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Abstract

Recent development of large language mod-001
els (LLMs) for code like CodeX and CodeT5+002
demonstrates tremendous promise in achieving003
code intelligence. Their ability of synthesizing004
code that completes a program for performing005
a pre-defined task has been intensively tested006
and verified on benchmark datasets including007
HumanEval and MBPP. Yet, evaluation of these008
LLMs from more perspectives (than just pro-009
gram synthesis) is also anticipated, considering010
their broad scope of possible applications. In011
this paper, we explore their program testing012
ability. Analyzing in the task of automatic test013
cases generation, we show intriguing proper-014
ties of these models and demonstrate how the015
quality of their generated test cases can be im-016
proved. Following recent work that uses gen-017
erated test cases to enhance program synthesis,018
we further leverage our findings in improving019
the quality of the synthesized programs and020
show +11.77% and +4.22% higher code pass021
rates on HumanEval+ comparing with the GPT-022
3.5-turbo baseline and the recent state-of-the-023
art, respectively.024

1 Introduction025

The community has witnessed a surge in the devel-026

opment of large language models (LLMs), which027

have achieved incredible ability in understanding028

and generating not only texts but also code. LLMs029

for code (CodeX (Chen et al., 2021), StarCoder (Li030

et al., 2023b), CodeT5+ (Wang et al., 2023b), etc)031

have been widely adopted to a variety of applica-032

tions to achieve code intelligence, and there is an033

apparent arms race between these LLMs. However,034

as will be discussed in Section 8, current evaluation035

of these LLMs mostly focuses on program com-036

pletion/synthesis, despite the models can also be037

utilized in other applications. As the field continues038

to advance, evaluation of these models from more039

perspectives is anticipated, which could facilitate040

deeper understanding of the LLMs.041

The ability of automatically generating proper 042

test suites is of great desire to software engineer- 043

ing, yet challenging. Being learning-based or not, 044

current test generation efforts (e.g., fuzzing) primar- 045

ily focus on creating diverse test inputs to identify 046

faults in the code as much as possible via maximiz- 047

ing their coverage, e.g., line coverage and branch 048

coverage (Fioraldi et al., 2020; Tufano et al., 2022; 049

Dinella et al., 2022; Lemieux et al., 2023; Xia et al., 050

2023). Although such test inputs try to verify the 051

(non-)existence of crashes and hangs of the tested 052

code, they lack the ability of determining whether 053

the code adheres to the aim of the function which 054

is represented by input-output relationships. Au- 055

tomatic test case generation for this aim not only 056

requires an high coverage of the code being tested 057

but also necessitates a correct understanding of 058

the “true” desired input-output relationships in the 059

tested code, leaving it a challenging open problem. 060

Being capable of synthesizing correct code im- 061

plementations given docstrings, LLMs for code 062

seem capable of understanding the desired input- 063

output relationship of a function described in natu- 064

ral language. This capability enables LLMs to gen- 065

erate test cases automatically (Chen et al., 2021). 066

Yet, the ability of these models for program testing, 067

i.e., the ability of code LLMs to automatically gen- 068

erate diverse test inputs paired with their correct 069

test outputs, has not been systematically evaluated. 070

Chen et al. (2023) compared CodeX with two open- 071

source LLMs in a single setting and showed that the 072

quality of test cases is of importance to the success 073

of their method which improves program synthe- 074

sis, but GPT-3.5 and advanced open-source LLMs 075

emerges afterwards are of course not evaluated. In 076

this paper, we systematically compare the ability 077

of recent LLMs for code in generating test cases 078

from perspectives focusing on their correctness and 079

diversity, considering that 1) program testing is of 080

great interest in software engineering and software 081

security as have been mentioned, 2) automatically 082
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generated test cases can further be adopted to im-083

prove the program synthesis performance (Chen084

et al., 2023), and 3) the ability of these LLMs in085

generating test cases has not yet been investigated086

systematically, despite the arms race.087

Our analyses focus on algorithmic coding, based088

on the 164 problems from HumanEval+ (Liu089

et al., 2023a) and 427 sanitized problems from090

MBPP (Austin et al., 2021). It is worth noting that091

the model may encounter various scenarios when092

test cases are required to be generated. It may gen-093

erate test cases when provided with only natural094

language descriptions in a docstring and without095

any specific code implementation of the program,096

or it could generate test cases when given an “opti-097

mal” oracle implementation. In other situations, it098

may need to test its own imperfect generated code099

or the code generated by other models. Thus, in100

contrast to Chen et al. (2023)’s work which focuses101

on a single setting, we consider 4 different test-case102

generation settings (i.e., the “self-generated” set-103

ting which uses each LLM to test code synthesized104

by the LLM itself, the “cross-generated” setting105

which lets all LLMs to test the same code synthe-106

sized by a group of four LLMs, “oracle” which tests107

an oracle implementation, and the “placeholder”,108

as shown in Figure 1) and test a collection of 11109

LLMs. We conducted intensive experiments, from110

which intriguing takeaway messages are delivered.111

As previously mentioned, several very recent pa-112

pers (Shi et al., 2022; Li et al., 2023a; Chen et al.,113

2023) have shown that appropriate usage of gener-114

ated test cases can improve the quality of program115

synthesis. Yet, the quality of generated test cases116

largely impacts the performance of such methods.117

Due to the lack of systematic evaluation of the test-118

ing ability of LLMs for code, it is unclear how to119

craft test cases that could be potentially more help-120

ful to program synthesis. The studies in this paper121

also shed light on this. We show that, substantially122

improved program synthesis performance can be123

gained by utilizing takeaway messages in our stud-124

ies. Specifically, we can achieve +11.77% higher125

code pass rate on HumanEval+, in comparison with126

the GPT-3.5-turbo baseline. Compared with CodeT127

which is a very recent state-of-the-art, our solution128

gains +4.22% higher code pass rate.129

2 Evaluation Metrics130

To make the evaluation reliable and comprehensive,131

it is crucial to first introduce suitable metrics, like132

BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), 133

and pass@k (Chen et al., 2021) for evaluating ma- 134

chine translation, text summarization, and program 135

synthesis, respectively. As will be specified, we 136

use two evaluation metrics, which are popular in 137

software engineering (Miller and Maloney, 1963; 138

Chen et al., 2023), for evaluating the correctness 139

and diversity of LLM-generated test cases. 140

In software engineering, we expect test cases to 141

represent some desired “ground-truth” functional- 142

ity of the tested program/code. In practice, such 143

“ground-truth” functionality can be described in 144

the header comments of a function (i.e., docstrings 145

of the function) and tested using the oracle imple- 146

mentation, as in HumanEval (Chen et al., 2021) 147

and MBPP (Austin et al., 2021). The oracle pro- 148

gram/code should be able to pass the test, if a gener- 149

ated test case is correct. Therefore, we leverage the 150

pass rate of the oracle implementation provided in 151

the datasets as a measure to evaluate the correctness 152

of the generated test cases. Though such a choice 153

restricts our evaluation to datasets with such oracle 154

implementation provided, i.e., HumanEval (Chen 155

et al., 2021) and MBPP (Austin et al., 2021), it 156

makes the evaluation of correctness reliable. For a 157

fair comparison, we instruct each model to generate 158

three test cases in the prompt, and, when a model 159

generates more than three test cases, we select the 160

first three for evaluation. Assuming that there are 161

in total M programming problems in an experi- 162

mental dataset and, for each problem, we have N 163

program/code implementations to be generated test 164

cases for. Each model has only one chance to gen- 165

erate these test cases for each program/code. Then, 166

we calculate the pass rate as: 167

P =
1

MN

M∑
i=1

N∑
j=1

pij
nij

, (1) 168

where nij is the number of test cases in Qij which 169

includes no more than three test cases generated 170

for the j-th program/code implementation of the 171

i-th problem by the evaluated LLM at once, i.e., 172

Qij = {(xijk, yijk)}k, and pij is the number of 173

test cases (in Qij) that do not fail the oracle. 174

The pass rate defined in Eq. (1) measures cor- 175

rectness of the generated test cases. However, as 176

can be seen in Figure 1, the model can generate du- 177

plicate test cases that are less helpful, even though 178

they are correct. To avoid such an evaluation bias, 179

we further advocate deduplication in the set of test 180

cases that are considered as correct, which leads to 181
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computation of a deduplicated pass rate defined as182

P ′ = 1
MN

∑∑
p′ij/n

′
ij , where we use ′ to denote183

the numbers of unique test cases.184

In addition to the above pass rates, we further185

consider coverage rate as a metric for evaluating186

the diversity of generated test cases. According to187

its definition, converge rate computes the degree to188

which the code is executed, given a test case. Since,189

for each program/code, we keep no more than three190

test cases at once, we calculate how much percent-191

age of the control structure is covered given these192

test cases. Similar to Eq. (1), we evaluate the perfor-193

mance of testing all programs/code over all M×N194

times of generation, i.e., we calculate195

C =
1

MN

M∑
i=1

N∑
j=1

cij , (2)196

where cij is the per-test-case branch coverage rate.197

We apply the pytest 1 library to evaluate the branch198

coverage for all the three test cases for each code199

and average the results for all programs/code and200

all problems. Apparently, C ≤ 1, and a higher C201

shows better testing ability of an LLM, since we202

expect all parts of the programs/code to be executed203

to find our all potential bugs.204

While there are other metrics like the mutation205

scores (mut) that could evaluate the test case qual-206

ity, they are often more costly and are correlated207

with the pass rate or the coverage rate according to208

our experience and experiments, thus we stick with209

the two metrics in this paper.210

3 Large Language Models for Code211

In this section, we outline the evaluated models.212

We adopt some “small” models whose numbers213

of parameters are around 1B (to be more specific,214

from 770M to 1.3B in our choices) and some larger215

models that achieve state-of-the-art performance in216

the task of program synthesis.217

For small models, we use InCoder (1.3B) (Fried218

et al., 2023), CodeGen2 (1B) (Nijkamp et al.,219

2023a), CodeT5+ (770M) (Wang et al., 2023b),220

and SantaCoder (1.1B) (Allal et al., 2023).221

As for larger models that achieve state-of-the-222

art program synthesis performance, we use Code-223

Gen2 (16B) (Nijkamp et al., 2023a), CodeGen-224

Multi (16B) (Nijkamp et al., 2023b), CodeGen-225

Mono (16B) (Nijkamp et al., 2023b), StarCoder226

(15B) (Li et al., 2023b), WizardCoder (15B) (Luo227

1https://pytest.org

et al., 2023), CodeGeeX2 (6B) (Zheng et al., 2023), 228

and GPT-3.5-turbo. We tested pass@1 of all mod- 229

els except GPT-3.5-turbo whose result can be di- 230

rectly collected from Liu et al. (2023a)’s paper. 231

By sorting their pass@1 from high to low, they 232

are ranked as: GPT-3.5-turbo (61.7%), Wizard- 233

Coder (46.23%, 15B), CodeGeeX2 (29.97%, 6B), 234

StarCoder (27.9%, 15B), CodeGen-Mono (26.15%, 235

16B), CodeGen2 (19.33%, 16B), CodeGen-Multi 236

(15.35%, 16B). The ranks on the MBPP dataset are 237

similar. Refer to Appendix A.1 for more details of 238

these models. 239

4 Code to be Tested 240

For evaluating the testing ability of LLMs, we need 241

an oracle to express the ground-truth functionality 242

of the tested code. Fortunately, current datasets 243

for evaluating program synthesis performance of- 244

ten provide such oracles (see HuamnEval (Chen 245

et al., 2021) and MBPP (Austin et al., 2021)). In 246

our experiments, we utilize an amended version of 247

HumanEval called HumanEval+ (Liu et al., 2023a), 248

together with MBPP (the sanitized version). These 249

datasets are established to evaluate basic Python 250

programming performance of LLMs, and they con- 251

tain 164 and 427 problems, respectively. 252

4.1 Imperfect Code Implementations 253

In order to simulate real-world scenarios where the 254

tested code is often buggy, we first adopt synthe- 255

sized programs/code as the programs/code to be 256

tested, considering that the synthesis of even state- 257

of-the-art LLMs is still imperfect. We evaluate 258

the performance of each LLM in testing code that 259

was generated by itself (which is denoted as “Self- 260

generated”) and code in a set consisting of pro- 261

gram completion results of several different LLMs 262

(which is denoted by “Cross-generated”). That 263

said, the compared LLMs take different code im- 264

plementations when generating test cases for each 265

programming problem in the self-generated setting. 266

Whereas, in the cross-generated setting, the same 267

program/code implementations are given to differ- 268

ent LLMs for generating test cases for comparison. 269

In practice, we apply InCoder (1.3B), CodeGen2 270

(1B), CodeT5+ (770M), and SantaCoder (1.1B) 271

to construct the cross-generated program/code set, 272

while, in the self-generated setting, each LLM first 273

synthesize code and complete a program to ful- 274

fill the requirement of each programming problem, 275

and the LLM then generates test cases with the 276
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Figure 1: Testing (a) self-generated code, (b) cross-generated code, (c) an oracle, and (d) a placeholder.

Model Size Pass@1 Pass@10 Pass@100

InCoder 1.3B 6.99%/14.06% 14.20%/34.98% 23.76%/55.34%
CodeGen2 1B 9.19%/17.50% 16.06%/36.86% 25.90%/59.32%
CodeT5+ 770M 12.95%/28.02% 25.09%/47.69% 37.56%/65.26%

SantaCoder 1.1B 15.21%/29.42% 26.01%/51.30% 43.80%/69.10%

Table 1: Program synthesis performance of the small
LLMs (whose number of parameters is around 1 billion)
evaluated on HumanEval+ / MBPP (sanitized).

synthesized programs/code in its prompts. The277

temperature for all LLMs is uniformly set to 0.2278

for synthesizing the programs/code in both settings.279

We obtain 100 program/code completions for each280

problem and we prompt each LLM to generate 3281

test cases for every program/code implementation282

in the self-generated setting, and we sampled 100283

implementations from the synthesis results of In-284

Coder (1.3B), CodeGen2 (1B), CodeT5+ (770M),285

and SantaCoder (1.1B) to form the cross-generated286

code set, i.e., we have N = 100 for these settings.287

We follow the same way of generating code288

as introduced in the papers of these LLMs. For289

model without instruction tuning, like InCoder and290

CodeT5+, we synthesize programs/code using the291

default prompt given by each programming prob-292

lem in the test dataset, while, for models that have293

adopted instruction tuning, e.g., WizardCoder, we294

use the recommended prompt in their papers.295

4.2 Optimal Code Implementations (Oracle)296

As a reference, we also report the performance of297

generating accurate and diverse test cases when the298

written code is perfectly correct, which is achieved299

by adopting the oracle as the programs/code to be300

tested (and such a setting is denoted by “Oracle”).301

Since (Liu et al., 2023a) have reported that some 302

oracle code in the HumanEval dataset can be in- 303

correct, we adopt the amended oracle set in Hu- 304

manEval+ in this setting. We further used the re- 305

vised oracle code implementations instead of the 306

original ones in evaluating the pass rate (i.e., P ′) 307

of the generated test cases. Considering that the 308

public datasets often only provide one oracle im- 309

plementation for each problem, and to keep the un- 310

certainty of evaluation results consistent, we copy 311

the oracle implementation by 100× and we prompt 312

to generate 3 test cases for each of these copies. It 313

can be regarded as letting N = 100, just like in the 314

previous settings in Section 4.1. 315

4.3 No Implementation (Placeholder) 316

In certain scenarios, we require test cases before 317

the function/program has been fully implemented, 318

hence we also evaluate in a setting where the main 319

body of a tested function/program is merely a place- 320

holder, as depicted in Figure 1(d). This scenario 321

often occurs when the main code has not yet been 322

implemented for a function/program or the test en- 323

gineer does not want to introduce implementation 324

bias to the LLM when generating test cases for 325

a function/program. We denote such a setting as 326

“Placeholder” in this paper. We also let N = 100, 327

as in the oracle setting. 328

5 Test Case Generation 329

In this section, we introduce how test cases can 330

be generated, when the implementation of a func- 331
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tion/program is given as described in Section 4.332

In this paper, a desired test case is a pair of input333

and its expected output for the function/program334

defined in the context. As an example, Figure 1335

demonstrates some test cases for the programming336

problem of checking whether the two words satisfy337

a specific rotation pattern. To generate test cases,338

we use the LLMs introduced in Section 3.339

We wrote extra prompts to instruct the LLMs to340

generate three test cases for each given code which341

include docstrings that describe the purpose of this342

function, as depicted in Figure 1. Our instruction343

commands the LLMs (1) to “check the correctness344

of this function with three test” and (2) to start writ-345

ing test code with an “assert” statement and the346

tested function, which specifies the format of the347

test cases as input-output pairs that can be parsed.348

For instance, given the example in Figure 1, the ex-349

tra prompt should be “# Check the correctness350

of this function with three test cases \n351

assert cycpattern_check”.352

We then concatenate the extra prompt with the353

code and feed the concatenation into each LLM, for354

extracting test cases from the model output. When355

using HumanEval+ and MBPP, we try removing356

test cases in the docstrings of the function, if there357

exist any, just to get rid of the broad hints from the358

docstrings (Chen et al., 2023). The temperature for359

generating test cases is kept as 0.2.360

Once obtained, the generated test cases are then361

compiled, and evaluated for their correctness and362

diversity to report the pass rate P ′ and the coverage363

rate C. When calculating, for each problem and364

every set of completions generated, we create a365

temporary folder.366

6 Main Results for Test Case Generation367

The experiment results of small and large LLMs368

on HumanEval+ can be found in Table 2, respec-369

tively. Table 3 shows the results on MBPP. There370

are several takeaways from these tables.371

• First, the test cases generated by LLMs can372

show a decent pass rate, and this pass rate is373

even higher than the code pass rate on Hu-374

manEval+, which holds for both large and375

small LLMs. Such a result is consistent with376

intuitions from previous work (Chen et al.,377

2023) which rejects code that cannot pass the378

generated tests to improve the quality of pro-379

gram synthesis.380

• Second, the correctness of the generated test 381

cases is positively correlated with the LLM’s 382

ability of generating code (see Figure 2, where 383

each red cross represents the performance 384

of a model), which means an LLM show- 385

ing the state-of-the-art program synthesis per- 386

formance is possibly also the state-of-the-art 387

LLM for program testing. 388

• Third, as can be seen in Tables 2 and 3, gen- 389

erating test cases using large LLMs with their 390

self-generated code (in the prompts) often 391

leads to a higher level of correctness, com- 392

pared with the placeholder results. This ob- 393

servation is in fact unsurprising, considering 394

that generating code first and test case after- 395

wards resembles the chain-of-thought prompt- 396

ing (Wei et al., 2022) (if adopting the place- 397

holder is regarded as a plain prompting), 398

which is beneficial to reasoning. Moreover, 399

the self-generated performance of an LLM 400

sometimes even outperforms its testing per- 401

formance with an oracle, and we ascribe this 402

to: 1) randomness in the style of the oracles 403

which are few in number and/or 2) less dis- 404

tribution shift between self-generated code in 405

prompt and the training code, for some pow- 406

erful LLMs. 407

• Fourth, with only a few exception, test cases 408

obtained using the oracle code exhibit slightly 409

higher code coverage, while the coverage 410

rate achieved in the other settings (i.e., the 411

self-generated, cross-generated, and the place- 412

holder settings) is often slightly lower. 413

The above four takeaway messages can all be in- 414

ferred from Tables 2, and 3. In addition to all these 415

results, we conduct more experiments to achieve 416

the following takeaway messages. 417

• Fifth, by analyzing the relationship between 418

the quality of code in prompts and the cor- 419

rectness of test, we found that correct code 420

implementation in the prompt often leads to 421

higher quality of test code generation than the 422

case when some incorrect code is given. We 423

conducted an experiment where we first se- 424

lect programming problems in HumanEval+, 425

where the code pass rate of an LLM is nei- 426

ther 0% or 100%. Then we separate self- 427

generated programs/code of the model into 428

two groups, with one group only contains 429
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Model Size Oracle Self-generated Cross-generated Placeholder

InCoder 1.3B 21.31% (61.43%) 23.37% (59.36%) 22.72% (61.10%) 25.19% (62.75%)
CodeGen2 1B 31.63% (71.55%) 30.62% (69.38%) 30.93% (69.70%) 30.69% (69.00%)
CodeT5+ 770M 35.43% (71.45%) 32.34% (70.45%) 31.49% (69.75%) 32.67% (70.67%)

SantaCoder 1.1B 30.97% (71.46%) 30.43% (70.81%) 30.13% (70.55%) 30.78% (71.24%)

CodeGen-Multi 16B 43.88% (67.91%) 41.85% (69.30%) 40.38% (66.97%) 39.74% (68.28%)
CodeGen2 16B 46.34% (73.07%) 45.44% (73.17%) 42.00% (72.45%) 42.69% (72.86%)

CodeGen-Mono 16B 49.03% (74.82%) 45.73% (73.74%) 43.91% (73.66%) 44.92% (73.63%)
StarCoder 15B 55.07% (76.02%) 52.52% (72.45%) 48.20% (72.30%) 50.58% (74.52%)

CodeGeeX2 6B 57.03% (74.42%) 53.16% (73.55%) 49.28% (70.32%) 51.78% (73.08%)
WizardCoder 15B 53.89% (77.87%) 55.47% (76.07%) 48.02% (75.27%) 49.89% (75.12%)
GPT-3.5-turbo - 71.03% (77.85%) 72.45% (77.24%) 59.24% (74.99%) 66.28% (74.03%)

Table 2: The pass rates (and coverage rate) of the test cases generated on HumanEval+ in different settings.
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Figure 3: How the correctness of the test cases changes with their
order when being generated.

programs/code that are considered as correct430

and the other only contains incorrect pro-431

grams/code. In Table 4, we compare the per-432

formance of using these two sorts of code in433

the prompt, for generating test cases using434

the same LLM. Apparently, the quality of test435

cases obtained with correct programs/code is436

obviously higher. We further evaluate the over-437

all testing performance of LLMs with only438

correct self-generated programs/code, if there439

exists any, in their prompts. Unlike in Ta-440

ble 4 where we do not take problems that441

can be 100% or 0% solved, we take all given442

problems in this evaluation, except, for ev-443

ery problem, we eliminate all incorrect self-444

generated programs/code if there exist at least445

one correct implementation synthesized by446

the evaluated LLM. By doing so, we can ob-447

serve substantially improved program testing448

ability on HumanEval+ (i.e., 74.95% for GPT-449

3.5-turbo, 56.87% for WizardCoder, 54.33%450

for CodeGeeX2, and 53.24% for StarCoder),451

comparing with the original self-generated re-452

sults in Table 2. The same on MBPP.453

• Sixth, by conducting an additional experi-454

ment, we further compare the quality of test455

cases collected from different positions in the456

generation results. For every set of the three 457

generated test cases, we analyze the relation- 458

ship between their correctness and the order 459

when they are generated. The results are il- 460

lustrated in Figure 3. As can be seen in the 461

figure, the first generated test case often shows 462

the best correctness and the latterly generated 463

ones are more incorrect. This may be due to 464

the fact that the model tends to first generate 465

content with a high level of confidence (which 466

is also more likely to be correct). 467

7 Improving Program Synthesis Using 468

the Generated Test Cases 469

High quality test cases are not only desired in pro- 470

gram analyses, but also helpful to program syn- 471

thesis. Previous methods have successfully used 472

generated test cases to improve the performance of 473

LLMs in synthesizing programs/code. For instance, 474

Li et al. (2023a) designed a special prompt which 475

involves the test cases as an preliminary, if they are 476

available, for generating programs/code. One step 477

further, Chen et al. (2023) proposed CodeT, which 478

leverages the LLM to obtain test cases first and tests 479

all synthesized programs/code with these test cases 480

by performing a dual execution agreement, and it 481

picks the code in the largest consensus set (i.e., the 482

consensus set with the most code implementations 483
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Model Size Oracle Self-generated Cross-generated Placeholder

InCoder 1.3B 21.56% (46.81%) 17.98% (46.11%) 19.53% (46.45%) 22.58% (46.72%)
CodeGen2 1B 25.61% (54.26%) 21.85% (53.09%) 23.15% (50.43%) 22.81% (52.11%)
CodeT5+ 770M 29.02% (56.86%) 24.44% (52.31%) 24.84% (53.20%) 25.59% (55.81%)

SantaCoder 1.1B 32.37% (55.68%) 26.40% (52.38%) 26.20% (52.83%) 26.53% (53.86%)

CodeGen-Multi 16B 41.32% (60.63%) 35.96% (59.03%) 34.17%,(58.09%) 34.84% (58.92%)
CodeGen2 16B 45.30% (62.15%) 38.67% (60.16%) 36.77% (58.59%) 37.27% (59.16%)

CodeGen-Mono 16B 50.24% (64.39%) 43.94% (62.94%) 39.55% (61.99%) 42.41% (62.31%)
StarCoder 15B 54.84% (65.10%) 46.77% (63.60%) 42.80% (61.95%) 45.35% (62.66%)

CodeGeeX2 6B 52.45% (64.64%) 44.52% (63.72%) 41.72% (60.48%) 43.86%,(63.51%)
WizardCoder 15B 57.85% (66.68%) 46.56% (64.86%) 41.62% (60.72%) 47.45% (64.54%)
GPT-3.5-turbo - 74.30% (66.19%) 66.14% (65.30%) 49.56% (62.95%) 63.34% (64.72%)

Table 3: The pass rates (and coverage rate) of the test cases generated on MBPP.

Model Size w/ correct code w/ incorrect code #Problem

InCoder 1.3B 28.55% 27.39% 27
CodeGen2 1B 27.25% 25.74% 11
CodeT5+ 770M 40.19% 36.78% 27

SantaCoder 1.1B 37.45% 34.08% 24

CodeGen-Multi 16B 55.49% 50.06% 32
CodeGen2 16B 43.56% 39.31% 29

CodeGen-Mono 16B 45.18% 42.86% 56
StarCoder 15B 58.16% 57.08% 68

CodeGeeX2 6B 52.84% 48.63% 51
WizardCoder 15B 48.02% 45.12% 54
GPT-3.5-turbo - 75.39% 68.52% 126

Table 4: With the correct (self-generated) code, the
LLMs show stronger ability of generating correct test
cases on HumanEval+ (evluated only on those problems
that can neither be 0% solved nor 100% solved), than in
the case where incorrect self-generated code is given in
the prompts.

and test cases) as output to obtain state-of-the-art484

program synthesis performance. We encourage485

interested reader to read the original paper.486

In the previous section, we have obtained results487

about many intriguing properties of the program488

testing performance of LLMs for code. In this sec-489

tion, we would like to drive the readers to think490

whether it is possible to utilize these results to im-491

prove the program synthesis performance, consid-492

ering that the test cases (hand-crafted and given or493

automatically generated in particular) are widely494

and successfully used in program synthesis. We495

will show that, by utilizing takeaway messages in496

Section 6, program synthesis performance of previ-497

ous methods can be improved significantly. Taking498

CodeT as an example, the method uses a place-499

holder to generate test cases and treats all the test500

cases as equally correct as a prior. However, as501

discussed in our third takeaway message, using502

self-generated code helps to achieve more powerful503

ability in generating correct test cases. Moreover,504

if multiple test cases are provided in a single run505

of generation given an LLM, the correctness of the506

test cases decreases with their generation order, as507

shown in our sixth point. Hence, to obtain supe-508

rior program synthesis performance, we introduce509

two simple modifications to it: 1) we employ the510

“self-generated” setting instead of the “placeholder”511

setting for generating test cases, which means we 512

used synthesize programs in prompts when gener- 513

ating test cases for each program, 2) we assign dif- 514

ferent weights to the generated test cases based on 515

their order in each generation result, which means 516

we used the rank of each generated test case to 517

re-weight its contribution to the consensus set it be- 518

longs to. Note that, inspired by the sixth takeaway 519

message, another possible modification that could 520

be explored in future work is to query LLMs more 521

than once for generating test cases for each pro- 522

gram, and generate fewer test cases in each query. 523

However, problems like higher number of times 524

for querying a LLM and higher possibility of test 525

case duplication across different queries should be 526

properly addressed when exploring this direction. 527

We test the effectiveness of using 1) the prompt 528

which involves self-generated (SG) code as the 529

test cases generated in this setting show higher 530

correctness than the baseline placeholder setting 531

and 2) the rank-based re-weighted (RW) test cases, 532

in improving program synthesis performance on 533

HumanEval+. The details of our implementation 534

are shown in Appendix A.6. 535

Table 5 shows the results. In the table, we com- 536

pare CodeT with CodeT+SG, CodeT+RW, and 537

CodeT+SG+RW. For CodeT, we follow their of- 538

ficial implementation and generate 100 × 5 test 539

cases for each problem. For fair comparison, we 540

ensure that our solutions with SR and/or RW gen- 541

erate the same numbers of program implementa- 542

tions and test cases as CodeT does. Hence, for 543

each problem in HumanEval+, we synthesize a pro- 544

gram together with its 5 test cases for 100 times 545

when SR and/or RW are incorporated, i.e., we have 546

i ∈ {1, 2, 3, 4, 5}. It can be seen from the table 547

that both SG and WR improves the program syn- 548

thesis performance considerably on most LLMs, 549

except for Incoder, CodeGen2-1B, CodeT5+, and 550

SantaCoder for which the test cases generated in 551

the placeholder setting show similar or even higher 552
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Model Size Baseline CodeT + SG + RW + SG & RW

InCoder 1.3B 6.99% 9.85% 9.45% 10.26% 9.98%
CodeGen2 1B 9.19% 15.15% 14.89% 15.67% 15.35%
CodeT5+ 770M 12.95% 16.57% 16.28% 17.19% 16.98%

SantaCoder 1.1B 15.21% 18.43% 18.17% 18.75% 18.63%

CodeGen-Multi 16B 15.35% 24.50% 25.71% 25.72% 26.95%
CodeGen2 16B 19.33% 27.56% 28.51% 28.43% 29.63%

CodeGen-Mono 16B 26.15% 35.63% 36.69% 36.63% 37.95%
StarCoder 15B 27.90% 40.46% 41.21% 42.12% 43.15%

CodeGeeX2 6B 29.97% 44.16% 45.23% 44.92% 46.32%
WizardCoder 15B 46.23% 58.41% 60.13% 59.60% 61.45%
GPT-3.5-turbo - 61.70% 69.25% 72.45% 70.75% 73.47%

Table 5: Program synthesis performance (Pass@1) of
LLMs can be significantly improved by using our take-
away messages in Section 6.

correctness than in the self-generated setting and553

SG fails with them. For some LLMs, SG is more554

powerful, while, on the other models including555

SantaCoder and StarCoder, RW is more powerful.556

By combining SG and RW, the program synthesis557

performance of most powerful LLMs in Table 5558

improves, comparing to only using one of the two.559

On GPT-3.5-turbo and WizardCoder, which are560

the best two models in synthesizing programs, we561

achieve +4.22% and +3.04% performance gains for562

CodeT, respectively, with SG & RW.563

8 Related Work564

Testing via program analysis. Testing pro-565

grams automatically is a long standing problem566

in the software engineering community. Various567

program analysis techniques have been developed.568

Typical automatic testing techniques and tools in-569

clude fuzzing (Fioraldi et al., 2020), symbolic exe-570

cution (Cadar and Sen, 2013), dynamic execution571

guided by a fitness function (Harman et al., 2015),572

Pynguin (Lukasczyk et al., 2023), EvoSuite (Fraser573

and Arcuri, 2011), etc. They focus on whether the574

program executes properly rather than whether the575

input-output relationship of the whole program is576

correct, i.e., such testing are more concerned with577

crashes and hangs caused by specific input rather578

than whether the output of a programs incorrectly579

reflects the desire of implementation specified, for580

example, in docstrings.581

Test case generation via deep learning. The582

invention of transformer and self-supervised pre-583

training have brought a breakthrough to program-584

ming language processing and program testing (Tu-585

fano et al., 2022; Dinella et al., 2022). There also586

exist several work (Lemieux et al., 2023; Xia et al.,587

2023; Xie et al., 2023) which utilize LLMs like588

CodeX or GPT-3.5 to provide test cases directly,589

for different purposes though. Though LLMs can590

be possible tools for generating input-output pairs591

for program testing, there still lack and require in-592

depth analyses and comparisons of different closed- 593

source and open-source LLMs in generating such 594

test cases, considering that powerful LLMs emerge 595

continuously. The recent WizardCoder (Luo et al., 596

2023) exhibits an obvious superiority over other 597

open-source LLMs in our experiments, and it even 598

shows the potential to surpass GPT-3.5 sometimes. 599

Benchmarking LLMs. Recently, LLMs have 600

incited substantial interest in both academia and 601

industry. To evaluate the capabilities of large lan- 602

guage models, a variety of effort have been devoted 603

from the perspectives of language processing accu- 604

racy, robustness, ethics, biases, and trustworthiness, 605

etc. For instance, PromptBench (Zhu et al., 2023) 606

shows that current LLMs are sensitive to adver- 607

sarial prompts, and careful prompt engineering is 608

necessary for achieving decent performance with 609

them. DecodingTrust (Wang et al., 2023a), as an- 610

other example, offers a multifaceted exploration of 611

trustworthiness of the GPT models, especially GPT- 612

3.5 and GPT-4. The evaluation expands beyond 613

the typical trustworthiness concerns to include sev- 614

eral new critical aspects. Agentbench (Liu et al., 615

2023b) evaluates LLM as agents on challenging 616

tasks. Their experimental results show that, while 617

top commercial LLMs present a strong ability of 618

acting as agents in complex environments, there 619

is a significant disparity in performance between 620

them and their open-source competitors. Despite 621

the effort, few work focuses on benchmarking the 622

program testing ability of LLMs. 623

9 Conclusion 624

In this paper, we have performed thorough analyses 625

of recent LLMs (mostly LLMs for code) in gener- 626

ating test cases for programs. Through comprehen- 627

sive experiments with 11 LLMs on programming 628

benchmark datasets including HumanEval+ and 629

MBPP (the sanitized version), we have uncovered 630

a range of intriguing characteristics of these LLMs 631

for program/code testing. We have illustrated how 632

the capabilities of these LLMs in generating test 633

cases can be enhanced in comparing intensive em- 634

pirical results in four different settings. Based on 635

our findings, we are also able to improve the per- 636

formance of state-of-the-art LLMs in synthesizing 637

programs/code with test cases of higher quality. We 638

believe our work can provide new research insights 639

and spark new ideas in program synthesis, test-case 640

generation, and LLM understanding, and we look 641

forward to future exploration in these directions. 642
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Limitations643

Our paper has several limitations: 1) Our evalu-644

ation primarily revolve around Python code only,645

due to the workload limit of a single research work646

and the space limit of this paper. In future work,647

we plan to conduct experiments with code in ad-648

ditional programming languages. 2) Although the649

experimental results are given in both pass rates and650

coverage rates, our takeaway messages are primar-651

ily about correctness. More in depth exploration652

about the code coverage is currently lacking and653

might emerge with languages other than Python.654
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A Appendix822

A.1 Models for Code823

InCoder is a unified generative model that can per-824

form program/code synthesis as well as code edit-825

ing, and it combines the strengths of causal lan-826

guage modeling and masked language modeling.827

The CodeGen2 model was trained on a dedupli-828

cated subset of the Stack v1.1 dataset (Kocetkov829

et al., 2023), and its training is formatted with a830

mixture of objectives for causal language model-831

ing and span corruption. CodeT5+ is an encoder-832

decoder model trained on several pre-training tasks833

including span denoising and two variants of causal834

language modeling. SantaCoder was trained on835

the Python, Java, and JavaScript code in the Stack836

dataset. The pass rate (Chen et al., 2021) of pro-837

grams generated by these models is compared in838

Table 1. When evaluating the (program) pass rate,839

we let the model generate 200 code implementa-840

tions for each problem, and we set the tempera-841

ture to 0.2, 0.6, and 0.8 for calculating pass@1,842

pass@10, and pass@100, respectively.843

CodeGen-Multi and CodeGen-Mono are two844

large models from the first version of Code-845

Gen. CodeGen-Multi was first trained on the846

pile dataset (Gao et al., 2020) and then trained847

on a subset of the publicly available BigQuery848

dataset which contains code written in C, C++,849

Go, Java, JavaScript, and Python. Based on the850

16B CodeGen-Multi model, CodeGen-Mono (16B)851

was obtained by further tuning on a set of Python852

code collected from GitHub. Given a base model853

that was pre-trained on 1 trillion tokens from the854

Stack dataset, the 15B StarCoder model was ob-855

tained by training it on 35B tokens of Python code.856

WizardCoder further empowers StarCoder with in-857

struction tuning, following a similar instruction evo-858

lution strategy as in WizardLM (Xu et al., 2023).859

CodeGeeX2, the second generation of a multilin-860

gual generative model for code, is implemented861

based on the ChatGLM2 architecture and trained862

on more code data. GPT-3.5-turbo is a very capable863

commercial LLM developed by OpenAI and we864

accessed it in August, 2023.865

A.2 Further Analysis of Experimental Results866

In this part, we provide further analysis of the ex-867

perimental results in Section 6.868

With regard to the situation where the test case869

quality generated by SantaCoder is lower than that870

generated by CodeT5+ on the HumanEval+ dataset,871

Model Size Self-generated Cross-generated

InCoder 1.3B 54.38% 46.97%
CodeGen2 1B 56.79% 48.78%
CodeT5+ 770M 60.03% 54.16%

SantaCoder 1.1B 56.58% 54.42%

CodeGen-Multi 16B 53.09% 51.27%
CodeGen2 16B 55.66% 53.11%

CodeGen-Mono 16B 57.62% 58.05%
StarCoder 15B 60.29% 55.09%

WizardCoder 15B 71.57% 56.42%
GPT-3.5-turbo - 72.42% 62.91%

Table 6: The coverage rate of the test cases generated
on HumanEval+.

we have explained that this is probably because 872

SantaCoder tends to generate longer and more com- 873

plex test cases. Here we further demonstrate that 874

SantaCoder is capable to generate more accuracy 875

output when given the same testing input as that 876

of CodeT5+’s. To show this, we first extract the 877

input part of the test cases (which includes testing 878

inputs paired with their corresponding outputs) gen- 879

erated by CodeT5+ in the oracle setting. We then 880

let SantaCoder to generate testing outputs given 881

these inputs, and assessed the accuracy of such test 882

cases. The results show that, given these testing 883

inputs already, SantaCoder and CodeT5+ obtain an 884

correctness of 41.67% and 40.34%, respectively, 885

showing that SantaCoder is indeed stronger, if the 886

same testing input is given and it does not have the 887

chance to yeild more complex testing inputs. 888

A.3 Analysis of Code Coverage 889

In the previous sections, when evaluating the code 890

coverage of test cases, we used standard code as 891

the reference. To further assess the code coverage 892

ability of test cases generated by the model, we 893

separately measured the coverage of test cases for 894

their corresponding generated code. This involves 895

measuring the coverage of self-generated test cases 896

for self-generated code and the coverage of cross- 897

generated test cases for cross-generated code. The 898

results are shown in Table 6. 899

A.4 The Influence of Different Prompts 900

As mentioned in Section 5 in the paper, the prompt 901

for generating test cases are given by concatenating 902

the function definitions and docstrings (“def cyc- 903

pattern_check(a, b): \n \t ““‘...."), the code imple- 904

mentation (“c=a \n ....") or a placeholder (“pass"), 905

and a comment given to prompt test case genera- 906

tion (“# Check the correctness of this function with 907

three test cases..."). In our early experiments, we 908

found that modifying the final comment given to 909
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prompt test case generation only has a relatively910

small impact on the test case pass rate. We have911

tried e.g., “# Verify if the function is accurate and912

generate three test cases..." and “# Generate three913

test data to verify the correctness of this function..."914

and only observed less than 0.50% difference in915

correctness of the obtained test cases.916

A.5 Comparison between Human-written917

Tests and LLM-generated Tests918

In this part, we compare the human-written tests919

and LLM-generated tests to provide a deeper anal-920

ysis. We used the provided test cases in the Hu-921

manEval dataset (not HumanEval+) which are writ-922

ten by humans and directly took them into com-923

parison. We analyzed these test cases from a code924

coverage perspective, by using the same metric as925

in the main paper, and we obtained an average code926

coverage of 80.35%, which is indeed higher than927

the result of GPT-3.5-turbo test cases. Considering928

that these hand-crafted test cases are considered as929

all correct, we reach the conclusion that they are930

both more accurate and more diverse than the GPT931

test cases. However, as the code LLMs continue932

to evolve, we might see a more advanced LLM to933

surpass human performance in a near future.934

A.6 Experiment Implementation Details935

Following Chen et al. (2023), we used a temper-936

ature of 0.8 to generate code and self-generated937

test cases. After obtaining the consensus set, we938

re-weight test case by pi−1 with i being its order939

in the model output, and we let p = 0.8. That is,940

instead of directly using their counting numbers,941

we use the sum of pi−1 and the final score of a con-942

sensus set is then the sum of a)
∑

pi−1 and b) the943

number of code implementations in the consensus944

set, and code implementations in the consensus set945

with the highest score are considered as the best946

solutions.947
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