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ABSTRACT

We address the problem of learning on sets of features, motivated by the need of
performing pooling operations in long biological sequences of varying sizes, with
long-range dependencies, and possibly few labeled data. To address this challeng-
ing task, we introduce a parametrized representation of fixed size, which embeds
and then aggregates elements from a given input set according to the optimal trans-
port plan between the set and a trainable reference. Our approach scales to large
datasets and allows end-to-end training of the reference, while also providing a
simple unsupervised learning mechanism with small computational cost. Our ag-
gregation technique admits two useful interpretations: it may be seen as a mech-
anism related to attention layers in neural networks, or it may be seen as a scal-
able surrogate of a classical optimal transport-based kernel. We experimentally
demonstrate the effectiveness of our approach on biological sequences, achieving
state-of-the-art results for protein fold recognition and detection of chromatin pro-
files tasks, and, as a proof of concept, we show promising results for processing
natural language sequences. We provide an open-source implementation of our
embedding that can be used alone or as a module in larger learning models at
https://github.com/claying/OTK.

1 INTRODUCTION

Many scientific fields such as bioinformatics or natural language processing (NLP) require process-
ing sets of features with positional information (biological sequences, or sentences represented by a
set of local features). These objects are delicate to manipulate due to varying lengths and potentially
long-range dependencies between their elements. For many tasks, the difficulty is even greater since
the sets can be arbitrarily large, or only provided with few labels, or both.

Deep learning architectures specifically designed for sets have recently been proposed (Lee et al.,
2019; Skianis et al., 2020). Our experiments show that these architectures perform well for NLP
tasks, but achieve mixed performance for long biological sequences of varying size with few la-
beled data. Some of these models use attention (Bahdanau et al., 2015), a classical mechanism for
aggregating features. Its typical implementation is the transformer (Vaswani et al., 2017), which
has shown to achieve state-of-the-art results for many sequence modeling tasks, e.g, in NLP (De-
vlin et al., 2019) or in bioinformatics (Rives et al., 2019), when trained with self supervision on
large-scale data. Beyond sequence modeling, we are interested in this paper in finding a good rep-
resentation for sets of features of potentially diverse sizes, with or without positional information,
when the amount of training data may be scarce. To this end, we introduce a trainable embedding,
which can operate directly on the feature set or be combined with existing deep approaches.

More precisely, our embedding marries ideas from optimal transport (OT) theory (Peyré & Cuturi,
2019) and kernel methods (Schölkopf & Smola, 2001). We call this embedding OTKE (Optimal
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Transport Kernel Embedding). Concretely, we embed feature vectors of a given set to a reproducing
kernel Hilbert space (RKHS) and then perform a weighted pooling operation, with weights given
by the transport plan between the set and a trainable reference. To gain scalability, we then obtain a
�nite-dimensional embedding by using kernel approximation techniques (Williams & Seeger, 2001).
The motivation for using kernels is to provide a non-linear transformation of the input features be-
fore pooling, whereas optimal transport allows to align the features on a trainable reference with fast
algorithms (Cuturi, 2013). Such combination provides us with a theoretically grounded, �xed-size
embedding that can be learned either without any label, or with supervision. Our embedding can
indeed become adaptive to the problem at hand, by optimizing the reference with respect to a given
task. It can operate on large sets with varying size, model long-range dependencies when positional
information is present, and scales gracefully to large datasets. We demonstrate its effectiveness on
biological sequence classi�cation tasks, including protein fold recognition and detection of chro-
matin pro�les where we achieve state-of-the-art results. We also show promising results in natural
language processing tasks, where our method outperforms strong baselines.

Contributions. In summary, our contribution is three-fold. We propose a new method to embed
sets of features of varying sizes to �xed size representations that are well adapted to downstream
machine learning tasks, and whose parameters can be learned in either unsupervised or supervised
fashion. We demonstrate the scalability and effectiveness of our approach on biological and natural
language sequences. We provide an open-source implementation of our embedding that can be used
alone or as a module in larger learning models.

2 RELATED WORK

Kernel methods for sets and OT-based kernels. The kernel associated with our embedding be-
longs to the family of match kernels (Lyu, 2004; Tolias et al., 2013), which compare all pairs of fea-
tures between two sets via a similarity function. Another line of research builds kernels by matching
features through the Wasserstein distance. A few of them are shown to be positive de�nite (Gardner
et al., 2018) and/or fast to compute (Rabin et al., 2011; Kolouri et al., 2016). Except for few hyper-
parameters, these kernels yet cannot be trained end-to-end, as opposed to our embedding that relies
on a trainable reference. Ef�cient and trainable kernel embeddings for biological sequences have
also been proposed by Chen et al. (2019a;b). Our work can be seen as an extension of these ear-
lier approaches by using optimal transport rather than mean pooling for aggregating local features,
which performs signi�cantly better for long sequences in practice.

Deep learning for sets. Deep Sets (Zaheer et al., 2017) feed each element of an input set into
a feed-forward neural network. The outputs are aggregated following a simple pooling operation
before further processing. Lee et al. (2019) propose a Transformer inspired encoder-decoder archi-
tecture for sets which also uses latent variables. Skianis et al. (2020) compute some comparison
costs between an input set and reference sets. These costs are then used as features in a subsequent
neural network. The reference sets are learned end-to-end. Unlike our approach, such models do not
allow unsupervised learning. We will use the last two approaches as baselines in our experiments.

Interpretations of attention. Using the transport plan as an ad-hoc attention score was proposed
by Chen et al. (2019c) in the context of network embedding to align data modalities. Our paper
goes beyond and uses the transport plan as a principle for pooling a set in a model, with trainable
parameters. Tsai et al. (2019) provide a view of Transformer's attention via kernel methods, yet in a
very different fashion where attention is cast as kernel smoothing and not as a kernel embedding.

3 PROPOSEDEMBEDDING

3.1 PRELIMINARIES

We handle sets of features inRd and consider setsx living in

X =
�

x j x = f x1; : : : ; xn g such thatx1; : : : ; xn 2 Rd for somen � 1
	

:
Elements ofX are typically vector representations of local data structures, such ask-mers for se-
quences, patches for natural images, or words for sentences. The size ofx denoted byn may vary,
which is not an issue since the methods we introduce may take a sequence of any size as input, while
providing a �xed-size embedding. We now revisit important results on optimal transport and kernel
methods, which will be useful to describe our embedding and its computation algorithms.
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Optimal transport. Our pooling mechanism will be based on the transport plan betweenx andx0

seen as weighted point clouds or discrete measures, which is a by-product of the optimal transport
problem (Villani, 2008; Peyŕe & Cuturi, 2019). OT has indeed been widely used in alignment
problems (Grave et al., 2019). Throughout the paper, we will refer to the Kantorovich relaxation
of OT with entropic regularization, detailed for example in (Peyré & Cuturi, 2019). Leta in � n

(probability simplex) andb in � n 0
be the weights of the discrete measures

P
i ai � x i and

P
j b j � x 0

j

with respective locationsx andx0, where� x is the Dirac at positionx. Let C in Rn � n 0
be a matrix

representing the pairwise costs for aligning the elements ofx and x0. The entropic regularized
Kantorovich relaxation of OT fromx to x0 is

min
P 2 U (a;b )

X

ij

C ij P ij � "H (P); (1)

whereH (P) = �
P

ij P ij (log(P ij ) � 1) is the entropic regularization with parameter" , which
controls the sparsity ofP, andU is the space of admissible couplings betweena andb:

U(a; b) = f P 2 Rn � n 0

+ : P1 n = a andP > 1n 0 = bg:

The problem is typically solved by using a matrix scaling procedure known as Sinkhorn's algo-
rithm (Sinkhorn & Knopp, 1967; Cuturi, 2013). In practice,a andb are uniform measures since we
consider the mass to be evenly distributed between the points.P is called the transport plan, which
carries the information on how to distribute the mass ofx in x0 with minimal cost. Our method uses
optimal transport to align features of a given set to a learned reference.

Kernel methods. Kernel methods (Scḧolkopf & Smola, 2001) map data living in a spaceX to a
reproducing kernel Hilbert spaceH, associated to a positive de�nite kernelK through a mapping
function ' : X ! H , such thatK (x; x0) = h' (x); ' (x0)i H . Even though' (x) may be in�nite-
dimensional, classical kernel approximation techniques (Williams & Seeger, 2001) provide �nite-
dimensional embeddings (x) in Rk such thatK (x; x0) � h  (x);  (x0)i . Our embedding for sets
relies in part on kernel method principles and on such a �nite-dimensional approximation.

3.2 OPTIMAL TRANSPORTEMBEDDING AND ASSOCIATEDKERNEL

We now present the OTKE, an embedding and pooling layer which aggregates a variable-size set
or sequence of features into a �xed-size embedding. We start with an in�nite-dimensional variant
living in a RKHS, before introducing the �nite-dimensional embedding that we use in practice.

In�nite-dimensional embedding in RKHS. Given a setx and a (learned) referencez in X with p
elements, we consider an embedding� z (x) which performs the following operations: (i) initial
embedding of the elements ofx andz to a RKHSH; (ii) alignment of the elements ofx to the
elements ofz via optimal transport; (iii) weighted linear pooling of the elementsx into p bins,
producing an embedding� z (x) in H p, which is illustrated in Figure 1.

Before introducing more formal details, we note that our embedding relies on two main ideas:

� Global similarity-based pooling using references.Learning on large sets with long-range interac-
tions may bene�t from pooling to reduce the number of feature vectors. Our pooling rule follows
an inductive bias akin to that of self-attention: elements that are relevant to each other for the task
at hand should be pooled together. To this end, each element in the reference set corresponds to
a pooling cell, where the elements of the input set are aggregated through a weighted sum. The
weights simply re�ect the similarity between the vectors of the input set and the current vector
in the reference. Importantly, using a reference set enables to reduce the size of the “attention
matrix” from quadratic to linear in the length of the input sequence.

� Computing similarity weights via optimal transport.A computationally ef�cient similarity score
between two elements is their dot-product (Vaswani et al., 2017). In this paper, we rather consider
that elements of the input set should be pooled together if they align well with the same part of the
reference. Alignment scores can ef�ciently be obtained by computing the transport plan between
the input and the reference sets: Sinkhorn's algorithm indeed enjoys fast solvers (Cuturi, 2013).

We are now in shape to give a formal de�nition.

De�nition 3.1 (The optimal transport kernel embedding). Let x = ( x1; : : : ; xn ) in X be an
input set of feature vectors andz = ( z1; : : : ; zp) in X be a reference set withp elements. Let� be a
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Figure 1: The input point cloudx is transported onto the referencez = ( z1; : : : ; zp) (left), yielding
the optimal transport planP � (x ; z) used to aggregate the embedded features and form� z (x) (right).

positive de�nite kernel,e.g., Gaussian kernel, with RKHSH and' : Rd ! H , its associated kernel
embedding. Let� be then � p matrix which carries the comparisons� (x i ; zj ), before alignment.

Then, the transport plan betweenx andz, denoted by then � p matrix P(x; z), is de�ned as the
unique solution of (1) when choosing the costC = � � , and our embedding is de�ned as

� z (x) :=
p

p �

 
nX

i =1

P(x; z) i 1 ' (x i ); : : : ;
nX

i =1

P(x; z) ip ' (x i )

!

=
p

p � P(x; z)> ' (x);

where' (x) := [ ' (x1); : : : ; ' (xn )]> .

Interestingly, it is easy to show that our embedding� z (x) is associated to the positive de�nite kernel

K z (x ; x0) :=
nX

i;i 0=1

P z (x ; x0) ii 0� (x i ; x0
i 0) = h� z (x); � z (x0)i ; (2)

with P z (x ; x0) := p � P(x; z)P(x0; z)> . This is a weighted match kernel, with weights given by
optimal transport inH . The notion of pooling in the RKHSH of � arises naturally ifp � n. The
elements ofx are non-linearly embedded and then aggregated in “buckets”, one for each element in
the referencez, given the values ofP(x; z). This process is illustrated in Figure 1. We acknowledge
here the concurrent work by Kolouri et al. (2021), where a similar embedding is used for graph
representation. We now expose the bene�ts of this kernel formulation, and its relation to classical
non-positive de�nite kernel.

Kernel interpretation. Thanks to the gluing lemma (see,e.g., Peyŕe & Cuturi, 2019),P z (x ; x0)
is a valid transport plan and, empirically, a rough approximation ofP(x; x0). K z can therefore be
seen as a surrogate of a well-known kernel (Rubner et al., 2000), de�ned as

K OT(x ; x0) :=
nX

i;i 0=1

P(x; x0) ii 0� (x i ; x0
i 0): (3)

When the entropic regularization" is equal to0, K OT is equivalent to the 2-Wasserstein distance
W2(x ; x0) with ground metricd� induced by kernel� . K OT is generally not positive de�nite
(see Peyŕe & Cuturi (2019), Chapter8:3) and computationally costly (the number of transport plans
to compute is quadratic in the number of sets to process whereas it is linear forK z ). Now, we show
the relationship between this kernel and our kernelK z , which is proved in Appendix B.1.
Lemma 3.1(Relation betweenP(x; x0) andP z (x ; x0) when" = 0 ). For anyx, x0 andz in X with
lengthsn, n0 andp, by denotingW z

2 (x ; x0) := hP z (x ; x0); d2
� (x ; x0)i 1=2 we have

jW2(x ; x0) � W z
2 (x ; x0)j � 2 min(W2(x ; z); W2(x0; z)) : (4)

This lemma shows that the distanceW z
2 resulting fromK z is related to the Wasserstein distanceW2;

yet, this relation should not be interpreted as an approximation error as our goal is not to approx-
imateW2, but rather to derive a trainable embedding� z (x) with good computational properties.
Lemma 3.1 roots our features and to some extent self-attention in a rich optimal transport literature.
In fact, W z

2 is equivalent to a distance introduced by Wang et al. (2013), whose properties are fur-
ther studied by Moosm̈uller & Cloninger (2020). A major difference is thatW z

2 crucially relies on
Sinkhorn's algorithm so that the references can be learned end-to-end, as explained below.
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3.3 FROM INFINITE-DIMENSIONAL KERNEL EMBEDDING TO FINITE DIMENSION

In some cases,' (x) is already �nite-dimensional, which allows to compute the embedding� z (x)
explicitly. This is particularly useful when dealing with large-scale data, as it enables us to use our
method for supervised learning tasks without computing the Gram matrix, which grows quadrati-
cally in size with the number of samples. When' is in�nite or high-dimensional, it is nevertheless
possible to use an approximation based on the Nyström method (Williams & Seeger, 2001), which
provides an embedding : Rd ! Rk such that

h (x i );  (x0
j )i Rk � � (x i ; x0

j ):

Concretely, the Nystr̈om method consists in projecting points from the RKHSH onto a linear sub-
spaceF , which is parametrized byk anchor pointsF = Span(' (w1); : : : ; ' (w k )) . The corre-
sponding embedding admits an explicit form (x i ) = � (w ; w) � 1=2� (w ; x i ), where� (w ; w) is the
k � k Gram matrix of� computed on the setw = f w1; : : : ; w k g of anchor points and� (w ; x i ) is
in Rk . Then, there are several ways to learn the anchor points: (a) they can be chosen as random
points from data; (b) they can be de�ned as centroids obtained by K-means, see Zhang et al. (2008);
(c) they can be learned by back-propagation for a supervised task, see Mairal (2016).

Using such an approximation within our framework can be simply achieved by (i) replacing� by
a linear kernel and (ii) replacing each elementx i by its embedding (x i ) in Rk and considering a
reference set with elements inRk . By abuse of notation, we still usez for the new parametrization.
The embedding, which we use in practice in all our experiments, becomes simply

� z (x) =
p

p �

 
nX

i =1

P( (x); z) i 1 (x i ); : : : ;
nX

i =1

P( (x); z) ip  (x i )

!

=
p

p � P( (x); z)>  (x) 2 Rp� k ; (5)

wherep is the number of elements inz. Next, we discuss how to learn the reference setz.

3.4 UNSUPERVISED ANDSUPERVISEDLEARNING OF PARAMETER z

Unsupervised learning. In the fashion of the Nyström approximation, thep elements ofz can
be de�ned as the centroids obtained by K-means applied to all features from training sets inX . A
corollary of Lemma 3.1 suggests another algorithm: a bound on the deviation term betweenW2 and
W z

2 for m samples (x1; : : : ; xm ) is indeed

E2 :=
1

m2

mX

i;j =1

jW2(x i ; x j ) � W z
2 (x i ; x j )j2 �

4
m

mX

i =1

W 2
2 (x i ; z): (6)

The right-hand term corresponds to the objective of the Wasserstein barycenter problem (Cuturi &
Doucet, 2013), which yields the mean of a set of empirical measures (here thex 's) under the OT
metric. The Wasserstein barycenter is therefore an attractive candidate for choosingz. K-means
can be seen as a particular case of Wasserstein barycenter whenm = 1 (Cuturi & Doucet, 2013; Ho
et al., 2017) and is faster to compute. In practice, both methods yield similar results, see Appendix C,
and we thus chose K-means to learnz in unsupervised settings throughout the experiments. The
anchor pointsw and the referencesz may be then computed using similar algorithms; however, their
mathematical interpretation differs as exposed above. The task of representing features (learningw
in Rd for a speci�c � ) is decoupled from the task of aggregating (learning the referencez in Rk ).

Supervised learning. As mentioned in Section 3.1,P( (x); z) is computed using Sinkhorn's al-
gorithm, recalled in Appendix A, which can be easily adapted to batches of samplesx, with possibly
varying lengths, leading to GPU-friendly forward computations of the embedding� z . More impor-
tant, all Sinkhorn's operations are differentiable, which enablesz to be optimized with stochastic
gradient descent through back-propagation (Genevay et al., 2018),e.g., for minimizing a classi�ca-
tion or regression loss function when labels are available. In practice, a small number of Sinkhorn
iterations (e.g., 10) is suf�cient to computeP( (x); z). Since the anchorsw in the embedding layer
below can also be learned end-to-end (Mairal, 2016), our embedding can thus be used as a module
injected into any model,e.g, a deep network, as demonstrated in our experiments.
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3.5 EXTENSIONS

Integrating positional information into the embedding. The discussed embedding and kernel
do not take the position of the features into account, which may be problematic when dealing with
structured data such as images or sentences. To this end, we borrow the idea of convolutional kernel
networks, or CKN (Mairal, 2016; Mairal et al., 2014), and penalize the similarities exponentially
with the positional distance between a pair of elements in the input and reference sequences. More
precisely, we multiplyP( (x); z) element-wise by a distance matrixS de�ned as:

Sij = e
� 1

� 2
pos

( i=n � j =p )2

;

and replace it in the embedding. With similarity weights basedbothon content and position, the ker-
nel associated to our embedding can be viewed as a generalization of the CKNs (whose similarity
weights are based on position only), with feature alignment based on optimal transport. When deal-
ing with multi-dimensional objects such as images, we just replace the index scalari with an index
vector of the same spatial dimension as the object, representing the positions of each dimension.

Using multiple references. A naive reconstruction using different referencesz1; : : : ; zq in X may
yield a better approximation of the transport plan. In this case, the embedding ofx becomes

� z1 ;:::; zq (x) = 1=p
q (� z1 (x); : : : ; � zq (x)) ; (7)

with q the number of references (the factor1=p
q comes from the mean). Using Eq. (4), we can obtain

a bound similar to (6) for a data set ofm samples (x1; : : : ; xm ) andq references (see Appendix B.2
for details). To choose multiple references, we tried a K-means algorithm with 2-Wasserstein dis-
tance for assigning clusters, and we updated the centroids as in the single-reference case. Using
multiple references appears to be useful when optimizingz with supervision (see Appendix C).

4 RELATION BETWEEN OUREMBEDDING AND SELF-ATTENTION

Our embedding and a single layer of transformer encoder, recalled in Appendix A, share the same
type of inductive bias,i.e, aggregating features relying on similarity weights. We now clarify their
relationship. Our embedding is arguably simpler (see respectively size of attention and number of
parameters in Table 1), and may compete in some settings with the transformer self-attention as
illustrated in Section 5.

Table 1: Relationship between� z and transformer self-
attention.k: a function describing how the transformer
integrates positional information;n: sequence length;
q: number of references or attention heads;d: di-
mension of the embeddings;p: number of supports in
z. Typically, p � d. In recent transformer architec-
tures, positional encoding requires learning additional
parameters (� qd2).

Self-Attention � z

Attention score W = W > Q P
Size of score O(n2) O(np)

Alignment w.r.t: x itself z
Learned + Shared W andQ z

Nonlinear mapping Feed-forward ' or  

Position encoding k(t i ; t0
j ) e

� 1
� 2

pos
( i

n � j
n 0 ) 2

Nb. parameters � qd2 qpd
Supervision Needed Not needed

Shared reference versus self-attention.
There is a correspondence between the
values, attention matrix in the transformer
and ' , P in De�nition 3.1, yet also no-
ticeable differences. On the one hand,� z
aligns a given sequencex with respect to a
referencez, learned with or without super-
vision, and shared across the data set. Our
weights are computed using optimal trans-
port. On the other hand, a transformer en-
coder performs self-alignment: for a given
x i , features are aggregated depending on
a similarity score betweenx i and the el-
ements ofx only. The similarity score is
a matrix product between queriesQ and
keys K matrices, learned with supervi-
sion and shared across the data set. In
this regard, our work complements a re-
cent line of research questioning the dot-
product, learned self-attention (Raganato
et al., 2020; Weiqiu et al., 2020). Self-
attention-like weights can also be obtained
with our embedding by computingP(x; zi )P(x; zi )> for each referencei . In that sense, our work
is related to recent research on ef�cient self-attention (Wang et al., 2020; Choromanski et al., 2020),
where a low-rank approximation of the self-attention matrix is computed.

6



Published as a conference paper at ICLR 2021

Position smoothing and relative positional encoding. Transformers can add an absolute posi-
tional encoding to the input features (Vaswani et al., 2017). Yet, relative positional encoding (Dai
et al., 2019) is a current standard for integrating positional information: the position offset between
the query element and a given key can be injected in the attention score (Tsai et al., 2019), which
is equivalent to our approach. The link between CKNs and our kernel, provided by this positional
encoding, stands in line with recent works casting attention and convolution into a uni�ed frame-
work (Andreoli, 2019). In particular, Cordonnier et al. (2020) show that attention learns convolution
in the setting of image classi�cation: the kernel pattern is learned at the same time as the �lters.

Multiple references and attention heads. In the transformer architecture, the succession of
blocks composed of an attention layer followed by a fully-connected layer is called a head, with
each head potentially focusing on different parts of the input. Successful architectures have a few
heads in parallel. The outputs of the heads are then aggregated to output a �nal embedding. A layer
of our embedding with non-linear kernel� can be seen as such a block, with the references playing
the role of the heads. As some recent works question the role of attention heads (Voita et al., 2019;
Michel et al., 2019), exploring the content of our learned referencesz may provide another perspec-
tive on this question. More generally, visualization and interpretation of the learned references could
be of interest for biological sequences.

5 EXPERIMENTS

We now show the effectiveness of our embedding OTKE in tasks where samples can be expressed as
large sets with potentially few labels, such as in bioinformatics. We evaluate our embedding alone
in unsupervised or supervised settings, or within a model in the supervised setting. We also consider
NLP tasks involving shorter sequences and relatively more labels.

5.1 DATASETS, EXPERIMENTAL SETUP AND BASELINES

In unsupervised settings, we train a linear classi�er with the cross entropy loss between true la-
bels and predictions on top of the features provided by our embedding (where the referencesz
and Nystr̈om anchorsw have been learned without supervision), or an unsupervised baseline. In
supervised settings, the same model is initialized with our unsupervised method and then trained
end-to-end (includingz andw) by minimizing the same loss. We use an alternating optimization
strategy to update the parameters for both SCOP and SST datasets, as used by Chen et al. (2019a;b).
We train for 100 epochs with Adam on both data sets: the initial learning rate is 0.01, and get
halved as long as there is no decrease in the validation loss for 5 epochs. The hyper-parameters
we tuned include number of supports and referencesp; q, entropic regularization in OT", the band-
width of Gaussian kernels and the regularization parameter of the linear classi�er. The best values
of " and the bandwidth were found stable across tasks, while the regularization parameter needed
to be more carefully cross-validated. Additional results and implementation details can be found in
Appendix C.

Protein fold classi�cation on SCOP 1.75. We follow the protocol described by Hou et al. (2019)
for this important task in bioinformatics. The dataset contains19; 245 sequences from1; 195 dif-
ferent classes of fold (hence less than 20 labels in average per class). The sequence lengths vary
from tens to thousands. Each element of a sequence is a45-dimensional vector. The objective is to
classify the sequences to fold classes, which corresponds to a multiclass classi�cation problem. The
features fed to the linear classi�er are the output of our embedding with' the Gaussian kernel map-
ping onk-mers (subsequences of lengthk) with k �xed to be 10, which is known to perform well in
this task (Chen et al., 2019a). The number of anchor points for Nyström method is �xed to 1024 and
512 respectively for unsupervised and supervised setting. In the unsupervised setting, we compare
our method to state-of-the-art unsupervised method for this task: CKN (Chen et al., 2019a), which
performs a global mean pooling in contrast to the global adaptive pooling performed by our embed-
ding. In the supervised setting, we compare the same model to the following supervised models:
CKN, Recurrent Kernel Networks (RKN) (Chen et al., 2019b), a CNN with10convolutional layers
named DeepSF (Hou et al., 2019), Rep the Set (Skianis et al., 2020) and Set Transformer (Lee et al.,
2019), using the public implementations by their authors. Rep the Set and Set Transformer are used
on the top of a convolutional layer of the same �lter size as CKN to extractk-mer features. Their
model hyper-parameters, weight decay and learning rate are tuned in the same way as for our models
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(see Appendix for details). The default architecture of Set Transformer did not perform well due to
over�tting. We thus used a shallower architecture with one Induced Set Attention Block (ISAB), one
Pooling by Multihead Attention (PMA) and one linear layer, similar to the one-layer architectures
of CKN and our model. The results are shown in Table 2.

Table 2: Classi�cation accuracy (top 1/5/10) on test set for SCOP 1.75 for different unsupervised
and supervised baselines, averaged from 10 different runs (q references� p supports).

Method Unsupervised Supervised

DeepSF (Hou et al., 2019) Not available. 73.0/90.3/94.5
CKN (Chen et al., 2019a) 81.8� 0.8/92.8� 0.2/95.0� 0.2 84.1� 0.1/94.3� 0.2/96.4� 0.1
RKN (Chen et al., 2019b) Not available. 85.3� 0.3/95.0� 0.2/96.5� 0.1
Set Transformer (Lee et al., 2019) Not available. 79.2� 4.6/91.5� 1.4/94.3� 0.6
Approximate Rep the Set (Skianis et al., 2020) Not available. 84.5� 0.6/94.0� 0.4/95.7� 0.4

Ours (dot-product instead of OT) 78.2� 1.9/93.1� 0.7/96.0� 0.4 87.5� 0.3/95.5� 0.2/96.9� 0.1
Ours (Unsup.:1 � 100 / Sup.:5 � 10) 85.8� 0.2/95.3� 0.1/96.8� 0.1 88.7� 0.3/95.9� 0.2/97.3� 0.1

Detection of chromatin pro�les. Predicting the chromatin features such as transcription factor
(TF) binding from raw genomic sequences has been studied extensively in recent years. CNNs
with max pooling operations have been shown effective for this task. Here, we consider DeepSEA
dataset (Zhou & Troyanskaya, 2015) consisting in simultaneously predicting 919 chromatin pro�les,
which can be formulated as a multi-label classi�cation task. DeepSEA contains4; 935; 024DNA se-
quences of length 1000 and each of them is associated with919different labels (chromatin pro�les).
Each sequence is represented as a1000� 4 binary matrix through one-hot encoding and the objec-
tive is to predict which pro�les a given sequence possesses. As this problem is very imbalanced for
each pro�le, learning an unsupervised model could require an extremely large number of parame-
ters. We thus only consider our supervised embedding as an adaptive pooling layer and inject it into
a deep neural network, between one convolutional layer and one fully connected layer, as detailed in
Appendix C.4. In our embedding,' is chosen to be identity and the positional encoding described
in Section 3 is used. We compare our model to a state-of-the-art CNN with 3 convolutional layers
and two fully-connected layers (Zhou & Troyanskaya, 2015). The results are shown in Table 3.

Sentiment analysis on Stanford Sentiment Treebank. SST-2 (Socher et al., 2013) belongs to
the NLP GLUE benchmark (Wang et al., 2019) and consists in predicting whether a movie review
is positive. The dataset contains70; 042 reviews. The test predictions need to be submitted on
the GLUE leaderboard, so that we remove a portion of the training set for validation purpose and
report accuracies on the actual validation set used as a test set. Our model is one layer of our
embedding with' a Gaussian kernel mapping with64Nyström �lters in the supervised setting, and
a linear mapping in the unsupervised setting. The features used in our model and all baselines are
word vectors with dimension768provided by the HuggingFace implementation (Wolf et al., 2019)
of the transformer BERT (Devlin et al., 2019). State-of-the-art accuracies are usually obtained
after supervised �ne-tuning of pre-trained transformers. Training a linear model on pre-trained
features after simple pooling (e.g, mean) also yields good results. [CLS], which denotes the BERT
embedding used for classi�cation, is also a common baseline. The results are shown in Table 4.

5.2 RESULTS AND DISCUSSION

In protein fold classi�cation, our embedding outperforms all baselines in both unsupervised and
supervised settings. Surprisingly, our unsupervised model also achieves better results than most
supervised baselines. In contrast, Set Transformer does not perform well, possibly because its
implementation was not designed for sets with varying sizes, and tasks with few annotations. In
detection of chromatin pro�les, our model (our embedding within a deep network) has fewer layers
than state-of-the-art CNNs while outperforming them, which advocates for the use of attention-
based models for such applications. Our results also suggest that positional information is important

Table 3: Results for prediction of chromatin pro�les on the DeepSEA dataset. The metrics are area
under ROC (auROC) and area under PR curve (auPRC), averaged over 919 chromatin pro�les. Due
to the huge size of the dataset, we only provide results based on a single run.

Method auROC auPRC

DeepSEA (Zhou & Troyanskaya, 2015) 0.933 0.342
Ours with position encoding (Sinusoidal (Vaswani et al., 2017)/Ours)0.917/0.936 0.311/0.360
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Table 4: Classi�cation accuracies for SST-2 reported on standard validation set, averaged from 10
different runs (q references� p supports).

Method Unsupervised Supervised

[CLS] embedding (Devlin et al., 2019) 84.6� 0.3 90.3� 0.1
Mean Pooling of BERT features (Devlin et al., 2019) 85.3� 0.4 90.8� 0.1
Approximate Rep the Set (Skianis et al., 2020) Not available. 86.8� 0.9
Rep the Set (Skianis et al., 2020) Not available. 87.1� 0.5
Set Transformer (Lee et al., 2019) Not available. 87.9� 0.8

Ours (dot-product instead of OT) 85.7� 0.9 86.9� 1.1
Ours (Unsupervised:1 � 300. Supervised:4 � 30) 86.8� 0.3 88.1� 0.8

(Appendix C.4;C.2), and our Gaussian position encoding outperforms the sinusoidal one introduced
in Vaswani et al. (2017). Note that in contrast to a typical transformer, which would have stored a
1000� 1000attention matrix, our attention score with a reference of size64is only1000� 64, which
illustrates the discussion in Section 4. In NLP, ana priori less favorable setting since sequences are
shorter and there are more data, our supervised embedding gets close to a strong state-of-the-art,
i.e. a fully-trained transformer. We observed our method to be much faster than RepSet, as fast as
Set Transformer, yet slower than ApproxRepSet (C.3). Using the OT plan as similarity score yields
better accuracies than the dot-product between the input sets and the references (see Table 2; 4).

Choice of parameters. This paragraph sums up the impact of hyper-parameter choices. Experi-
ments justifying our claims can be found in Appendix C.

� Number of referencesq: for biological sequences, a single reference was found to be enough
in the unsupervised case, see Table 11. In the supervised setting, Table 14 suggests that using
q = 5 provides slightly better results butq = 1 remains a good baseline, and that the sensitivity
to number of references is moderate.

� Number of supportsp in a reference: Table 11 and Table 14 suggest that the sensitivity of the
model to the number of supports is also moderate.

� Nyström anchors: an anchor can be seen as a neuron in a feed-forward neural network (see
expression of in 3.3). In unsupervised settings, the more anchors, the better the approximation
of the kernel matrix. Then, the performance saturates, see Table 12. In supervised settings, the
optimal number of anchors points is much smaller, as also observed by Chen et al. (2019a), Fig 6.

� Bandwidth� in gaussian kernel:� was chosen as in Chen et al. (2019b) and we did not try to
optimize it in this work, as it seemed to already provide good results. Nevertheless, slightly better
results can be obtained when tuning this parameter, for instance in SST-2.

OTKE and self-supervised methods. Our approach should not be positioned against self-
supervision and instead brings complementary features: the OTKE may be plugged in state-of-
the-art models pre-trained on large unannotated corpus. For instance, on SCOP 1.75, we use ESM-
1 (Rives et al., 2019), pretrained on 250 millions protein sequences, with mean pooling followed by
a linear classi�er. As we do not have the computational ressources to �ne-tune ESM1-t34, we only
train a linear layer on top of the extracted features. Using the same model, we replace the mean
pooling by our (unsupervised) OTKE layer, and also only train the linear layer. This results in ac-
curacy improvements as showed in Table 5. While training huge self-supervised learning models on
large datasets is very effective, ESM1-t34 admits more than 2500 times more parameters than our
single-layer OTKE model (260k parameters versus 670M) and our single-layer OTKE outperforms
smaller versions of ESM1 (43M parameters). Finally, self-supervised pre-training of a deep model
including OTKE on large data sets would be interesting for fair comparison.

Table 5: Classi�cation accuracy (top 1/5/10) results of our unsupervised embedding for SCOP 1.75
with pre-trained ESM models (Rives et al., 2019).

Model Nb parameters Mean Pooling Unsupervised OTKE

ESM1-t6-43M-UR50S 43M 84.01/93.17/95.07 85.91/93.72/95.30
ESM1-t34-670M-UR50S 670M 94.95/97.32/97.91 95.22/97.32/98.03

Multi-layer extension. Extending the OTKE to a multi-layer embedding is a natural yet not
straightforward research direction: it is not clear how to �nd a right de�nition of intermediate fea-
ture aggregation in a multi-layer OTKE model. Note that for DeepSEA, our model with single-layer
OTKE already outperforms a multi-layer CNN, which suggests that a multi-layer OTKE is not al-
ways needed.
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Appendix

Appendix A provides some background on notions used throughout the paper; Appendix B contains
the proofs skipped in the paper; Appendix C provides additional experimental results as well as
details on our protocol for reproducibility.

A A DDITIONAL BACKGROUND

This section provides some background on attention and transformers, Sinkhorn's algorithm and the
relationship between optimal transport based kernels and positive de�nite histogram kernels.

A.1 SINKHORN' S ALGORITHM: FAST COMPUTATION OF P � (x ; z)

Without loss of generality, we consider here� the linear kernel. We recall thatP � (x ; z) is the solu-
tion of an optimal transport problem, which can be ef�ciently solved by Sinkhorn's algorithm (Peyré
& Cuturi, 2019) involving matrix multiplications only. Speci�cally, Sinkhorn's algorithm is an it-
erative matrix scaling method that takes the opposite of the pairwise similarity matrixK with entry
K ij := hx i ; zj i as inputC and outputs the optimal transport planP � (x ; z) = Sinkhorn(K ; " ).
Each iteration step̀performs the following updates

u ( ` +1) =
1=n

Ev ( ` )
and v ( ` +1) =

1=p
E> u ( ` )

; (8)

whereE = eK =" . Then the matrix diag(u ( ` ) )Ediag(v ( ` ) ) converges toP � (x ; z) when` tends to
1 . However when" becomes too small, some of the elements of a matrix productEv or E> u
become null and result in a division by 0. To overcome this numerical stability issue, computing the
multipliersu andv is preferred (seee.g.(Peyŕe & Cuturi, 2019, Remark 4.23)). This algorithm can
be easily adapted to a batch of data pointsx, and with possibly varying lengths via a mask vector
masking on the padding positions of each data pointx, leading to GPU-friendly computation. More
importantly, all the operations above at each step are differentiable, which enablesz to be optimized
through back-propagation. Consequently, this module can be injected into any deep networks.

A.2 ATTENTION AND TRANSFORMERS

We clarify the concept of attention — a mechanism yielding a context-dependent embedding for
each element ofx — as a special case of non-local operations (Wang et al., 2017; Buades et al.,
2011), so that it is easier to understand its relationship to the OTK. Let us assume we are given a set
x 2 X of lengthn. A non-local operation onx is a function� : X 7! X such that

�( x) i =
nX

j =1

w(x i ; x j )v(x j ) = W (x)>
i V (x);

where W (x) i denotes thei -th column of W (x), a weighting function, andV (x) =
[v(x1); : : : ; v(xn )]> , an embedding. In contrast to operations on local neighborhood such as con-
volutions, non-local operations theoretically account for long range dependencies between elements
in the set. In attention and the context of neural networks,w is alearnedfunction re�ecting therel-
evanceof each other elementsx j with respect to the elementx i being embedded and given the task
at hand. In the context of the paper, we compare to a type of attention coined asdot-product self-
attention, which can typically be found in the encoder part of the transformer architecture (Vaswani
et al., 2017). Transformers are neural network models relying mostly on a succession of an atten-
tion layer followed by a fully-connected layer. Transformers can be used in sequence-to-sequence
tasks — in this setting, they have an encoder with self-attention and a decoder part with a variant
of self-attention —, or in sequence to label tasks, with only the encoder part. The paper deals with
the latter. The name self-attention means that the attention is computed using a dot-product of linear
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transformations ofx i andx j , andx attends to itself only. In its matrix formulation, dot-product
self-attention is a non-local operation whose matching vector is

W (x) i = Softmax
�

WQ x i x> W >
Kp

dk

�
;

whereWQ 2 Rn � dk andWK 2 Rn � dk are learned by the network. In order to know whichx j
are relevant tox i , the network computes scores between a query forx i (WQ x i ) and keys of all the
elements ofx (WK x). The softmax turns the scores into a weight vector in the simplex. Moreover,
a linear mappingV (x) = WV x, the values, is also learned.WQ andWK are often shared (Kitaev
et al., 2020). A drawback of such attention is that for a sequence of lengthn, the model has to store
an attention matrixW with sizeO(n2). More details can be found in Vaswani et al. (2017).

B PROOFS

B.1 PROOF OFLEMMA 3.1

Proof. First, since
P n 0

j =1 pP(x0; z) jk = 1 for anyk, we have

W2(x ; z)2 =
nX

i =1

pX

k=1

P(x; z) ik d2
� (x i ; zk )

=
nX

i =1

pX

k=1

n 0
X

j =1

pP(x0; z) jk P(x; z) ik d2
� (x i ; zk )

= kuk2
2;

with u a vector inRnn 0p whose entries are
p

pP(x0; z) jk P(x; z) ik d� (x i ; zk ) for i = 1 ; : : : ; n,
j = 1 ; : : : ; n0 andk = 1 ; : : : ; p. We can also rewriteW z

2 (x ; x0) as an`2-norm of a vectorv in
Rnn 0p whose entries are

p
pP(x0; z) jk P(x; z) ik d� (x i ; x0

j ). Then by Minkowski inequality for the
`2-norm, we have

jW2(x ; z) � W z
2 (x ; x0)j = jkuk2 � k vk2j

� k u � vk2

=

0

@
nX

i =1

pX

k=1

n 0
X

j =1

pP(x0; z) jk P(x; z) ik (d� (x i ; zk ) � d� (x i ; x0
j ))2

1

A

1=2

�

0

@
nX

i =1

pX

k=1

n 0
X

j =1

pP(x0; z) jk P(x; z) ik d2
� (x0

j ; zk )

1

A

1=2

=

0

@
pX

k=1

n 0
X

j =1

P(x0; z) jk d2
� (x0

j ; zk )

1

A

1=2

= W2(x0; z);

where the second inequality is the triangle inequality for the distanced� . Finally, we have

jW2(x ; x0) � W z
2 (x ; x0)j

�j W2(x ; x0) � W2(x ; z)j + jW2(x ; z) � W z
2 (x ; x0)j

� W2(x0; z) + W2(x0; z)

=2W2(x0; z);

where the second inequality is the triangle inequality for the 2-Wasserstein distance. By symmetry,
we also havejW2(x ; x0) � W z

2 (x ; x0)j � 2W2(x ; z), which concludes the proof.
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B.2 RELATIONSHIP BETWEENW2 AND W z
2 FOR MULTIPLE REFERENCES

Using the relation prooved in Appendix B.1, we can obtain a bound on the error term betweenW2
andW z

2 for a data set ofm samples (x1; : : : ; xm ) andq references (z1; : : : ; zq)

E2 :=
1

m2

mX

i;j =1

jW2(x i ; x j ) � W z1 ;:::; zq

2 (x i ; x j )j2 �
4

mq

mX

i =1

qX

j =1

W 2
2 (x i ; zj ): (9)

Whenq = 1 , the right-hand term in the inequality is the objective to minimize in the Wasserstein
barycenter problem (Cuturi & Doucet, 2013), which further explains why we considered it: Once
W z

2 is close to the Wasserstein distanceW2, K z will also be close toK OT. We extend here the
bound in equation 6 in the case of one reference to the multiple-reference case. The approximate
2-Wasserstein distanceW z

2 (x ; x0) thus becomes

W z1 ;:::; zq

2 (x ; x0) :=

*
1
q

qX

j =1

P z j (x ; x0); d2
� (x ; x0)

+ 1=2

=

0

@1
q

qX

j =1

W z j

2 (x ; x0)2

1

A

1=2

:

Then by Minkowski inequality for thè2-norm we have

jW2(x ; x0) � W z1 ;:::; zq
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and by equation 6 we have
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:

Finally the approximation error in terms of Frobenius is bounded by

E2 :=
1

m2

mX

i;j =1

jW2(x i ; x j ) � W z1 ;:::; zq

2 (x i ; x j )j2 �
4

mq

mX

i =1

qX

j =1

W 2
2 (x i ; zj ):

In particular, whenq = 1 that is the case of single reference, we have

E2 �
4
m

mX

i =1

W 2
2 (x i ; z);

where the right term equals to the objective of the Wasserstein barycenter problem, which justi�es
the choice ofz when learning without supervision.

C ADDITIONAL EXPERIMENTS AND SETUP DETAILS

This section contains additional experiments on CIFAR-10, whose purpose is to illustrate the kernel
associated with our embedding with respect to other classical or optimal transport based kernels,
and test our embedding on another data modality; additional results for the experiments of the main
section; details on our setup, in particular hyper-parameter tuning for our methods and the baselines.

C.1 EXPERIMENTS ONKERNEL MATRICES (ONLY FOR SMALL DATA SETS).

Here, we compare the optimal transport kernelK OT (3) and its surrogateK z (2) (with z learned
without supervision) to common and other OT kernels. Although our embedding� z is scalable, the
exact kernel require the computation of Gram matrices. For this toy experiment, we therefore use
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Table 6: Classi�cation accuracies for5000samples of CIFAR-10 using CKN features (Mairal, 2016)
and forming Gram matrix. A random baseline would yield10%.

Dataset (3 � 3), 256

Kernel Accuracy Runtime

Mean Pooling 58.5 � 30 sec
Flatten 67.6 � 30 sec
Sliced-Wasserstein (Kolouri et al., 2016) 63.8 � 2 min
Sliced-Wasserstein (Kolouri et al., 2016) + sin. pos enc. Devlin et al. (2019)66.0 � 2 min
K OT 64.5 � 20 min
K OT + our pos enc. 67.1 � 20 min

K z 67.9 � 30 sec
K z + our pos enc. 70.2 � 30 sec

5000samples only of CIFAR-10 (images with32 � 32 pixels), encoded without supervision using
a two-layer convolutional kernel network (Mairal, 2016). The resulting features are3 � 3 patches
living in Rd with d = 256 or 8192. K OT and K z aggregate existing features depending on the
ground cost de�ned by� � (Gaussian kernel) given the computed weight matrixP. In that sense,
we can say that these kernels work as an adaptive pooling. We therefore compare it to kernel matrices
corresponding to mean pooling and no pooling at all (linear kernel). We also compare to a recent
positive de�nite and fast optimal transport based kernel, the Sliced Wasserstein Kernel (Kolouri
et al., 2016) with10, 100and1000projection directions. We add a positional encoding to it so as to
have a fair comparison with our kernels. A linear classi�er is trained from this matrices. Although
we cannot prove thatK OT is positive de�nite, the classi�er trained on the kernel matrix converges
when" is not too small. The results can be seen on Table 6. Without positional information, our
kernels do better than Mean pooling. When the positions are encoded, the Linear kernel is also
outperformed. Note that including positions in Mean pooling and Linear kernel means interpolating
between these two kernels: in the Linear kernel, only patches with same index are compared while
in the Mean pooling, all patches are compared. All interpolations did worse than the Linear kernel.
The runtimes illustrate the scalability ofK z .

C.2 CIFAR-10

Here, we test our embedding on the same data modality: we use CIFAR-10 features,i.e., 60; 000
images with32 � 32 pixels and 10 classes encoded using a two-layer CKN (Mairal, 2016), one of
the baseline architectures for unsupervised learning of CIFAR-10, and evaluate on the standard test
set. The very best con�guration of the CKN yields a small number (3 � 3) of high-dimensional
(16; 384) patches and an accuracy of85:8%. We will illustrate our embedding on a con�guration
which performs slightly less but provides more patches (16� 16), a setting for which it was designed.

The input of our embedding are unsupervised features extracted from a 2-layer CKN with kernel
sizes equal to 3 and 3, and Gaussian pooling size equal to 2 and 1. We consider the following
con�gurations of the number of �lters at each layer, to simulate two different input dimensions for
our embedding:

� 64 �lters at �rst and 256 at second layer, which yields a16 � 16 � 256representation for
each image.

� 256 �lters at �rst and 1024 at second layer, which yields a16 � 16 � 1024representation
for each image.

Since the features are the output of a Gaussian embedding,� in our embedding will be the linear
kernel. The embedding is learned with one reference and various supports using K-means method
described in Section 3, and compared to several classical pooling baselines, including the original
CKN's Gaussian pooling with pooling size equal to 6. The hyper-parameters are the entropic regu-
larization" and bandwidth for position encoding� pos. Their search grids are shown in Table 7 and
the results in Table 8. Without supervision, the adaptive pooling of the CKN features by our embed-
ding notably improves their performance. We notice that the position encoding is very important to
this task, which substantially improves the performance of its counterpart without it.
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Table 7: Hyperparameter search range for CIFAR-10
Hyperparameter Search range

Entropic regularization" [1:0; 0:1; 0:01; 0:001]
Position encoding bandwidth� pos [0:5; 0:6; 0:7; 0:8; 0:9; 1:0]

Table 8: Classi�cation results using unsupervised representations for CIFAR-10 for two feature
con�gurations (extracted from a2-layer unsipervised CKN with different number of �lters). We
consider here our embedding with one reference and different number of supports, learned with
K-means, with or without position encoding (PE).

Method Nb. supports 16 � 16 � 256 16� 16 � 1024

Flatten 73.1 76.1
Mean pooling 64.9 73.4
Gaussian pooling (Mairal, 2016) 77.5 82.0

Ours 9 75.6 79.3
Ours (with PE) 78.0 82.2
Ours 64 77.9 80.1
Ours (with PE) 81.4 83.2
Ours 144 78.4 80.7
Ours (with PE) 81.8 83.4

C.3 PROTEIN FOLD RECOGNITION

Dataset description. Our protein fold recognition experiments consider the Structural Classi�ca-
tion Of Proteins (SCOP) version 1.75 and 2.06. We follow the data preprocessing protocols in Hou
et al. (2019), which yields a training and validation set composed of 14699 and 2013 sequences
from SCOP 1.75, and a test set of 2533 sequences from SCOP 2.06. The resulting protein sequences
belong to 1195 different folds, thus the problem is formulated as a multi-classi�cation task. The
input sequence is represented as a 45-dimensional vector at each amino acid. The vector consists
of a 20-dimensional one-hot encoding of the sequence, a 20-dimensional position-speci�c scoring
matrix (PSSM) representing the pro�le of amino acids, a 3-class secondary structure represented by
a one-hot vector and a 2-class solvent accessibility. The lengths of the sequences are varying from
tens to thousands.

Models setting and hyperparameters. We consider here the one-layer models followed by a
global mean pooling for the baseline methods CKN (Chen et al., 2019a) and RKN (Chen et al.,
2019b). We build our model on top of the one-layer CKN model, where� can be seen as a Gaus-
sian kernel on the k-mers in sequences. The only difference between our model and CKN is thus
the pooling operation, which is given by our embedding introduced in Section 3. The bandwidth
parameter of the Gaussian kernel� on k-mers is �xed to 0.6 for unsupervised models and 0.5 for
supervised models, the same as used in CKN which were selected by the accuracy on the valida-
tion set. The �lter sizek is �xed to 10 and different numbers of anchor points in Nyström for �
are considered in the experiments. The other hyperparameters for our embedding are the entropic
regularization parameter" , the number of supports in a referencep, the number of referencesq,
the number of iterations for Sinkhorn's algorithm and the regularization parameter� in the linear
classi�er. The search grid for" and� is shown in Table 9 and they are selected by the accuracy on
validation set." plays an important role in the performance and is observed to be stable for the same
dataset. For this dataset, it is selected to be 0.5 for all the unsupervised and supervised models. The
effect of other hyperparameters will be discussed below.

For the baseline methods, the accuracies of PSI-BLAST and DeepSF are taken from Hou et al.
(2019). The hyperparameters for CKN and RKN can be found in Chen et al. (2019b). For Rep the
Set (Skianis et al., 2020) and Set Transformer (Lee et al., 2019), we use the public implementations
by the authors. These two models are used on the top of a convolutional layer of the same �lter
size as CKN to extractk-mer features. As the exact version of Rep the Set does not provide any
implementation for back-propagation to a bottom layer of it, we consider the approximate version of
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Table 9: Hyperparameter search grid for SCOP 1.75
Hyperparameter Search range

" for Sinkhorn [1:0; 0:5; 0:1; 0:05; 0:01]
� for classi�er (unsupervised setting) 1=2range(5 ;20)

� for classi�er (supervised setting) [1e-6;1e-5;1e-4;1e-3]

Table 10: Hyperparameter search grid for SCOP 1.75 baselines.
Model and Hyperparameter Search range

ApproxRepSet: Hidden Sets� Cardinality [20; 30; 50; 100]� [10; 20; 50]
ApproxRepSet: Learning Rate [0:0001; 0:0005; 0:001]
ApproxRepSet: Weight Decay [1e-5;1e-4;1e-3;1e-2]
Set Transformer: Heads� Dim Hidden [1; 4; 8] � [64; 128; 256]
Set Transformer: Learning Rate [0:0001; 0:0005; 0:001]
Set Transformer: Weight Decay [1e-5;1e-4;1e-3;1e-2]

Rep the Set only, which also scales better to our dataset. The default architecture of Set Transformer
did not perform well due to over�tting. We therefore used a shallower architecture with one ISAB,
one PMA and one linear layer, similar to the one-layer architectures of CKN and our model. We
tuned their model hyperparameters, weight decay and learning rate. The search grids for these
hyperparameters are shown in Table 10.

Unsupervised embedding. The kernel embedding' , which is in�nite dimensional for the Gaus-
sian kernel, is approximated with the Nyström method using K-means on 300000 k-mers extracted
from the same training set as in Chen et al. (2019b). The reference measures are learned by using
either K-means or Wasserstein to update centroids in 2-Wasserstein K-means on 3000 subsampled
sequences for RAM-saving reason. We evaluate our model on top of features extracted from CKNs
of different dimensions, representing the number of anchor points used to approximate� . The num-
ber of iterations for Sinkhorn is �xed to 100 to ensure the convergence. The results for different
combinations ofq andp are provided in Table 11. Increasing the number of supportsp can improve
the performance and then saturate it whenp is too large. On the other hand, increasing the number of
references while keeping the embedding dimension (i.e. p � q) constant is not signi�cantly helpful
in this unsupervised setting. We also notice that Wasserstein Barycenter for learning the references
does not outperform K-means, while the latter is faster in terms of computation.

Supervised embedding. Our supervised embedding is initialized with the unsupervised method
and then trained in an alternating fashion which was also used for CKN: we use an Adam algorithm
to update anchor points in Nyström and reference measuresz, and the L-BFGS algorithm to optimize

Table 11: Classi�cation accuracy (top 1/5/10) results of our unsupervised embedding for SCOP 1.75.
We show the results for different combinations of (number of referencesq � number of supportsp).
The reference measuresz are learned with either K-means or Wasserstein barycenter for updating
centroids.

Nb. �lters Method q Embedding size (q � p)

10 50 100 200

128

K-means
1 76.5/91.5/94.4 77.5/91.7/94.5 79.4/92.4/94.9 78.7/92.1/95.1
5 72.8/89.9/93.7 77.8/91.7/94.6 78.6/91.9/94.6 78.1/92.1/94.7
10 62.7/85.8/91.1 76.5/91.0/94.2 78.1/92.2/94.9 78.6/92.2/94.7

Wass. bary.
1 64.0/85.9/91.5 71.6/88.9/93.2 77.2/91.4/94.2 77.5/91.9/94.8
5 70.5/89.1/93.0 76.6/91.3/94.4 78.4/91.7/94.3 77.1/91.9/94.7
10 63.0/85.7/91.0 75.9/91.4/94.3 77.5/91.9/94.6 77.7/92.0/94.7

1024 K-means
1 84.4/95.0/96.6 84.6/95.0/97.0 85.7/95.3/96.7 85.4/95.2/96.7
5 81.1/94.0/96.2 84.9/94.8/96.8 84.7/94.4/96.7 85.2/95.0/96.7
10 79.8/93.5/95.9 83.1/94.6/96.6 84.4/94.7/96.7 84.8/94.9/96.7

18



Published as a conference paper at ICLR 2021

Table 12: Classi�cation accuracy (top 1/5/10) results of our unsupervised embedding for SCOP
1.75. We show the results for different number of Nyström anchors. The number of references and
supports are �xed to 1 and 100.

Number of anchors Accuracies

1024 85.8/95.3/96.8
2048 86.6/95.9/97.2
3072 87.8/96.1/97.4

Table 13: Classi�cation accuracy (top 1/5/10) of supervised models for SCOP 1.75. The accuracies
obtained by averaging 10 different runs. We show the results of using either one reference with 50
supports or 5 references with 10 supports. Here DeepSF is a 10-layer CNN model.

Method Runtime Top 1/5/10 accuracy on SCOP 2.06

PSI-BLAST (Hou et al., 2019) - 84.53/86.48/87.34
DeepSF (Hou et al., 2019) - 73.00/90.25/94.51
Set Transformer (Lee et al., 2019) 3.3h 79.15� 4.61/91.54� 1.40/94.33� 0.63
ApproxRepSet (Skianis et al., 2020) 2h 84.51� 0.58/94.03� 0.44/95.73� 0.37

Number of �lters 128 512

CKN (Chen et al., 2019a) 1.5h 76.30� 0.70/92.17� 0.16/95.27� 0.17 84.11� 0.11/94.29� 0.20/96.36� 0.13
RKN (Chen et al., 2019b) - 77.82� 0.35/92.89� 0.19/95.51� 0.20 85.29� 0.27/94.95� 0.15/96.54� 0.12

Ours
� z (1 � 50) 3.5h 82.83� 0.41/93.89� 0.33/96.23� 0.12 88.40� 0.22/95.76� 0.13/97.10� 0.15
� z (5 � 10) 4h 84.68� 0.50/94.68� 0.29/96.49� 0.18 88.66� 0.25/95.90� 0.15/97.33� 0.14

the classi�er. The learning rate for Adam is initialized with 0.01 and halved as long as there is no
decrease of the validation loss for 5 successive epochs. In practice, we notice that using a small
number of Sinkhorn iterations can achieve similar performance to a large number of iteration, while
being much faster to compute. We thus �x it to 10 throughout the experiments. The accuracy
results are obtained by averaging on 10 runs with different seeds following the setting in Chen et al.
(2019b). The results are shown in Table 13 with error bars. The effect of the number of supportsq
is similar to the unsupervised case, while increasing the number of references can indeed improve
performance.

C.4 DETECTION OF CHROMATIN PROFILES

Dataset description. Predicting the functional effects of noncoding variants from only genomic
sequences is a central task in human genetics. A fundamental step for this task is to simultane-
ously predict large-scale chromatin features from DNA sequences (Zhou & Troyanskaya, 2015).
We consider here the DeepSEA dataset, which consists in simultaneously predicting 919 chromatin
pro�les including 690 transcription factor (TF) binding pro�les for 160 different TFs, 125 DNase I
sensitivity pro�les and 104 histone-mark pro�les. In total, there are 4.4 million, 8000 and 455024
samples for training, validation and test. Each sample consists of a 1000-bp DNA sequence from
the human GRCh37 reference. Each sequence is represented as a1000� 4 binary matrix using one-
hot encoding on DNA characters. The dataset is available athttp://deepsea.princeton.
edu/media/code/deepsea_train_bundle.v0.9.tar.gz . Note that the labels for each
pro�le are very imbalanced in this task with few positive samples. For this reason, learning unsu-

Table 14: Classi�cation accuracy (top 1/5/10) results of our supervised embedding for SCOP 1.75.
We show the results for different combinations of (number of referencesq � number of supportsp).
The reference measuresz are learned with K-means.

Embedding size (q � p) 10 50 100 200

q = 1 88.3/95.5/97.0 88.4/95.8/97.2 87.1/94.9/96.7 87.7/94.9/96.3
q = 2 87.8/95.8/97.0 89.6/96.2/97.5 86.5/94.9/96.6 87.6/94.9/96.3
q = 5 87.0/95.1/96.7 88.8/96.0/97.2 87.4/95.4/97.0 87.4/94.7/96.2
q = 10 84.5/93.6/95.6 89.8/96.0/97.2 88.0/95.7/97.0 85.6/94.4/96.1
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Table 15: Model architecture for DeepSEA dataset.
Model architecture

Conv1d(in channels=4, out channels=d, kernel size=16) + ReLU
(Ours) EmbeddingLayer(in channels=d, supports=64, references=1," = 1 :0, PE=True,� pos = 0 :1)
Linear(in channels=d, out channels=d) + ReLU
Dropout(0.4)
Linear(in channels=d � 64, out channels=919) + ReLU
Linear(in channels=919, out channels=919)

Table 16: Results for prediction of chromatin pro�les on the DeepSEA dataset. The metrics are
area under ROC (auROC) and area under PR curve (auPRC), averaged over 919 chromatin pro�les.
The accuracies are averaged from 10 different runs. Armed with the positional encoding (PE) de-
scribed in Section 3, our embedding outperforms the state-of-the-art model and another model of
our embedding with the PE proposed in Vaswani et al. (2017).

Method DeepSEA Ours Ours (d = 1024) Ours (d = 1536)
Position encoding - Sinusoidal (Vaswani et al., 2017) Ours Ours

auROC 0.933 0.917 0.935 0.936
auPRC 0.342 0.311 0.354 0.360

pervised models could be intractable as they may require an extremely large number of parameters
if junk or redundant sequences cannot be �ltered out.

Model architecture and hyperparameters. For the above reason and fair comparison, we use
here our supervised embedding as a module in Deep NNs. The architecture of our model is shown
in Table 15. We use an Adam optimizer with initial learning rate equal to 0.01 and halved at epoch 1,
4, 8 for 15 epochs in total. The number of iterations for Sinkhorn is �xed to 30. The whole training
process takes about 30 hours on a single GTX2080TI GPU. The dropout rate is selected to be 0.4
from the grid[0:1; 0:2; 0:3; 0:4; 0:5] and the weight decay is 1e-06, the same as Zhou & Troyanskaya
(2015). The� pos for position encoding is selected to be 0.1, by the validation accuracy on the grid
[0:05; 0:1; 0:2; 0:3; 0:4; 0:5]. The checkpoint with the best validation accuracy is used to evaluate on
the test set. Area under ROC (auROC) and area under precision curve (auPRC), averaged over 919
chromatin pro�les, are used to measure the performance. The hidden sized is chosen to be either
1024 or 1536.

Results and importance of position encoding. We compare our model to the state-of-the-art
CNN model DeepSEA (Zhou & Troyanskaya, 2015) with 3 convolutional layers, whose best hyper-
parameters can be found in the corresponding paper. Our model outperforms DeepSEA, while
requiring fewer layers. The positional information is known to be important in this task. To show
the ef�cacy of our position encoding, we compare it to the sinusoidal encoding used in the original
transformer (Vaswani et al., 2017). We observe that our encoding with properly tuned� pos requires
fewer layers, while being interpretable from a kernel point of view. We also �nd that larger hidden
sized performs better, as shown in Table 16. ROC and PR curves for all the chromatin pro�les and
strati�ed by transcription factors, DNase I-hypersensitive sites and histone-marks can also be found
in Figure 2.

C.5 SST-2

Dataset description. The data set contains 67,349 training samples and 872 validation samples
and can be found athttps://gluebenchmark.com/tasks . The test set contains 1,821 sam-
ples for which the predictions need to be submitted on the GLUE leaderboard, with limited number
of submissions. As a consequence, our training and validation set are extracted from the original
training set (80% of the original training set is used for our training set and the remaining 20% is
used for our validation set), and we report accuracies on the standard validation set, used as a test
set. The reviews are padded with zeros when their length is shorter than the chosen sequence length
(we choose30 and66, the latter being the maximum review length in the data set) and the BERT
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