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ABSTRACT

Large Language Models (LLMs) are typically trained on data mixtures: most
data come from web scrapes, while a small portion is curated from high-quality
sources with dense domain-specific knowledge. In this paper, we show that when
training LLMs on such data mixtures, knowledge acquisition from knowledge-
dense datasets does not always follow a smooth scaling law but can exhibit phase
transitions with respect to the mixing ratio and model size. First, through con-
trolled experiments on a synthetic biography dataset mixed with web-scraped data,
we demonstrate that: (1) as we increase the model size to a critical value, the
model suddenly transitions from memorizing very few to most of the biographies;
(2) below a critical mixing ratio, the model memorizes almost nothing even with ex-
tensive training, but beyond this threshold, it rapidly memorizes more biographies.
We then adopt an information-theoretic perspective to understand and characterize
the existence and value of the thresholds. Based on these insights, we identify two
mitigation strategies that improve the efficiency of knowledge acquisition from
knowledge-dense datasets, and validate their effectiveness on both synthetic and
real-world Wikipedia datasets.

1 INTRODUCTION

Large Language Models (LLMs) are often trained on two types of datasets. The first is a large-scale
corpus scraped from the web (Raffel et al., 2020; Penedo et al., 2024; Li et al., 2024), often spanning
billions to trillions of tokens across diverse topics and styles. Due to the scale, it is inherently hard
to ensure the information density of the dataset and its relevance to downstream tasks. Hence, a
second type of data, smaller-scale datasets curated from high-quality sources, is incorporated. This
type of data features very dense knowledge on a specific task or domain. Some of these datasets,
such as Wikipedia and Stack Exchange, contain a wealth of world knowledge while others, such as
OpenWebMath (Paster et al., 2024) and StarCoder (Li et al., 2023; Kocetkov et al., 2022), contribute
domain expertise in mathematics and coding.

As the second-type data usually take a small fraction of the entire corpus, one may wonder: How
much knowledge can an LLM acquire from these knowledge-dense datasets? Answering this question
is crucial to understanding the ultimate performance that a model can achieve as we continue to
improve data quality and scale up training compute.

One crucial aspect is the model size, since models cannot store more knowledge than their capacity.
Allen-Zhu & Li (2024a) quantified the influence of model size on factual knowledge acquisition in
a controlled setting, where the pre-training data only contains a synthetically generated biography
dataset and no other data. They found that the amount of knowledge in a sufficiently trained model
stores scales linearly with the model size. Similar scaling was observed for memorizing Wikidata
fact triples by Lu et al. (2024), and theoretically analyzed by Nichani et al. (2025).

In this paper, we present a quantitative study on the amount of knowledge that a model can acquire
from a knowledge-dense dataset under data mixing: the knowledge-dense dataset constitutes only a
fraction of the pre-training data, denoted as the mixing ratio r, and the rest of the data is a large-scale
corpus of web text. We show that knowledge acquisition from knowledge-dense datasets, when
mixed with the web text, no longer follows a linear scaling law but instead exhibits a more intricate
behavior with notable phase transitions with respect to mixing ratios and model sizes.
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More specifically, we study factual knowledge acquisition. We follow the approach of Allen-Zhu &
Li (2024a) to curate a synthetic dataset of biographies with uniform data format and content, which
enables us to quantify how much knowledge the model has stored simply by counting the number of
memorized biographies. We pre-train models of different sizes on a mixture of this biography dataset
and FineWeb-Edu (Penedo et al., 2024), a large-scale web corpus derived from Common Crawl.

Of course, setting r closer to 1 will make the model memorize more biographies, but it also hurts
the model’s general capabilities that are supposed to be learned from the more diverse web corpus.
Therefore, the essence of our study is to understand whether models can still memorize a decent
number of biographies for relatively small r (< 40%). Our experiments reveal two interesting
findings (Section 3):

Finding 1: Phase Transition in Model Size (Figure 1). When varying the model size while
keeping the mixing ratio r fixed, the number of biographies memorized by the model does not scale
linearly with its size but instead exhibits a phase transition behavior. When the model size is smaller
than a critical model size N0, the number of memorized biographies can be nearly zero, and only until
the model size reaches N0, the model suddenly memorizes most of the biographies. The threshold
N0 is higher for smaller mixing ratio r.

Finding 2: Phase Transition in Mixing Ratio (Figure 2). When varying the mixing ratio r while
keeping the model size fixed, we find that below a critical mixing ratio r0, the model memorizes
almost nothing even after significantly longer training, during which each biography appears tens of
times more (Figures 3(a) and 4), but beyond r0, the number of memorized biographies grows rapidly
with r. We further find that as we gradually decrease r, the number of steps needed to memorize a
fixed number of biographies is initially growing linearly with 1/r (Figure 3(b)), but soon becomes
exponential and even superexponential (Figure 3(c)), making it impossible or practically infeasible
for the model to memorize a nontrivial number of biographies despite extensive training passes.

The above findings reveal a caution for practitioners that the mixing ratio should be set with care for
the model: mixing in knowledge-dense datasets with small mixing ratios can be not beneficial at all,
especially when training small LMs.

Theoretical Analysis (Section 4). We further present an information-theoretic explanation for the
observed phase transitions. We show that these behaviors are not unique to LLM pre-training but can
also arise in any learning algorithm that optimally minimizes the overall test loss with a bounded
model capacity, which we refer to as optimal bounded-capacity learner. By assuming that the optimal
test loss follows a power law in model size, we show how phase transition depends on the model size,
mixing ratio, and the exposure frequency of each fact in a knowledge-dense dataset. We also derive a
power law relationship between the threshold frequency of a fact and the model size.

Empirically, we estimate the threshold frequency of factual knowledge in PopQA (Mallen et al., 2023)
across 32 open-source models, ranging from 1B to 70B parameters (Section 5). Our experiment
demonstrates that our predicted power-law scaling approximately holds for popular LLMs.

Mitigation Strategies. Inspired by our theory, we further propose two mitigation strategies to
improve the efficiency of knowledge acquisition by increasing exposure frequency:
1. Perhaps counter-intuitively, it is beneficial to randomly subsample the knowledge-dense dataset

to a smaller size, which increases the exposure frequency of each biography to improve memo-
rization (Section 6.2).

2. We propose rephrasing the knowledge in a more compact form and add rephrased data to
the original dataset while keeping the overall mixing ratio fixed. This increases the exposure
frequency of each biography, though represented in different forms. Perhaps surprisingly, LLMs
can successfully memorize the knowledge and answer questions in natural language (Section 6.3).
We call this method Compact Knowledge Mixing (CKM).

We validate on both our synthetic biographies and real-world Wikipedia biographies that our mitiga-
tion strategies significantly increase the number of memorized biographies while preserving models’
general capability.

2 EXPERIMENTAL SETUP

The SynBio Dataset. We follow the approach of Allen-Zhu & Li (2024b) to curate a synthetic
biography dataset with uniform data format and content. Specifically, each individual is characterized

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a paper at DATA-FM workshop @ ICLR 2025

14 31 50 90 160 256 410
Model size (M, log scale)

1

10

60
100

Ac
c.

 o
n 

Sy
nB

io
-3

20
k

(%
, l

og
 sc

al
e) Mixing ratio

0.1
0.2
0.3
0.4

Figure 1: Phase transition in model size.
For each mixing ratio, as model size in-
creases, accuracy initially remains zero.
Once model size surpasses some thresh-
old, accuracy rapidly grows to over 60%.
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Figure 2: Phase transition in mixing ratio. For each model
size, as mixing ratio r increases, accuracy initially remains
zero. Only when r exceeds some threshold does accuracy
quickly improve.

by five attributes: birth date, birth city, university, major, and employer. For each individual, the value
of each attribute is randomly and independently sampled from a predefined domain. These (name,
attribute, value) triplets are then converted into natural text descriptions using predefined sentence
templates. For instance, the triplet (Gracie Tessa Howell, birth city, St. Louis, MO) is converted
into the sentence: “Gracie Tessa Howell’s birthplace is St. Louis, MO.” Following (Allen-Zhu & Li,
2024b), each time the model encounters a biography, the five sentences is randomly shuffled, and a
new sentence template is selected for each attribute from a set of five possible templates. We denote
the dataset containing N biographies as SynBio-N . See Appendix C.2.1 for full details.

Evaluation. Denote a knowledge triplet (name, attribute, value) as (n,a,v) and let |v| represent
the number of tokens in the value v. For evaluation, the model is prompted with the prefix of the
templated sentence containing n and a and is asked to generate |v| tokens using greedy decoding.
The triplet is successfully memorized if the generated text exactly matches v. For example, to test
whether the model has learned the triplet (Gracie Tessa Howell, birth city, St. Louis, MO), the prompt
“Gracie Tessa Howell’s birthplace is” is provided. The model is deemed to have memorized the fact if
it generates “St. Louis, MO.” We report the accuracy averaged over all individuals, attributes, and
templates in the main text and defer the detailed results to Appendix B.2.

Training Setup. Our experiments use the GPT-NeoX library (Andonian et al., 2023) and the
Pythia model architecture (Biderman et al., 2023), with model sizes ranging from 14M to 1B and
a sequence length of 2048. The default setup involves pre-training from scratch on a mixture of
FineWeb-Edu and SynBio, using a batch size of 512 and the Warmup-Stable-Decay (WSD) learning
rate schedule (Hu et al., 2024) with a peak learning rate of 10−3. We also investigate the continual
pre-training setup, which mimics data annealing phase where high-quality data are upweighted to
improve model performance (Dubey et al., 2024; Blakeney et al., 2024; Feng et al., 2024; OLMo
et al., 2025). Full details are provided in Appendix C.

3 PHASE TRANSITIONS OF KNOWLEDGE ACQUISITION WITHIN DATA
MIXTURES

3.1 PHASE TRANSITION IN MODEL SIZE

We first investigate how knowledge acquisition within data mixtures is affected by model size at fixed
mixing ratios. For each r ∈ {0.1, 0.2, 0.3, 0.4}, we train models with sizes ranging from 14M to
410M on the mixture of FineWeb-Edu and SynBio-320k for 32B tokens, which is approximately four
times the optimal computation for 410M models predicted by the Chinchilla scaling law (Hoffmann
et al., 2022). As shown in Figure 1, as model size increases, accuracy on SynBio initially remains
near zero. Once the model size surpasses some threshold, accuracy rapidly grows to above 60%. The
transition is consistently sharp across different mixing ratios while larger r leads to a smaller critical
point.

3.2 PHASE TRANSITION IN MIXING RATIO

We now study how knowledge acquisition in the data mixing scenario is affected by mixing ratios for
fixed model sizes.

Accuracy on the knowledge dataset undergoes a phase transition as mixing ratio increases.
We begin by training models of the same size with different mixing ratios r. Specifically, we train
70M models on the mixture of FineWeb-Edu and SynBio-320K, varying r from 0.1 to 0.45 (stepsize
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Figure 3: Training efficiency declines sharply as r decreases. We train 70M models on the mixture of FineWeb-
Edu and SynBio-128k. (a) For each r, we train until accuracy achieves 60% accuracy or until a total of 256B
tokens are passed. Notably, accuracy for r = 0.2 remains near zero even after extensive training up to 512B
tokens. (b) Required training steps to achieve target accuracy initially grows linearly with 1/r, but then escalate
rapidly. (c) Required training steps increase exponentially or even superexponentially with 1/r.

0.05), and 410M models on the mixture of FineWeb-Edu and SynBio-1.28M, varying r from 0.1
to 0.4 (stepsize 0.1). All models are trained for a total of 32B tokens. As shown in Figure 2(a),
for 70M models, as r increases from 0.1 to 0.25, its accuracy on SynBio remains near zero. Only
when r exceeds 0.3 does the accuracy begin to steadily improve with increasing r. In Figure 2(b), the
accuracy for 410M models exhibit similar trends where it remains near zero for r ≤ 0.3 and suddenly
attains 80% when r grows to 0.4.
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Figure 4: For 410M models trained
on the mixture of FineWeb-Edu and
SynBio-1.28M, accuracy for r = 0.2
remains near zero even when we extend
the training by 4 times.

Training longer barely helps for low mixing ratios. Having
identified that models struggle to memorize facts when mix-
ing ratio falls below some threshold, we investigate whether
extended training can mitigate this issue. We extend the train-
ing horizon for r = 0.2 to 512B tokens for the 70M model
and 128B for the 410M model, increasing the model’s expo-
sure to the knowledge dataset by 16 and 4 times, respectively.
However, as shown in Figures 3(a) and 4, the accuracy on Syn-
Bio remains near zero for both model sizes, even with these
substantial extensions.

Required training steps to achieve target accuracy ini-
tially grows linearly with 1/r, but then escalate rapidly.
We further examine how mixing ratio affects the train-
ing efficiency in knowledge acquisition by measuring the
total number of training steps required to reach a target
accuracy, denoted as T , across different mixing ratios r.
Specifically, we train 70M models with mixing ratios from
{0.2, 0.25, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8}. For each mixing ratio, we evaluate 20 training
horizons, approximately evenly spaced on a logarithmic scale with a factor of 1.2, ranging from 0 to
256B tokens. For r > 0.4, where accuracy improves rapidly, we assess additional training horizons
for more precise estimations. Training continues until the model reaches 60% accuracy or exhausts
256B tokens. As shown in Figures 3(a) and 3(b), as we decrease r from 0.8, T initially increase
linearly with 1/r for r > 0.4 and quickly deviates from the linear trend as r falls below 0.4.

Quantifying the growth rate: required training steps increase exponentially or even superexpo-
nentially with 1/r. To quantify the growth rate of T with respect to 1/r, we analyze the results
for target accuracy 40% and fit a scaling law for T against 1/r. Specifically, we use an exponential
function to fit T against 1/r for all r ≥ 0.3, where 40% accuracy is achieved within 256B tokens.
Additionally, we use a power-law function to fit T against 1/r for r ∈ {0.3, 0.4, 0.45, 0.5, 0.55}.
Details on the fitting process can be found in Appendix C.3. To examine whether T follows the fitted
trend as r decreases further, we extend the training for r = 0.2 and 0.25 to 660B and 1024B tokens,
respectively. However, neither configurations attain 40% accuracy, even after such extended training.
As shown in Figure 3(c), the actual T is more than 2.9 times the power-law prediction for r = 0.25
and more than 1.9 times for r = 0.2. Notably, the actual T for r = 0.25 is even more than twice the
exponential prediction. These significant deviations suggest exponential or even superexponential
growth of T with respect to 1/r as r decreases.
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Figure 5: Ablation studies on hyperparameters. The models exhibit consistent trends in knowledge acquisition
across different batch sizes, learning rate values and schedules. All experiments are conducted by training 70M
models on the mixture of FineWeb-Edu and SynBio-320k.

3.3 ABLATION STUDIES

We now conduct ablation studies to demonstrate the robustness of our findings with respect to
hyperparameters. We explore r ∈ {0.2, 0.4, 0.8} and train 70M models for a total of 64B, 32B, and
16B tokens, respectively, ensuring each configuration passes SynBio the same number of times.

Consistent Trends Across Different Batch Sizes. As shown in Figure 5(a), we evaluate three
batch sizes, B ∈ {256, 512, 1024}, for each r and observe consistent general trends across all batch
sizes. For r = 0.4 and r = 0.8, smaller batch sizes yield slightly higher accuracies, likely due to
the increased number of update steps. These experiments further distinguish between two types of
frequency at which the model encounters the knowledge dataset: per-token frequency and per-step
frequency. For a fixed mixing ratio, doubling the batch size doubles the occurrences of each biography
per step, while the occurrences per token remain unchanged. The results demonstrate that per-token
frequency, rather than per-step frequency, determines training efficiency in knowledge acquisition.

Consistent trends across learning rate values and schedules. In Figure 5(b), we explore peak
learning rates among {2.5× 10−4, 10−3, 4× 10−3} using the WSD scheduler. We observe that the
trends are consistent across these values, although the learning process slows down at the lowest
value 2.5× 10−4. In Figure 5(c), results for both cosine and WSD schedulers show similar trends.

4 THEORETICAL ANALYSIS

In this section, we take an information-theoretic perspective and point out that the observed phe-
nomena in the experiments are not unique to the current LLM architectures or optimization methods
but can also happen for any model that is trained to maximally utilize its capacity to minimize the
next-token prediction loss. We then formulate the notion of optimal bounded-capacity learners and
show how they exhibit similar phase transitions as LLMs. In Sections 5 and 6, we will further study
this type of model as a proxy for the real-world LLMs and conclude with several implications that
indeed apply to LLMs.

4.1 PROBLEM FORMULATION

Data distribution. The essence of language modeling is to model the distribution of the next
token y for a given input context x consisting of all previous tokens. We take a Bayesian view and
assume that there is a latent variable θ ∈ Θ that determines the data distribution of (x, y), denoted
as (x, y) ∼ Dθ. Conceptually, θ should contain a lot of knowledge to be presented in the data. For
example, in our current universe someone may be born in 1996, but in a parallel universe, the same
person may be born in 1999. Or, in a different universe, popular Python libraries may have a very
different set of functions. We assume that the universe first draws θ from a prior distribution P before
we observe the data distribution Dθ.

Learning Algorithm. A learning algorithm A is a procedure that takes samples from a data
distribution D of (x, y) and outputs a predictor h = A(D) in the end, where h is a function that
maps x to a distribution over y. For a given predictor h, we measure its performance by the expected
cross-entropy loss L(h;D) := E(x,y)∼D[− log p(y | h, x)], where p(y | h, x) denotes the predicted
distribution of y given x by the predictor h, and log is in base 2 for convenience. We measure the
performance of a learning algorithm A by its expected loss over all data distributions Dθ with respect
to the prior P:

L̄P(A) := Eθ∼P [L(A(Dθ);Dθ)]. (1)

5
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In practice, a predictor h can be a transformer, and A can be the pre-training algorithm.

Model Capacity and Mutual Information. We measure the “effective” model capacity—the
amount of information a model, produced by learning algorithm A, stores about the data distribution
Dθ—by the mutual information (MI) between the model and the data distribution Dθ, namely
I(A(Dθ);Dθ). Practical learning algorithms usually have a bounded capacity. Consider a learning
algorithm A that always outputs a model h with at most N parameters, where each parameter is a
floating-point number with p bits of precision. Then information theory states that the MI is bounded
by pN , i.e., I(A(Dθ);Dθ) ≤ pN . Empirically, Allen-Zhu & Li (2024a) measured the knowledge
capacity scaling laws of LLMs in a carefully controlled setting and found that I(A(Dθ);Dθ) ≈ 2N ,
which hold consistently across various training setups.

Optimal Bounded-Capacity Learner. Now, imagine that we train a model under a capacity
constraint I(A(Dθ);Dθ) ≤ M , where M is a constant. We optimize the training procedure with
huge efforts and put massive computational resources into training so that the resulting model can
minimize the loss as much as possible. How does the resulting model behave? This motivates us to
define the following notion of optimal bounded-capacity learner.

Definition 4.1. For a given prior P and M > 0, the best achievable loss under a capacity constraint
M is defined as

FP(M) := inf
A

{
L̄P(A) : I(A(Dθ);Dθ) ≤M

}
, (2)

where the infimum is taken over all learning algorithms. An optimal M -bounded-capacity learner is
a learning algorithm A such that I(A(Dθ);Dθ) ≤M and L̄P(A) = FP(M).

4.2 WARMUP: MIXTURE OF FACTS

We start with a simple case where the data distributionDθ consists of K random facts. More formally,
let X1, . . . , XK be K disjoint sets of input contexts and y1, . . . , yK be K target tokens. Each (Xi, yi)
represents a fact. The universe samples y1, y2, . . . , yK independently, where yi is drawn from a fixed
distribution Yi. Then the universe sets the latent variable θ to be (y1, y2, . . . , yK) and Dθ(y | xi) to
be a point mass at yi for all xi ∈ Xi. There could be other inputs x that can occur in Dθ, but the
target tokens of such inputs are independent of θ.

Define the exposure frequency of each random fact as the total probability that an input x ∈ Xi

occurs in Dθ. Despite that the K facts have different entropies, the following theorem shows that
if their exposure frequencies are the same, then the optimal bounded-capacity learner reduces the
expected loss linearly with the capacity M , thus no phase transition in capacity.

Theorem 4.2. For all M ≥ 0, if all the facts have the same exposure frequency p, then
FP(M) = C + p ·max {Htot −M, 0} , (3)

where Htot :=
∑K

i=1 H(Yi) and C := FP(∞).

4.3 DATA MIXING INDUCES PHASE TRANSITIONS

What if we mix the random facts with another domain of data, say web text? More specifically,
imagine that the data distribution Dθ consists of two data domains. The first is the same as before, a
mixture of K random facts. The second is another data domain that can have a much more complex
structure. We assume that the latent variable θ is structured as θ = (θ1, θ2), where θ1 contains
information about the K random facts and θ2 determines the target token distributions in the second
domain. When sampling θ ∼ P , the universe draw θ1 and θ2 independently from priors P1 and
P2, respectively. The data distribution Dθ is then mixed together as Dθ = (1 − r)D(1)

θ1
+ rD(2)

θ2
,

where r ∈ (0, 1) is the mixing ratio, and D(1)
θ1

and D(2)
θ2

are the data distributions of the two domains.
Same as before, we use p to denote the exposure frequency of any fact in the first domain, and
Htot :=

∑K
i=1 H(Yi) to denote the total entropy of the target tokens in the first domain.

To understand how a model performs on the first domain after training with an algorithm A on the
data mixture, we define L̄1(A) := Eθ∼P1

[L(A(Dθ);Dθ1)], which is the expected loss of A on the
first domain after learning from the data mixture. If L̄1(A) = FP1

(0), then the learner’s performance
is the same as random guessing without seeing any data, namely the learner does not learn the facts
at all. If L̄1(A) = FP1(∞), the learner learns the facts perfectly.
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The following theorem shows that the optimal bounded-capacity learner no longer learns the facts
linearly, but instead exhibits a phase transition in the capacity M . More specifically, the learner
sharply transitions between the two extremes as the model size increases. Two key functions for
characterizing the transition are

M−
0 (x) := sup{M ≥ 0 : −F ′

P2
(M) > x},

M+
0 (x) := inf{M ≥ 0 : −F ′

P2
(M) < x},

Due to convexity of FP2
(M), −F ′

P2
(M) is non-increasing. Imagine that we vary M from 0 to∞.

Then M−
0 (x) and M+

0 (x) can be interpreted as the last M such that −F ′
P2

(M) is larger than x and
the first M such that −F ′

P2
(M) is smaller than x, respectively. If F ′

P2
(M) is strictly decreasing, then

M−
0 (x) and M+

0 (x) are the same.

Theorem 4.3 (Phase Transition in Model Size). For any optimal M -bounded-capacity learner A,

1. if M ≤M−
0 ( r

1−r · p), then L̄1(A) = FP1
(0);

2. if M ≥M+
0 ( r

1−r · p) +Htot, then L̄1(A) = FP1
(∞).

Key Example: When Web Data Loss Follows a Power Law in Model Size. Consider the case
where FP2

(M) is a power-law function of M , i.e., FP2
(M) = C +A ·M−α. Here, α ∈ (0, 1) and

A is a large constant. This is a reasonable assumption since LLM pre-training usually exhibits such a
power-law scaling behavior in model size, as observed by many works (Kaplan et al., 2020; Hoffmann
et al., 2022). For example, Hoffmann et al. (2022) estimated that the power-law exponent α is around
0.34 for their Chinchilla models. If the second domain is a large-scale dataset scraped from the web,
then we should expect that the best achievable loss on this domain is a power-law function of the
model capacity. In this case, taking the derivative of FP2(M), we have −F ′

P2
(M) = A · α ·M−α−1.

Then, M−
0 (x) = M+

0 (x) = (Aα
x )1/(α+1). Plugging this into Theorem 4.3, we can see that the

transition point is around

M ∼
(
A

rp

)1/(α+1)

. (4)

This implies that even if the model has the capacity to learn the first domain, it may still need to be
very large to acquire any knowledge from it, especially when r or p is small.

Arranging the terms in (4), we can also obtain the transition point in the mixing ratio r:

r ∼ A

p ·Mα+1
, (5)

which aligns with the empirical observation that r has to be larger than a critical mixing ratio for the
model to learn any of the facts.

Threshold Frequency. At the fact level, its overall probability of being sampled is rp in the data
mixture. Again arranging the terms in (5), we can further predict that for a fact to be learned by
the model, its frequency of appearing in the pretraining corpus should be larger than a threshold
frequency, which scales with the model size following a power law:

rp ∼ A

Mα+1
. (6)

5 POWER-LAW RELATIONSHIP OF THRESHOLD FREQUENCY AND MODEL
SIZE

To validate our theoretical prediction of a power-law relationship between models size and threshold
frequency, we examine the threshold frequency of a set of knowledge extracted from Wikipedia.
Specifically, we evaluate models on PopQA (Mallen et al., 2023), which contains 14k QA pairs
derived from Wikidata triplets, along with monthly page view for corresponding Wikipedia articles.
Since knowledge tested in PopQA can be structured as triplets, we consider them as homogeneous
and expect them to exhibit similar threshold frequencies for a given model size.
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Figure 6: Model size and threshold frequency exhibit a power-law relationship, which aligns with our theoretical
prediction.

Estimating the Threshold Frequency. Directly counting the frequency in the pre-training data can
be challenging due to the sheer data volume (Kandpal et al., 2023). To address this, we follow Mallen
et al. (2023) and use Wikipedia page views as a proxy for popularity, which is expected to be
roughly proportional to how frequently the knowledge appears in web data. To estimate the threshold
popularity Pthres, we determine the smallest popularity P such that the model’s accuracy on data
with popularity above P meets the target accuracy αtarget. In our experiments, we set αtarget = 60%.
See Appendix C.4 for details.

Threshold frequency and model size follow a power law. We first examine base models from
three families: Llama-2 (Touvron et al., 2023), Qwen-2.5 (Qwen et al., 2024) and Gemma-2 (Team
et al., 2024). According to their technical reports, models from the same family are likely trained
on the same data mixture. As shown in Figure 6(a), logPthres generally decreases linearly as log
model size increases within each family. The slope may vary across model families, as the exponent
for model size in the loss scaling law can differ depending on model architecture and training data.
Next, we relax the constraint of training on the same data mixture and investigate the overall trend
between model size and Pthres. We add the Llama-3 (Dubey et al., 2024) family, and evaluate both
base and instruction-tuned models for all families, totaling 30 models. Interestingly, in Figure 6(b),
log model size and logPthres also exhibit a linear relationship, with most models falling within the
95% confidence interval. We further use models from the OLMo (Groeneveld et al., 2024) family as
a validation set, where predictions of the fitted power law closely match the ground truth.

Potential Application: Inferring the Size of Proprietary Models. The identified power-law
relationship offers a potential method for estimating the size of proprietary models, such GPTs. As
a preliminary attempt, we estimate the threshold popularity for GPT-3.5-Turbo, GPT-4, GPT-4o,
and GPT-4o-mini. Applying the fitted power law yields size predictions of 61B, 514B, 226B, and
24B, respectively. The 95% confidence intervals are 12–314B, 80–3315B, 39–1313B, and 5–118B,
respectively.

6 MITIGATION STRATEGIES
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Figure 7: Our mitigation strategies significantly boost knowledge acquisition while preserving models’ general
capability. For example, applying random subsampling and CKM to WikiBio improve the number of learned
facts by 4 and 20 times, respectively. This is particularly surprising for subsampling, as it removes a significant
proportion of the knowledge data but ends up with higher accuracy.

While previous sections focus on how many facts the model memorizes, we now consider a more
practical scenario where both factual accuracy and models’ general capabilities are important. In this
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context, the model’s extremely slow acquisition of low-frequency facts presents a dilemma: using a
small r blows up the training steps to achieve the desired factual accuracy, while recklessly increasing
r degrades the model’s general capabilities. One could also imagine when multiple knowledge-dense
datasets were mixed together to form a carefully balanced mixture, setting a large r could be even
more detrimental. Inspired by our theory, we propose two simple yet effective mitigation strategies:
1. Random Subsampling: Randomly subsample the knowledge dataset to accelerate knowledge

acquisition.
2. Compact Knowledge Mixing (CKM): Rephrase the knowledge in a more compact form and

add rephrased data to the original dataset while keeping the overall mixing ratio fixed.
We validate on both SynBio and a new real-world knowledge dataset, WikiBio, that these strategies
significantly boost the accuracy on knowledge dataset. For example, applying subsampling and CKM
to WikiBio improve the number of learned facts by 4 and 20 times, respectively. This is particularly
surprising for subsampling, as it removes a significant proportion of the knowledge data but ends up
with higher accuracy. Below, we first introduce the real-world dataset that complements SynBio.

6.1 REAL-WORLD KNOWLEDGE DATA: WIKIBIO

The WikiBio Dataset. To extend our study to a more real-world scenario, we curate WikiBio, a
dataset containing Wikipedia biographies along with ten paraphrased versions of the first paragraph
for 275K individuals, totaling 453M tokens. We ensure that the key information—name, occupation,
and birth date—is mentioned within the first paragraph. Experimenting with this dataset reflects the
case where one aims to guarantee that the model can generate accurate answers to factual inquires
about famous people. This task is more challenging as Wikipedia biographies comprise diverse texts
lack of uniform formats, requiring the model to generalize to prompts that rarely have exact matches
in the training data. See Appendix C.2.2 for full details.

Evaluation. We assess whether the model can recall a person’s birth date, using this as a proxy
for how well it memorizes the person’s information. Specifically, for a (name, occupation, birth
date) triplet, we prompt the model with “The {occupation} {name} was born on” and consider
the response correct if it accurately includes the birth year and month in the generated text. The
occupation is included not only to create out-of-distribution prompts but also to provide additional
context and assist in disambiguation.

6.2 STRATEGY 1: RANDOM SUBSAMPLING

The approach of random subsampling may seem counterintuitive at first glance, but it becomes
reasonable if we consider the frequency of each fact, which is inversely proportional to the dataset size
for fixed r. Instead of mixing a large knowledge dataset that dilutes each specific fact, subsampling
allows models to focus on a smaller subset, facilitating faster learning. As a result, the model
memorizes more facts within the same number of training steps. In the following text, we use ρ to
represent the subsampling ratio.

Experimental Setup. We study both pre-training from scratch and continual pre-training setups.
To evaluate the model’s general capabilities, we use its validation loss on the web data (the Pile or
FineWeb-Edu) and its zero-shot performance on downstream tasks. The selected downstream tasks
include LAMBADA (Paperno et al., 2016), ARC-E (Clark et al., 2018), PIQA (Bisk et al., 2020),
SciQ (Welbl et al., 2017), and HellaSwag (Zellers et al., 2019), covering core capabilities such as text
understanding, commonsense reasoning, and question answering. We compare the validation loss
and average downstream performance to the model trained with r = 0 (no knowledge-dense data)
in the pre-training-from-scratch setup and to the original Pythia model in the continual pre-training
setup. Downstream performance drop of more than 2% is considered unacceptable.

Subsampling enables faster fact memorization while maintaining general capability. We train
410M models from scratch on the mixture of FineWeb-Edu and SynBio-1.28M using mixing ratios
r ∈ {0, 0.1, 0.2, 0.3} for a total of 32B tokens. As shown in Figures 7(a) and 8(a), FineWeb-Edu
validation loss and downstream performance worsen as r increases, with the degradation becoming
unacceptable at r = 0.3, where downstream accuracy drops by 2.09% and loss increase exceeds
0.05. Despite this performance decline, SynBio accuracy remains near zero. Subsampling effectively
mitigates this issue. Specifically, subsampling SynBio-1.28M to 25%, 50%, and 56.25% significantly
improves SynBio accuracy from near 0% to 23.53%, 37.46%, and 39.81%, respectively, while
maintaining downstream performance within the acceptable range. Note that further increasing ρ to
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62.5% makes the frequency of each biography too low, resulting in SynBio accuracy dropping back
to near zero. See training details in Appendix C.5 and detailed performance in Tables 1(b) and 2(a).

Consistent Results for Continual Pre-training. We extend our analysis to the continual pre-
training setup, where we continually pre-train the 410M and 1B Pythia models from their 100k-step
checkpoints by mixing Pile with WikiBio and SynBio-2.56M, respectively. We train 410M models
for a total of 32B tokens and 1B models for 64B tokens. Since mixing in the knowledge-dense data
introduces a distribution shift, the Pile validation loss may increase with training due to catastrophic
forgetting (Ibrahim et al., 2024). To keep the model’s general capabilities in the acceptable range, we
apply early stopping when Pile validation loss increases by 0.05 for 410M models and 0.03 for 1B
models, both corresponding to approximately 2% drop in downstream performance. As shown in
Figures 7(b) and 8(b), without subsampling, setting r = 0.1 and r = 0.15 results in slow learning
of WikiBio. On the other hand, increasing r to 0.2 causes the Pile validation loss to grow during
training, leading to early stopping after 20B tokens, resulting in poor WikiBio performance. By
contrast, subsampling WikiBio to 25% or 50% significantly accelerates knowledge acquisition while
keeping Pile validation loss within the acceptable range. For example, when fixing r = 0.1, setting
ρ to 50% improves the number of learned facts by 4 times. Further increasing ρ to 75% proves to
be too high, resulting in poor performance. Similar conclusions can be drawn from experiments
with the 1B models, where subsampling SynBio to 50% at r = 0.2 significantly outperforms both
r = 0.2 and the early-stopped r = 0.4 without subsampling, achieving a margin of approximately
30% (see Figure 7(c)). We defer the training details to Appendix C.5 and detailed performance
to Tables 1(c), 2(b) and 3.

6.3 STRATEGY 2: COMPACT KNOWLEDGE MIXING (CKM)

The second strategy involves rephrasing knowledge in compact forms (e.g., tuples) and adding these
rephrased forms to the original dataset. This approach decreases the average number of tokens needed
to represent each fact, thereby exposing models to each specific fact more frequently given a fixed
overall mixing ratio. For our specific WikiBio dataset, we compress the key information—name,
birth date, and occupation—into a tuple format represented as “Bio: N {name} B {birth date}
O {occupation}”. We keep adding these tuple-form data points to WikiBio until their token
count reaches τ times the total token count of the original dataset. We name this ratio τ as Compact
Knowledge Mixing (CKM) ratio.

Experimental Setup. We apply CKM to WikiBio to validate its effectiveness, with the same
continual pre-training setup as in Section 6.2. Each time models encounter the tuple-form data
point, the order of birth date and occupation is randomly flipped. We apply early stopping when Pile
validation loss increases by 0.05.

CKM significantly improves knowledge acquisition efficiency while preserving general capa-
bility. We explore CKM ratios τ ∈ {0.1, 0.3, 0.6}, fixing the overall mixing ratio r = 0.1. As
shown in Figures 7(b) and 8(c), CKM keeps the general capability within the acceptable range and
consistently boosts knowledge acquisition. Notably, performance on WikiBio improves fourfold
even when the token count of the added tuple-form data points constitutes only 10% of the original
dataset. This aligns with the phase transition in frequency predicted by our theory. Increasing τ to
30% further boosts the number of learned facts to 20 times compared with training without CKM.
WikiBio performance saturates as τ reaches 90%, indicating that τ should be carefully chosen to
balance memorization and generalization. Detailed downstream performance is provided in Table 4.

7 DISCUSSIONS AND FUTURE DIRECTIONS

This paper identifies two phase transitions for knowledge acquisition under data mixing and develops
a theory to explain observed phenomena. While our experiments focus on mixing factual knowledge
with web corpus, such transitions may also happen for other types of knowledge, such as math, coding,
and procedural knowledge (Ruis et al., 2024). We leave the extension to more types of knowledge to
future work. Another important future direction is to apply our theory-inspired mitigation strategies
to accelerate LLMs’ knowledge acquisition, especially for small models with limited capacity.
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BROADER IMPACT

This paper identifies two phase transitions in knowledge acquisition within data mixtures and provides
a theoretical understanding of these phenomena. Building on our theory, we propose two mitigation
strategies to enhance the efficiency of knowledge acquisition. Our findings offer deeper insights into
LLM behavior and can be applied to improve the factual accuracy of LLMs.

REFERENCES

Allen-Zhu, Z. and Li, Y. Physics of language models: Part 3.1, knowledge storage and extraction.
arXiv preprint arXiv:2309.14316, 2023.

Allen-Zhu, Z. and Li, Y. Physics of language models: Part 3.3, knowledge capacity scaling laws.
arXiv preprint arXiv:2404.05405, 2024a.

Allen-Zhu, Z. and Li, Y. Physics of language models: Part 3.2, knowledge manipulation, 2024b.

Andonian, A., Anthony, Q., Biderman, S., Black, S., Gali, P., Gao, L., Hallahan, E., Levy-Kramer,
J., Leahy, C., Nestler, L., Parker, K., Pieler, M., Phang, J., Purohit, S., Schoelkopf, H., Stander,
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Shahriari, B., Ramé, A., Ferret, J., Liu, P., Tafti, P., Friesen, A., Casbon, M., Ramos, S., Kumar, R.,
Lan, C. L., Jerome, S., Tsitsulin, A., Vieillard, N., Stanczyk, P., Girgin, S., Momchev, N., Hoffman,
M., Thakoor, S., Grill, J.-B., Neyshabur, B., Bachem, O., Walton, A., Severyn, A., Parrish, A.,
Ahmad, A., Hutchison, A., Abdagic, A., Carl, A., Shen, A., Brock, A., Coenen, A., Laforge, A.,
Paterson, A., Bastian, B., Piot, B., Wu, B., Royal, B., Chen, C., Kumar, C., Perry, C., Welty,
C., Choquette-Choo, C. A., Sinopalnikov, D., Weinberger, D., Vijaykumar, D., Rogozińska, D.,
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A ADDITIONAL RELATED WORKS

Knowledge Capacity Scaling Law. LLMs are typically trained on a vast amount of data that are
rich in knowledge, and extensive studies have investigated how much knowledge LLMs can acquire
from the training data. Pioneering studies (Petroni et al., 2019; Roberts et al., 2020; Da et al., 2021)
demonstrate that LLMs can capture a substantial amount of knowledge, suggesting their potential as
knowledge bases. To quantify the relationship between model size and knowledge storage, Allen-Zhu
& Li (2024a) and Lu et al. (2024) discover a linear relationship between models’ knowledge capacity
and their parameter count by training LLMs on data only containing fixed-format knowledge for
sufficiently long horizons. Later, Nichani et al. (2025) formally proved this linear relationship. In
contrast, this paper examines the data mixing scenario and demonstrates that this linear scaling can
be disrupted when the knowledge-dense dataset is mixed with vast amounts of web-scraped data.
Another important factor is the frequency of occurrence for knowledge.

Impact of Frequency on Knowledge Acquisition. This paper identifies phase transitions in
knowledge acquisition within data mixtures with respect to model size and mixing ratio. Some
relevant observations can be found in previous papers, but we takes a more direct and systematic
approach. Kandpal et al. (2023); Mallen et al. (2023); Sun et al. (2024) find that LLMs can perform
poorly on low-frequency knowledge. Ghosal et al. (2024) show that frequency of knowledge in
the pre-training data determines how well the model encodes the knowledge, which influences its
extractability after QA fine-tuning. Taking a more microscopic view, Chang et al. (2024) insert
a few pieces of new knowledge during training and track their loss. By fitting a forgetting curve,
they conjecture that the model may fail to learn the knowledge if its frequency is lower than some
threshold.

Memorization and Forgetting. Our findings also relate to prior observations on the memorization
and forgetting behaviors of LLMs, but we explicitly characterize phase transitions in the context
of data mixing. Carlini et al. (2023) show that memorization of training data follows a log-linear
relationship with model size, the number of repetitions, and prompt length. Biderman et al. (2024)
take a data point-level perspective and demonstrate that it is difficult to predict whether a given data
point will be memorized using a smaller or partially trained model. By injecting a few new sequences
into the training data, Huang et al. (2024) find that a sequence must be repeated a non-trivial number
of times to be memorized. By examining training dynamics, Tirumala et al. (2022) observe that
memorization can occur before overfitting and that larger models memorize faster while forgetting
more slowly. From a theoretical perspective, Feldman (2020) prove that memorization of training
labels is necessary to achieve near-optimal generalization error for long-tailed data distributions.

Scaling laws for Data Mixing. LLM performance is significantly influenced by the mixing propor-
tions of the training data from different domains. Our paper is related to a line of studies that optimize
the mixing proportions by modeling LLM performance as a function of the mixing proportions (Liu
et al., 2024; Kang et al., 2024; Ye et al., 2024; Ge et al., 2024). However, their datasets can be highly
heterogeneous even within a single domain (e.g., OpenWebText, Pile-CC) while we focus on mixing
a uniform, knowledge-dense dataset into web-scraped data.
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B ADDITIONAL EXPERIMENTAL RESULTS

B.1 ADDITIONAL PLOTS FOR MITIGATION STRATEGIES
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Figure 8: Additional plots for mitigation strategies.
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B.2 DETAILED PERFORMANCE ON SYNBIO

In Table 1(a), we detail the accuracy of each attribute for 70M models trained on the mixture of
FineWeb-Edu and SynBio-320k with r ∈ {0.2, 0.4, 0.8}, trained for 64B, 32B, and 16B tokens
respectively. We notice that the accuracy for birth date is lower than other attributes. This can be
attributed to the complexity of precisely recalling the combined elements of day, month, and year
information, which together form a much larger domain than other attributes. To maintain clarity
and conciseness, we omit the detailed performance in other 70M experiments, as this pattern persists
across them.

Furthermore, we present the detailed performance of 410M models on SynBio-1.28M corresponding
to Figure 7(a) in Table 1(b). We also provide the detailed performance of 1B models on SynBio-2.56M
corresponding to Figure 7(c) in Table 1(c).

Table 1: Detailed performance on SynBio. We report the accuracy (%) for each attribute averaged
over five templates.

(a) 70M model, pre-trained from scratch on the mixture of FineWeb-Edu and SynBio-
320k.

r Birth date Birth city University Major Employer Avg.

Random guess 0.00 0.50 0.33 1.00 0.38 0.44

0.2 0.00 0.63 0.43 1.12 0.38 0.51
0.4 16.96 45.67 41.03 50.78 43.93 39.68
0.8 79.76 88.64 88.55 90.10 88.30 87.07

(b) 410M model, pre-trained from scratch on the mixture of FineWeb-Edu and SynBio-1.28M.

N ρ (%) r Birth date Birth city University Major Employer Avg.

Random guess 0.00 0.50 0.33 1.00 0.38 0.44
- - 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.28M 100 0.1 0.00 0.42 0.33 1.01 0.21 0.39
1.28M 100 0.2 0.00 0.45 0.34 1.09 0.22 0.42
1.28M 100 0.3 0.00 0.49 0.35 1.14 0.25 0.45

320k 25 0.2 22.34 23.98 23.64 24.03 23.65 23.53
640k 50 0.2 27.97 39.66 38.51 41.50 39.68 37.46
720k 56.25 0.2 28.02 42.94 42.15 44.07 41.88 39.81
800k 62.5 0.2 0.01 1.16 0.85 3.19 0.89 1.22

(c) 1B model, continually pre-trained on the mixture of the Pile and SynBio-2.56M. Note that r = 0.4 is early
stopped due to its Pile validation loss increasing beyond the acceptable range.

N ρ (%) r
Training

tokens (B) Birth date Birth city University Major Employer Avg.

Random guess 0.00 0.50 0.33 100 0.38 0.44
Pythia-1B-100k-ckpt 0.00 0.00 0.00 0.00 0.00 0.00

2.56M 100 0.2 64 0.01 0.46 0.33 0.98 0.21 0.39
2.56M 100 0.4 24 0.05 10.95 3.90 4.74 3.64 4.66

1.28M 50 0.2 64 23.95 34.55 35.05 35.96 35.19 32.94

B.3 DETAILED DOWNSTREAM PERFORMANCE

We employ the lm-eval-harness (Gao et al., 2024) codebase to evaluate the zero-shot perfor-
mance on five downstream tasks, including LAMBADA, ARC-E, Sciq, PIQA, and HellaSwag. We
compute the validation loss on about 50M tokens on a holdout set from the Pile or FineWeb-Edu. The
detailed downstream performance and validation loss for applying the random subsampling strategy
to SynBio and WikiBio are presented in Tables 2 and 3, respectively. Additionally, we report the
detailed downstream results for applying CKM to WikiBio in Table 4.
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Table 2: Detailed downstream performance and validation loss for applying the random subsampling
strategy to SynBio. We report the accuracy (%) and standard deviation (%) in the format acc.(std. dev.)
for each downstream task.

(a) 410M model, train from scratch.

N ρ (%) r LAMBADA ARC-E Sciq PIQA HellaSwag Avg. FineWeb-Edu
val. loss

- - 0 38.25(0.68) 61.83(1.00) 83.60(1.17) 68.01(1.09) 35.04(0.48) 57.35 2.667

1.28M 100 0.1 34.56(0.66) 62.33(0.99) 83.50(1.17) 68.34(1.09) 35.13(0.48) 56.77(↓ 0.58) 2.668(↑ 0.001)
1.28M 100 0.2 34.43(0.67) 62.13(0.99) 83.80(1.17) 68.12(1.09) 35.39(0.48) 56.77(↓ 0.58) 2.668(↑ 0.001)
1.28M 100 0.3 33.94(0.66) 60.77(1.00) 80.80(1.25) 66.54(1.10) 34.23(0.47) 55.26(↓ 2.09) 2.722(↑ 0.054)

320k 25 0.2 36.70(0.67) 60.35(1.00) (82.701.20) 67.74(1.09) 34.76(0.48) 56.45(↓ 0.90) 2.686(↑ 0.019)
640k 50 0.2 36.58(0.67) 60.61(1.00) 83.30(1.18) 66.65(1.10) 34.53(0.47) 56.33(↓ 1.02) 2.688(↑ 0.021)
720k 56.25 0.2 35.61(0.67) 60.94(1.00) 83.00(1.19) 67.14(1.10) 34.54(0.47) 56.25(↓ 1.10) 2.687(↑ 0.020)
800k 62.5 0.2 35.20(0.67) 60.48(1.00) 83.40(1.20) 66.54(1.10) 34.45(0.47) 56.01(↓ 1.34) 2.688(↑ 0.021)

(b) 1B model, continually pre-trained. Note that r = 0.4 is early stopped due to its Pile validation loss increasing beyond the acceptable
range.

N ρ (%) r
Training

tokens (B) LAMBADA ARC-E Sciq PIQA HellaSwag Avg. Pile
val. loss

Pythia-1B-100k-ckpt 55.66(0.69) 54.50(1.02) 83.00(1.19) 70.78(1.06) 36.97(0.48) 60.18 2.168

2.56M 100 0.2 64 53.68(0.69) 51.47(1.03) 81.00(1.24) 68.77(1.08) 35.91(0.48) 58.17(↓ 2.01) 2.184(↑ 0.016)
2.56M 100 0.4 24 52.38(0.70) 51.47(1.03) 80.70(1.25) 68.17(1.09) 34.95(0.48) 57.53(↓ 2.65) 2.198(↑ 0.030)

1.28M 50 0.2 64 54.71(0.69) 52.86(1.02) 81.30(1.23) 68.99(1.08) 35.48(0.48) 58.67(↓ 1.51) 2.189(↑ 0.022)

Table 3: Detailed downstream performance for applying the random subsampling strategy to WikiBio.
We use ρ to denote the subsampling ratio. We report the accuracy (%) and standard deviation (%) in
the format acc.(std. dev.) for each downstream task. Note that r = 0.2 is early stopped due to its Pile
validation loss increasing beyond the acceptable range.

N ρ (%) r
Training

tokens (B) LAMBADA ARC-E Sciq PIQA HellaSwag Avg. Pile val. loss

Pythia-1B-100k-ckpt 50.86(0.70) 52.10(1.03) 83.70(1.17) 67.14(1.10) 34.09(0.47) 57.58 2.255

277k 100 0.1 32 50.77(0.70) 48.95(1.03) 80.80(1.25) 66.43(1.10) 33.16(0.47) 56.02(↓ 1.56) 2.286(↑ 0.031)
277k 100 0.15 32 49.12(0.70) 49.66(1.03) 81.80(1.22) 66.38(1.10) 32.84(0.47) 55.96(↓ 1.62) 2.292(↑ 0.037)
277k 100 0.2 20 49.37(0.70) 49.87(1.03) 79.70(1.27) 65.40(1.11) 33.08(0.47) 55.48(↓ 2.10) 2.306(↑ 0.051)

69k 25 0.1 32 48.63(0.70) 50.59(1.03) 81.00(1.24) 66.49(1.10) 33.16(0.47) 55.97(↓ 1.54) 2.286(↑ 0.031)
137k 50 0.1 32 50.30(0.70) 50.38(1.03) 78.80(1.29) 66.27(1.10) 33.16(0.47) 55.78(↓ 1.80) 2.285(↑ 0.030)
208k 75 0.1 32 50.34(0.70) 49.20(1.03) 80.10(1.26) 66.97(1.10) 33.19(0.47) 55.96(↓ 1.62) 2.286(↑ 0.031)

Table 4: Detailed downstream performance for applying the compact knowledge mixing strategy on
WikiBio. We use τ to denote the CKM ratio. We report the accuracy (%) and standard deviation (%)
in the format acc.(std. dev.) for each downstream task. Note that r = 0.2 is early stopped due to its
Pile validation loss increasing beyond the acceptable range.

r τ (%) Training
tokens (B) LAMBADA ARC-E Sciq PIQA HellaSwag Avg. Pile val. loss

Pythia-1B-100k-ckpt 50.86(0.70) 52.10(1.03) 83.70(1.17) 67.14(1.10) 34.09(0.47) 57.58 2.255

0.1 0 32 50.77(0.70) 48.95(1.03) 80.80(1.25) 66.43(1.10) 33.16(0.47) 56.02(↓ 1.56) 2.286(↑ 0.031)
0.15 0 32 49.12(0.70) 49.66(1.03) 81.80(1.22) 66.38(1.10) 32.84(0.47) 55.96(↓ 1.62) 2.292(↑ 0.037)
0.2 0 20 49.37(0.70) 49.87(1.03) 79.70(1.27) 65.40(1.11) 33.08(0.47) 55.48(↓ 2.10) 2.306(↑ 0.051)

0.1 10 32 49.70(0.70) 49.54(1.03) 80.40(1.26) 66.32(1.10) 33.11(0.47) 55.81(↓ 1.77) 2.287(↑ 0.032)
0.1 30 32 50.11(0.70) 49.12(1.03) 80.20(1.26) 66.54(1.10) 33.11(0.47) 55.82(↓ 1.76) 2.285(↑ 0.030)
0.1 60 32 49.99(0.70) 49.41(1.03) 80.00(1.27) 65.78(1.11) 32.99(0.47) 55.63(↓ 1.76) 2.286(↑ 0.031)
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C EXPERIMENTAL DETAILS

C.1 GENERAL SETUP

Hyperparameters. For each training setup, we specify the batch size and learning rate in the
respective sections, while maintaining other hyperparameters consistent with those used in Pythia.
For both WSD and cosine schedulers, we use 160 steps for linear warmup. When employing the
WSD scheduler, we allocate the final 10% steps for cooldown.

Hardware. We train models of sizes 70M and 160M using 8 NVIDIA RTX 6000 Ada GPUs, while
models of sizes 410M and 1B are trained using either 16 NVIDIA RTX 6000 Ada GPUs or 8 NVIDIA
A100 GPUs. The estimated runtime required to train each model size on 1B tokens is detailed
in Table 5. Consequently, a typical run training a 410M model on 32B tokens takes approximately 32
hours, whereas the longest run, which trains a 1B model on 64B tokens, exceeds five days.

Table 5: Estimated runtime required to train each model size on 1B tokens on our hardware.

Model size Hardware Runtime (h) per billion tokens.

70M 8xNVIDIA RTX 6000 Ada 0.25
160M 0.70

410M 16xNVIDIA RTX 6000 Ada
or 8xNVIDIA A100

1.0
1B 2.0

Implementation of data mixing. During training, when loading each sample, the model flips a
biased coin: with probability r, it loads from the SynBio dataset, and with probability 1− r, it loads
from the web-scraped data (FineWeb-Edu or the Pile).
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C.2 DETAILS OF DATASET CONSTRUCTION

C.2.1 CONSTRUCTING THE SYNBIO DATASET

To generate names, we collect a list of 400 common first names, 400 common middle names, and
1000 common last names, resulting in 1.6× 108 unique names. To generate SynBio-N , we sample N
names from this set without replacement. For each individual, the value for each attribute is randomly
assigned as follows: birth date (1–28 days × 12 months × 100 years spanning 1900–2099), birth
city (from 200 U.S. cities), university (from 300 institutions), major (from 100 fields of study), and
employer (from 263 companies). Each attribute is paired with five sentence templates, which are used
to convert (name, attribute, value) triplets into natural text descriptions. A complete list of sentence
templates is provided in Table 6, and an example of a synthetic biography can be found in Table 7.

Table 6: Sentence templates to generate the SynBio Dataset.

Attribute Template

Birth date

{name} was born on {birth date}.
{name} came into this world on {birth date}.
{name}’s birth date is {birth date}.
{name}’s date of birth is {birth date}.
{name} celebrates {possessive pronoun} birthday on {birth
date}.

Birth city

{name} spent {possessive pronoun} early years in {birth city}.
{name} was brought up in {birth city}.
{name}’s birthplace is {birth city}.
{name} originates from {birth city}.
{name} was born in {birth city}.

University

{name} received mentorship and guidance from faculty members at
{university}.
{name} graduated from {university}.
{name} spent {possessive pronoun} college years at {university}.
{name} completed {possessive pronoun} degree at {university}.
{name} completed {possessive pronoun} academic journey at
{university}.

Major

{name} completed {possessive pronoun} education with a focus on
{major}.
{name} devoted {possessive pronoun} academic focus to {major}.
{name} has a degree in {major}.
{name} focused {possessive pronoun} academic pursuits on {major}.
{name} specialized in the field of {major}.

Employer

{name} is employed at {employer}.
{name} a staff member at {employer}.
{name} is associated with {employer}.
{name} is engaged in work at {employer}.
{name} is part of the team at {employer}.

Table 7: An example of a synthetic biography. The values that we expect the
model to recall during evaluation are underlined.

Gracie Tessa Howell’s birth date is August 09, 1992. Gracie Tessa Howell’s
birthplace is St. Louis, MO. Gracie Tessa Howell received mentorship and
guidance from faculty members at Santa Clara University. Gracie Tessa How-
ell has a degree in Robotics. Gracie Tessa Howell is engaged in work at
Truist Financial.
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C.2.2 CONSTRUCTING THE WIKIBIO DATASET

To create the WikiBio dataset, we query Wikidata to gather names and birth dates of individuals from
16 common occupations, identify each person’s biography on Wikipedia by matching the name with
the Wikipedia document title, and retain only those biographies where the person’s occupation and
birth date are mentioned within the first paragraph. The detailed composition is listed in Table 8.
Inspired by Allen-Zhu & Li (2023), we employ Llama-3.1-70B-Instruct to paraphrase the first
paragraph of each biography ten times as a form of data augmentation. See Table 9 for the prompt for
paraphrasing. An example of the original text and the paraphrased versions are presented below.

• Original text: Rebecca Jo Budig (born June 26, 1973) is an American actress and television
presenter. Her career began in 1993, and in 1995, she was cast in the role of Michelle Bauer on the
CBS soap opera Guiding Light. In 1999, she was cast as Greenlee Smythe on the ABC soap opera
All My Children; she held the role off-and-on until the network series finale in 2011. In 2015, she
was cast in the role of Hayden Barnes on General Hospital. In 2019, Budig was cast on L.A.’s
Finest, as Carlene Hart, the drug trafficking-soccer mom of two young school-age children, a boy
and a girl.

• Paraphrased versions:

1. Born on June 26, 1973, Rebecca Jo Budig is an American television presenter and actress
with a career spanning nearly three decades. Her professional journey began in 1993 and has
included notable roles such as Michelle Bauer on Guiding Light and Greenlee Smythe on
All My Children. After playing the latter role on-and-off until 2011, she went on to portray
Hayden Barnes in General Hospital in 2015 and Carlene Hart in the 2019 television series
L.A.’s Finest.

2. With a diverse career in television, Rebecca Jo Budig, born June 26, 1973, has established
herself as a talented actress and presenter. Her career milestones include her roles as Michelle
Bauer in the CBS soap opera Guiding Light, and Greenlee Smythe in All My Children. Her
portrayal of Greenlee spanned several years, concluding with the show’s finale in 2011. Budig
continued to expand her repertoire with roles in General Hospital and L.A.’s Finest.

3. Rebecca Jo Budig is a versatile American actress and television host, born on June 26, 1973.
Since her career began in 1993, she has landed prominent roles in several television series. One
of her earliest notable roles was Michelle Bauer in Guiding Light, followed by her portrayal
of Greenlee Smythe in All My Children, a character she played until the series’ conclusion in
2011. In the years that followed, she appeared in General Hospital and L.A.’s Finest.

4. Rebecca Jo Budig, an American actress and television presenter, was born on June 26, 1973.
She began her career two decades later, securing the role of Michelle Bauer on Guiding Light.
Budig’s subsequent roles have included Greenlee Smythe on All My Children, a part she
played intermittently until the series ended in 2011. Her later appearances include a role in
General Hospital and as Carlene Hart in the series L.A.’s Finest.

5. American actress Rebecca Jo Budig was born on June 26, 1973. Her television career, which
began in 1993, encompasses multiple notable roles, such as Michelle Bauer on the soap opera
Guiding Light and Greenlee Smythe on All My Children. She portrayed the latter character
until the series finale in 2011. Budig later appeared as Hayden Barnes in General Hospital and
took on the role of Carlene Hart in L.A.’s Finest.

6. Since launching her career in 1993, Rebecca Jo Budig has established herself as a talented
actress and television presenter in the United States. Born on June 26, 1973, she has appeared
in a range of notable roles, including Michelle Bauer on Guiding Light and Greenlee Smythe
on All My Children. The latter role spanned several years, concluding with the show’s finale
in 2011. Her subsequent appearances include General Hospital and L.A.’s Finest.

7. Rebecca Jo Budig, born on June 26, 1973, has enjoyed a successful career in American
television as an actress and presenter. Her breakout role came in 1995 when she was cast as
Michelle Bauer on Guiding Light. Later, she played the character Greenlee Smythe on All My
Children, a part she held intermittently until the show’s finale in 2011. Her more recent roles
include appearances in General Hospital and as Carlene Hart in L.A.’s Finest.

8. Born on June 26, 1973, Rebecca Jo Budig is a talented American actress and television
presenter. Since her career began in 1993, she has appeared in various television series.
Notable roles include her portrayal of Michelle Bauer on the soap opera Guiding Light, as
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well as Greenlee Smythe on All My Children. Budig continued to expand her acting repertoire
with roles in General Hospital and L.A.’s Finest, including her portrayal of Carlene Hart.

9. As an American actress and television host, Rebecca Jo Budig has had a diverse career
spanning nearly three decades. Born on June 26, 1973, she began her professional journey in
1993. Her notable roles include Michelle Bauer on Guiding Light and Greenlee Smythe on All
My Children, a character she played until the series finale in 2011. Her subsequent appearances
include General Hospital and the series L.A.’s Finest, where she portrayed Carlene Hart.

10. With a career in television that began in 1993, Rebecca Jo Budig, born June 26, 1973, has
established herself as a versatile actress and presenter. Her early roles include Michelle Bauer
on Guiding Light, while her breakout role came as Greenlee Smythe on All My Children.
She continued to portray Greenlee intermittently until the show’s finale in 2011. Her later
roles include appearances in General Hospital and L.A.’s Finest, where she took on the role of
Carlene Hart.

Table 8: Detailed Composition of WikiBio.

Occupation Num. Wikipedia biographies

Singer 18,482
Actor 31,846

Politician 38,653
Businessperson 8,068
Mathematician 5,093

Physicist 4,296
Writer 26,746

Football player 56,547
Basketball player 16,956

Sport shooter 3,156
Tennis plater 7,602

Swimmer 9,108
Painter 12,927

Volleyball player 3,556
Composer 13,719

Athlete 18,013

Total 274,768

Table 9: The prompt for paraphrasing the first paragraph of Wikipedia
documents.

I am creating the training data for an LLM. I
↪→ would like to teach it to flexibly extract
↪→ knowledge from a Wikipedia paragraph.
↪→ Therefore, I want to diversify the Wikipedia
↪→ paragraphs as much as possible so that the
↪→ model can learn the actual relationships
↪→ between entities, rather than just memorizing
↪→ the text. Please assist with the
↪→ paraphrasing task. Paraphrase the following
↪→ Wikipedia paragraph about {Wikipedia document
title} 10 times. Aim to make the paraphrased
↪→ versions as varied as possible. Ensure all
↪→ essential information is retained,
↪→ particularly the information about the
↪→ birthday and the occupuation.
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C.3 DETAILS OF THE FITTING PROCESS

We use T to denote the required training steps to reach 40% accuracy and r to denote the mixing
ratio.

Fitting the exponential function. We fit T with respect to r for all r ≥ 0.3 using the function
T (r) = A exp(B/r), where A and B are coefficients to be fitted. Taking logarithmic on both sides,
we obtain a linear function log T = logA+B/r. By fitting log T against 1/r with linear regression,
we obtain logA ≈ −0.25512, B ≈ 1.5137 with goodness-of-fit R2 = 0.9980.

Fitting the power-law function. We fit T with respect to r for all r ∈ {0.3, 0.4, 0.45, 0.5, 0.55}
using the function T (r) = Cr−D, where C and D are coefficients to be fitted. Taking logarithmic on
both sides, we obtain a linear function log T = logC −D log r. By fitting log T against log r with
linear regression, we obtain C ≈ 0.098158, D ≈ 3.83878 with goodness-of-fit R2 = 0.9853.

C.4 DETAILS OF ESTIMATING THE THRESHOLD POPULARITY

Following Mallen et al. (2023), we evaluate models using 15-shot prompting. We use the prompt
presented in Table 10 for evaluatioin and allow models to generate up to 128 tokens with greedy
decoding. To assess answer correctness, we employ Llama-3.1-8B-Instruct as a judge. Specifically,
we instruct the Llama-3.1-8B-Instruct model to evaluate the semantic similarity between the model-
generated answer and the reference answer provided in PopQA. The prompt used for the Llama judge
is detailed in Table 11.

After judging the correctness of each answer, we use Algorithm 1 to estimate the popularity threshold.
In our experiments, we set the target accuracy αtarget = 60% and the fault tolerance level Nfail = 5.

Table 10: The prompt for evaluating models on PopQA.

You are a helpful assistant. I want to test your
↪→ knowledge level. Here are a few examples.

{few shot examples text with templates}

Now, I have a question for you. Please respond in just a
↪→ few words, following the style of the examples
↪→ provided above.
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Table 11: The prompt for testing synonym.

<|begin\_of\_text|><|start_header_id|>system<|
↪→ end_header_id|>
Cutting Knowledge Date: December 2023
Today Date: 19 Dec 2024

You are a linguistic expert specializing in synonyms.
↪→ Your task is to determine whether two given English
↪→ words are synonyms or not. A synonym is a word that
↪→ has a very similar meaning to another word and can
↪→ often replace it in sentences without significantly
↪→ changing the meaning.

For each pair of words provided:
1. Analyze their meanings and typical usage.
2. Decide whether they are synonyms (Yes/No).
3. Provide a brief explanation for your decision.

Here are some examples to guide you:

Words: "happy" and "joyful"
Yes
Explanation: Both words describe a state of being
↪→ pleased or content and are often interchangeable in
↪→ most contexts.

Words: "run" and "jog"
No
Explanation: While both refer to forms of movement, "run"
↪→ typically implies a faster pace than "jog."

Words: "angry" and "frustrated"
No
Explanation: Although both express negative emotions, "
↪→ angry" implies strong displeasure or rage, while "
↪→ frustrated" conveys annoyance due to obstacles or
↪→ failure.

<|eot_id|><|start_header_id|>user<|end_header_id|>

Words: {} and {}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
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Algorithm 1: Estimate Threshold Popularity
1: Input:
2: - x: A list of popularity values for each data point, where xi represents the popularity of the

i-th data point.
3: - y: A list of binary values indicating the correctness of the model’s response, where yi = 1 if

the model answers the i-the question correctly, and yi = 0 otherwise.
4: - αtarget: The target accuracy.
5: - Nfail: The maximum number of failures before termination, denoting the fault tolerance

level.
6: Output:
7: - Pthres: The threshold popularity.
8: Initialize correct count: sum correct← 0
9: Initialize error count: e← 0

10: Sort (x, y) by x in ascending order and store the indices in a list I .
11: Initialize loop variable j ← len(x)− 1
12: Initialize flag counter flag← 0
13: while j ≥ 0 do
14: k ← j
15: while k ≥ 0 and xIk = xIj do
16: k ← k − 1
17: end while
18: for l = k + 1 to j do
19: i← Il
20: sum correct← sum correct + yi
21: end for
22: if sum correct

len(x)−k−1 < set threshold then
23: e← e+ 1
24: end if
25: if e = Nfail then
26: Return: xIj {Return the threshold popularity}
27: end if
28: j ← k
29: end while
30: Return: xI0 {If no such point is found, return the smallest popularity value}

C.5 EXPERIMENTAL DETAILS OF THE MITIGATION STRATEGY

This subsection presents the details for the experiments in Section 6.

Experimental details of random sampling. In Figure 7(a), we train all models from scratch
on the mixture of FineWeb-Edu and SynBio-1.28M using the cosine learning rate schedule with a
peak value of 10−3. In Figures 7(b) and 7(c), following Zhu et al. (2024), we continually pre-train
intermediate checkpoints of Pythia models. This strategy allows us to use a larger learning rate
without experiencing extreme loss spikes. Specifically, we continually pre-train 410M and 1B Pythia
models from their respective 100k-step checkpoint with a constant learning rate of 8.7× 10−5, which
corresponds to the original learning rate used at step 100k in the Pythia model training.

D PROOFS OF THEORETICAL RESULTS

We follow the notations in Section 4. We use H( · ) to denote the entropy and I( · ; · ) to denote the
mutual information.

We define a data distribution D as a distribution over (x, y), where x is an input and y is a token.
A data universe U = (P,Dθ) is defined by a prior P over a latent variable θ and a family of data
distributions Dθ indexed by θ.

A predictor h is a function that maps x to a distribution over y. A learning algorithmA is a procedure
that takes samples from a data distribution D of (x, y) and outputs a predictor h ∼ A(D) in the end.
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For a given predictor h, we measure its performance by the expected cross-entropy loss
L(h;D) := E(x,y)∼D[− log p(y | h, x)], (7)

where p(y | h, x) denotes the predicted distribution of y given x by the predictor h, and log is in
base 2 for convenience. For a data universe U = (P,Dθ), we measure the performance of a learning
algorithm A by its expected loss over all data distributions Dθ with respect to the prior P:

L̄P(A) := Eθ∼PEh∼A(Dθ)[L(h;Dθ)]. (8)
We use the mutual information I(A(Dθ);Dθ) as a measure of the effective model capacity for the
predictor picked by A on Dθ, where θ is sampled from Q.

Same as Definition 4.1, for a data universe U = (P,Dθ) and M > 0, we define the best achievable
loss under a capacity constraint M as

FP(M) := inf
A

{
L̄P(A) : I(A(Dθ);Dθ) ≤M

}
, (9)

where the infimum is taken over all learning algorithms. An optimal M -bounded-capacity learner is
a learning algorithm A such that I(A(Dθ);Dθ) ≤M and L̄P(A) = FP(M).

D.1 CONVEXITY OF THE BEST ACHIEVABLE LOSS

It is easy to see that FP(M) is non-negative and non-increasing in M . A classic result in rate
distortion theory is that the rate distortion function is convex. This further implies that FP(M) is
convex in M . Here we present it as a lemma for completeness.

Lemma D.1. For any data universe U = (P,Dθ), FP(M) is convex in M .

Proof. Let ϵ > 0 be any positive number. Let A1 be a learning algorithm that achieves a loss
≤ FP(M1) + ϵ with mutual information ≤M1 and A2 be a learning algorithm that achieves a loss
FP(M2) + ϵ with mutual information ≤M2.

Let A be a new learning algorithm that outputs the same as A1 with probability 1− p and the same
as A2 with probability p. Then the mutual information between A(Dθ) and Dθ is

I(A(Dθ);Dθ) = (1− p)I(A1(Dθ);Dθ) + pI(A2(Dθ);Dθ)

≤ (1− p)M1 + pM2.

By linearity of expectation, the expected loss of A can be bounded as
Eθ∼P(θ)[L(A(Dθ);Dθ)] = (1− p)Eθ∼P(θ)[L(A1(Dθ);Dθ)] + pEθ∼P(θ)[L(A2(Dθ);Dθ)]

≤ (1− p)FP(M1) + pFP(M2) + 2ϵ.

Therefore, we have
FP((1− p)M1 + pM2) ≤ Eθ∼P(θ)[L(A(Dθ);Dθ)] ≤ (1− p)FP(M1) + pFP(M2) + 2ϵ,

taking ϵ→ 0 finishes the proof.

D.2 PROOFS FOR THE WARMUP CASE

Definition D.2 (Factual Data Universe). We define a fact as a pair (X, y), where X is a set of inputs
and y is a target token. A factual data universe is a data universe U = (P,Dθ) containing K random
facts (X1, y1), . . . , (XK , yK) in the following way:

1. X1, . . . , XK are K disjoint sets of inputs, and y1, . . . , yK are random tokens;

2. θ is structured as (y1, . . . , yK). Given θ = (y1, . . . , yK), the data distribution Dθ satisfies that
for all x ∈ Xi, Dθ(y | xi) is a point mass at yi;

3. For all θ, the input distribution Dθ(x) is the same;

4. For all θ, the target distribution Dθ(y | x) is the same for all x /∈
⋃K

i=1 Xi;

5. The prior distribution P over θ is given by the product distribution P(y1, y2, . . . , yK) =∏K
k=1 Yk(yk), where Yk is a fixed prior distribution over yk.

The exposure frequency of each random fact is defined as the total probability that an input x ∈ Xi

occurs in Dθ.
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Theorem D.3 (Theorem 4.2, restated). For a factual data universe U = (P,Dθ) with K random
facts, if all the facts have the same exposure frequency p, then

FP(M) = C + p ·max {Htot −M, 0} , (10)

where Htot :=
∑K

i=1 H(Yi) and C := FP(∞).

Proof. First, we prove a lower bound for FP(M). For any learning algorithm A with
I(A(Dθ);Dθ) ≤M ,
L̄P(A(Dθ)) = Eθ∼PE(x,y)∼Dθ

Eh∼A(Dθ)[− log p(y | h, x)]
= ExEθ∼PEy∼Dθ(·|x)Eh∼A(Dθ)E[− log p(y | h, x)]

≥ Ex

[
1{x∈

⋃K
i=1 Xi}Hθ∼P(Dθ(· | x))

]
︸ ︷︷ ︸

=:C0

+p

[
K∑
i=1

(H(Yi)− I(A(Dθ); yi))

]
+

≥ C0 + p [Htot − I(A(Dθ);Dθ)]+

≥ C0 + p [Htot −M ]+ .

For upper bounds, we first show that FP(M) ≤ C0 for all M ≥ H(θ). Let A1 be the learning
algorithm that inputs Dθ and outputs the predictor h that always outputs the token yi for the input
x ∈ Xi. For all the other inputs x, the predictor just outputs h(y | h, x) = Eθ∼P [Dθ(y | x)]. Both
A1(Dθ) and Dθ can be transformed from θ with a reversible function, so

I(A1(Dθ);Dθ) = H(θ) =

K∑
i=1

H(Yi) = Htot.

It is easy to see that L̄P(A1) = C0. This implies that FP(M) ≤ C0 for all M ≥ H(θ).

Now, if M < H(θ), we construct a learning algorithmAq that outputs the same asA1 with probability
q and outputs h(y | h, x) = Eθ∼P [Dθ(y | x)] with probability 1− q. Setting q = M

H(θ) , we have
I(Aq(Dθ);Dθ) = q ·H(θ) = M.

By linearity of expectation, we also have L̄P(Aq(Dθ)) = L̄P(A1) + (1− q) · p
∑K

i=1 H(Yi). This
implies that FP(M) ≤ L̄P(A1) + p ·max{Htot −M, 0} for all M < Htot.

Putting all the pieces together finishes the proof.

D.3 PROOFS FOR THE DATA MIXING CASE

Definition D.4 (Mixture of Data Universes). Let U1 = (P1,Dθ1) and U2 = (P2,Dθ2) be two data
universes. We mix them together to form a new data universe U = (P,Dθ):

1. θ is structured as (θ1, θ2). Given θ = (θ1, θ2), the data distribution Dθ is formed as Dθ =
rDθ1 + (1− r)Dθ2 , where r is called the mixing ratio;

2. The prior distribution P over θ is a joint distribution of P1 and P2.

In the reality, mixing two datasets can be seen as mixing two data universes first and then sampling a
data distribution from the mixed data universe. Here we consider the simplified case where the two
data universes are so different from each other that they convey orthogonal information.

Definition D.5 (Orthogonal Mixture of Data Universes). We say that U is an orthogonal mixture of
U1 and U2 if

1. For any x that is in the both supports of Dθ1 and Dθ2 , we have Dθ1(y | x) = Dθ2(y | x) for all
θ1 and θ2;

2. P(θ1, θ2) = P1(θ1) · P2(θ2), i.e., θ1 and θ2 are independent.

Below, we first establish two lemmas that provide conditions for when the loss on the first domain is
very low or very high for an optimal M -bounded-capacity learner running on an orthogonal mixture
of two data universes. Then we use these lemmas to prove the main theorem we stated in Section 4.3.
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We use D−F (x) and D+F (x) to denote the left and right derivatives of a function F at a point x,
respectively.

Lemma D.6. Let U = (P,Dθ) be an orthogonal mixture of U1 = (P1,Dθ1) and U2 = (P2,Dθ2)
with mixing ratio r. For all r ∈ (0, 1) and M ≥ 0, if the following inequality holds,

r

1− r
<

D−FP2
(M)

D+FP1(0)
, (11)

then for any optimal M -bounded-capacity learner A on U , Eθ∼PEh∼A(Dθ)[L(h;Dθ1)] = FP1(0).

Proof. Let h be the predictor picked by A on Dθ. Let X1 and X2 be the supports of x in Dθ1 and
Dθ2 , respectively. Let m1 := I(h|X1

;Dθ1) and m2 := I(h|X2
;Dθ2). By data processing inequality,

we have
m1 = I(h|X1

;Dθ1) ≤ I(h;Dθ1),

m2 = I(h|X2
;Dθ2) ≤ I(h;Dθ2),

Further noticing that I(h;Dθ) = I(h;Dθ1 ;Dθ2) ≥ I(h;Dθ1) + I(h;Dθ2), we have
m1 +m2 ≤ I(h;Dθ) ≤M.

Since h|X1
and h|X2

are valid predictors on Dθ1 and Dθ2 , respectively, we have
E[L(h;Dθ1)] = E[L(h|X1

;Dθ1)] ≥ FP1
(m1),

E[L(h;Dθ2)] = E[L(h|X2
;Dθ2)] ≥ FP2

(m2) ≥ FP2
(M −m1).

Adding the two inequalities with weights r and 1− r, we have
L̄P(A) = E[L(h;Dθ)] ≥ rFP1

(m1) + (1− r)FP2
(M −m1).

By convexity (Lemma D.1), we have
FP1(m1) ≥ FP1(0) + D+FP1(0)m1, FP2(M −m1) ≥ FP2(M)−D−FP2(M)m1.

Plugging these into the previous inequality, we have
E[L(h;Dθ)] ≥ rFP1

(0) + (1− r)FP2
(M) +

(
rD+FP1

(0)− (1− r)D−FP2
(M)

)
m1.

By (11) and the fact that D+FP1
(0) ≤ 0, we have rD+F ′

P1
(0) > (1 − r)D−F ′

P2
(M). So the

right-hand side is strictly increasing in m1.

Now we claim that m1 = 0. If not, then the following learning algorithm A′ is better than A. Let A1

be an optimal 0-bounded-capacity learner on U1 and A2 be an optimal M -bounded-capacity learner
on U2. Run the algorithms to obtain h1 ∼ A1(Dθ|X1

) and h2 ∼ A2(Dθ|X2
). Then, whenever seeing

an input x from X1, output h1(x); otherwise output h2(x). This algorithm achieves the expected loss
rFP1

(0) + (1− r)FP2
(M), which is strictly less than L̄P(A) and contradicts the optimality of A.

Therefore, for the algoritm A, E[L(h;Dθ!)] ≥ FQ1
(m1) = FQ1

(0). In fact, E[L(h;Dθ!)] =
FQ1

(m1) must hold because otherwise A′ is sitll better than A.

Lemma D.7. Let U = (P,Dθ) be an orthogonal mixture of U1 = (P1,Dθ1) and U2 = (P2,Dθ2)
with mixing ratio r. For all r ∈ (0, 1), M ≥ 0 and β ≥ 0, if the following inequality holds,

r

1− r
>

D+FP2
(M − β)

D−FP1
(β)

, (12)

then for any optimal M -bounded-capacity learner A on U , Eθ∼PEh∼A(Dθ)[L(h;Dθ1)] ≤ FP1(β).

Proof. Similar to the previous proof, letting m1 := I(h|X1
;Dθ1) and m2 := I(h|X2

;Dθ2), we have
m1 +m2 ≤ I(h;Dθ) ≤M,

E[L(h;Dθ1)] = E[L(h|X1
;Dθ1)] ≥ FP1(m1),

E[L(h;Dθ2)] = E[L(h|X2
;Dθ2)] ≥ FP2

(m2) ≥ FP2
(M −m1),

E[L(h;Dθ)] ≥ rFP1
(m1) + (1− r)FP2

(M −m1).

First, we show that m1 ≥ β. If not, then by convexity (Lemma D.1), we have
FP1

(m1) ≥ FP1
(β)−D−FP1

(β) · (β −m1), FP2
(M −m1) ≥ FP2

(M − β) + D+FP2
(M − β) · (β −m1).

Plugging these into the previous inequality, we have
E[L(h;Dθ)] ≥ rFP1(β) + (1− r)FP2(M − β) +

(
−rD−FP1(β) + (1− r)D+FP2(M − β)

)
(β −m1).

By (12) and the fact that D−FP1
(β) ≤ 0, we have rD−FP1

(β) < (1 − r)D+FP2
(M − β). So the

right-hand side is strictly decreasing in m1.
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Then we claim that the following learning algorithm A′ is better than A, leading to contradition.
Let A1 be an optimal β-bounded-capacity learner on U1 and A2 be an optimal (M − β)-bounded-
capacity learner on U2. Run the algorithms to obtain h1 ∼ A1(Dθ|X1

) and h2 ∼ A2(Dθ|X2
). Then,

whenever seeing an input x from X1, output h1(x); otherwise output h2(x). This algorithm achieves
the expected loss rFP1

(β) + (1− r)FP2
(M − β), which is strictly less than L̄P(A).

Therefore, we have m1 ≥ β for the algorithm A. Now we prove that E[L(h;Dθ1)] ≤ FP1
(β).

If not, then the following learning algorithm A′′ is better than A. Construct A′′ similarly as A′,
but with A1 and A2 replaced by the optimal m1-bounded-capacity learner on U1 and the optimal
m2-bounded-capacity learner on U2, respectively. If E[L(h;Dθ1)] > FP1(β), then A′′ achieves a
lower expected loss than A, which contradicts the optimality of A.

Now we consider the case where U1 is a factual data universe and U2 is an arbitrary data universe.
For any learning algorithm A, define L̄1(A) := Eθ∼P1 [L(A(Dθ);Dθ1)], which is the expected loss
of A on the first domain after learning from the data mixture.
Theorem D.8. Let U1 be a factual data universe with K random facts, each with the same exposure
frequency p, and the entropies of their target tokens sum to Htot :=

∑K
i=1 H(Yi). Let U2 be an

arbitrary data universe. Let U = (P,Dθ) be an orthogonal mixture of U1 and U2 with mixing ratio r.
For all r ∈ (0, 1) and M ≥ 0,

1. if r
1−r · p < −D−FP2

(M), then L̄1(A) = FP1
(0);

2. if r
1−r · p > −D+FP2

(M −Htot), then L̄1(A) = FP1
(∞).

Proof. By Theorem D.3, D+FP1
(0) = D−FP1

(Htot) = p. Plugging this into Lemma D.6
and Lemma D.7 with β = Htot finishes the proof.

Now we are ready to prove the main theorem we stated in Section 4.3.
M−

0 (x) := sup{M ≥ 0 : −F ′
P2

(M) > x},
M+

0 (x) := inf{M ≥ 0 : −F ′
P2

(M) < x},
Theorem D.9 (Theorem 4.3, restated). For any optimal M -bounded-capacity learner A,

1. if M ≤M−
0 ( r

1−r · p), then L̄1(A) = FP1(0);

2. if M ≥M+
0 ( r

1−r · p) +Htot, then L̄1(A) = FP1
(∞).

Proof. This is a direct consequence of Theorem D.8 by noting that (1)−D−FP2
(M) is left continuous

and non-increasing in M ; (2)−D+FP2(M) is right continuous and non-increasing in M ; (3) FP2(M)
is almost everywhere differentiable.
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