
ShuffleMixer: An Efficient ConvNet for Image
Super-Resolution

Long Sun, Jinshan Pan∗, Jinhui Tang∗
Nanjing University of Science and Technology

{cs.longsun, jspan, jinhuitang}@njust.edu.cn

Abstract

Lightweight and efficiency are critical drivers for the practical application of image
super-resolution (SR) algorithms. We propose a simple and effective approach,
ShuffleMixer, for lightweight image super-resolution that explores large convolu-
tion and channel split-shuffle operation. In contrast to previous SR models that sim-
ply stack multiple small kernel convolutions or complex operators to learn represen-
tations, we explore a large kernel ConvNet for mobile-friendly SR design. Specifi-
cally, we develop a large depth-wise convolution and two projection layers based
on channel splitting and shuffling as the basic component to mix features efficiently.
Since the contexts of natural images are strongly locally correlated, using large
depth-wise convolutions only is insufficient to reconstruct fine details. To overcome
this problem while maintaining the efficiency of the proposed module, we intro-
duce Fused-MBConvs into the proposed network to model the local connectivity of
different features. Experimental results demonstrate that the proposed ShuffleMixer
is about 3× smaller than the state-of-the-art efficient SR methods, e.g. CARN, in
terms of model parameters and FLOPs while achieving competitive performance.
The code is available at https://github.com/sunny2109/ShuffleMixer.

1 Introduction

Single image super-resolution (SISR) aims to recover a high-resolution image from a low-resolution
one. This is a classical problem that has attracted lots of attention recently due to the rapid devel-
opment of high-definition devices, such as Ultra-High Definition Television, Samsung Galaxy S22
Ultra, iPhone 13 Pro Max, and HUAWEI P50 Pro, and so on. Thus, it is of great interest to develop
an efficient and effective method to estimate high-resolution images to be better displayed on these
devices.

Recently, convolutional neural network (CNN) based SR models [8, 9, 1, 16, 25, 45] have achieved
impressive reconstruction performance. However, these networks hierarchically extract local features,
which highly rely on stacking deeper or more complex models to enlarge the receptive fields for
performance improvements. As a result, the required computational budget makes these heavy SR
models challenging to deploy on resource-constrained mobile devices in practical applications [44].

To alleviate heavy SR models, various methods have been proposed to reduce model complexity
or speed up runtime, including efficient operation design [32, 28, 36, 9, 16, 1, 33, 43, 23, 27],
neural architecture search [6, 35], knowledge distillation [12, 13], and structural re-parameterization
methodology [7, 23, 44]. These methods are mainly based on improved small spatial convolutions or
advanced training strategies, and large kernel convolutions are rarely explored. Moreover, they mostly
focus on one of the efficiency indicators and do not perform well in real resource-constrained tasks.
Thus, the demand for a better trade-off between complexity, latency, and SR quality is imperative.

∗Jinshan Pan and Jinhui Tang are the corresponding authors.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/sunny2109/ShuffleMixer


101 102 103
FLOPs (G)

27.25

27.30

27.35

27.40

27.45

27.50

27.55

27.60

27.65

PS
N

R
 (d

B
)

VDSR
LapSRN

CARN-M

CARN

EDSR-baseline

LAPAR-A

4ECBSR-M16C6

SMSR

eMixer-TinyShuffl

ShuffleMixer

Figure 1: Model complexity and performance comparison between our proposed ShuffleMixer family
and other lightweight methods on B100 [2] for ×4 SR. Circle sizes indicate the number of parameters.
ShuffleMixer achieves a better trade-off.

A large receptive field involves more feature interactions, which helps reconstruct more refined results
in tasks such as super-resolution that require dense per-pixel predictions. Recent visual transformer
(ViT)-based approaches [10, 26, 30, 24] employ a multi-head self-attention (MHSA) mechanism to
learn long-range feature representations, which leads to their state-of-the-art performance in various
vision tasks. However, MHSA is not friendly to enlarging the receptive field of an efficient SR
design. Its complexity grows quadratically with the input resolution (the size is usually large and
constant during SR training). Regular convolution with large kernels is also a simple but heavyweight
approach to obtaining efficient receptive fields. To make large kernel convolutions practical, using
depth-wise convolutions with large kernel sizes [27, 39, 7] is an effective alternative. Since depth-wise
convolutions share connection weights between spatial locations and remain independent between
channels, this property makes it challenging to capture sufficient interactions. It is essential to improve
the learning capability of depth-wise convolutions (DW Convs) in lightweight network design.

In this paper, we develop a simple and effective network named ShuffleMixer that introduces
large kernel convolutions for lightweight SR design. The core idea is to fuse non-local and local
spatial locations within a feature mixing block with fewer parameters and FLOPs. Specifically, we
employ depth-wise convolutions with large kernel sizes to aggregate spatial information from a large
region. For channel mixing, we introduce channel splitting and shuffling strategies to reduce model
parameters and computational costs and improve network capability. We then build an effective
shuffle mixer layer based on these two operators. To further improve the learning capability, we
embed the Fused-MBConv into the mixer layer to boost local connectivity. Taken together, we find
that the ShuffleMixer network with a simple module can obtain state-of-the-art performance. Figure 1
shows that our ShuffleMixer achieves a better trade-off with the least parameters and FLOPs among
all existing lightweight SR methods.

The contributions of this paper are summarized as follows: (1) We develop an efficient SR design
by exploring a large kernel ConvNet that involves more useful information for image SR. (2) We
introduce a channel splitting and shuffling operation to perform feature mixing of the channel
projection efficiently. (3) To better explore the local connectivity among cross-group features from
the shuffle mixer layer, we utilize Fused-MBConvs in the proposed SR design. We formulate the
aforementioned modules into an end-to-end trainable network, which is named as ShuffleMixer.
Experimental results show that ShuffleMixer is about 3× smaller than the state-of-the-art methods in
terms of model parameters and FLOPs while achieving competitive performance compared to the
state-of-the-art methods.

2 Related Work

CNN-based Efficient SR. CNN-based methods adopt various ways to reduce model complexity.
FSRCNN [9] and ESPCN [33] employ post-upsampling layers to significantly reduce the compu-

2



tational burden from predefined inputs. Namhyuk et al. [1] uses group convolution and cascading
connection upon a recursive network to save parameters. Hui et al. [16] proposes a lightweight
information multi-distillation network (IMDN) to aggregate features by applying feature splitting
and concatenation operations, and the improved IMDN variants [43, 23] won the AIM2020 and
NTIRE2022 Efficient SR challenge. Meanwhile, an increasingly popular approach is to search
for a well-constrained architecture as a multi-objective evolution problem [6, 35]. Another branch
compresses and accelerates a heavy deep model through knowledge distillation [13, 12]. Note that
fewer parameters and FLOPs do not sufficiently mean faster runtime on mobile devices because
FLOPs ignore important latency-related factors such as memory access cost (MAC) and degree of
parallelism [28, 32]. In this paper, we analyze factors affecting the efficiency of SR models and
develop a mobile-friendly SR network.

Transformer-based SR. Transformers were initially proposed for language tasks, which stacked
the multi-head self-attention and feed-forward MLP layers to learn long-range relations among its
inputs. Dosovitskiy et al. [10] first applied a vision transformer to image recognition. Since then,
ViT-based models have become increasingly applicable to both high-level and low-level vision tasks.
For image super-resolution, Chen et al. [4] develop a pre-trained image processing transformer (IPT)
that directly applies the vanilla ViT to non-overlapped patch embeddings. Liang et al. [24] follow
Swin Transformer [26] and propose a window-based self-attention model for image restoration tasks
and achieve excellent results. Window-based self-attention is much more computationally efficient
than global self-attention, but it is still a time-consuming and memory-intensive operation.

Models with Large Kernels. AlexNet [20] is a classic large-kernel convolutional neural network
model that inspired many subsequent works. Global Convolutional Network [31] uses symmetric,
separable large filters to improve semantic segmentation performance. Due to the high computational
cost and a large number of parameters, large-size convolutional filters became not popular after
VGG-Net [34]. However, large convolution kernels have recently gained attention with the devel-
opment of efficient convolution techniques and new architectures such as transformers and MLPs.
ConvMixer [39] replaces the mixer component of ViTs [26, 10] or MLPs [38] with large kernel
depth-wise convolutions. ConvNeXt [27] uses 7×7 depth-wise kernels to redesign a standard ResNet
and achieves comparable results to Transformers. RepLKNet [7] enlarges the convolution kernel to
31× 31 to build a pure CNN model, which obtains better results than Swin Transformer [26] on Ima-
geNet. Unlike these methods that focus on building big models for high-level vision tasks, we explore
the possibility of large convolution kernels for lightweight model design in image super-resolution.

3 Proposed Method

We aim to develop an efficient large-kernel CNN model for the SISR task. To this end, we introduce
key designs to the feature mixing block employed to encode information efficiently. In this section,
we first present the overall pipeline of our proposed ShuffleMixer network. Then, we formulate the
feature mixing block, which acts as a basic module for building the ShuffleMixer network. Finally,
we provide details on the training loss function.

3.1 ShuffleMixer architecture

The overall ShuffleMixer architecture. Given a low-resolution image ILR ∈ RC×H×W , where C,
H ×W denote the number of channels and the spatial resolution, respectively. For a color image, the
value of C is 3. The proposed ShuffleMixer first extracts feature Z0 ∈ RD×H×W by a convolution
operation with a filter size of 3× 3 pixels and D channels. Then, we develop a feature mixing block
(FMB) consisting of a Fused-MBConv [36] and two shuffle mixer layers, which takes the feature Z0

as input to produce a deeper feature Z1 ∈ RD×H×W . Next, we utilize an upsampler module with a
scale factor s to upscale the spatial resolution of the features generated by a sequence of FMBs. To
save parameters of the enlargement module as much as possible, we only use a convolutional layer of
size 1× 1 and a pixel shuffling layer [33]. For the ×4 scale factor, we progressively upsample the
resolution by repeating the ×2 upsampler two times. Finally, we use a convolutional layer to map the
upscaled feature to the residual image IR ∈ RC×sH×sW , and add it to the upscaled ILR by bilinear
interpolation to get the final high-resolution image ISR: ISR =↑s (ILR) + IR, where ↑s (·) denotes
the bilinear interpolation with scale factor s. In the following, we explain the proposed method in
detail.

3



C
o

n
v

 3
×

3

S
h

u
ff

le
 

M
ix

er
 L

ay
er

S
h

u
ff

le
 

M
ix

er
 L

ay
er

F
u

se
d

-

M
B

C
o

n
v

Feature Mixing Block

F
ea

tu
re

 

M
ix

in
g

 B
lo

ck

F
ea

tu
re

 

M
ix

in
g

 B
lo

ck

… …

C
o

n
v

 3
×

3

U
p

sa
m

p
le

r

Bilinear Upsampling

(a)

Shuffle Mixer Layer

Channel 

Projection

Depthwise

Convolution

Channel 

Projection

(b)

Point-wise MLP

Conv 1×1

SiLU

Conv 1×1

C, H, W

2C, H, W

C, H, W

(d)

Fused-MBConv

Conv 3×3

SiLU

Conv 1×1

C, H, W

C+𝐶′, H, W

C, H, W

(e)

L
ay

er
 N

o
rm

C
h

an
n

el
 S

p
li

tt
in

g

𝑍0
2

P
o

in
t-

w
is

e 
M

L
P

Identity

C
h

an
n

el
 S

h
u

ff
li

n
g

Channel Projection

Skip-connection

(c)

𝑍0
1

𝑍0

መ𝑍0

Figure 2: An overview (a) of the proposed ShuffleMixer. The input low-resolution image is first
converted to feature space by a convolution layer with a kernel size of 3×3 pixels. Sequential Feature
Mixing Block (FMB) modules are then applied to extract representative features and upsample them
for final feature reconstruction. The FMB module contains one (e) Fused-MBConv and two (b)
shuffle mixer layers. Each shuffle mixer layer has a large kernel depth-wise convolution and two (c)
channel projection submodules. Other components include: channel splitting and shuffling operations,
(d) point-wise MLP layers, skip connections, and LayerNorm on the channels.

The Feature Mixing Block is developed to explore local and non-local information for better feature
representations. To obtain non-local feature interactions effectively, we apply shuffle mixer layers
on Z0, as illustrated in Figure 2(a). For each shuffle mixer layer, we employ a large kernel DW
Conv to mix features at spatial locations. This operation enjoys large receptive fields with fewer
parameters, which can encode more spatial information for reconstructing complete and accurate
structures. As we investigated in Table 3, depth-wise convolutions with larger sizes consistently
improve SR performance while maintaining computational efficiency.

To mix features at channel locations, we employ point-wise MLPs to perform channel projection. With
the help of depth-wise convolution, the computational cost of the shuffle mixer layer is mainly caused
by channel projections. We further introduce a channel splitting and shuffling (CSS) strategy [28]
to improve the efficiency of this step. Specifically, the input feature Z0 is first to split into Z1

0 and
Z2
0 ; then, a point-wise MLP performs channel mixing on the split feature Z1

0 ; finally, a channel
shuffling operation is employed to enable the exchange of information on the concatenate feature.
Therefore, the parameter complexity of the channel projection layer drops from Ω(4C2) to Ω(C2).
This procedure can be formulated as follow:

[Z1
0 , Z

2
0 ] = Split(LayerNorm(Z0))

Ẑ1
0 = W1(σ(W0(Z

1
0 )))))

Ẑ0 = Shuffle([Ẑ1
0 , Z

2
0 ])) + Z0

(1)

where σ is SiLU nonlinearity function [11], W0 and W1 are the point-wise convolutions; Split(·) and
Shuffle(·) represent the splitting and shuffling of features in the channel dimension. This splitting
operation limits representational capability since we exclude the other half of the input tensors from
channel interactions. The channel shuffle operation cannot guarantee that all features are processed.
Inspired by the MobileNetv2 block [32], we thus repeat the channel projection layer and arrange
them before and after the large depth-wise convolution to learn visual representations. From our
study, as listed in Table 2, the enhanced mixer layer achieves quite similar results to the ConvMixer
block [39] while using fewer parameters and FLOPs.

4



Since the content of natural images is locally correlated, the stacked Shuffle Mixer Layers do not
fully exploit local features. It requires more capacity to model feature representations for better SR
performance. Therefore, we embed a few convolutional blocks into the proposed model to enhance
local connectivity. Concretely, we evenly add the Fused-MBConv after every two shuffle mixer layers.
The original Fused-MBConv contains an expansion convolution of size 3× 3, an SE layer [14] (i.e.,
the commonly used channel attention), and a reduction convolution of size 1 × 1. Using such a
Fused-MBConv significantly increases parameters and FLOPs, which motivates us to make some
changes to match the computational requirements. We remove the SE layer first, as the SiLU function
can be somewhat treated as a gating mechanism. Note that the inference time is much slower as
the hidden dimension expands. Instead of expanding the hidden channel rapidly with a large factor
(where the default expansion factor is usually set to be 6) of this expansion convolution, we then limit
the number of output channels and expand it to C + C

′
(C

′
is experimentally set to 16), as shown in

Figure 2(d). We also study several operations for this mixing process, and more details are included
in Sec. 4.3.

3.2 Learning strategy

To constrain the network training, a straightforward way is to ensure that the content of the network
output is close to that of the ground truth image:

Lp = ∥ISR − IGT ∥1, (2)

where ISR and IGT denote the network output and the corresponding ground truth HR image. We
note that only using the above pixel-wise loss function does not effectively help high-frequency
details estimation [5]. We accordingly employ a frequency constraint to regularize network training,
where the final loss function is defined as:

L = Lp + λ∥F(ISR)−F(IGT )∥1, (3)

where F denotes the Fast Fourier transform, and λ is a weight parameter that is set to be 0.1
empirically.

4 Experimental Results

4.1 Datasets and implementation

Datasets. Following existing methods [22, 24, 23], we train our models on the DF2K dataset, a
merged dataset with DIV2K [37] and Flickr2K [25], which contains 3450 (800 + 2650) high-quality
images. We adopt standard protocols to generate LR images by bicubic downscaling of reference HR
images. During the testing stage, we evaluate our models with the peak signal to noise ratio (PSNR)
and the structural similarity index (SSIM) on five publicly available benchmark datasets - Set5 [3],
Set14 [42], B100 [2], Urban100 [15] and Manga109 [29]. All PSNR and SSIM results are calculated
on the Y channel from the YCbCr color space.

Implementation details. We train our model in RGB channels and augment the input patches with
random horizontal flips and rotations. In each training mini-batch, we randomly crop 64 patches of
size 64× 64 from LR images as the input. The proposed model is trained by minimizing L1 loss and
the frequency loss [5] with Adam [19] optimizer for 300,000 total iterations. The learning rate is set
to a constant 5× 10−4. All experiments are conducted with the PyTorch framework on an Nvidia
Tesla V100 GPU.

We provide two models according to the number of feature channels and DW Conv kernel size, and
the number of FMB modules is 5. The number of channels and convolution kernel sizes is 64 and
7× 7 pixels for the ShuffleMixer model and 32 and 3× 3 pixels for the ShuffleMixer-Tiny model.

4.2 Comparisons with state-of-the-art methods

To evaluate the performance of our approach, we compare the proposed ShuffleMixer with state-
of-the-art lightweight algorithms, including SRCNN [8], FSRCNN [9], ESPCN [33], VDSR [18],
DRCN [17], LapSRN [21], CARN [1], EDSR-baseline [25], FALSR-A [6], IMDN [16], LAPAR [22],
ECBSR [44], and SMSR [40].

5



Table 1: Comparisons on multiple benchmark datasets for efficient SR networks. All results are
calculated on the Y-channel. The FLOPs are calculated corresponding to an HR image of size
1280 × 720. Best and second-best performance are in remarked red and blue color, respectively.
Blanked entries link to results not reported in previous works.

Scale Method Params FLOPs Set5 Set14 B100 Urban100 Manga109

×2

Bicubic - - 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339
SRCNN [8] 57K 53G 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946 35.74/0.9661

FSRCNN [9] 12K 6G 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9694
ESPCN [33] 21K 5G 36.83/0.9564 32.40/0.9096 31.29/0.8917 29.48/0.8975 -
VDSR [18] 665K 613G 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9729
DRCN [17] 1,774K 17,974G 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.63/0.9723

LapSRN [21] 813K 30G 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100 37.27/0.9740
CARN-M [1] 412K 91G 37.53/0.9583 33.26/0.9141 31.92/0.8960 31.23/0.9193 -

CARN [1] 1,592K 223G 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 -
EDSR-baseline [25] 1,370K 316G 37.99/0.9604 33.57/0.9175 32.16/0.8994 31.98/0.9272 38.54/0.9769

FALSR-A [6] 1021K 235G 37.82/0.9595 33.55/0.9168 32.12/0.8987 31.93/0.9256 -
IMDN [16] 694K 161G 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774

LAPAR-C [22] 87K 35G 37.65/0.9593 33.20/0.9141 31.95/0.8969 31.10/0.9178 37.75/0.9752
LAPAR-A [22] 548K 171G 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283 38.67/0.9772

ECBSR-M16C64 [44] 596K 137G 37.90/0.9615 33.34/0.9178 32.10/0.9018 31.71/0.9250 -
SMSR [40] 985K 132G 38.00/0.9601 33.64/0.9179 32.17/0.8990 32.19/0.9284 38.76/0.9771

ShuffleMixer-Tiny (Ours) 108K 25G 37.85/0.9600 33.33/0.9153 31.99/0.8972 31.22/0.9183 38.25/0.9761
ShuffleMixer (Ours) 394K 91G 38.01/0.9606 33.63/0.9180 32.17/0.8995 31.89/0.9257 38.83/0.9774

×3

Bicubic - - 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556
SRCNN [8] 57K 53G 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989 30.59/0.9107

FSRCNN [9] 12K 5G 33.16/0.9140 29.43/0.8242 28.53/0.7910 26.43/0.8080 30.98/0.9212
VDSR [18] 665K 613G 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9310
DRCN [17] 1,774K 17,974G 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276 32.31/0.9328

CARN-M [1] 412K 46G 33.99/0.9236 30.08/0.8367 28.91/0.8000 27.55/0.8385 -
CARN [1] 1,592K 119G 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 -

EDSR-baseline [25] 1,555K 160G 34.37/0.9270 30.28/0.8417 29.09/0.8052 28.15/0.8527 33.45/0.9439
IMDN [16] 703K 72G 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445

LAPAR-C [22] 99K 28G 33.91/0.9235 30.02/0.8358 28.90/0.7998 27.42/0.8355 32.54/0.9373
LAPAR-A [22] 594K 114G 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523 33.51/0.9441

SMSR [40] 993K 68G 34.40/0.9270 30.33/0.8412 29.10/0.8050 28.25/0.8536 33.68/0.9445
ShuffleMixer-Tiny (Ours) 114K 12G 34.07/0.9250 30.14/0.8382 28.94/0.8009 27.54/0.8373 33.03/0.9400

ShuffleMixer (Ours) 415K 43G 34.40/0.9272 30.37/0.8423 29.12/0.8051 28.08/0.8498 33.69/0.9448

×4

Bicubic - - 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866
SRCNN [8] 57K 53G 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221 27.66/0.8505

FSRCNN [9] 12K 5G 30.71/0.8657 27.59/0.7535 26.98/0.7150 24.62/0.7280 27.90/0.8517
ESPCN [33] 25K 1G 30.52/0.8697 27.42/0.7606 26.87/0.7216 24.39/0.7241 -
VDSR [18] 665K 613G 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8809
DRCN [17] 1,774K 17,974G 31.53/0.8854 28.02/0.7670 27.23/0.7233 25 .14/0.7510 28.98/0.8816

LapSRN [21] 813K 149G 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560 29.09/0.8845
CARN-M [1] 412K 33G 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.62/0.7694 -

CARN [1] 1,592K 91G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 -
EDSR-baseline [25] 1,518K 114G 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849 30.35/0.9067

IMDN [16] 715K 41G 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
LAPAR-C [22] 115K 25G 31.72/0.8884 28.31/0.7740 27.40/0.7292 25.49/0.7651 29.50/0.8951
LAPAR-A [22] 659K 94G 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 30.42/0.9074

ECBSR-M16C64 [44] 603K 35G 31.92/0.8946 28.34/0.7817 27.48/0.7393 25.81/0.7773 -
SMSR [40] 1006K 42G 32.12/0.8932 28.55/0.7808 27.55/0.7351 26.11/0.7868 30.54/0.9085

ShuffleMixer-Tiny (Ours) 113K 8G 31.88/0.8912 28.46/0.7779 27.45/0.7313 25.66/0.7690 29.96/0.9006
ShuffleMixer (Ours) 411K 28G 32.21/0.8953 28.66/0.7827 27.61/0.7366 26.08/0.7835 30.65/0.9093

Table 1 shows quantitative comparisons on benchmark datasets for the upscaling factors of ×2, ×3,
and ×4. In addition to PSNR/SSIM metrics, we list the number of parameters and FLOPs. The
number of FLOPs is tested under a setting of super-resolving an image to 1280 × 720 pixels. In
Figure 1, we compare FLOPs and the number of parameters on the ×4 B100 dataset. Here, our
ShuffleMixer model obtains competitive results with even fewer parameters and FLOPs. Especially,
ShuffleMixer has a similar number of parameters to CARN-M, but our model outperforms it by
a large margin on all benchmark datasets. Even with only 113K parameters, ShuffleMixer-Tiny
performs better than many existing methods. With regard to the scale factor ×2 and ×3, the proposed
ShuffleMixer family can achieve similar performance.

Although IMDN [16], LAPAR-A [22] and SMSR [40] obtain comparable PSNR/SSIM performance,
ShuffleMixer requires only a relatively small amount of model complexity. Meanwhile, we compare

6



(a) HR patch (b) Bicubic (c) VDSR [18] (d) DRCN [17]

ppt3 from Set14 (e) LapSRN [21] (f) CARN [1] (g) IMDN [16] (h) ShuffleMixer

(a) HR patch (b) Bicubic (c) VDSR [18] (d) DRCN [17]

img078 from Urban100 (e) LapSRN [21] (f) CARN [1] (g) IMDN [16] (h) ShuffleMixer

(a) HR patch (b) Bicubic (c) VDSR [18] (d) DRCN [17]

img095 from Urban100 (e) LapSRN [21] (f) CARN [1] (g) IMDN [16] (h) ShuffleMixer

Figure 3: Visual comparisons for ×4 SR on Set14 and Urban100 datasets. The proposed algorithm
recovers the image with clearer structures.

(a) LR patch (b) Bicubic (c) SelfEx [15]

img004 from historical dataset (d) CARN [1] (e) LAPAR-A [22] (f) ShuffleMixer

Figure 4: Visual comparisons for ×3 SR on historical dataset [21]. Compared with the results in
(b)–(e), the super-resolved image (f) generated by our approach is much clearer with fewer artifacts.

7



Table 2: Ablation studies of the shuffler mixer layer and the feature mixing block on ×4 DIV2K
validation set[37]. The FLOPs are calculated by fvcore on an LR image with a resolution of 256×256
pixels (FLOPs in Table 3 and Table 4 are also measured with this setting).

(a) Shuffle Mixer Layer (b) Feature Mixing Block

Baseline CSS CDC Conv S-Conv C-Conv S-ResBlock S-FMBConv

Params(K) 55.9 24.7 35.5 81.7 81.7 128 128 113
FLOPs(G) 5.2 3.2 3.8 6.9 6.9 9.9 9.9 8.9
PSNR(dB) 29.96 29.83 29.99 30.12 30.16 30.20 30.24 30.21

SSIM 0.8288 0.8231 0.8259 0.8299 0.8305 0.8316 0.8327 0.8321

Table 3: Experimental results for different
kernel size settings. We test PSNR/SSIM re-
sults on the ×4 DIV2K validation set, and
the kernel size ranges from 3× 3 to 21× 21
pixels.

Kernel Size PSNR(dB)/SSIM Params(K) FLOPs(G)

3 × 3 30.21/0.8321 113 8.9
5 × 5 30.24/0.8326 118 9.2
7 × 7 30.28/0.8342 125 9.7
9 × 9 30.29/0.8339 136 10.4

11 × 11 30.28/0.8339 148 11.2
13 × 13 30.29/0.8337 164 12.2
15 × 15 30.28/0.8336 182 13.4
21 × 21 30.29/0.8339 251 17.9

Table 4: Effect of increasing the depth (#B) or
width (#C) of the proposed tiny model. All the
methods are evaluated on ×4 DIV2K validation
set.

Model #B #C Kernel Size PSNR(dB)/SSIM Params(K) FLOPs(G)

ShuffleMixer-Tiny 5 32 3 × 3 30.21/0.8321 113 8.9
A 5 32 5 × 5 30.24/0.8326 118 9.2
B 5 32 7 × 7 30.28/0.8342 125 9.7

C 5 36 3 × 3 30.25/0.8329 138 10.8
D 5 40 3 × 3 30.28/0.8339 166 13.0
E 6 32 3 × 3 30.25/0.8322 133 10.2
F 8 32 3 × 3 30.30/0.8342 174 12.8

the GPU run time with fast and lightweight models on ×4 SR: CARN [1], CARN-M [1] and
LAPAR-A [22], and the proposed method has a faster inference speed. Our ShuffleMixer-Tiny
and ShuffleMixer reconstruct an HR image with a resolution of 1280× 720 pixels with 0.016s and
0.021s, respectively. As a comparison, the runtimes are 0.017s, 0.019s, and 0.031s for CARN-M,
CARN, and LAPAR-A. Note that Pytorch has poor support for large-kernel depth-wise convolution;
employing optimized depth-wise convolutions can further accelerate the inference time of our method,
as suggested in [7]. All these results demonstrate the effectiveness of our method.

Figure 3 presents visual comparisons on Set14 and Urban100 datasets for a ×4 scale. The qualitative
comparison results demonstrate that our proposed methods can produce more visually pleasing results.
The structures and details are better recovered.

We further evaluate our approach on real low-quality images. One example from the historical
dataset [21] is shown in Figure 4. The results by [15, 22] show visible artifacts. Our method and
CARN [1] generate smooth details, but our results have a clearer structure.

4.3 Analysis and discussions

The core idea of ShuffleMixer lies in the shuffle mixer layer, feature mixing block, and large kernel
convolution. In this subsection, we evaluate them on the proposed tiny model and train them on the
×4 DIV2K dataset [37].

Effectiveness of the shuffle mixer layer. To verify the efficiency of the shuffle mixer, we use 10
ConvMixer [39] blocks to build a baseline model. Unlike the original ConvMixer module, we replace
BatchNorm with LayerNorm and apply it only before the point-wise MLP layer because BatchNorm
tends to bring artifacts in the generated results [25, 41]. The kernel of depth-wise convolution is set to
3, and the number of channels is 32. When applying the channel splitting and shuffling (CSS) strategy,
the number of parameters is reduced from 55.9K to 24.7K, and the performance is also 0.13dB lower
than the baseline. This result reflects that the split operation limits the representation capability
of the channel projection layer. To compensate for the lack of PSNR, we repeat the CSS-based
projection layer to enable more cross-group feature mixing (denoted by CDC). Table 2(a) shows a
quantitative comparison where we find that CDC achieves similar performance to the baseline model
while reducing parameters from 55.9K to 35.5K and FLOPs from 5.2G to 3.8G.

Effectiveness of the feature mixing block. To validate the effectiveness of the proposed feature
mixing block, we take the CDC model as a baseline and embed a convolution layer with a kernel
size of 3× 3 pixels after each two shuffle mixer layers. This conduct brings a gain of 0.13dB over

8

https://github.com/facebookresearch/fvcore


(a) w/o Conv (b) Conv

(c) S-Conv (d) C-Conv

Figure 5: Visualization of learned feature maps before the upsampler module. We show the average
features over the channel dimension.

the baseline. We then investigate feature element-wise summation or concatenation to analyse the
effect of feature fusion manners. The input features are aggregated by the aforementioned ways and
refined by a convolutional layer with a kernel size of 3× 3, which we denote as S-Conv and C-Conv,
respectively. Table 2(b) shows that they all improve over the baseline; C-Conv achieves better PSNR
performance while having more computational cost. Figure 5 exhibits the average feature map of the
channel axis before the upsampler module, which illustrates that enhancing local connectivity helps
grab more delicate high-frequency contents. Based on the S-Conv, we replace the convolution layer
with basic residual blocks (S-ResBlock) and Fused-MBConv (S-FMBConv). Table 2(b) shows that
S-FMBConv obtains a balanced trade-off between model complexity and SR performance. Thus, we
choose S-FMBConv to strengthen the local interactions within features in this paper.

Effectiveness of large depth-wise convolution. To demonstrate the effect of a large kernel, we use
different kernel sizes ranging from 3 × 3 to 21 × 21 pixels and test their performance separately.
Table 3 shows that using a larger kernel size will improve the performance. In particular, the PSNR
value of the method using a kernel size of 7 × 7 pixels is 0.07dB higher than that of using 3 × 3
kernel size while only increasing 12K parameters and 0.8G FLOPs. In addition, we note that the
performance gains are minor when the kernel size is larger than 7× 7 pixels. Thus, the kernel size is
set to be 7× 7 pixels as a trade-off between accuracy and model complexity in this paper.

Moreover, we investigate the effect of increasing the depth (#B) or width (#C) of the proposed tiny
model on the reconstruction performance. Table 4 shows that increasing the depth or width of the
model with a small kernel size does not yield as good a performance gain as enlarging the kernel size.
These results also demonstrate the effectiveness of employing large depth-wise convolution.

5 Conclusion

In this paper, we propose a lightweight deep model to solve the image super-resolution problem.
The proposed deep model, i.e., ShuffleMixer, contains a shuffler mixer layer with a larger effective
receptive field to extract non-local feature representations efficiently. We also introduce the Fused-
MBConv to modulate the local connectivity of features generated by the shuffler mixer layer, which
is critical for improving SR performance. We both qualitatively and quantitatively evaluate the
proposed ShuffleMixer on commonly used benchmarks. Experimental results demonstrate that the
proposed ShuffleMixer is much more efficient while achieving competitive performance than the
state-of-the-art methods.

9



Acknowledgments. This work has been supported in part by the National Key R&D Program of
China (No. 2018AAA0102001), the National Natural Science Foundation of China (Nos. 61922043,
61872421, 61925204), and the Fundamental Research Funds for the Central Universities (No.
30920041109).

Broader Impact

This paper is an exploratory work on lightweight and efficient image super-resolution using a large-
kernel ConvNet. This approach can be deployed in some resource-constrained environments to
improve image quality, such as processing pictures taken by smartphones and reducing bandwidth
during video calls or meetings. However, super-resolution technology has also brought some negative
effects, such as criminals using this technology to enhance people’s facial or body features, thereby
allowing identity information to leak. It is worth noting that the positive social impact of image
super-resolution far outweighs the potential problems. We call on people to use this technology and
its derivative applications without harming the personal interests of the public.

References
[1] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast, accurate, and lightweight super-resolution

with cascading residual network. In ECCV, 2018.

[2] Pablo Arbeláez, Michael Maire, Charless C. Fowlkes, and Jitendra Malik. Contour detection and hierarchi-
cal image segmentation. PAMI, 33(5):898–916, 2011.

[3] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie line Alberi Morel. Low-complexity
single-image super-resolution based on nonnegative neighbor embedding. In BMVC, 2012.

[4] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu,
Chao Xu, and Wen Gao. Pre-trained image processing transformer. In CVPR, 2021.

[5] Sung-Jin Cho, Seo-Won Ji, Jun-Pyo Hong, Seung-Won Jung, and Sung-Jea Ko. Rethinking coarse-to-fine
approach in single image deblurring. In ICCV, 2021.

[6] Xiangxiang Chu, Bo Zhang, Hailong Ma, Ruijun Xu, and Qingyuan Li. Fast, accurate and lightweight
super-resolution with neural architecture search. In ICPR, 2021.

[7] Xiaohan Ding, Xiangyu Zhang, Yizhuang Zhou, Jungong Han, Guiguang Ding, and Jian Sun. Scaling up
your kernels to 31x31: Revisiting large kernel design in cnns. In CVPR, 2022.

[8] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep
convolutional networks. PAMI, 38(2):295–307, 2016.

[9] Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerating the super-resolution convolutional neural
network. In ECCV, 2016.

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In ICLR,
2021.

[11] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning. Neural Networks, 107:3–11, 2018.

[12] Qinquan Gao, Yan Zhao, Gen Li, and Tong Tong. Image super-resolution using knowledge distillation. In
ACCV, 2019.

[13] Zibin He, Tao Dai, Jian Lu, Yong Jiang, and Shu-Tao Xia. Fakd: Feature-affinity based knowledge
distillation for efficient image super-resolution. In ICIP, 2020.

[14] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In CVPR, 2018.

[15] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from transformed
self-exemplars. In CVPR, 2015.

[16] Zheng Hui, Xinbo Gao, Yunchu Yang, and Xiumei Wang. Lightweight image super-resolution with
information multi-distillation network. In ACM MM, 2019.

10



[17] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-recursive convolutional network for image
super-resolution. In CVPR, 2016.

[18] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep
convolutional networks. In CVPR, 2016.

[19] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In NeurIPS, 2012.

[21] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. Deep laplacian pyramid networks
for fast and accurate super-resolution. In CVPR, 2017.

[22] Wenbo Li, Kun Zhou, Lu Qi, Nianjuan Jiang, Jiangbo Lu, and Jiaya Jia. LAPAR: Linearly-assembled
pixel-adaptive regression network for single image super-resolution and beyond. In NeurIPS, 2020.

[23] Yawei Li, Kai Zhang, Luc Van Gool, Radu Timofte, et al. NTIRE 2022 challenge on efficient super-
resolution: Methods and results. In CVPR Workshops, 2022.

[24] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. SwinIR: Image
restoration using swin transformer. In ICCV Workshops, 2021.

[25] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual
networks for single image super-resolution. In CVPR Workshops, 2017.

[26] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
Transformer: Hierarchical vision transformer using shifted windows. In ICCV, 2021.

[27] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A
ConvNet for the 2020s. In CVPR, 2022.

[28] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. ShuffleNet V2: Practical guidelines for
efficient cnn architecture design. In ECCV, 2018.

[29] Yusuke Matsui, Kota Ito, Yuji Aramaki, Toshihiko Yamasaki, and Kiyoharu Aizawa. Sketch-based manga
retrieval using manga109 dataset. arXiv preprint arXiv:1510.04389, 2015.

[30] Sachin Mehta and Mohammad Rastegari. MobileViT: Light-weight, general-purpose, and mobile-friendly
vision transformer. In ICLR, 2022.

[31] Chao Peng, Xiangyu Zhang, Gang Yu, Guiming Luo, and Jian Sun. Large kernel matters – improve
semantic segmentation by global convolutional network. In CVPR, 2017.

[32] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. MobileNetV2:
Inverted residuals and linear bottlenecks. In CVPR, 2018.

[33] Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz, Andrew P. Aitken, Rob Bishop, Daniel
Rueckert, and Zehan Wang. Real-time single image and video super-resolution using an efficient sub-pixel
convolutional neural network. In CVPR, 2016.

[34] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

[35] Dehua Song, Chang Xu, Xu Jia, Yiyi Chen, Chunjing Xu, and Yunhe Wang. Efficient residual dense block
search for image super-resolution. In AAAI, 2020.

[36] Mingxing Tan and Quoc Le. EfficientNetV2: Smaller models and faster training. In ICML, 2021.

[37] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, and Lei Zhang. NTIRE 2017
challenge on single image super-resolution: Methods and results. In CVPR Workshops, 2017.

[38] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner,
Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and Alexey Dosovitskiy.
MLP-Mixer: An all-MLP architecture for vision. In NeurIPS, 2021.

[39] Asher Trockman and J Zico Kolter. Patches are all you need? In ICLR, 2022.

[40] Longguang Wang, Xiaoyu Dong, Yingqian Wang, Xinyi Ying, Zaiping Lin, Wei An, and Yulan Guo.
Exploring sparsity in image super-resolution for efficient inference. In CVPR, 2021.

11



[41] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change Loy.
ESRGAN: Enhanced super-resolution generative adversarial networks. In ECCV Workshops, 2018.

[42] Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-representations.
In Curves and Surfaces, 2012.

[43] Kai Zhang, Martin Danelljan, Yawei Li, and et al. AIM 2020 challenge on efficient super-resolution:
Methods and results. In ECCV Workshops, 2020.

[44] Xindong Zhang, Hui Zeng, and Lei Zhang. Edge-oriented convolution block for real-time super resolution
on mobile devices. In ACM MM, 2021.

[45] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-resolution
using very deep residual channel attention networks. In ECCV, 2018.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description.

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [No]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

12



(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13


	Introduction
	Related Work
	Proposed Method
	ShuffleMixer architecture
	Learning strategy

	Experimental Results
	Datasets and implementation
	Comparisons with state-of-the-art methods
	Analysis and discussions

	Conclusion

