Learning to Solve Complex Problems
via Dataset Decomposition

Wanru Zhao®? Lucas Caccia’ Zhengyan Shi® Minseon Kim®

Weijia Xu? Alessandro Sordoni®*

“University of Cambridge ®Microsoft Research “Mila - Quebec Al Institute

Abstract

Curriculum learning is a class of training strategies that organizes the data being
exposed to a model by difficulty, gradually from simpler to more complex examples.
This research explores a reverse curriculum generation approach that recursively de-
composes complex datasets into simpler, more learnable components. We propose
a teacher-student framework where the teacher is equipped with the ability to reason
step-by-step, which is used to recursively generate easier versions of examples,
enabling the student model to progressively master difficult tasks. We propose a
novel scoring system to measure data difficulty based on its structural complexity
and conceptual depth, allowing curriculum construction over decomposed data.
Experiments on math datasets (MATH and AIME) and code generation datasets
demonstrate that models trained with curricula generated by our approach exhibit
superior performance compared to standard training on original datasets.

1 Introduction

When teaching language models (LMs) to solve mathematical problems, one common solution is to
apply supervised learning on a dataset of problems with worked-out solution steps. This is, to some
extent, in stark contrast to how humans are educated and generally taught to solve problems, e.g. with
a curriculum, where a teacher presents simpler concepts first, to build a foundation for later tackling
more challenging tasks.

Transposing this strategy to train machine learning models, e.g. via curriculum learning [Elman,
1993, Bengio et al., 2009], has historically yielded mixed results. We speculate that one of the reasons
is that approaches largely relied on ranking by difficulty examples within a dataset [Wu et al., 2020,
Lalor and Yu, 2020]. Not only is accurately estimating difficulty challenging, but datasets may also
lack the diversity or granularity needed to isolate and teach the fundamental “skills” required for
complex problem-solving. Recent studies suggest that curriculum learning is more effective when
“decomposed” datasets that isolate atomic skills are available to the learner [Lee et al., 2024].

We build upon this intuition and, assuming access to a teacher model that can reason step-by-step, we
propose a way of “decomposing” a dataset of mathematical problems into a hierarchy of problems
with different difficulty levels. Our approach, DECOMPX, enables smaller LMs to progressively
acquire elemental skills before tackling more intricate ones. Although we focus on mathematical
datasets such as MATH [Hendrycks et al., 2021] and AIME [of America, 2024], as well as code
generation datasets such as [Chen et al., 2021], we think the approach might be applied to a broader
range of domains in the future.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Our dataset decomposition approach starts with a dataset of mathematical questions and step-by-step
solutions. The main idea is that a teacher model can generate simpler problems by looking at sub-steps
in the solution. Every sub-step is by definition simpler than the original problem and thus can be
used as the answer for a latent, simpler problem. Crucially, this process can be recursively iterated:
we can now ask a teacher model to create a step-by-step solution to the sub-problem and recursively
generate simpler problems in the same manner until a stopping criterion — such as recursion depth or
problem simplicity — is met. Given the strong inductive bias of step-by-step reasoning, the teacher is
encouraged to work out solutions to progressively simpler problems. This process creates a tree of
sub-problems for each question in the original dataset.

To facilitate curriculum construction, we assign difficulty scores to sub-problems based on their
structural complexity. We tag sub-problems and construct a graph of tags by connecting each sub-
problem’s tag to its parent problem’s tag. The graph synthesizes tag relationships across the entire
dataset. The simplicity of a problem is then computed both using the "depth" of the tags associated
with a given problem and the number of sub-problems it generates.

We use our dataset decomposition to train small LMs to do mathematical reasoning and code generation
via supervised fine-tuning (SFT). Even when decomposed problems are presented i.i.d. to the models,
our approach improves the ability of small LMs to learn from a small set of examples. We see further
gains when sub-problems are presented in the order of increasing complexity.

Apart from the dataset augmentation and curriculum construction aspect, one of the useful byproducts
of our method is the potential for creating a “cartography” of a given dataset [Swayamdipta et al.,
2020]. Our induced graph of skills can be used to gain more insights into coverage of the dataset and
how additional samples might increase the coverage, or even how two seemingly different datasets
are related to each other.

2 Related Work

Data Augmentation Data Augmentation, synthetically generated from an LLM can be seen as a
form of distillation [Hinton et al., 2015, Kim and Rush, 2016]. This approach has been especially
successful in distilling reasoning capabilities into smaller models [Mitra et al., 2023, Li et al., 2023,
Mitra et al., 2024]. This approach has also been applied to generate mathematical reasoning traces.
For instance, Self-Taught Reasoner [Zelikman et al., 2022] generates and then learns from its own
chain-of-thought reasoning steps. MuggleMath [Li et al., 2024] and MetaMath [Yu et al., 2024b]
both amplify diversity by evolving problem queries and sampling multiple reasoning traces, and by
applying paraphrases and backward reasoning transformation, respectively. MuMath [Yin et al., 2024]
further enriches examples through multiple rewrites using several “perspectives”’, e.g., paraphrase,
symbolic reformulation. MathGenie [Lu et al., 2024] back-translates a small seed set through a
generator—verifier loop to create high-fidelity new problems. PersonaMathQA [Luo et al., 2024] adds
“persona diversification” plus self-reflection to generate richer problem contexts. Beyond direct data
augmentation, Shridhar et al. [2023] generates subquestions and solutions to distill the knowledge from
the teacher model to students, Huang et al. [2025] synthesizes QA pairs by extracting key points from
problems. To simultaneously address the quality, diversity, and complexity of the dataset, Davidson
et al. [2025] proposes Simula, a unified framework for generating and evaluating synthetic data.
However, existing data augmentation techniques somewhat neglect prior knowledge and difficulty.
To address this gap, we propose hierarchically decomposing problems with multi-step augmentation
so models progressively acquire elemental skills.

Curriculum Learning Bengio et al. [2009], Elman [1993] originally propose to apply curriculum
to train LMs. Wu et al. [2020] shows mixed results when applying curriculum learning methods
based on example difficulty. In the past, many have studied different curriculum learning strategies to
either increase the context length or more efficiently train LMs [Press et al., 2020, Nagatsuka et al.,
2021], with unconvincing results. More recently, studies started to investigate synthetic data creation
associated with curriculum learning, yielding promising results for training small LMs for code [Nair
et al., 2024]. Work on TinyStories [Eldan and Li, 2023] shows that carefully synthetically curated
datasets can be helpful in teaching tiny LMs basic English proficiencies. These works align with ours
in the hypothesis that the synthetic data creation of easier examples can be used as a driving factor
underpinning a successful curriculum. In the robotics domain, [Florensa et al., 2017] proposes a
“reverse” learning strategy that starts RL training from the goal state and gradually guides the policy



; =)

tag
split l depth=1 Graph of tags and

associated problems
Step, ][ Step, ][St.ep3 ][ Step, ]

create
question + tag verify

solve|
Lo g o e
tag

v v v

e 14
1 i 1 1
| Stepyy :: Steps, d Stepyz

7 7

P QUS|

B fsmasas

question + tag

4 ]
‘

Figure 1. Left: We recursively decompose a math example (g, cot, a) into a set of smaller problems (depth 2 in
the figure). We first split the cot into steps, then create a question for each step and an associated concept tag.
We then ask the teacher model to solve the question step-by-step. We verify the final answer by ensuring it is the
same as the answer obtained without the ground-truth step in context. We then recursively apply this procedure
until a stopping criterion. Right: We create a graph of tags, where dependency relation is given by the hierarchy
in the decomposition tree. The graph of tags is used to quantify the difficulty of a generated sub-problem.

to learn to reach the goal from a set of start states increasingly far from the goal. This approach also
builds a curriculum with increasing difficulty levels (in a guaranteed way) by reversing the original
task. However, our reasoning domain is different because it allows us to leverage the compositionality
of language to decompose the reasoning tasks at much meaningful abstraction levels.

3 DEcCoOMPX: Dataset Decomposition

In this section, we propose a recursive algorithm, DECOMPX, that decomposes complex math problems
into simpler subproblems based on their underlying reasoning steps. Our algorithm consists in two
phases: first, we decompose each example into a hierarchical structure of sub-problems; second, we
connect these sub-problems at a dataset level using a tagging approach and we build a graph of tags,
useful to infer the difficulty of every sub-problem. Finally, we describe how we use the difficulty
score in our curriculum learning procedure.

3.1 How to generate subproblems? - Recursive Problem Decomposition

We propose a recursive dataset decomposition framework that constructs verified, grounded sub-
problems from multi-step solutions. Each sub-problem corresponds to a clear, atomic mathematical
reasoning operation, explicitly linked to a core mathematical concept and validated for correctness.
We assume access to a teacher model 7 (a large LM, we use GPT-40 in our experiments), which we
assume is proficient at the task of the dataset of interest.

Step Extraction. Given a solution trace cot for a math problem ¢, we first decompose it into at
most k reasoning steps. This is achieved by prompting the teacher model to segment the text based
on conceptual granularity: cot = [sq, S,, ..., 5], where each step s; introduces a new and distinct
mathematical operation.

Concept Tagging. For each step s;, we extract an atomic concept tag ¢; by querying the teacher model
to identify the most specific mathematical concept that governs the reasoning step.

Subproblem Generation. Given the original problem g, a step s;, and its tag t;, we generate a new
subproblem g; (i.e. a question) grounded in the original context (#;,q). Then, we ask the teacher
model to solve the generated problem g; step-by-step leading to a solution cot; and final answer a;.

Verification. To assess that the answer to the generated sub-problem g; is correct and answerable,
we also ask the teacher model to solve g; without access to the original context (¢;, g) resulting in an
answer ;. Given that a; has been generated with access to the original context, it is more likely to be
correct. Therefore, we compare the resulting numerical answer 4; to g; using a symbolic verifier V.
Only subproblems satisfying V(q;, 4;) = True are accepted. Otherwise, the subproblem is regenerated
with a retry budget of R attempts.



1

2
3

4
5

22
23

-
%)

First note that ged(16,12)=4, The equation becomes x°-4x+4=0

% which is the perfect square.

¥
gcd(16,12)=?

with multiplicity two

if a?=0, find a

Square
Root

Greatest.
Commen
Divisor

Perfect
Square

if(x?-4x+a) is a perfect square,
find the value of a.

16=214, 282=4 a=4/2=2
12-2A2x3
Prime \ Exponentiation
Factor

Find prime factors of 6

6=2"3 9
Multipli Multipli
cation ‘cation

Decomposition of an example

(x-2)?=0then x-2=0, ~ X~2=0
Hence x=2

Solve for x, x+4=0

Subtraction

Greatest
Common

Chinese
Remainder

Divisor

Prime o & tiati
1 Factor xponentiation
\
Modular m Multipli
Avrithmetic

Theorem

cation

VA

Addition
Square

Inferred Graph of Concept Tags

Figure 2. Left: We show the decomposition of the math problem on the top obtained with our method, along
with the associated concept tags. The problems in the solid white boxes are the generated sub-problems. Right:
The graph of concept tags, obtained by connecting the tags across the dataset examples.

Recursive Expansion. The sub-problem reasoning cot; contains further multi-step reasoning by
construction. Therefore, we can apply the process recursively by decomposing cot; using the same
procedure up to a maximum depth D. This produces, for every example in the dataset, a nested

structure:

a5 cotj a; = {(q; j> oty j a; YL,

where each child g; ; corresponds to a problem grounded in the constituent sub-step j of cot;.

In summary, the final output is a dataset composed of sub-problems, associated concept tags, sub-
problem depth, reasoning steps and answers (see Figure 1, left). We also illustrate the whole workflow

with concrete problems in Figure 2.

Algorithm 1 Recursive Dataset Decomposition

:Problem set D,

raw?

:Decomposed dataset D

Input
Output

Initialize empty dataset D, = {}

curr

Function DecomposeExample(q, cot,a,d, D,
Split cot into steps {sy, ..., s, } using T

fori =1to k do
Generate concept tag t, for step s; using 7

L’urr)

for retry = 1 to MaxRetries do
Generate question ¢; from (s;, ;)

if verified then
| Break
end

end

Dcurr = Dcurr U (qi’ COti’ ai’ ti’ d)

if d < D then
‘ DecomposeExample(q;, cot;,a;,d +1,D,,,,
end

end

end
foreach (g, cot,a) € D,,,, do

DecomposeExample (g, cot,a,0,D
D..=D,.U(q,cot,a—,D)

curr curr

curr )

end

Verify g, via auto-solver and consistency check (see paper)

teacher model 7', maximum decomposition depth D, maximum steps per layer k

Generate step-by-step solution cot; and answer g, from (g, s;, ;) using 7

) # Recursive call




3.2 How difficult is a certain (sub)problem? — Concept Dependency Graph

We construct a directed acyclic graph (DAG) over concepts derived from the recursive decomposed
problem-solving process above. This graph encodes the prerequisite relationships between mathemat-
ical operations across all the examples in the dataset, thus enabling curriculum design.

Let G = (V, £) denote the Concept Dependency Graph, where V is a set of concept tags (such
as “GCD” or “Square Root”), and & C V X V is a set of directed edges representing prerequisite
relationships between concepts. A directed edge (4, v) € £ indicates that concept v depends on
concept u.

The construction algorithm proceeds as follows. We initialize an empty directed graph . We add
the ensemble of tags across examples to the node set V. A parent tag 7, has a child tag 7, if they are
obtained while decomposing the same example and their depth differ by 1. For every parent tag 7,
and child tag 7., we insert an edge (7,,7,) € £, unless 7, = 1.

Nodes with zero in-degree in G represent foundational concepts. Formally, the set of root nodes
is defined as R = {v € V | in-degree(v) = 0}. To quantify concept difficulty, we define a depth
function d : V — N such that:

d(w) = 0 ifveR,
1+ max, e d(u) otherwise.

This depth serves as a proxy for the reasoning complexity required to apply concept v.

3.2.1 Concept Clustering via Embedding Similarity

Our generated tags include variations such as "GCD" and "Greatest Common Divisor" that refer to
the same mathematical concept. To unify these concepts and minimize semantic redundancy in our
graph, we use unsupervised clustering on tags’ embedding representations.

Specifically, each concept tag t € V is mapped to a dense vector representation ¢(t) € R? using a
pre-trained LM. We then compute pairwise cosine similarities between all tag embeddings. Denote,
the similarity as S(i, j).

To cluster tags, we employ a greedy clustering algorithm with a predefined similarity threshold 6.
Specifically, we sequentially select unassigned tags as cluster representatives and group all other tags
exceeding the similarity threshold under them. Formally, the mapping from original tags to cluster
representatives 7 is concisely defined as:

T(tj) =arg m%X {S(tjvti) | S(tj’ti) >4},

i€ Veep

where V., € V represents the set of selected representative tags.

After clustering, we relabel the nodes in the concept dependency graph G accordingly. Edges are
rewired based on these updated labels, explicitly removing any self-loops arising from clustering:

& = {(xw),7(v) | (u,v) € &, 7(w) # 7(v)}.

This results in a refined concept dependency graph ¢’ = (V’, £), where each node uniquely represents
a distinct conceptual skill.

3.2.2 Difficulty Measurement via Structural and Conceptual Features

The difficulty of a data sample stems from both the number of mathematical operations it includes and
the complexity of the concepts involved. For example, consider solving the following three problems:
a) 1+1; b) 1+1+. . .+1; (sum of thousands of 1); ¢) sqrt (3) + (5/76)*%2. c) is harder than P1 due
to conceptual complexity (the complexity of operations involved) while b) is harder than a) because
of structural complexity, the number of atomic operations involved.

While the Concept Dependency Graph provides a data-driven way to gauge a concept’s complexity by
measuring the depth of the concept’s tag in the graph, it may fall short in accounting for the structural



complexity of a specific reasoning step that involves that concept, such as the number of sub-problems
it can be decomposed into, or how important the sub-problem is to solve other problems in the dataset.
To address this, we introduce a composite difficulty score that combines both conceptual and structural
factors for a more comprehensive characterization.

Given a reasoning step s (or a data sample g before the first iteration of decomposition) in the recursive
decomposition tree (e.g., step; in Figure 1), we compute:

e structural complexity SC(s): the number of direct children of the reasoning step, reflecting its
structural branching factor. In the example in Figure 1, SC(step,) = 3 because step; can be further
decomposed into three lower-level reasoning steps (i.e., step;;, step;,, and step3).

o conceptual depth CD(s): the maximum depth of the concept tag in the Concept Dependency
Graph G that is associated with this reasoning step. In the example in Figure 1, CD(step;) equals
the depth of tag; in G.

Therefore, the overall difficulty score #(s) € R* is defined as a weighted combination of these two
terms:
£(s) = a; - SC(s) + ay - CD(s),

where a;, @, € R* are tunable coefficients that balance structural complexity and conceptual depth.

3.3 Curriculum Learning via Difficulty Measurement

To leverage the difficulty scores £ during training, we implement a staged curriculum learning
framework where the model is exposed to data in increasing order of difficulty. This approach enables
the model to first acquire capabilities on simpler sub-problems before attempting harder examples.

Let D' = {q, cot,#(q)} be the decomposed dataset where the question in each sample is annotated
with our difficulty score. We partition D’ into K non-overlapping subsets D/, ..., D), based on the
quantiles of difficulty:

Diu-uDy =D,
D) = {(g,con € D' | gb;_; < £(q) < qb;},

where {qbg,qgby, ..., qbg} are the quantile breakpoints computed from the score distribution. We
adopt an easy-to-hard curriculum, where the model is trained sequentially from D/1 to D/K. Each
stage is trained with early stopping to avoid overfitting and to allow controlled progression:

Stagei : 6; « arg mein L(6; D)),

where 6; denotes model parameters after stage i. We split the training budget across the full curriculum,
so that experiments presented in this paper are compute matched for a given setting.

4 Experiments and Results
In this section, we describe our evaluation procedure used to validate the effectiveness of DECOMPX.

4.1 Experimental Setup

Models We adopt the Qwen2.5-1.5B [Qwen et al., 2024] and Qwen3-4B-Base [Qwen et al., 2025]
models as our student models. Our dataset decomposition is driven by GPT-40 and 04-mini for
mathematical reasoning and code generation, respectively, which we leverage as our teacher models.

Datasets Our setup uses MATH [Hendrycks et al., 2021] and the American Invitational Mathematics
Examination (AIME). MATH [Hendrycks et al., 2021] is a benchmark of competition math problems
of varying difficulty. We evaluate on the same 500 samples in the prior work [Lightman et al., 2023].
AIME contains challenging mathematical competition problems. For training, we use AIME °24 as
training set and AIME ’25 as test set. Both datasets contain 30 problems that were used in the AIME
in 2024 and 2025, respectively. More details can be found in Appendix A.



Table 1. Comparison of testing accuracy to LLMs on the MATH-500 benchmark.# data refers to
the number of examples used for fine-tuning. *We evaluate based on the checkpoint released at
https://huggingface.co/Qwen/Qwen2.5-1.5B using lighteval [Habib et al., 2023].

Model #data MATH-500
Open-Weights Models
Qwen2.5-1.5B [Qwen et al., 2024] N.A. 35.0
Qwen2.5-3B [Qwen et al., 2024] N.A. 42.6
Llama-3-70B [Dubey et al., 2024] N.A. 42.5
Mixtral-8x22B [Jiang et al., 2024] N.A. 41.7
Gemma2-27B [Team et al., 2024] N.A. 42.7
MiniCPM3-4B [Hu et al., 2024] N.A. 46.6
Gemma2-9B-Instruct [Team et al., 2024] N.A. 44.3
Llama3.1-8B-Instruct [Dubey et al., 2024] N.A. 51.9
Owen2.5-1.5B SFT on MATH

Base* N.A. 472+22
SFT (full dataset) 7500 47.6 £2.2
SFT 360 484 +£2.2
SFT-Direct Distillation 360 496 +2.2
SFT-MetaMATH-Aug 2638 37.2+6.8
SFT-MuggleMath 147787 504 +2.2
SFT-DecompX (Ours) 4500 50.8 +£2.2
SFT-DecompX + Curriculum (Ours) 4500 51.6+2.2

To further demonstrate the generalization capability and versatility of our method, we conduct
additional experiments in a non-mathematical domain that demands complex reasoning: coding.
Specifically, we use the CodeForces-CoT's dataset [Penedo et al., 2025] (competitive programming
solutions in C++) from HuggingFace Open-R1 [Hugging Face, 2025] for training. This dataset
contains solutions generated by DeepSeek-R1 [DeepSeek-Al et al., 2024], where long and complex
reasoning traces are common. For evaluation, we employ the HumanEval benchmark [Chen et al.,
2021] (Python function completion), which serves as an explicitly out-of-distribution scenario.

Training Details Follow the fine-tuning setup in the previous work [Muennighoff et al., 2025] we
train each model for 5 epochs with a batch size of 16. We train the models using bfloat16 precision
with a learning rate of 10~>, warmed up linearly for 5% and then decayed to 0 over the rest of the
training, following a cosine schedule. We use the AdamW optimizer [Loshchilov and Hutter, 2019].
Unless otherwise specified, we evaluate with a temperature of 0 (greedy decoding) and measure
accuracy (equivalent to pass@1). The results are averaged over three different training seeds. Our
experiments are conducted on NVIDIA A100 GPUs with 80GB VRAM.

Baselines We compare our dataset decomposition and curriculum learning method with a set of
baseline systems: (1) closed-weights models such as GPT-40; (2) open-weights models; (3) Supervised
Fine-Tuning (SFT), which uses the training set of the original datasets; (4) direct distillation from
the same teacher model and the same original datasets. (4) Data augmentation methods including
MetaMath [Yu et al., 2024a] and MuggleMath [Li et al., 2024]: We applied MetaMath’s augmentation
pipeline for mathematical datasets by rephrasing questions as well as generating answers in four
augmentation types (rephrasing, self-verification, answer-augmentation and backward reasoning).

4.2 Main Results

We present our main results, evaluated across different benchmarks, and compared with baseline
approaches. We summarize the findings below.



Table 2. Comparison of testing accuracy to LLMs on the AIME 2025 benchmark. # data refers
to the number of examples used for fine-tuning. *We evaluate based on the checkpoint released at
https://huggingface.co/simplescaling/s1-32B without budget forcing.

Model #data AIME2025
Open-Weights Models

Qwen2.5-72B-Instruct [Qwen et al., 2024]  N.A. 15.0

S1-32B* [Muennighoff et al., 2025] 1000 13.3
Close-Source Models

GPT-40 [OpenAl et al., 2023] N.A. 7.6

QOwen3-4B-Base SFT on AIME2024

Base N.A. 10.0x+5.6

SFT 30 33+33

SFT-Direct Distillation 30 6.7+4.6

SFT-MetaMATH-Aug 114 44+42

SFT-DecompX (Ours) 385 13.3+6.3

SFT-DecompX + Curriculum (Ours) 385 16.7 + 6.9

DeepSeek-R1-Distill-Qwen-1.5B SFT on MATH
Base N.A.  2333+7.85
SFT-DecompX (Ours) 4500  30.00 + 8.51

DECOMPX improves performance across different benchmarks. We start our analysis by inves-
tigating performance on smaller LLMs. We see that across two different base models and datasets,
DEcoMPX shows consistent gains over standard baselines; Table 1 presents results using Qwen2.5-
1.5B finetuned and evaluated on MATH. We note that it achieves a 2.4% improvement over SFT
and a 13.6% relative gain over SFT-MetaMATH-Aug. It also demonstrates the advantages of DE-
CcoMPX over direct distillation. Table 2 reports test accuracy on AIME2025 obtained from fine-tuning
Qwen3-4B-Base on the AIME2024 data. Again, DECOMPX performs well, showing improvements
of 10% over SFT and 8.9% over SFT-MetaMATH-Aug. It even outperforms Qwen2.5-72B-Instruct,
a significantly larger model, using only 385 training samples. Overall, these results highlight the
effectiveness of our method and validate the benefit of structured decomposition and curriculum
learning in mathematical reasoning tasks. Finally, we note that DECOMPX is better than MetaMATH
on both of the benchmarks, which is used for generating augmented data for finetuning. MuggleMath
also underperforms our approach despite leveraging substantially more training data and richer prior
knowledge from the seed datasets (MATH and GSMS8K [Cobbe et al., 2021]). These results further
support the advantage of our structured, decomposition-based curriculum. Last but not least, Table 3
demonstrates the advantage of our methods compared to the baselines on the code generation tasks.

Performance reduced during post-training for traditional SFT. Surprisingly, we find that SFT
on mathematical datasets may reduce the performance compared to the base model in our experiments.
This behavior is especially visible on AIME (Table 2), suggesting that the model may be prone to
overfitting given the small dataset size.

DEcoMPX shows better generalisation. S1 [Muennighoff et al., 2025] is a reasoning model
obtained via supervised finetuning based on Qwen2.5-32B-Instruct using 1,000 samples. Although
this sample-efficient baseline achieves strong performance on MATH-500 and AIME2024, it does
not perform as well on AIME2025. The model is over-parameterized relative to the amount of signal
in the data. which means that the dataset contains less information than the model can represent. In
contrast, DECOMPX outperforms S1 even with a much smaller base model (4B) on AIME2025. Model
trained only on decomposed data generated from AIME2024 performance suggests its effectiveness
in generalizing to unseen mathematical tasks. SFT on AIME 2024 fails to generalize to another
year of AIME, whereas our data decomposition can help model better to learn the features that stay
predictive not only for in-domain generalisation, but also under the distribution shift. With curriculum
learning added to DECOMPX,, it can reshape the training trajectory so that the model first captures



Table 3. Comparison of testing accuracy to LLMs on the HumanEval benchmark. # data refers to the number of
examples used for fine-tuning.

Model HumanEval pass@1
Open-Weights Models
Llama3-8B [Dubey et al., 2024] 33.5
Mistral-7B [Jiang et al., 2024] 29.3
Gemma2-9B [Team et al., 2024] 37.8
Owen2.5-1.5B-Instruct SFT on Codeforces-CoTs
Base 34.15+3.71
SFT 3537 +3.74
SFT-DecompX (Ours) 42.68 + 3.87
DeepSeek-R1-Distill-Qwen-1.5B SFT on Codeforces-CoTs
Base 36.01 + 1.85
SFT-DecompX (Ours) 57.90 + 0.98

universal mathematical skills, then gradually adapts itself against wording and distribution drift. We
see evidence that curriculum learning can lead to better generalization and help model competitive
performance on AIME 2025 even when the other strong baselines do not.

Curriculum learning is beneficial.  In regular SFT, the examples are randomly shuffled. However,
with the sample difficulty measurement yielded by DECOMPX, we can create a learning curriculum,
starting with the easiest samples and progressively moving towards harder ones. This explores
whether difficulty measurements are useful in forming a curriculum without changing the set of
training examples. From Table 1 and Table 2, we find that even when training on the same set of
examples, difficulty measurements are useful for improving performance, compared to training with
a random sample order. Indeed, curriculum yields a 0.8% and 3.4% on MATH and AIME datasets
for DECOMPX, or relative improvements of 1.6% and 25.6% respectively over randomly ordered
sampling.

4.3 Case Study

Table 4 presents both the original data sample from the MATH training set (Left) and three cor-
responding generated data samples (Right), which are decomposed based on the original example.
Using the difficulty measurement defined earlier, we compute the difficulty scores and categorize the
samples into different levels. In both the MATH and AIME datasets, the difficulty scores range from
2 to 20. We define three levels of difficulty: low (scores around 2 to 6), medium (around 6 to 10), and
high (from 10 up to 20). As shown in Table 4, we successfully decompose complex problems into
simpler subproblems and effectively quantify the difficulty of each subproblem.

5 Discussion and Conclusion

In this work, we propose a novel curriculum learning approach via recursive dataset decomposition,
enabling smaller language models to progressively master mathematical reasoning tasks. Our experi-
ments on math benchmarks (MATH and AIME) show significant performance improvements over
baseline methods, highlighting the effectiveness of our structured decomposition and difficulty-scoring
strategies. In the future, we plan to improve DECOMPX so it could be effectively used for generating
more general datasets in a broader range of domains. However, this will require extensive study on
teacher models’ capability and reliability in task decomposition in other specific domains.

Implications and future work. Our work provides stronger evidence for self-improvement. While
our current work adopts a “large teacher to small student” setup, the method was designed to leverage
the previous generation of models not only as data consumers but also as data generators. The key
idea is to create a high-quality synthetic curriculum that teaches complex concepts by shaping data
for learning, rather than simply augmenting the dataset.



Table 4. Examples of an original data sample from MATH training set and its generated data samples.

Original Data \ Decomposed Data
Problem: Simplify 3343+_332 . Generated Data with Lower Difficulty Difficulty Score: 4.0
Express your answer as a Problem: What is the value of 33?
common fraction. Solution: To solve for 3%, we multiply 3 by itself three times:

3%x3=09,then9x3=27.So,3>=27.
Solution: The common factor | Tag: Exponentiation

of 3 in the numerator and the
denominator can be factored Generated Data of Medium Difficulty Difficulty Score: 10.0
343 _ 30743 _ 343
3-3 7 332-1) T 32-1° Problem: What is the greatest common divisor (GCD) of the
numbers 30 and 8?

. . . Solution: To find the greatest common divisor (GCD) of 30 and
27+ 3 = 30, denominator is 8, we need to identify the largest number that divides both 30 and
9—-1=28,s0 30 _ 1_5 X 8 without leaving a remainder. 1. List the factors of 30:- 1, 2, 3,

8 4 5, 6, 10, 15, 30 2. List the factors of 8:- 1, 2, 4, 8 3. Identify the
common factors of 30 and 8:- The common factors are 1 and 2. 4.
The greatest of these common factors is 2.
Tag: GCD Calculation

out:

Now compute: numerator is

Generated Data with Higher Difficulty Difficulty Score: 18.0

Problem: Simplify the expression zz—j
Solution: We first compute the powers3® = 27,32 = 9. Next, substi-

tute into the expression: %. Perform addition and subtraction%.

15
2|

And simplify the fraction? = %. Final Answer is

Tag: Fraction Simplification

This design naturally supports scenarios where teacher and student have similar capacity: the benefit
comes not from the size gap but from the teacher’s ability to organize and distill knowledge into
teaching-oriented examples. In the weak-to-strong generalization setting, this can be achieved as long
as the weaker model is already capable of producing clean and well-structured decompositions. We
leave this as a promising future direction, especially at scale, where our proposed hierarchical data
decomposition and curriculum learning could have even greater impact.

Limitations and broader impacts. This work proposes using stronger LLM teachers to recursively
generate simpler data that builds up a curriculum for training student models. It assumes access to
strong enough teacher models that are capable of understanding a math problem, decomposing the
problem into meaningful sub-tasks, and faithfully describing the sub-tasks. As mentioned above,
for tasks beyond math, where the reasoning path to solve a task is less divisible in an obvious way,
the teacher models may face challenges in generating the curriculum. This may require the design
of better scaffolding and/or the use of more advanced teacher models. Moreover, LLMs have been
shown to hallucinate in various ways, our method is inherently vulnerable because LLM usage is at
the core of the system design. For example, a hallucinating or fabricating teacher model may generate
inaccurate reasoning chains and decompose them in the wrong ways. The student models trained on
the generated curriculum in such a way may result in poor performance or learn unexpected behaviors
due to the suboptimality of the curriculum. Finally, we acknowledge that our work is not yet at a stage
to be used in many real-world tasks, especially in domains involving high-risk decision making such
as law enforcement, legal, finance, or healthcare.

Acknowledgement

The authors are deeply grateful to Eric Yuan and Marc-Alexandre Coté for their invaluable help. We
would also like to thank Colin Raffel, Matthew Macfarlane, Ayush Agrawal, Gyung Hyun Je, Vedant
Shah and Zhihao Zhan for many stimulating and helpful discussions.

10



References

Yoshua Bengio, Jérdme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Andrea P. Danyluk, Léon Bottou, and Michael L. Littman, editors, Proceedings of the 26th Annual
International Conference on Machine Learning (ICML 2009), volume 382 of ACM International
Conference Proceeding Series, pages 41-48, Montreal, Quebec, Canada, 2009. ACM. doi: 10.
1145/1553374.1553380. URL https://doi.org/10.1145/1553374.1553380.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott
Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code. 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Tim R. Davidson, Benoit Seguin, Enrico Bacis, Cesar Ilharco, and Hamza Harkous. Orchestrating
synthetic data with reasoning. In Will Synthetic Data Finally Solve the Data Access Problem?,
2025. URL https://openreview.net/forum?id=V0oeogZbMb.

DeepSeek-Al, :, Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng,
Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi Ge,
Kang Guan, Daya Guo, Jianzhong Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie Hu, Panpan
Huang, Erhang Li, Guowei Li, Jiashi Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun Lin, A. X.
Liu, Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu, Fuli Luo,
Shirong Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu, Tongzheng Ren, Zehui Ren,
Chong Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song, Xuecheng Su, Jingxiang Sun, Yaofeng
Sun, Minghui Tang, Bingxuan Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang, Yongji Wang, Tong
Wu, Y. Wy, Xin Xie, Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei Xu, R. X. Xu, Yanhong Xu,
Dejian Yang, Yuxiang You, Shuiping Yu, Xingkai Yu, B. Zhang, Haowei Zhang, Lecong Zhang,
Liyue Zhang, Mingchuan Zhang, Minghua Zhang, Wentao Zhang, Yichao Zhang, Chenggang
Zhao, Yao Zhao, Shangyan Zhou, Shunfeng Zhou, Qihao Zhu, and Yuheng Zou. Deepseek 1lm:
Scaling open-source language models with longtermism, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurelien Rodriguez, Austen Gregerson, et al. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak coherent
english?, 2023.

Jeffrey L. Elman. Learning and development in neural networks: the importance of starting small.
Cognition, 48(1):71-99, 1993. doi: 10.1016/0010-0277(93)90058-4.

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse
curriculum generation for reinforcement learning. In Conference on robot learning, pages 482—495.
PMLR, 2017.

Nathan Habib, Clémentine Fourrier, Hynek Kydli¢ek, Thomas Wolf, and Lewis Tunstall. Lighteval:
A lightweight framework for llm evaluation, 2023. URL https://github.com/huggingface/
lighteval.

11


https://doi.org/10.1145/1553374.1553380
https://openreview.net/forum?id=VOoeogZbMb
https://arxiv.org/abs/2407.21783
https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL
https://arxiv.org/abs/2103.03874.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
URL https://arxiv.org/abs/1503.02531.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, Xinrong Zhang, Zheng Leng Thai, Kaihuo Zhang, Chongyi Wang,
Yuan Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia, Guoyang Zeng,
Dabhai Li, Zhiyuan Liu, and Maosong Sun. Minicpm: Unveiling the potential of small language
models with scalable training strategies, 2024.

Yiming Huang, Xiao Liu, Yeyun Gong, Zhibin Gou, Yelong Shen, Nan Duan, and Weizhu Chen.
Key-point-driven data synthesis with its enhancement on mathematical reasoning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 39, pages 24176-24184, 2025.

Hugging Face. Open rl: A fully open reproduction of deepseek-rl, January 2025. URL https:
//github.com/huggingface/open-ri.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024.

Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. In Proceedings of the
2016 conference on empirical methods in natural language processing, pages 1317-1327, 2016.

John P. Lalor and Hong Yu. Dynamic data selection for curriculum learning via ability estimation.
In Findings of ACL: EMNLP 2020, pages 545-555, 2020. URL https://aclanthology.org/
2020.findings-emnlp.48.

Jin Hwa Lee, Stefano Sarao Mannelli, and Andrew Saxe. Why do animals need shaping? a theory of
task composition and curriculum learning, 2024. URL https://arxiv.org/abs/2402.18361.

Chengpeng Li, Zheng Yuan, Hongyi Yuan, Guanting Dong, Keming Lu, Jiancan Wu, Chuangqi
Tan, Xiang Wang, and Chang Zhou. Mugglemath: Assessing the impact of query and response
augmentation on math reasoning. Association for Computational Linguistics, 2024.

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang Ren, Kai-Wei Chang, and Yejin Choi. Symbolic
chain-of-thought distillation: Small models can also “think” step-by-step. In Anna Rogers, Jordan
Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pages 2665-2679, Toronto, Canada,
July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.150. URL
https://aclanthology.org/2023.acl-long.150/.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang, Weikang Shi, Junting Pan, Mingjie Zhan, and
Hongsheng Li. Mathgenie: Generating synthetic data with question back-translation for enhancing
mathematical reasoning of llms. Association for Computational Linguistics, 2024.

Jing Luo, Run Luo, Longze Chen, Liang Zhu, Chang Ao, Jiaming Li, Yukun Chen, Xin Cheng, Wen

Yang, Jiayuan Su, et al. Personamath: Enhancing math reasoning through persona-driven data
augmentation. arXiv preprint arXiv:2410.01504, 2024.

12


https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/1503.02531
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://aclanthology.org/2020.findings-emnlp.48
https://aclanthology.org/2020.findings-emnlp.48
https://arxiv.org/abs/2402.18361
https://aclanthology.org/2023.acl-long.150/
https://arxiv.org/abs/2305.20050

Arindam Mitra, Luciano Del Corro, Shweti Mahajan, Andres Codas, Clarisse Simoes Ribeiro, Sahaj
Agrawal, Xuxi Chen, Anastasia Razdaibiedina, Erik Jones, Kriti Aggarwal, Hamid Palangi, Guoqing
Zheng, Corby Rosset, Hamed Khanpour, and Ahmed Awadallah. Orca-2: Teaching small language
models how to reason. arXiv, November 2023.

Arindam Mitra, Luciano Del Corro, Guoqing Zheng, Shweti Mahajan, Dany Rouhana, Andres
Codas, Yadong Lu, Wei-ge Chen, Olga Vrousgou, Corby Rosset, Fillipe Silva, Hamed Khan-
pour, Yash Lara, and Ahmed Awadallah. Agentinstruct: Toward generative teaching with
agentic flows. arXiv, July 2024. URL https://www.microsoft.com/en-us/research/
publication/agentinstruct-toward-generative-teaching-with-agentic-flows/.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

Koichi Nagatsuka, Clifford Broni-Bediako, and Masayasu Atsumi. Pre-training a BERT with cur-
riculum learning by increasing block-size of input text. In Ruslan Mitkov and Galia Angelova,
editors, Proceedings of the International Conference on Recent Advances in Natural Language
Processing (RANLP 2021), pages 989-996, Held Online, September 2021. INCOMA Ltd. URL
https://aclanthology.org/2021.ranlp-1.112/.

Marwa Nair, Kamel Yamani, Lynda Lhadj, and Riyadh Baghdadi. Curriculum learning for small code
language models. In Xiyan Fu and Eve Fleisig, editors, Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 4: Student Research Workshop), pages
390-401, Bangkok, Thailand, August 2024. Association for Computational Linguistics. ISBN
979-8-89176-097-4. doi: 10.18653/v1/2024.acl-srw.44. URL https://aclanthology.org/
2024.acl-srw.44/.

Mathematical Association of America. Aime, February 2024. URL https://
artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions/.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, et al. Gpt-4 technical report, 2023.

Guilherme Penedo, Anton Lozhkov, Hynek Kydlicek, Loubna Ben Allal, Edward Beeching, Agustin Pi-
queres Lajarin, Quentin Gallouédec, Nathan Habib, Lewis Tunstall, and Leandro von Werra.
Codeforces cots. https://huggingface.co/datasets/open-ri/codeforces-cots, 2025.

Ofir Press, Noah A. Smith, and Mike Lewis. Shortformer: Better language modeling using shorter
inputs, 2020.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2024. URL
https://arxiv.org/abs/2412.15115.

Qwen, :, An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang,
Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin
Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin
Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin,
Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and
Zihan Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya Sachan. Distilling reasoning capabilities into
smaller language models. Findings of the Association for Computational Linguistics, 2023.

13


https://www.microsoft.com/en-us/research/publication/agentinstruct-toward-generative-teaching-with-agentic-flows/
https://www.microsoft.com/en-us/research/publication/agentinstruct-toward-generative-teaching-with-agentic-flows/
https://arxiv.org/abs/2501.19393
https://aclanthology.org/2021.ranlp-1.112/
https://aclanthology.org/2024.acl-srw.44/
https://aclanthology.org/2024.acl-srw.44/
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions/
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions/
https://huggingface.co/datasets/open-r1/codeforces-cots
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2505.09388

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi, Noah A.
Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with training
dynamics. arXiv preprint arXiv:2009.10795, 2020. doi: 10.48550/arXiv.2009.10795. URL
https://arxiv.org/abs/2009.10795.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Ferret, Peter
Liu, Pouya Tafti, Abe Friesen, et al. Gemma 2: Improving open language models at a practical
size, 2024. URL https://arxiv.org/abs/2408.00118.

Xiaoxia Wu, Ethan Dyer, and Behnam Neyshabur. When do curricula work? CoRR, abs/2012.03107,
2020. URL https://arxiv.org/abs/2012.03107. ICLR 2021.

Shuo Yin, Weihao You, Zhilong Ji, Guoqiang Zhong, and Jinfeng Bai. Mumath-code: Combining tool-
use large language models with multi-perspective data augmentation for mathematical reasoning.
arXiv preprint arXiv:2405.07551, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models, 2024a. URL https://arxiv.org/abs/2309.12284.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models, 2024b. URL https://arxiv.org/abs/2309.12284.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
reasoning, 2022. URL https://arxiv.org/abs/2203.14465.

14


https://arxiv.org/abs/2009.10795
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2012.03107
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2203.14465

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our abstract and intro reflect the contributions accurately.
Guidelines:
e The answer NA means that the abstract and introduction do not include the claims made
in the paper.
e The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

e The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 5.
Guidelines:

e The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

e The authors are encouraged to create a separate "Limitations" section in their paper.

e The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

e The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

e If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

e While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .

15



Justification: We do not have any theoretical results in our paper.
Guidelines:

e The answer NA means that the paper does not include theoretical results.

e All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

o All assumptions should be clearly stated or referenced in the statement of any theorems.

e The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

e Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We explain our experimental setup in Section 4.1.
Guidelines:

e The answer NA means that the paper does not include experiments.

o If the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

o If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

e Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

e While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-weights models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

16



Answer: [Yes]

Justification: We will release the code when the paper gets accepted. Our implementation is
based on open-source training and evaluation scripts and is reproducible.

Guidelines:

e The answer NA means that paper does not include experiments requiring code.

e Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

e While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

e The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

e The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

e The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

e At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

e Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section 4.1.
Guidelines:

e The answer NA means that the paper does not include experiments.

e The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

e The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See Table 1 and Table 2.
Guidelines:

e The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

e The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

e The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

e The assumptions made should be given (e.g., Normally distributed errors).

17


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

e For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]
Justification: See Section 4.1.
Guidelines:

e The answer NA means that the paper does not include experiments.

e The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

e The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

e The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

e The authors should make sure to preserve anonymity (e.g., if there is a special consider-
ation due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Section 5.
Guidelines:

e The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

e Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18


https://neurips.cc/public/EthicsGuidelines

11.

12.

e The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

o If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained LMs, image
generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper focuses solely on the mathematical dataset and does not pose a high
risk of misuse.

Guidelines:

e The answer NA means that the paper poses no such risks.

e Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

e Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

e We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited related work appropriately.
Guidelines:

e The answer NA means that the paper does not use existing assets.

e The authors should cite the original paper that produced the code package or dataset.

e The authors should state which version of the asset is used and, if possible, include a
URL.

e The name of the license (e.g., CC-BY 4.0) should be included for each asset.

e For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

e If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

e For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19


paperswithcode.com/datasets

13.

14.

15.

16.

o If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

e The answer NA means that the paper does not release new assets.

e Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

e The paper should discuss whether and how consent was obtained from people whose
asset is used.

e At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We did not conduct any crowdsourcing and/or research with human subjects.
Guidelines:
e The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

e Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

e According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We did not conduct any user studies requiring IRB approval.
Guidelines:
e The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

e Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

e We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

e For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

20



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We use GPT-40 as the teacher model for distillation. See Section 3 and
Section 4.1.

Guidelines:

e The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

e Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21


https://neurips.cc/Conferences/2025/LLM

Technical Appendices and Supplementary Material

Contents
1 Introduction
2 Related Work

3 DecomprX: Dataset Decomposition
3.1 How to generate subproblems? - Recursive Problem Decomposition . . . . . . ..
3.2 How difficult is a certain (sub)problem? — Concept Dependency Graph . . . . . . .
3.2.1 Concept Clustering via Embedding Similarity . . . . . ... ... .. ...
3.2.2 Difficulty Measurement via Structural and Conceptual Features . . . . . .
3.3 Curriculum Learning via Difficulty Measurement . . . . . . ... ... ... ...

4 Experiments and Results
4.1 Experimental Setup . . . . . . . ... L

42 MainResults . . . . . . . . e e e e e
43 CaseStudy . . . . ... e

C U AUNUNUNLOW N

Discussion and Conclusion

Details of subset of MATH training data

N
(%)

Examples of Concept Dependency Graph 23

Zero-shot Small Model Performance 23

Tag Clustering Details 24

= O a w o wun

Examples of Decomposed Data 24

22



A Details of subset of MATH training data

In Table 5, we present the original and sampled sizes of the MATH dataset used in our experiments,
broken down by subject domain and difficulty level. Sampling was performed uniformly at random
within each group to ensure representative coverage of the various topics and levels.

Table 5. Statistics of the original and sampled MATH dataset by subject domain (left) and by difficulty
level (right). Samples were drawn uniformly at random within each group to ensure representative coverage
across topics and difficulty tiers.

By Domain I By Difficulty Level

Domain #Total #Sampled || Level #Total #Sampled
Algebra 1744 84 || Level 1 566 26
Counting and Probability 771 36 || Level 2 1348 65
Geometry 870 43 || Level 3 1592 77
Intermediate Algebra 1295 63 || Level 4 1690 81
Number Theory 869 41 || Level 5 2304 111
Prealgebra 1205 58

Precalculus 746 35

#Sampled / #Total I 30077500

B Examples of Concept Dependency Graph

Figure 3 presents the concept dependency graphs constructed during the data decomposition process.
We observe that an atomic mathematical operation, such as Addition, has many edges linking it to
more advanced operations.

Figure 3. Concept dependency graph constructed during the AIME data decomposition process. Nodes
represent mathematical concepts, and edges indicate prerequisite relationships between concepts.

C Zero-shot Small Model Performance

We partitioned the decomposed AIME2024 dataset into five equal-sized bins (quintiles) based on our
proposed difficulty measurement, shown in Table 6. This measurement is derived from the concept
dependency graph, designed to reflect the conceptual complexity of each problem. We then evaluated
the zero-shot performance of the Qwen3-4B-Base model on each difficulty tier.

23



Our results shown in Figure 4 demonstrate a clear inverse correlation between difficulty score and
model accuracy: the model achieves the highest accuracy on problems with the lowest difficulty scores
(Quintile 1), and its performance degrades as the difficulty increases, reaching the lowest accuracy
on the highest difficulty tier (Quintile 5). This performance trend validates the effectiveness of our
concept dependency graph-based difficulty metric in capturing the relative hardness of mathematical
problems.

Table 6. Definition of difficulty quintiles based on concept dependency graph scores. Each quintile groups
problems whose scores fall within the specified range.

Quintile Difficulty Score Range
Quintile 1 (Easiest) 20-40

Quintile 2 4.0-4.0

Quintile 3 4.0-6.0

Quintile 4 6.0-10.0

Quintile 5 (Hardest) 10.0 - 20.0

0. Model Accuracy Across Difficulty Quintiles

—e— Trend
72.29% Accuracy

70t 68.67%
65.06% 64.63%

Accuracy (%)
v -]
o =

Y
=)

301

20

Q1 (Easiest) Q2 Q3 Q4 Q5 (Hardest)
Difficulty Quintile

Figure 4. Zero-shot performance of the Qwen3-4B-Base model across difficulty quintiles. Accuracy decreases
as problem difficulty increases, validating our proposed difficulty metric.

D Tag Clustering Details

We summarize the tag information identified in both the MATH dataset (Table 7) and the AIME
dataset (Tables 8 and 9).

E Examples of Decomposed Data

We apply our data decomposition method to the S1 dataset and demonstrate the two-layer recursive
decomposition process for a sample data point in Table 10.

Table 10. Decomposed S1 data sample. Black text denotes the original data; text represents the first level of
decomposition; and blue text represents the second level of decomposition.

24



{Question:"Given a rational number, write it as a fraction in lowest terms and calculate the product of
the resulting numerator and denominator. For how many rational numbers between 0 and 1 will 20!
be the resulting product?",

Solution:"Let the rational number between 0 and 1 be . When written as a fraction in lowest terms,
let it be 2, where a and b are positive integers, gcd(a, b)) = 1, and 0 < a < b.-We are given that the
product of the numerator and denominator is 20!, so a X b = 20!.We need to find the number of pairs
(a, b) such that a x b = 20!, gcd(a,b) = 1, and a < b.Let N = 20!. The prime factorization of N
is pil pgz pz", where p; are distinct prime numbers.The number of distinct prime factors of 20! is
the number of primes less than or equal to 20. These primes are 2, 3, 5, 7, 11, 13, 17, 19. Thus,
there are 8 distinct prime factors, so k = 8.Since a X b = N and gcd(a, b) = 1, each prime power
factor pf" of N must be entirely a factor of a or entirely a factor of 5.The number of ways to distribute

the prime power factors between a and b is 2%, where k is the number of distinct prime factors of
N. Each distribution corresponds to a unique pair (a, b) such that a X b = N and gcd(a, b) = 1.The
number of such pairs is 2°N), where @(N) is the number of distinct prime factors of N.Since 20! is
not a perfect square, for every pair (a, b) such that a X b = 20! and gcd(a, b) = 1, we have a # b. The
pairs can be grouped into (a, b) and (b, a), where a # b.The number of pairs with a < b is equal to
the number of pairs with b < a.The total number of pairs is 29" The number of pairs with a < b

is % x 2020 — 20(20D-1 The number of distinct prime factors of 20! is w(20!) = 8. The number of

pairs (a, b) such that a x b = 20!, gcd(a, b) = 1, and a < bis 28~! = 27 = 128 Each such pair (a, b)
corresponds to a unique rational number % between 0 and 1 in lowest terms, with the product of the

numerator and denominator equal to 20!.Final Answer: The final answer is "}

Solution:{
ReasoningStep: "We have the fraction F = —T__ Since 20! contains 72 (because [20/7] = 2), the

201/7°
number 20!/7 is still divisible by 7.",
Tag:"Exponent of a prime in a factorial (Legendre’s formula)",
Question:"In the context of reducing the fraction 7/(20!/7), use Legendre’s formula to find the exponent
of the prime 7 in the prime factorization of 20!.",
Solution:" 1. Legendre’s formula states that the exponent of a prime p in n! is given by the sum of
ln/p*| fork = 1,2, .p* > n.
2. Here, n=20 and p=7:
- Fork=1: |20/7| =2
- For k=2: |20/49] =0
- Higher powers of 7 exceed 20, so their terms are zero.
3. Summing these gives 2 + 0 =2."

)

25



Table 7. Summary of Cluster Tags. Sample count represents the number of mathematical problems associated
with each cluster tag. Keywords are derived from the tags within each cluster.

Domain #questions Keywords

Equation Manipulation 17 Equation Manipulation, Equation Simplification, Equation Solving, Equation Subtraction, Linear Equation,
Linear Equation in Two Variables, Linear Equations, Polynomial Equation Solving, Polynomial Simplifica-
tion, Quadratic Equation, Rational Equation, Rational Equation Solving, Rearranging Equations, Simplifying
Expressions, Simultaneous Equations, Simultaneous Equations Solving, Solving Rational Equations, Substi-
tution, Subtraction, Variable substitution

Elimination Method 14 Elimination Method, Equation Solving: Isolating Variables, Linear Equation Solving, Solving Linear Equa-
tions, Substitution Method

Addition 12 Addition, Addition of Integers, Arithmetic Addition, Arithmetic Operations, Column Addition, Digit Sum,
Fraction Addition, Integer Addition, Multiplication, Place Value Addition, Summation

Divisibility 11 Divisibility, Divisibility Rules, Division Property of Equality, Polynomial Division

Clearing Fractions 10 Clearing Fractions, Common Denominator Calculation, Fraction Multiplication, Fraction Simplification,
Fraction Subtraction, Partial Fraction Decomposition, Reciprocal Calculation, Simplifying Fractions, Sub-
tracting Fractions with Common Denominator

Arithmetic Sequence 7 Arithmetic Sequence, Arithmetic Sequence Formula, Arithmetic Subtraction, Counting Integers in an
Arithmetic Sequence, Modular Arithmetic, Sum of a Sequence, Sum of an Arithmetic Series

Factoring Polynomials 6 Factoring Polynomials, Factoring Quadratic Equations, Factoring by Grouping, Factoring by grouping,
Polynomial Expansion, Prime Factorization

Binomial Coefficient 6 Binomial Coefficient, Binomial Coefficient Calculation, Combination Formula, Combinations Calculation,
Combinatorial Counting, Sum of coefficients

Complementary Counting 6 Complementary Counting, Counting Principle, Counting Principles, Counting Rows, Inclusion-Exclusion
Principle

Combining Like Terms 6 Combining Like Terms

Cross-Multiplication 5 Cross-Multiplication, Multiplication Principle, Prime Multiplication, Scalar Multiplication

Division 5 Division, Division of Equations, Division of constants, Long Division

Absolute Value 4 Absolute Value, Absolute Value Calculation, Absolute Value Equation, Absolute Value Equation Solving,
Absolute Value Equations, Magnitude of a Complex Number, Magnitude of a Vector

Isolating Variables 4 Isolating Variables, Isolating the Variable

GCD Calculation 3 GCD Calculation, GCD Property

Cauchy-Schwarz Inequality 3 Cauchy-Schwarz Inequality, Compound Inequalities, Inequalities, Inequality Manipulation, Linear Inequality
Simplification

Altitude in Triangles 3 Altitude in Triangles, Altitude of a Triangle, Similar Triangles, Triangle Construction

Stars and Bars 3 Stars and Bars, Stars and Bars Method

Exponentiation 3 Exponentiation, Logarithm Power Rule, Modular Exponentiation

Square Root Calculation 3 Square Root Calculation, Squaring a number, Squaring both sides

Order of Operations 2 Order of Operations, Order of an Element

Identifying Parallel Lines 2 Identifying Parallel Lines, Line Intersection, Parallel Lines in Polygons, Slope of Parallel and Perpendicular
Lines, Slope of Perpendicular Lines

Perpendicular Slopes 2 Perpendicular Slopes, Slope of a Line, Vertical Tangent Line

Quadratic Equation Identification 2 Quadratic Equation Identification, Quadratic Formula

Combinatorial Placement 2 Combinatorial Placement

Solving Linear Inequalities 2 Solving Linear Inequalities, System of Linear Equations

Cyclic Distance Calculation 2 Cyclic Distance Calculation, Distance Formula

Euler’s Relation for Triangle Centers 2 Euler’s Relation for Triangle Centers, Euler’s Theorem

Arc Length Calculation 2 Arc Length Calculation, Perimeter Calculation

Angle Bisector Theorem 2 Angle Bisector Theorem, Perpendicular Bisector of a Chord

Bayes’ Theorem 1 Bayes’ Theorem, Conditional Probability

Distributive Property 1 Distributive Property

Floor Function 1 Floor Function

Finding Zeros of a Function 1 Finding Zeros of a Function

Factorial Calculation 1 Factorial Calculation

Pigeonhole Principle 1 Pigeonhole Principle

Conclusion Verification 1 Conclusion Verification

Change of Base Formula 1 Change of Base Formula

Logarithm Properties 1 Logarithm Properties, Logarithmic Identity, Logarithmic Properties, Logarithmic Reciprocity

Summation of a finite set 1 Summation of a finite set

Complex Number Magnitude 1 Complex Number Magnitude, Complex Number Scaling, Dot Product Magnitude, Modulus of a Complex
Number, Vector Magnitude Calculation

Place Value 1 Place Value

Chinese Remainder Theorem 1 Chinese Remainder Theorem

Lifting The Exponent Lemma (LTE) 1 Lifting The Exponent Lemma (LTE)

Order of an Element in Modular 1 Order of an Element in Modular Arithmetic, Order of an element modulo p

Arithmetic

Primitive Root Calculation 1 Primitive Root Calculation

p-adic Valuation 1 p-adic Valuation, vy (p-adic valuation)

Diagonal of a Rectangular Prism
Calculation

Pythagorean Theorem

Interior Angle of a Regular Polygon
Pairing Elements

Power of a Point Theorem
Bipartite Graph Matching
Permutation Calculation
Prime Identification

Triangle Perimeter Calculation
Triangle Side Classification
Counterexample

Mode Calculation

Sorting Numbers

Area of a Circle

Cross-Section of a Sphere
LCM Calculation

Proportion

Radius of a sphere

Volume of a Tetrahedron
Newton’s Sums

Vieta’s Formulas

e e e b e b e

Diagonal of a Rectangular Prism Calculation

Pythagorean Theorem, Pythagorean Theorem in 3D
Interior Angle of a Regular Polygon

Pairing Elements

Power of a Point Theorem

Bipartite Graph Matching

Permutation Calculation

Prime Identification, Prime Number Identification, Prime Number Multiplication
Triangle Perimeter Calculation

Triangle Side Classification

Counterexample

Mode Calculation, Mode Identification

Sorting Numbers

Area of a Circle, Area of a Circle Calculation
Cross-Section of a Sphere, Cross-sections of spheres
LCM Calculation

Proportion, Proportion Solving, Ratio and Proportion
Radius of a sphere

Volume of a Tetrahedron

Newton’s Sums

Vieta’s Formulas, Vieta’s formulas

26



Table 8. Summary of Cluster Tags (Sample Count > 3). Sample count represents the number of mathematical
problems associated with each cluster tag. Keywords are derived from the tags within each cluster.

Domain #questions Keywords

Combinatorial Probability 100 Combinatorial Probability, Counting & Probability

Basic Counting Principle 46 Basic Counting Principle, Counting Principle, Counting Principles, Fundamental Counting Principle, Funda-
mental Principle of Counting, Multiplication Principle of Counting

Combination Calculation 36 Combination Calculation, Combination Enumeration, Combination Formula, Combination Selection, Com-
bination Subtraction, Combination and Permutation Calculation, Combinations, Combinations Calculation,
Combinations Formula, Counting Combinations

Factorial 31 Factorial, Factorial Calculation, Factorial Division, Factorial Expansion, Factorial Manipulation, Factorial
Multiplication, Factorial Properties, Factorial Simplification, Factorial simplification

Combinatorial Counting 30 Combinatorial Counting, Combinatorial Enumeration, Combinatorial Exclusion, Combinatorial Reasoning,
Combinatorics, Counting, Counting Arrangements, Counting Multiples, Counting Subsets

Binomial Coefficient 29 Binomial Coefficient, Binomial Coefficient Calculation, Binomial Coefficient Formula, Binomial Coefficient
Multiplication, Binomial Coefficient Simplification, Binomial Coefficients, Binomial Coefficients Calculation,
Binomial Expansion, Binomial Probability Formula, Binomial Theorem

Fraction Conversion 28 Fraction Conversion, Fraction Identification, Fraction Multiplication, Fraction Subtraction, Multiplication of
Fractions, Percentage to Fraction Conversion, Simplifying Fractions

Linear Equation Evaluation 26 Linear Equation Evaluation, Linear Equation Solving, Linear Expression Evaluation, Solving Linear Equations

Division Simplification 24 Division Simplification, Division of Fractions, Fraction Division, Fraction Multiplication and Simplification,
Fraction Simplification, Ratio Simplification, Simplifying Ratios

Addition 23 Addition, Addition of Integers, Addition of integers, Arithmetic Addition, Integer Addition

Arithmetic Operations 21 Arithmetic Operations, Basic Arithmetic Subtraction, Multiplication, Multiplication of Integers, Multiplica-
tion of integers

Division Property of Equality 21 Division Property of Equality

Exponent Simplification 21 Exponent Simplification, Exponentiation

Basic Probability Calculation 19 Basic Probability Calculation, Conditional Probability Calculation, Probability, Probability Calculation

Equation Substitution 18 Equation Substitution, Substitution, Substitution Method, Variable Substitution

Circular Permutations 17 Circular Permutations, Cyclic Permutations, Permutation, Permutations

Set Subtraction 13 Set Subtraction, Subtraction

Division 12 Division, Division Algorithm, Long Division

GCD Calculation 12 GCD Calculation

Independent Probability Multiplication 11 Independent Probability Multiplication, Multiplication Rule for Independent Events, Multiplication Rule for
Probabilities, Probability Multiplication Rule

Isolating Variables 10 Isolating Variables, Isolating the variable

Combinations with Repetition 9 Combinations with Repetition, Permutations and Combinations, Permutations with Repetition

Counting Exclusion 9 Counting Exclusion, Exclusion Principle, Inclusion-Exclusion Principle

Counting and Summation 8 Counting and Summation, Summation

Adding Fractions 8 Adding Fractions, Adding Fractions with Like Denominators, Adding Fractions with Unlike Denominators,
Addition of Fractions, Arithmetic with Fractions, Common Denominator Addition, Fraction Addition,
Multiplying Fractions

Prime Factorization 8 Prime Factorization

Combining Like Terms 7 Combining Like Terms

Place Value 7 Place Value, Place Value Identification

Arithmetic Sequence 6 Arithmetic Sequence, Arithmetic Sequence Formula, Arithmetic Sequence Identification, Arithmetic Se-
quence Sum, Arithmetic Sequence Sum Formula, Arithmetic Sequence Summation, Arithmetic Sequences,
Arithmetic Sequences Counting, Counting Terms in an Arithmetic Sequence

Equation Simplification 6 Equation Simplification, Linear Equation Simplification, Polynomial Simplification

Conditional Probability 6 Conditional Probability

Permutation with Restrictions 6 Permutation with Restrictions, Permutations with Restrictions, Permutations with restrictions

Divisibility Rule for 3 6 Divisibility Rule for 3, Divisibility Rules

Factoring by grouping 6 Factoring by grouping, Factorization

Complement Rule 5 Complement Rule, Complement Rule in Probability

Multiplication Principle 4 Multiplication Principle

Arithmetic Series Formula 4 Arithmetic Series Formula, Arithmetic Series Sum Formula, Arithmetic Series Summation, Arithmetic Sum
Calculation, Summation of Arithmetic Series

Order of Operations 4 Order of Operations

Equation Balancing 3 Equation Balancing

Binomial Probability 3 Binomial Probability

Counting Integers 3 Counting Integers, Counting Integers in a Range

Power Set Calculation 3 Power Set Calculation

Discriminant Calculation 3 Discriminant Calculation

Identifying Coefficients in a Quadratic 3 Identifying Coefficients in a Quadratic Equation, Quadratic Coefficients Identification

Equation

Complementary Counting 3 Complementary Counting

Distributive Property 3 Distributive Property

Combination Symmetry 3 Combination Symmetry, Combinatorial Symmetry, Symmetry Counting

Area Calculation 3 Area Calculation, Area Calculation of a Square, Area Ratios, Area of a Rectangle Calculation, Area of a
Square Calculation, Area of a Triangle Calculation

Area of a Right Triangle 3 Area of a Right Triangle, Area of a Triangle, Triangle Area Formula

Counting Outcomes 3 Counting Outcomes, Enumerating Outcomes

Independent Events 3 Independent Events, Independent Events Probability, Independent Events Probability Calculation, Probability
of Independent Events

Scalar Multiplication 3 Scalar Multiplication

Case Analysis 3 Case Analysis

Common Denominator Calculation 3 Common Denominator Calculation, Common Denominator Conversion, Finding a Common Denominator,
Subtracting Fractions with Common Denominator, Subtracting Fractions with Common Denominators

Finding the Least Common Multiple 3 Finding the Least Common Multiple (LCM), LCM Calculation, Least Common Multiple (LCM) Calculation

(LCM)

Factoring Common Factor 3 Factoring Common Factor, Factoring Out Common Factors, Finding Factors

Counting Even Numbers 3 Counting Even Numbers, Counting Odd Numbers, Even Numbers Identification, Even and Odd Numbers,
Identifying Even Numbers

Modular Arithmetic 3 Modular Arithmetic, Modulo Operation

27



Table 9. Summary of Cluster Tags (Sample Count < 3). Sample count represents the number of mathematical
problems associated with each cluster tag. Keywords are derived from the tags within each cluster.

Domain

#questions

Keywords

Probability Distribution

Range of Sums for Dice Rolls
Uniform Probability Distribution
Properties of Platonic Solids
Division of Constants
Permutations of Multisets

Digit Fixation in Positional Notation
Multiples Identification

Distance Formula

Graphing Inequalities
Intersection of Lines and Curves
Isosceles Right Triangle
Probability of Combined Events
Combinatorial Selection

Subset Identification
Complementary Probability
Probability Addition Rule

Factor Pairing

Finding Multiples

Prime Identification

Expected Value Calculation
Addition and Subtraction Properties of
Equality

Long Multiplication

Geometric Series

Pascal’s Triangle Construction
Independent Probability
Exponentiation of Fractions
Simplifying Rational Expressions
Pascal’s Identity

Summation of Series
Intersection of Sets

Set Union

Percentage Calculation
Symmetry in Probability
Counting Grid Positions

Parity

Recurrence Relation

Block Permutation

Digit Pairing for Sum
Permutation Calculation
Cyclic Number Patterns
Bipartite Graph

Digit Constraints

Counting Leap Years
Minimum Value Calculation
Pigeonhole Principle

Range Calculation

Burnside’s Lemma
Polyhedron Properties
Rotational Symmetry
Rotational Symmetry of Polyhedra
Slope Calculation

Pair Counting

Pairwise Sum Calculation
Division of Even Numbers
Frequency Distribution
Conditional Statements
Counting Intervals

Period Calculation

Time Interval Calculation
Unit Conversion

Factoring Quadratic Expressions
Simultaneous Equations
Counting Cyclic Quadrilaterals with
Integer Sides

Counting Rectangles

Hockey Stick Identity
Perimeter Calculation
Properties of Quadrilaterals
Properties of a Square

Stars and Bars Method
Triangle Inequality

Distance Comparison
Absolute Value Simplification
Subset Definition

Equivalent Fractions

Cube Root Estimation
Inequality Comparison
Sequential Multiplication
Angle Measurement in Radians
Arc Length Calculation

Arc Measure

Central Angle Theorem
Circumference of a Circle
Commutative Property of Addition
Factorial Decomposition
Matrix Indexing

Probability with Replacement

S S N S N N S N S N N N N N N N N N N N S N SN SESES]

SN}

[SESESESESN SRR SNSNSNN]

S G GG U U U W U T S S S T SO S

e e e e b b b e

Probability Distribution

Range of Sums for Dice Rolls, Sum of Two Dice Rolls
Uniform Probability Distribution

Properties of Platonic Solids, Symmetry of Platonic Solids
Division of Constants, Division of constants

Permutations of Multisets

Digit Fixation in Positional Notation, Digit Placement
Multiples Identification

Distance Formula, Horizontal Distance Calculation

Graphing Inequalities, Graphing Linear Inequalities, Linear Inequality Graphing
Intersection of Lines and Curves, Line Intersection

Isosceles Right Triangle, Isosceles Triangle Properties
Probability of Combined Events, Probability of a Single Event
Combinatorial Selection, Subset Selection

Subset Identification

Complementary Probability

Probability Addition Rule, Total Probability Rule

Factor Pairing, Factor Pairs Identification

Finding Multiples, Multiples of a Number

Prime Identification, Prime Number Identification, Prime and Composite Numbers Identification
Expected Value Calculation

Addition and Subtraction Properties of Equality

Long Multiplication, Multiplication of Large Numbers

Geometric Series, Geometric Series Formula, Geometric Series Identification, Geometric Series Sum
Formula, Geometric Series Summation, Infinite Geometric Series Formula, Sum of Infinite Geometric Series

Pascal’s Triangle Construction, Pascal’s Triangle Row Sum

Independent Probability

Exponentiation of Fractions

Simplifying Rational Expressions

Pascal’s Identity, Pascal’s Triangle

Summation of Series, Summation of a Sequence

Intersection of Sets, Set Intersection

Set Union, Set Union Cardinality

Percentage Calculation, Percentage Conversion, Percentage to Decimal Conversion
Symmetry in Probability

Counting Grid Positions, Counting Rectangles in a Grid, Counting Squares in a Grid, Counting Subsets in a

Grid

Parity

Recurrence Relation, Recurrence Relations

Block Permutation

Digit Pairing for Sum, Digit Sum Calculation, Pairing Numbers for a Fixed Sum
Permutation Calculation

Cyclic Number Patterns, Cyclic Sequences

Bipartite Graph, Bipartite Graph Coloring

Digit Constraints, Digit Restriction, Digit Sum Constraints, Single-digit constraint
Counting Leap Years, Leap Year Calculation

Minimum Value Calculation

Pigeonhole Principle

Range Calculation

Burnside’s Lemma

Polyhedron Properties, Properties of Polyhedra

Rotational Symmetry

Rotational Symmetry of Polyhedra, Symmetry in Polyhedra
Slope Calculation

Pair Counting

Pairwise Sum Calculation

Division of Even Numbers

Frequency Distribution

Conditional Statements

Counting Intervals

Period Calculation

Time Interval Calculation

Unit Conversion

Factoring Quadratic Expressions

Simultaneous Equations

Counting Cyclic Quadrilaterals with Integer Sides

Counting Rectangles

Hockey Stick Identity

Perimeter Calculation

Properties of Quadrilaterals, Symmetry in Quadrilaterals
Properties of a Square

Stars and Bars Method

Triangle Inequality

Distance Comparison

Absolute Value Simplification

Subset Definition

Equivalent Fractions

Cube Root Estimation

Inequality Comparison

Sequential Multiplication

Angle Measurement in Radians, Radian-Degree Conversion
Arc Length Calculation, Arc Length Formula
Arc Measure

Central Angle Theorem

Circumference of a Circle

Commutative Property of Addition

Factorial Decomposition

Matrix Indexing

Probability wilhnglacemem




{

ReasoningStep:"Compute ged(7, 20!/7). Because 20! contains 72, dividing by 7 leaves one factor of
7, so ged(7, 201/7) =17.",

Tag:"GCD calculation using prime factorization",

Question:"In reducing the fraction 7 one over (20! divided by 7) to lowest terms, compute gcd(7, 20!
/ 7) by using prime factorization.",

Solution:"1. We need the exponent of the prime 7 in 20!.

2. Use the formula for exponent of a prime p in n!: v;(20!) = [20/7] + [20/49] =2+ 0 =2.
3. Thus 20! has a factor 72.

4. When we divide 20! by 7, the exponent of 7 in (20!/7)is2 1 =1.

5. So (20!/7) contains exactly one factor of 7, and the number 7 also contains one factor of 7.
6. Therefore ged(7,20Y/7)=7' =7."

}

{

ReasoningStep:"Divide numerator and denominator by 7: Numerator: 7 =7 = 1. Denominator:
(20!/7)+7 =20!/(7%) = 20!/49.",
Tag:"Cancelling common factors in a fraction",

Question:"In the context of the original problem, you encounter the fraction #. By cancelling the

common factor 7 in the numerator and denominator, what is the resulting simplified denominator?",

Solution:"1. Start with the fraction ﬁ 2. Observe that both the numerator and denominator

contain the factor 7. 3. Divide numerator and denominator by 7: - New numerator: 7 +7 = 1. - New
denominator: (20!/7) + 7 = 20!/(7%) = 20!/49. 4. Thus, after cancellation, the fraction becomes

5 ‘1/ R 5. The question asks for the simplified denominator, which is 20!/49."

b
{

ReasoningStep:"Hence the fraction in lowest terms is

1 "
201/49° *

Tag:"Reducing fractions to lowest terms",

Question:"Reduce the fraction 7 divided by (20! divided by 7) to lowest terms.",
Solution:"1. Start with the unreduced fraction: 7 / (20! /7).

2. Rewrite as a single fraction: 7 X 7 /20! =49/20!.

3. Observe that 20! contains the factor 72 = 49, soged(49,20!) = 49.

4. Divide numerator and denominator by 49: e Numerator: 49 + 49 = 1 e Denominator: 20! + 495.
Hence the fraction in lowest terms is 1 / (20! / 49).

6. Compute 20! =2 432 902 008 176 640 000, then divide by 49 to get 49 651 061 391 360 000.
7. Final reduced form is 1 /49651061391360000.",],

29



[
1

ReasoningStep:"Set N = 20!. Its prime factorization has k = 8 distinct primes (2, 3, 5, 7, 11, 13, 17,
19).",

Tag:"Prime Factorization",

Question:"How many distinct prime numbers appear in the prime factorization of 20!?",
Solution:

{ ReasoningStep:"By definition, 20! = 1x2x3X...X%20, so every prime p 20 divides 20!.",
Tag:"Definition of factorial",

Question:"In the definition of factorial, 20! is written as the product 1X2x3X...x20. How many
integers are multiplied together in this product?",

Solution:"By definition, n! = 1X2x3X...xn, which multiplies all integers from 1 up to n. For n = 20,
the integers are 1, 2, 3, ..., 20. Counting these gives 20 numbers being multiplied.",

{ ReasoningStep:"The primes less than or equal to 20 are 2, 3,5, 7, 11, 13, 17, and 19, and there are
no others in that range.",

Tag:"Primality Testing",
Question:"Among the integers from 1 through 20 inclusive, how many are prime numbers?",

Solution:"1. By definition, a prime number is an integer greater than 1 that has no positive divisors
other than 1 and itself.

2. We test each integer from 1 to 20: - 1 is not prime by definition. - 2 is divisible only by 1 and 2 —
prime. - 3 is divisible only by 1 and 3 — prime. - 4 is divisible by 1, 2, 4 — not prime. - 5 is divisible
only by 1 and 5 — prime. - 6 is divisible by 1, 2, 3, 6 — not prime. - 7 is divisible only by 1 and 7
— prime. - 8 is divisible by 1, 2, 4, 8 — not prime. - 9 is divisible by 1, 3, 9 — not prime. - 10 is
divisible by 1, 2, 5, 10 — not prime. - 11 is divisible only by 1 and 11 — prime. - 12 is divisible by 1,
2,3,4,6,12 — not prime. - 13 is divisible only by 1 and 13 — prime. - 14 is divisible by 1, 2, 7, 14
— not prime. - 15 is divisible by 1, 3, 5, 15 — not prime. - 16 is divisible by 1, 2, 4, 8, 16 — not
prime. - 17 is divisible only by 1 and 17 — prime. - 18 is divisible by 1, 2, 3, 6, 9, 18 — not prime. -
19 is divisible only by 1 and 19 — prime. - 20 is divisible by 1, 2, 4, 5, 10, 20 — not prime.

3. The primes in this range are 2, 3, 5,7, 11, 13, 17, and 19.

4. Counting them gives a total of 8 primes.",

{ ReasoningStep:"Therefore, the prime factorization of 20! includes exactly these 8 distinct primes.",
Tag:"Prime Factorization",

Question:"When prime factorizing 20!, we include every prime number that is less than or equal to
20. How many distinct prime numbers appear in the prime factorization of 20! ?",

Solution:"1. A prime divides 20! exactly if it is 20, since 20! is the product of all integers from 1 to
20.

2. The primes 20 are 2, 3, 5,7, 11, 13, 17, and 19.

3. Counting these gives 8 distinct primes in the factorization of 20!." },

30



. . . e - . S
{ ReasoningStep:"Since ged(a, b) = 1, each prime power p.* of N must go entirely to a or b, giving
2k pairs (a, b).",

Tag:"Fundamental Theorem of Arithmetic",

. o . . . . . . e 2 e

Question:"Let N be 20! and write N in its prime factorization N = p]' P p/,/‘.

Using the Fundamental Theorem of Arithmetic, in how many ways can you choose a pair of positive
. . . . e . .
integers (a, b) such that ab = N and ged(a, b) = 1 by assigning each prime power p," entirely to either
aorb?",

Solution:{ReasoningStep: "By the Fundamental Theorem of Arithmetic, 20! factors into prime powers
corresponding to each prime p 20.",

Tag:"Prime Factorization",
Question:"In the prime factorization of 20!, what is the exponent of the prime 27",

Solution:"1. By Legendre’s formula, the exponent of a prime p inn! is |n/p| + |n/p*] + |n/p> |+
. until the terms are zero.

2. Forp=2and n=20: [20/2] = 10[20/4| = 5[20/8] = 2[20/16] = 1]20/32]| = 0 (and all
higher powers give zero)

3. Sumthese: 10+5+2+1=18.",

b

{ReasoningStep:"The primes 20 are 2, 3, 5,7, 11, 13, 17, 19, so there are k = 8 distinct prime powers
in the factorization of 20!.",

Tag:"Listing primes up to a given limit",

Question:"In the prime factorization of 20!, how many distinct prime bases (i.e., prime numbers 20)
appear?",

Solution:"
1. To find the distinct prime factors of 20!, we list all prime numbers that are less than or equal to 20.
2. A prime number is a number greater than 1 with no positive divisors other than 1 and itself.

3. Checking the integers from 2 up to 20, the primes are: 2, 3,5, 7, 11, 13, 17, 194. Count these
primes: there are 8§ of them.",

},

31



{ReasoningStep:"To form a pair (a, b) with ab = N and gcd(a, b) = 1, each prime power pf" must go
entirely to a or entirely to b.",

Tag:"Fundamental Theorem of Arithmetic",

Question:"Let N = 20! and write its prime factorization as N = p‘i" . pzz e pzk. By the Fundamental
Theorem of Arithmetic, to form pairs of positive integers (a, b) with ab = N and gcd(a, b) = 1, each
prime power pffmustgoentirel ytoaorentirelytob. F orasingleprimepowerpf‘ , in how many ways can
you assign it to either a or b so that gcd(a, b) = 17",

Solution:" 1. The Fundamental Theorem of Arithmetic ensures N’s prime factorization is unique.
2. To keep gcd(a, b) = 1, you cannot split pfi between a and b.

3. Therefore, for that prime power, you have exactly two choices: - Assign pf" to a (so exponent in a
is e;, inbis0), —orassignpfi to b (so exponentin ais 0, in b is e;).

4. No other distributions are allowed without violating gcd(a, b) = 1.",

b

{ReasoningStep:"Each of the k = 8 prime powers has 2 choices, so by the multiplication principle
there are 2K = 28 ways.",

Tag:"Fundamental Counting Principle",

Question:"Suppose the prime factorization of 20! contains 8 distinct prime powers. If you assign
each prime power entirely to either integer a or integer b, in how many ways can you make these
assignments by the Fundamental Counting Principle?",

Solution:"1. There are 8 prime powers to assign.
2. Each prime power has 2 independent choices: assign it to a or to b.

3. By the Fundamental Counting Principle, multiply the number of choices for each prime power:
Total ways = 2e2e...2(8 times) = 28 = 256.",

H,
b

{ReasoningStep:"As 20! is not a perfect square, a # b, so half the pairs have a < b, yielding
2k =27 =128."

Tag:"Divisor Pairing Principle",

Question:"Using the Divisor Pairing Principle, in how many ways can we write 20! as a product ab
of two positive integers with ged(a,b)=1 and a<b?",

32



Solution:

{ReasoningStep:"The prime factorization of 20! involves exactly k = 8 distinct primes (2, 3, 5, 7, 11,
13,17, 19).",

Tag:"Prime factorization",

Question:"In the prime factorization of 20!, how many distinct prime factors does it contain?",
Solution:"1. By definition, 20! =1-2-3 . ... - 20.

2. Every prime p 20 divides one of the factors in the product.

3. The prime numbers less than or equal to 20 are 2, 3, 5, 7, 11, 13, 17, and 19.

4. There are 8 such primes.",

b

{ReasoningStep:"To have ab = 20! and gcd(a, b) = 1, each prime’s entire power in 20! must go either
toaortob.",

Tag:"Unique Prime Factorization",
Question:"In the prime factorization of 20!, what is the exponent of the prime 3?",

Solution:"1. By unique prime factorization, the exponent of a prime p in n! is given by summing
|n/p*| fork > luntilp* > n.

2. For p=3 and n=20: — |20/3] = 61|20/9] = 2X|20/27| = O(stophere)
3. Sum of these is 6 +2 = 8.",
}’

{ReasoningStep:"Therefore there are 2% = 28 = 256 unordered assignments of prime-powers to (a,
b).",

Tag:"Fundamental Counting Principle",

Question:"The prime factorization of 20! involves 8 distinct prime-power factors. Suppose each
entire prime-power factor must be assigned either to integer a or to integer b. Using the Fundamental
Counting Principle, in how many ways can these 8 prime powers be distributed between a and b?",

Solution:"1. There are 8 distinct prime-power factors in 20! (for primes 2, 3, 5,7, 11, 13, 17, 19).
2. For each prime-power factor, we have exactly 2 choices: assign it to a or assign it to b.

3. By the Fundamental Counting Principle, the total number of ways to make all choicesis2 X2 X ...
x 2 (8 factors) = 28.

4. Compute 28 = 256.",
}’

{ReasoningStep:"Since 20! is not a perfect square, no assignment yields a = b, so exactly half of these
yield a < b, giving 256/2 = 128.",

Tag:"Symmetry argument in combinatorial counting",

Question:"Suppose there are 256 ordered pairs of positive integers (a,b) such that ab = 20! and
gcd(a,b) = 1. Using a symmetry argument, how many of these pairs satisfy a < b?",

Solution:"1. We are given that there are 256 ordered coprime factor pairs (a,b) with ab = 20!.

2. For each ordered pair (a,b), there is a corresponding “swapped” pair (b,a).

3. Because 20! is not a perfect square, no pair has a = b; every pair is distinct from its swap.

4. Thus the 256 ordered pairs split evenly into two groups: those with a < b and those with a > b.
5. By symmetry, the number with a < b is half of 256, namely 256/2 = 128.",}, }

33



