times for given MDP\R and designed rewards

Domain SBF |Ap| Time(s) |S| |A|Q-M QL SFQL
mean std mean std mean std mean std mean std mean std

Autogen Setting 1
1 499.63 254.40 15.03 5.86 15.56 8.23 53.94 51.11

48.63 18.87 14.07 3.265 67.60 59.03 24.55 12.72 18.38 7.29 58.26 63.64
9 26.40 44.46 27.56 11.88 21.59 9.20 51.29 42.70

Frozen Lake
1 76.47 1.61 36.66 9.58 28.45 10.56 40.89 11.33

36.00 0.00 4.00 0.002 26.57 12.86 37.21 9.91 29.15 9.83 40.57 8.87
4 7.37 4.00 37.31 10.36 36.26 9.69 40.36 14.31

Table 2: Running times for randomized MDP\R and designed rewards

Domain SBF |Ap| Time(s)
|S| |A|Q-M QL SFQL

mean std mean std mean std mean std

Autogen Setting 2
1 329.24 1.30 1896.84 911.71 1722.13 435.75 540.63 248.75

50 83 34.00 24.71 1469.28 798.21 1935.40 471.95 452.08 152.73
5 10.52 8.15 1271.90 910.73 2199.68 49.31 362.75 31.59

Table 3: Running times for randomized MDP\R and randomized rewards

Domain SBF |Ap| Time(s) |S| |A|Q-M QL SFQL
mean std mean std mean std mean std mean std mean std

Autogen Setting 1
1 484.27 313.29 30.18 41.64 46.15 67.43 71.00 113.22

51.43 20.45 14.37 3.303 72.17 120.38 43.42 37.20 52.45 58.70 63.41 89.53
5 15.50 33.25 50.39 36.18 61.54 59.18 59.84 78.78

Table 4: Running times for nonlinear combination function

Domain SBF |Ap| Time(s)
|S| |A|Q-M QL SFQL

mean std mean std mean std mean std

Autogen Setting 2
0 87.33 74.92 721.19 111.40 499.83 38.96 537.00 137.03

50 80.25 32.03 16.18 689.61 110.06 528.35 13.70 484.81 138.65
0.5 20.97 5.40 684.95 95.91 490.23 0.35 417.63 50.96

Table 5: Running times for noisy combination function
Domain SBF_min SBF_mid SBF_max
Dollar Euro 0.05 0.04 0.03
Race Track 0.13 0.12 0.15
Frozen Lake 0.04 0.04 0.04
Autogenerated 0.11 0.20 0.18
Autogenerated (randomized MDP and R) 2.54 3.17 2.92
Non-linear Target Reward 0.95 3.83 5.25
Noisy Reward Combination 2.92 2.91 2.85

Table 6: Running time for Q-M iteration process

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.4.2 ACTION PRUNING

For simulation domains, to understand the states where actions are pruned, we plot heat-maps. In
all three simulation domains, we observe significant pruning around the terminal states. In addition,
we also observe that fewer actions are pruned as SBF increases. The following color codes are used:
initial state = yellow, goal states = green, terminal states/obstacles = black. We use different shades
of blue to illustrate how many actions are pruned in a state: the lighter the color, the fewer the actions
remained.

Figure 8: Heat-maps illustrating action pruning for a single run in simulation domains.

A.4.3 HYPERPARAMETERS

All hyperparamters are set to be same for the different methods in the same evaluation domain. For
continuous domains, the input layer of DQN is followed by 3 fully connected layers each consisting
of 64 neurons with relu activation. We used a buffer size of 100000, a batch size of 64, τ = 0.001 for
soft update of the target network parameters and a learning rate of 0.0005. The exploration rate starts
from 1.0 and is gradually decayed in both discrete and continuous domains. γ is chosen between
[0.9, 0.99] across different domains.

21

	Introduction
	Methodology
	Reward Adaptation (RA)
	Q-Manipulation
	Initializing the Bounds
	Noisy Combination Function and Continuous State Spaces

	Evaluation
	Linear Combination Function
	Nonlinear Combination Function
	Noisy Combination Function
	Domains with Continuous State Spaces

	Related work
	Conclusions
	Appendix
	Theoretical Proofs
	Algorithm
	Additional Information
	Domain Information

	Q-variant
	Running Time Comparison
	Action Pruning
	Hyperparameters

