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Abstract

Despite advancements in conversational AI,001
language models encounter challenges to han-002
dle diverse conversational tasks, and exist-003
ing dialogue dataset collections often lack di-004
versity and comprehensiveness. To tackle005
these issues, we introduce DialogStudio: the006
largest and most diverse collection of di-007
alogue datasets, unified under a consistent008
format while preserving their original infor-009
mation. Our collection encompasses data010
from open-domain dialogues, task-oriented di-011
alogues, natural language understanding, con-012
versational recommendation, dialogue sum-013
marization, and knowledge-grounded dia-014
logues, making it an incredibly rich and015
diverse resource for dialogue research and016
model training. To further enhance the utility017
of DialogStudio, we identify the licenses for018
each dataset, design external knowledge and019
domain-aware prompts for selected dialogues020
to facilitate instruction-aware fine-tuning. Fur-021
thermore, we develop conversational AI mod-022
els using the dataset collection, and our exper-023
iments in both zero-shot and few-shot learning024
scenarios demonstrate the superiority of Di-025
alogStudio. To improve transparency and sup-026
port dataset and task-based research, as well027
as language model pre-training, all datasets, li-028
censes, codes, and models associated with Di-029
alogStudio will be made publicly accessible. 1030

1 Introduction031

Recent years have seen remarkable progress in032

Conversational AI, primarily driven by the advent033

of language models (Longpre et al., 2023; Zhang034

et al., 2022b; Brown et al., 2020; Touvron et al.,035

2023). Despite the advancements, these mod-036

els could fall short when handling various tasks037

in a conversation due to the lack of comprehen-038

sive and diverse training data. Current dialogue039

1Due to the extensive size (∼50GB) of our data and code,
they will be made publicly available upon the paper’s publi-
cation.

datasets (Lin et al., 2021; Asri et al., 2017) are 040

typically limited in size and task-specific, which 041

thus results in suboptimal ability in task-oriented 042

model performance. Additionally, the lack of 043

dataset standardization impedes model generaliz- 044

ability. 045

A few recent works (Gupta et al., 2022; Long- 046

pre et al., 2023; Ding et al., 2023) have intro- 047

duced a large collection of datasets, which in- 048

cludes diverse tasks based on public datasets. For 049

instance, FlanT5 (Longpre et al., 2023) presents 050

the flan collections with a wide array of datasets 051

and tasks. However, only a few of them are rel- 052

evant to conversational AI. Although OPT (Iyer 053

et al., 2022) have incorporated collections with 054

several dialogue datasets, these collections remain 055

inaccessible to the public. In contract, efforts 056

like InstructDial (Gupta et al., 2022) and Par- 057

lAI (Miller et al., 2017) consist of more dialogue 058

datasets, but they lack diversity and comprehen- 059

siveness. For instance, ParlAI mainly includes 060

open-domain dialogue datasets, which are exclu- 061

sively accessible through their platform. Other 062

collections (Gupta et al., 2022; Kim et al., 2022a; 063

Ding et al., 2023; Dubois et al., 2023) often distill 064

single dataset from ChatGPT or process datasets 065

into a sequence-to-sequence format to support lan- 066

guage model training, featuring input-output pairs 067

such as dialogue context and system response. 068

However, they often overlook other crucial dia- 069

logue information, constraining their utility for re- 070

search interest on individual datasets, tasks, and 071

broader applications. 072

To overcome the aforementioned challenges, 073

we introduce DialogStudio, the most comprehen- 074

sive and diverse collection of publicly available di- 075

alogue datasets, unified under a consistent format. 076

By aggregating dialogue from various sources, Di- 077

alogStudio promotes holistic analysis and the de- 078

velopment of models adaptable to a variety of con- 079

versational scenarios. The collection spans an ex- 080
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(a) Dataset Distribution (b) Domain Coverage of TOD

Figure 1: (a) is the distribution of all datasets in DialogStudio. The outer and inner circle list names of datasets and
the associated categories, respectively. (b) illustrates covered domains of Task-Oriented Dialogues in DialogStudio.

tensive range of domains, aspects, and tasks, and081

it is inclusive of several categories: Open-Domain082

Dialogues, Task-Oriented Dialogues, Natural Lan-083

guage Understanding, Conversational Recommen-084

dation, Dialogue Summarization, and Knowledge-085

Grounded Dialogues. Thus, it can provide support086

for research in both individual dialogue tasks and087

large-scale language pre-training.088

DialogStudio stands out not only for its compre-089

hensive coverage but also for its accessibility. It090

offers easy access with a unified format and doc-091

uments. A straightforward load dataset() com-092

mand through HuggingFace allows users to seam-093

lessly interact with the collection, and we have in-094

cluded documentation for each dataset to enhance095

usability. We anticipate that this collection will096

enable comprehensive and standardized training097

and evaluations of dialogue models, fostering fair098

comparisons and propelling further advancements099

in Conversational AI.100

Furthermore, we identify dialogue domains, de-101

sign external knowledge for available dialogues102

and create tailored prompts for selected datasets103

accordingly. Leveraging these datasets from Di-104

alogStudio, we have constructed instruction-aware105

models, with capacities ranging from 770M to106

3B parameters. These models have the ability to107

handle various external knowledge and are adept108

at both response generation and general tasks,109

demonstrating the benefits of DialogStudio. The110

main contributions of this paper are as follows: 111

• We introduce DialogStudio, a meticulously cu- 112

rated collection of more than 80 dialogue 113

datasets. These datasets are unified under a con- 114

sistent format while retaining their original in- 115

formation. We integrate external knowledge, 116

incorporate domain-aware prompts and identify 117

dataset licenses, making DialogStudio an excep- 118

tionally rich and diverse resource for dialogue 119

research and model training. 120

• To promote transparency and facilitate research, 121

we will make our collected datasets publicly ac- 122

cessible. Moreover, we have made concerted 123

efforts to enhance DialogStudio’s usability and 124

will continue refining it for optimal user experi- 125

ence. 126

• We train conversational AI models based on Di- 127

alogStudio, and these models have demonstrated 128

superior performance over strong baselines in 129

both zero-shot and few-shot learning scenarios. 130

2 Data analysis 131

2.1 Data Visualization 132

The dialogue datasets are compartmentalized 133

into several categories: Open-Domain Dialogues, 134

Task-Oriented Dialogues (TOD), Natural Lan- 135

guage Understanding Dialogues (NLU), Conver- 136

sational Recommendation (Conv-Rec), Dialogue 137
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Figure 2: The score distribution for the dialogue quality.

Summarization (Dial-Sum), and Knowledge-138

Grounded Dialogues (KG-Dial). Figure 1a139

presents an overview of DialogStudio’s dataset140

categories. Note that the category boundaries are141

fuzzy as some datasets span multiple categories.142

For instance, SalesBot (Chiu et al., 2022) contains143

both casual and task-oriented conversations.144

Analogously, MultiWOZ (Budzianowski et al.,145

2018), a task-oriented dialogue corpus, incor-146

porates knowledge bases and dialogue acts to147

enhance knowledge-grounded generation. Addi-148

tionally, DialogStudio demonstrates its diversity149

by covering a wide range of domains, part of150

which is shown in Figure 1b.151

2.2 Data Quality Investigation152

Due to the existence of noise in dialogue, we153

develop a simple yet effective way to verify the154

quality of the datasets. Specifically, we employ155

ChatGPT (GPT-3.5-turbo) to evaluate the quality156

of system responses based on severall perspec-157

tives (Mehri et al., 2022; Kim et al., 2022a), i.e.,158

Understanding, Relevance, Correctness, Coher-159

ence, Completeness and Overall quality. Under-160

standing assesses whether the model’s responses161

accurately reflect the meaning and intent of the162

user’s inputs. Relevance demonstrates whether the163

generated response should be directly related and164

appropriate to the preceding user input and the165

context of the conversation. Coherence measures166

the logical consistency of the model’s responses 167

within the context of the conversation. Complete- 168

ness refers to whether the system’s responses fully 169

address the user’s queries or tasks. Overall quality 170

comprehensively rates the quality of dialogue. All 171

scores are in the range of 1-5, and higher scores 172

should only be given to truly exceptional exam- 173

ples. We delicately design the prompt and ask the 174

ChatGPT model to strictly rate the score. 175

Since there are a lot of datasets in DialogStu- 176

dio, we randomly select 33 multi-turn dialogue 177

datasets and evaluate all the training dialogues of 178

each dataset. To harmonize ChatGPT and human 179

ratings, we take a random sample of 50 training di- 180

alogues from each dataset. These were then rated 181

by three expert researchers using the five specified 182

criteria. Post-alignment of ChatGPT and human 183

evaluations, we view dialogues with a score above 184

3 as being of high quality. Figure 2 illustrates dis- 185

tributions of those scores. We also reveal the aver- 186

age score as the µ in each sub-caption. In general, 187

the dialogues show high qualities regarding to the 188

individual criteria and the overall quality. 189

3 Datasets Unification and Access 190

We collect and process a wide range of datasets, 191

involving different domains, types, and tasks. 192

Since these datasets originally contain various in- 193

formation and format, we propose a unification 194

strategy to process all the datasets such that they 195
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can be loaded in the same data loader.196

3.1 Unification197

Before unifying the format of those datasets, we198

fixed several issues as follows: 1) we remove those199

dialogues labeled as multi-turn dialogues, but ac-200

tually with only one turn and miss either user utter-201

ance or system utterance. 2) We manually check202

the individual dialogues. If one dialogue con-203

tains one or more empty user or system utterances,204

we fill utterances based on corresponding dialogue205

contexts, dialogue acts, and dialogue information.206

In total, less than 0.5% of dialogues had these is-207

sues. To support research interest on individual208

datasets, we have flagged and rectified these prob-209

lematic dialogues.210

Additionally, we recognize the success of in-211

struction tuning for dialogue models and thus we212

manually pre-define five different prompt tem-213

plates for multi-turn dialogue datasets, such as214

This is a bot helping users to {Task Domain}.215

Given the dialogue context and external database,216

please generate a relevant system response for the217

user. The {Task Domain} is associated with the218

dialogue domain and we manually create a cor-219

responding description. For example, if a dia-220

logue is of domain travel, we set {Task Domain}221

as book a trip. A concrete example of the prompt222

is demonstrated in Figure 3. Moreover, many223

datasets lack a direct mapping between dialogues224

and their domain information. To address this, we225

determine the domain of each dialogue using its226

intent, schema, APIs, and associated databases.227

Next, we construct a uniform JSON dictionary228

format to store all relevant information of each di-229

alogue as illustrated in Figure 3. 2 Compared230

with existing works, DialogStudio covers more di-231

alogue information and is easier to retrieve the232

information for arbitrary dialogue-related tasks.233

Concretely, we include all dialogue-related infor-234

mation, such as the dialogue ID, data split label,235

domain, task, and content. Additionally, we iden-236

tify the external knowledge, dialogue state track-237

ing (DST) knowledge, and intent knowledge in the238

dialogue, which are the most beneficial knowledge239

for a dialogue.240

Regarding external knowledge, we construct it241

based on information such as databases and dia-242

logue acts. Since each dialogue dataset focuses243

2More examples are available in the supplementary data
materials.

on specific tasks or domains and has a different 244

database and annotation schema, we unify such in- 245

formation into external knowledge. For example, 246

if the user is looking for a hotel and asking for its 247

address, the system response should be based on 248

both the search results from the database and the 249

dialogue context. To simulate the realistic situa- 250

tion and avoid directly providing the model with 251

the ground truth resulting hotel, we also randomly 252

sample four other candidate results and mix them 253

with the ground truth result. All information is 254

flattened and converted into a string as external 255

knowledge. 256

To complete tasks and generate coherent re- 257

sponses, a dialogue system needs to track users’ 258

requirements for the task. Those requirements are 259

usually represented as dialogue states. For exam- 260

ple, regarding the hotel booking task, a dialogue 261

system needs to extract information such as price 262

range and locations to enable searching hotels in 263

the database. The type of dialogue states varies 264

across different tasks and datasets. As such, it 265

is hard for dialogue systems to predict the val- 266

ues of those dialogue states if unknowing the spe- 267

cific dialogue states the task covers. Therefore, we 268

propose to insert the schema, consisting of pre- 269

defined dialogue state types and values for each 270

task, into the input sequence. For datasets like 271

SGD (Rastogi et al., 2020), which already pro- 272

vides annotation schema, we directly convert the 273

dictionary-structured schema into a string. For the 274

rest datasets that have no such schema file, we it- 275

erate over all dialogues and collect potential state 276

annotations to construct a schema. We provide do- 277

mains, slot types, and slot values in the schema 278

string. For those categorized dialogue slots like 279

”hotel star-ratings”, which have a fixed number of 280

candidate values, we provide all possible values. 281

For others that have unlimited possible values, e.g. 282

”stay night”, we randomly sample ten values, such 283

that a model can learn what slot values are relevant 284

to these slot types. We put the turn-level ground- 285

truth DST information in ”dst”, and the general 286

DST information under ”dst knowledge”, as pre- 287

sented in Figure 3. 288

Analogously, intent prediction also requires 289

models to know all possible intent types for each 290

task. Therefore, we extract the schema directly 291

from the schema file if it exists. As to datasets 292

without schema, we also iterate over all dialogue 293

in the dataset to collect all potential intents. Then, 294
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"dialogue_id": "train_1",
"num_utterances": 14,
"utterances": [

{
"speaker": "USR",
"text": "I'd like to book a trip to Atlantis from Caprica on 

Saturday, August 13, 2016 for 8 adults.",
"ap_label": "",
"da_label": "inform"

},
{

"speaker": "USR",
"text": "I have a tight budget of 1700.",
"ap_label": "",
"da_label": "inform"

},
{

"speaker": "SYS",
"text": "Hi...I checked a few options for you, and we do 

not currently have any trips that meet this criteria.",
"ap_label": "",
"da_label": "sorry",
"slots": {

"dst_city": "Atlantis",
"or_city": "Caprica",
"str_date": "Saturday, August 13, 2016",
"n_adults": "8",
"budget": "1700"

}
}

],
"scenario": {

"db_id": "U22HTHYNP",
"db_type": "booking",
"task": "book"

}

"FRAMES--train--1": {
"original dialog id": "train_1",
"dialog index": 1,
"original dialog info": {

"scenario": {
"db_id": "U22HTHYNP",
"db_type": "booking",
"task": "book"}}

"log": [
{

"turn id": 1,
“user utterance”: “I‘d like to book a trip to Atlantis from Caprica on Saturday, 

August 13, 2016 for 8 adults. I have a tight budget of 1700.",
“system response”: “Hi...I checked a few options for you, and we do not currently 

have any trips that meet this criteria.",
"dialog history": "",
"original user side information": {

"da_label": "inform"
},
"original system side information": {

"da_label": "sorry",
"slots": {

"dst_city": "Atlantis",
"or_city": "Caprica",
"str_date": "Saturday, August 13, 2016",
"n_adults": "8",
"budget": "1700"

}
},
"intent": "inform",
"dst": "book dst_city Atlantis, book or_city Caprica, book str_date Saturday, August 

13, 2016, book n_adults 8, book budget 1700"
}

]
“external knowledge”: “( travel : (( trip : ( returning : ( duration : ( hours : 0 | min : 51...",
“dst knowledge”: “ ( book : ( dst_city : ( Indianapolis | St. Loius | Le Paz | …) | or_city : ( 

PUebla | sf | toluca | San Francisco…",
"intent knowledge": "( book : ( null | negate | request | goodbye | affirm))…",
"prompt": [

“This is a bot helping users to book a trip. Given the dialog context and external 
database, please generate a relevant system response for the user."

]
}

(a) Original Data (b) DialogStudio Data

Figure 3: A dialogue format example. Left: original example, right: converted example. Here we only show the
first turn and partial information.

we put the turn-level ground-truth intent informa-295

tion into ”intent”, and the general intents under296

”intent knowledge”, as presented in Figure 3. Note297

that not all datasets provide detailed annotation for298

dialogue states, intents, or even databases. For dia-299

logue state tracking and intent classification tasks,300

we only process dialogues with corresponding an-301

notations. Since all data is used for response gen-302

eration, we leave the external knowledge value for303

the database blank if there is no related database304

in the original dataset.305

3.2 Access and Maintenance306

As aforementioned in the format, our DialogStu-307

dio data is easy to access via the JSON files. To308

make DialogStudio more maintainable and acces-309

sible, we will publish datasets on both GitHub310

and HuggingFace. GitHub mainly stores se-311

lected dialogue examples and relevant documents.312

We sample five original dialogues and five con-313

verted dialogues for each dataset to facilitate314

users in comprehending our format and examin-315

ing the contents of each dataset. The complete 316

DialogStudio dataset is maintained in our Hug- 317

ginFace repository, where all the datasets can be 318

directly downloaded or loaded with the Hugging- 319

Face load dataset(datasetname) API. Given 320

the substantial volume of datasets, optimizing 321

user experience poses a challenge and limitation. 322

We will continuously maintain and update both 323

GitHub and HuggingFace. 324

DialogStudio is built upon public research 325

datasets without individual or private information. 326

We believe it is important to clearly present the li- 327

cense associated with each of these datasets. Con- 328

sequently, we have included the original licenses 329

for all datasets. All these datasets are supportive 330

of academic research, and some of them also en- 331

dorse commercial usage. The code that we em- 332

ploy falls under the widely accepted Apache 2.0 333

license. While we strictly require adherence to the 334

respective dataset licenses for all intended usages 335

on DialogStudio, there remains a possibility that 336

some works might not fully comply with the li- 337
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censes.338

Regarding the other concerns such as ethical339

concern, we admit that DialogStudio is collected340

and maintained by the authors of this work and we341

did not hire external annotators. Since it contains342

unified datasets across several categories, it sup-343

ports various research purposes from individual344

tasks and datasets to language model pre-training.345

4 Experiments346

In this section, we present the pre-training details,347

methodologies, and metrics used to assess the per-348

formance of our DialogStudio model. The evalua-349

tion process aims to measure the model’s ability to350

both solve task-oriented dialogues and understand351

general prompt-based instruction.352

4.1 Model Pre-training353

In this section, we introduce more details about354

how we conduct our pre-training. In regards of355

training models, we mix several datasets from Di-356

alogStudio.357

For task-oriented and conversational recom-358

mendation datasets, we selected dialogues from a359

range of sources including KVRET (Eric et al.,360

2017), AirDialogue (Wei et al., 2018), DSTC2-361

Clean (Mrkšić et al., 2017), CaSiNo (Chawla362

et al., 2021), FRAMES (El Asri et al.),363

WOZ2.0 (Mrkšić et al., 2017), CraigslistBar-364

gains (He et al., 2018), Taskmaster1-2 (Byrne365

et al., 2019), ABCD (Chen et al., 2021a), Mul-366

DoGO (Peskov et al., 2019), BiTOD (Lin et al.,367

2021), SimJoint (Shah et al., 2018), STAR (Mosig368

et al., 2020), SGD (Rastogi et al., 2020), OpenDi-369

alKG (Moon et al., 2019) and DuRecDial-2.0 (Liu370

et al., 2021).371

Meanwhile, for knowledge-grounded dia-372

logues, we drew upon dataset from SQA (Iyyer373

et al., 2017), SParC (Yu et al., 2019b), Fe-374

TaQA (Nan et al., 2022), MultiModalQA (Talmor375

et al., 2021), CompWebQ (Talmor and Berant,376

2018), CoSQL (Yu et al., 2019a).377

For open-domain dialogues, we sample dia-378

logues from SODA (Kim et al., 2022a), Prosocial-379

Dialog (Kim et al., 2022b), Chitchat (Myers et al.,380

2020).381

For each dialogue dataset, we sample at most382

11k dialogues. Additionaly, we extracted around383

11k dialogue turns from question-answering dia-384

logues featured in RACE (Lai et al., 2017), Nar-385

rativeQA (Kočiskỳ et al., 2018), SQUAD (Ra-386

jpurkar et al., 2018), MCtest (Richardson et al., 387

2013), OpenBookQA (Mihaylov et al., 2018), 388

MultiRC (Khashabi et al., 2018). Here, a dialogue 389

turn refers to a pair consisting of a dialogue con- 390

text and its corresponding system response. The 391

rest datasets in DialogStudio are preserved for fu- 392

ture evaluations and downstream fine-tuning. 393

For each dialogue during the training, we 394

shape the available external knowledge into a 395

string, which is included in dialogue context, 396

and instruct the model to generate a dialogue re- 397

sponse based on external knowledge. We use 398

the format Instruction \n <USER> user ut- 399

terance <SYSTEM> system response <USER> 400

... <USER> user utterance \n <EXTERNAL 401

KNOWLEDGE> supported knowledge to train the 402

model, where <USER>, <SYSTEM> and <EX- 403

TERNAL KNOWLEDGE> are special tokens. 404

We follow the public HuggingFace transformer 405

code (Wolf et al., 2020; Wang et al., 2022) to train 406

the model. For initializing our models, we adopt 407

T5 (Raffel et al., 2020) and Flan-T5 (Longpre 408

et al., 2023) as starting points to respectively es- 409

tablish DialogStudio-T5 and DialogStudio-Flan- 410

T5. For the training of DialogStudio-Flan-T5, we 411

exclude all translation-oriented tasks, limiting the 412

sample size for each Flan task to a maximum of 413

150 examples. This leads to a cumulative total 414

of 140,000 samples. We train the model up to 3 415

epochs with bfloat16 precision, a total batch size 416

of 64. We set a constant learning rate 5e-5 and 3e- 417

5 for the large model and the 3B model, respec- 418

tively. Experiments are conducted using 16 A100 419

GPUs, each with 40GB of GPU memory. 420

4.2 Evaluation for Response Generation 421

Settings. We evaluate the performance on 422

CoQA (Reddy et al., 2019) and MultiWOZ 423

2.2 (Zang et al., 2020). CoQA is a multi-turn 424

conversational question answering dataset with 8k 425

conversations about text passages from seven di- 426

verse domains. MultiWOZ 2.2 is one of the largest 427

and most widely used multi-domain task-oriented 428

dialogue corpora with more than 10000 dialogues. 429

Each dialogue involves with one or more domains 430

such as Train, Restaurant, Hotel, Taxi, and Attrac- 431

tion. The dataset is challenging and complex due 432

to the multi-domain setting and diverse linguistic 433

styles. Note that we exclude these two datasets 434

during the pre-training stage in case of data leak- 435

age. 436
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CoQA MultiWOZ
ROUGE-L F1 ROUGE-L F1

Flan-T5-3B (Longpre et al., 2023) 37.1 37.2 7.0 7.4
Flan-T5-Large (Longpre et al., 2023) 22.5 22.3 15.9 17.6
GODEL-Large (Peng et al., 2022) 43.2 43.3 18.5 19.3
DialogStudio-T5-Large 61.2 61.5 32.4 34.5
DialogStudio-Flan-T5-Large 63.3 63.5 33.7 35.9

Table 1: Zero-shot results on CoQA and MultiWOZ 2.2.

CR
(14 tasks)

DAR
(7 tasks)

TE
(27 tasks)

avg.
(48 tasks)

OPT-30B (Zhang et al., 2022b) 21.3/1.1 35.2/4.1 40.3/0.9 32.3/2.0
OPT-IML-30B (Iyer et al., 2022) 37.4/41.6 51.4/51.8 54.7/47.8 47.9/47.1
OPT-175B (Zhang et al., 2022b) 21.0/4.2 37.1/16.8 41.6/2.2 33.3/7.7
OPT-IML-175B (Iyer et al., 2022) 39.0/49.8 61.2/60.2 54.3/51.0 51.5/53.6
Tk-INSTRUCT-11B (Wang et al., 2022) 32.3/62.3 51.1/69.6 55.0/64.1 46.1/65.3
Tk-INSTRUCT-3B (Wang et al., 2022) 38.4/51.3 45.7/58.5 48.4/52.8 44.2/54.2
DialogStudio-NIV2-T5-3B 41.3/59.8 57.5/63.7 52.3/55.1 50.4/59.5

Table 2: 0-shot/2-shot/5-shot ROUGE-L testing results on unseen datasets and unseen tasks. Results of baselines
are reported by original papers. CR, DAR, and TE, avg. are abbreviations for Coreference Resolution, Dialogue
Act Recognition, Textual Entailment, and average results, respectively.

For CoQA, we follow the original paper set-437

ting to answer question based on external pas-438

sage. For MultiWOZ 2.2, we consider the lex-439

icalized dialogue-act-to-response generation task440

where the model needs to consider both the dia-441

logue context and the dialogue acts during gener-442

ation. We follow the prompt from (Bang et al.,443

2023) to instruct models, i.e., Continue the dia-444

logue as a task-oriented dialogue system called445

SYSTEM. The answer of SYSTEM should follow446

the ACTION provided next while answering the447

USER’s last utterance.448

We focus on zero-shot evaluation and report449

the ROUGE-L and F1 score (Miller et al., 2017),450

where ROUGE-L measures the longest common451

subsequence and F1 measures the Unigram F1452

overlap between the prediction and ground-truth453

response.454

Baselines. We consider GODEL (Peng et al.,455

2022) and Flan-T5 (Longpre et al., 2023) as our456

baselines. GODEL is a T5-based large pre-trained457

model for goal-oriented dialogues. It is pre-trained458

with 551M multi-turn Reddit dialogues and 5M459

knowledge-grounded and question-answering di-460

alogues. Flan-T5 is an instruction-aware model.461

It is also initialized from T5 and pre-trained on462

the Flan collection, which consists of more than 463

1800 tasks and 400 datasets, including dialogue 464

datasets. 465

Results. Table 1 depicts the results from both 466

zero-shot and few-shot testing. Evidently, our 467

models considerably surpass the baseline models 468

in terms of zero-shot learning, exhibiting a robust 469

generalized ability for response generation in a 470

zero-shot scenario. 471

Flan-T5-3B, on the other hand, underperforms 472

in the task of generating responses from dialog- 473

acts. This model tends to produce incorrect dialog 474

acts, unnatural utterances, or terminates with an 475

empty end token. One explanation for this is that 476

Flan-T5 models did not receive sufficient dialogue 477

training during the instruction-training phase on 478

the Flan collections. Comparisons between the 479

performances of existing models before and after 480

training on the unified dataset validate DialogStu- 481

dio’s usefulness. 482

4.3 Evaluation on Super-NaturalInstructions 483

Settings. NIV2 (Wang et al., 2022) introduces 484

an instruction-tuning benchmark with more than 485

1600 tasks. We select 3 categories with 44 tasks 486

from the held-out test set, which consists of 154 487
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MMLU BBH
0-SHOT 5-SHOT 3-SHOT

TK-INSTRUCT 11B (Wang et al., 2022) - 41.1 32.9
LLAMA 13B (Touvron et al., 2023) - 46.2 37.1
Vicuna 13B (Chiang et al., 2023) - 49.7 37.1
Flan-T5-Large (Longpre et al., 2023) 41.5 41.9 37.1
Flan-T5-XL (Peng et al., 2022) 48.7 49.3 40.2
OPT-IML-Max 30B (Iyer et al., 2022) 46.3 43.2 31.3
DialogStudio-Flan-T5-Large 40.1 40.9 34.2
DialogStudio-Flan-T5-3B 48.3 47.8 40.3

Table 3: Test results on MMLU and BBH. Results come from original papers and InstructEval (Chia et al., 2023).

tasks, i.e., Coreference Resolution, Dialogue Act488

Recognition, and Textual Entailment. The se-489

lected tasks and datasets are unseen in the training490

stage. Specifically, we follow all settings includ-491

ing metrics in (Wang et al., 2022), i.e., train mod-492

els with instructions + 2 positive demonstrations493

and no negative demonstrations. We fine-tune494

DialogStudio-T5-3B on the 756 training tasks.495

Baselines. OPT (Zhang et al., 2022b) is a set of496

open decoder-only transformer models pre-trained497

on 180B tokens. OPT-IML (Iyer et al., 2022) is498

an instruction meta-learning model based on the499

OPT-IML bench with more than 1500 tasks. Tk-500

INSTRUCT (Wang et al., 2022) is initialized from501

T5 and further pre-trained based on NIV2 collec-502

tions. Note that we neglect Flan-T5 because it503

trains with all the downstream datasets and tasks.504

Results. Table 2 shows the 0-shot and 2-505

shot results on unseen datasets and unseen506

tasks. Based on the average performance on507

48 tasks, DialogStudio-NIV2-T5-3B outperforms508

OPT-IML-175B by 5.9% on 2-shot learning with509

more than 50 times fewer model parameters, and it510

surpasses Tk-INSTRUCT-11B by 4.3% on 0-shot511

learning with more than 3 times fewer parameters.512

The performance demonstrates the strong general-513

ization ability of DialogStudio model. Compared514

with Tk-INSTRUCT-3B, DialogStudio-NIV2-T5-515

3B achieves 6.2% and 5.3% improvements on 0-516

shot and 2-shot learning respectively. Given that517

both Tk-INSTRUCT and our DialogStudio-NIV2-518

T5-3B are fine-tuned from the T5 model, this519

improvement indicates the effectiveness of pre-520

training with our DialogStudio collection.521

4.4 Evaluation on MMLU and BBH522

Table 3 presents results on MMLU (Hendrycks523

et al., 2020) and Big Bench Hard (BBH) (Srivas-524

tava et al., 2022). When comparing the perfor- 525

mance of DialogStudio-Flan-T5 with Flan-T5, we 526

observe a minor decrease. However, this is accom- 527

panied by a significant improvement in dialogue 528

relevant capabilities. 529

4.5 Evaluation on Alternative Benchmarks 530

DialogStudio encompasses not just public realistic 531

dialogue datasets, but also those derived from or 532

shared with ChatGPT, such as SODA (Kim et al., 533

2022a) and ShareGPT. Due to GPU constraints, 534

we employ techniques like LoRA (Hu et al., 2021) 535

to fine-tune llama (Touvron et al., 2023). When 536

using equivalent datasets from DialogStudio, we 537

observed performance comparable to other mod- 538

els, e.g., Vicuna (Chiang et al., 2023), on bench- 539

marks like AlpacaEval (Dubois et al., 2023) and 540

MT-Bench (Zheng et al., 2023). This demonstrates 541

that DialogStudio caters to research interests in 542

both specific datasets and generalized instruction 543

tuning. 544

5 CONCLUSION 545

In this study, we have introduced DialogStudio, 546

a comprehensive collection that aggregates more 547

than 80 diverse dialogue datasets while preserv- 548

ing their original information. This aggrega- 549

tion not only represents a significant leap towards 550

consolidating dialogues from varied sources but 551

also offers a rich tapestry of conversational pat- 552

terns, intents, and structures, capturing the nu- 553

ances and richness of human interaction. Utilizing 554

DialogStudio, we developed corresponding mod- 555

els, demonstrating superior performance in both 556

zero-shot and few-shot learning scenarios. In the 557

spirit of open research and advancing the field, 558

we are committed to releasing DialogStudio to the 559

broader research community. 560
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Appendix1168

Table 4 and Table 5 lists datasets included in1169

DialogStudio. Initially, we present a partial list of1170

these datasets. More dialogue examples are avail-1171

able in the supplementary data materials.1172
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NLU

NLU++ (Casanueva et al., 2022)
BANKING77-OOS (Zhang et al., 2022a)
BANKING77 (Casanueva et al., 2020)
RESTAURANTS8K (Coope et al., 2020)
CLINC150 (Larson et al., 2019)
CLINC-Single-Domain-OOS-banking (Zhang et al., 2022a)
CLINC-Single-Domain-OOS-credit cards (Zhang et al., 2022a)
HWU64 (Liu et al., 2019)
SNIPS (Coucke et al., 2018)
SNIPS-NER (Coucke et al., 2018)
DSTC8-SGD (Coope et al., 2020)
TOP (Gupta et al., 2018)
TOP-NER (Gupta et al., 2018)
ATIS-NER (Hemphill et al., 1990)
ATIS (Hemphill et al., 1990)
MIT-MOVIE (Liu et al., 2013)
MIT-RESTAURANT (Liu et al., 2013)

TOD

KVRET (Eric et al., 2017)
AirDialogue (Wei et al., 2018)
DSTC2-Clean (Mrkšić et al., 2017)
CaSiNo (Chawla et al., 2021)
FRAMES (El Asri et al.)
WOZ2.0 (Mrkšić et al., 2017)
CraigslistBargains (He et al., 2018)
Taskmaster1 (Byrne et al., 2019)
Taskmaster2 (Byrne et al., 2019)
Taskmaster3 (Byrne et al., 2019)
ABCD (Chen et al., 2021a)
MulDoGO (Peskov et al., 2019)
BiTOD (Lin et al., 2021)
SimJointGEN (Shah et al., 2018)
SimJointMovie (Shah et al., 2018)
SimJointRestaurant (Shah et al., 2018)
STAR (Mosig et al., 2020)
SGD (Rastogi et al., 2020)
MultiWOZ2 1 (Eric et al., 2020)
MultiWOZ2 2 (Zang et al., 2020)
HDSA-Dialog (Chen et al., 2021a)
MS-DC (Li et al., 2018b)
GECOR (Quan et al., 2019)
Disambiguation (Qian et al., 2022)
MetaLWOZ (Lee et al., 2019)
KETOD (Chen et al., 2022b)
MuDoCo (Martin et al., 2020)

Table 4: List of datasets included in DialogStudio (a).
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KG-Dial

SQA (Iyyer et al., 2017)
SParC (Yu et al., 2019b)
FeTaQA (Nan et al., 2022)
MultiModalQA (Talmor et al., 2021)
CompWebQ (Talmor and Berant, 2018)
CoSQL (Yu et al., 2019a)
CoQA (Reddy et al., 2019)
Spider (Yu et al., 2018)
ToTTo (Parikh et al., 2020)
WebQSP (Yih et al., 2016)
WikiSQL (Zhong et al., 2017)
WikiTQ (Pasupat and Liang, 2015)
DART (Nan et al., 2021)
GrailQA (Gu et al., 2021)
HybridQA (Chen et al., 2020)
MTOP (Chen et al., 2020)
UltralChat-Assistance (Ding et al., 2023)
Wizard of Wikipedia (Dinan et al., 2018)
Wizard of Internet (Komeili et al., 2022)

Dial-Sum

TweetSumm (Feigenblat et al., 2021)
SAMSum (Gliwa et al., 2019)
DialogSum (Chen et al., 2021b)
AMI (Kraaij et al., 2005; Rennard et al., 2023)
ICSI (Janin et al., 2003)
QMSum (Zhong et al., 2021)
MediaSum (Zhu et al., 2021)
ECTSum (Mukherjee et al., 2022)
SummScreen ForeverDreaming (Chen et al., 2022a)
SummScreen TVMegaSite (Chen et al., 2022a)
CRD3 (Rameshkumar and Bailey, 2020)
ConvoSumm (Fabbri et al., 2021)

Open-Domain

ChitCHAT (Myers et al., 2020)
SODA (Kim et al., 2022a)
Prosocial (Kim et al., 2022b)
HH-RLHF (Bai et al., 2022)
Empathetic (Rashkin et al., 2019)
ConvAI2 (Dinan et al., 2019)
AntiScam (Li et al., 2020)
ShareGPT (Zheng et al., 2023)
PLACES3.5 (Chen et al., 2023)

Conv-Rec

SalesBot (Chiu et al., 2022)
Redial (Li et al., 2018a)
Inspired (Hayati et al., 2020)
DuRecDial 2.0 (Liu et al., 2021)
OpendialKG (Moon et al., 2019)

Table 5: List of datasets included in DialogStudio (b).

17


