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ABSTRACT

For classification tasks, when sufficiently large networks are trained until conver-
gence, an intriguing phenomenon has recently been discovered in the last-layer
classifiers, and features termed neural collapse (NC): (i) the within-class variabil-
ity of the features collapses to zero, and (ii) the between-class feature means are
maximally and equally separated. Despite of recent endeavors to understand why
NC happens, a fundamental question remains: whether NC is a blessing or a curse
for deep learning? In this work, we investigate the problem under the setting
of transfer learning that we pretrain a model on a large dataset and transfer it to
downstream tasks. Through various experiments, our findings on NC are two-
fold: (i) when pre-training models, preventing intra-class variability collapse (to
a certain extent) better preserve the structures of data, and leads to better model
transferability; (ii) when fine-tuning models on downstream tasks, obtaining fea-
tures with more NC on downstream data results in better test accuracy on the given
task. Our findings based upon NC not only explain many widely used heuristics in
model pretraining (e.g., data augmentation, projection head, self-supervised learn-
ing), but also leads to more efficient and principled transfer learning method on
downstream tasks.

1 INTRODUCTION

Recently, an intriguing phenomenon has been discovered in terms of learned deep representations,
in which the last-layer features and classifiers collapse to simple but elegant mathematical structures
on the training data: (i) for each class, the intra-class variability of last-layer features collapses to
zero, and (ii) the between-class class means and the last-layer classifiers all collapse to the vertices
of a Simplex Equiangular Tight Frame (ETF) up to scaling. This phenomenon, termed Neural
Collapse (NC) (Papyan et al., 2020; Han et al., 2022), has been empirically demonstrated to persist
across a variety of network architectures and datasets. Theoretically, more recent works (Fang et al.,
2021; Zhu et al., 2021; Zhou et al., 2022; Tirer & Bruna, 2022) justified the prevalence of NC under
simplified unconstrained feature models across a variety of training losses and problem formulations.

Despite of recent endeavors of demystifying such an interesting phenomenon, a fundamental ques-
tion lingers: is NC a blessing or a curse for deep representation learning? Understanding such a
question could address many important but mysterious aspects of deep representation learning. For
example, quite a few recent works (Papyan et al., 2020; Galanti et al., 2022; Hui et al., 2022) studied
the connection between NC and generalization of overparameterized deep networks. In this work,
we aim to understand transfer learning by studying the relationship between NC and the transfer-
ability of pretrained deep models. Transfer learning has become an increasingly popular approach
in computer vision, medical imaging, and natural language processing (Zhuang et al., 2020). With
domain similarity, a pretrained large model on upstream datasets is reused as a starting point for
fine-tuning a new model on a much smaller downstream task (Zhuang et al., 2020). The pretrained
model reuse with fine-tuning significantly reduces the computational cost, and achieves superior
performances on problems with limited training datasets.

However, without principled guidance, the underlying mechanism of transfer learning is not very
well understood. First, when we are pretraining deep models on the upstream dataset, we lack good
metrics for measuring the quality of the learned model or representation. In the past, people tended
to rely empirically on controversial metrics for predicting the transferred test performance, such as
the validation accuracy on the pretrained data (e.g., validation accuracy on ImageNet (Kornblith
et al., 2019)). For example, some popular approaches (e.g., label smoothing (Szegedy et al., 2016)
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and dropout (Srivastava et al., 2014)) for boosting ImageNet validation accuracy turn out to hurt
transfer performance on downstream tasks (Kornblith et al., 2021). Additionally, when pretraining
deep models, many methods improve transferability, such as the design of loss functions, data aug-
mentations, increased model size, and projection head layers (Chen et al., 2020; Khosla et al., 2020),
are designed largely based upon trial-and-error without much insight of the underlying mechanism.
Second, given the pretrained models, how to efficiently fine-tune the model on downstream tasks
remains an open question. Although fully fine-tuning all the parameters of the pretrained model
achieve the best performance, it becomes increasingly expensive as the model size grows (e.g.,
GPT-3 and transformer (Brown et al., 2020; Vaswani et al., 2017; Devlin et al., 2019; Dosovitskiy
et al., 2021)). All these challenges call for a deeper understanding of what makes pretrained deep
models more transferable.

Contributions of this work. In this work, we provide a comprehensive investigation of the rela-
tionship between the transferability of pretrained models and NC. As NC implies that intra-class
variability for each class collapses to zero, the representations learned via vanilla supervised learn-
ing fails to capture the intrinsic dimensionality of the input data, and hence they often result in poor
performance of transferability. Intuitively, to make the pretrained models transferable, for each class
the learned features should be discriminative but diverse enough that they can preserve the intrinsic
structures of the input data. On the other hand, on the downstream task when we fine-tune pretrained
models, we desire more collapse of the features on the downstream training data.

Based upon such intuitions, we adapt the metrics for evaluating NC to measure the quality of learned
representations in terms of both intra-class diversity and between-class discrimination. As such, not
only can we demystify several heuristics that are widely used in transfer learning, but it also opens
a door for designing methods to transfer large pretrained models more effectively. In words, our
experimental findings based upon the NC metrics can be summarized as follows.

• The transferability of pretrained models correlates with learned feature diversity on the
source dataset. By evaluating the NC metrics on different loss functions (Hui & Belkin, 2020)
and several widely used techniques in transfer learning (e.g., the addition of projection head,
different data augmentations (Chen et al., 2020; Chen & He, 2021; Khosla et al., 2020) and ad-
versarial training (Salman et al., 2020; Deng et al., 2021)), we find that to a certain extent,1 the
more diverse the features are, the better the transferability of the pretrained model. This helps to
explain the underlying mechanism of many popular heuristics for transfer learning.

• More collapse of fine-tuned models leads to better test performance on downstream tasks.
In contrast, when we are evaluating different pretrained models on downstream tasks, we observe
that more collapsed features on downstream data usually lead to better transfer accuracy. This
phenomenon not only happens on the penultimate layer across different pretrained models, but
also across different layers of the same pretrained model.

• pretrained models can be more effectively transfered through NC. Efficient and effective
transfer learning is of paramount importance for large models nowadays. Inspired by the above
findings, with the aim to collapse the features of the penultimate layer, we improve the transfer ef-
fectiveness while maintaining efficiency by only tuning one additional layer along with an add-on
skip connection. We demonstrate that such a transfer learning strategy achieves better perfor-
mances compared with the traditional fixed feature transfer learning setting and on-par or superior
performances compared with full model fine-tuning setting.

Relationship to prior arts. The prevalence of NC phenomenon has caught significant attention
both in practice and theory recently, and our work draws the connection between NC and transfer
learning. On the other hand, a few recent works are investigating the properties of deep representa-
tions for transfer learning, which is also related to ours. We’d like to summarize and briefly discuss
those results below.
• Understandings of the NC phenomenon. There are a line of recent works deciphering training,

generalization, and transferability of deep networks in terms of NC, that are related to ours (see a
recent review work (Kothapalli et al., 2022)). For training, recent works showed that NC happens
for a variety of loss function and formulations, such as cross-entropy (CE) (Papyan et al., 2020;

1We find that there is a certain threshold, that the transferability increases with the feature diversity below
the threshold but decreases or become uncorrelated beyond it. Increasing the feature diversity will decrease the
margin upon the threshold and hence the relationship with transferability becomes more involved with too large
feature diversity.
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lu2, 2022; Zhu et al., 2021; Fang et al., 2021; Ji et al., 2022; Yaras et al., 2022), mean-squared error
(MSE) (Mixon et al., 2020; Han et al., 2022; Zhou et al., 2022; Tirer & Bruna, 2022; Rangamani
& Banburski-Fahey, 2022), and supervised contrastive (SupCon) loss (Graf et al., 2021). For
generalization, the work (Galanti et al., 2022) shows that NC also happens on test data drawn
from the same distribution asymptotically, but not for finite samples (Hui et al., 2022). Other
works (Hui et al., 2022; Papyan, 2020) demonstrated that the variability collapse of features is
actually happening progressively from shallow to deep layers, and Ben-Shaul & Dekel (2022)
showed that test performance can be improved when enforcing variability collapse on features of
intermediate layers. The works Xie et al. (2022); Yang et al. (2022); Thrampoulidis et al. (2022)
studied problems with imbalanced training data, showing that fixing the classifier as simplex ETFs
improves test performance on imbalanced training data and long-tailed classification problems.
For transferability, the work Kornblith et al. (2021) implicitly showed that there is a tradeoff
between variability collapse and transfer accuracy by experiments on a variety of loss functions.

• Representation learning and model pretraining. There are quite a few recent works studying
the factors that affect transferability of pretrained models, but the results are largely inconclusive.
For example, the work Kornblith et al. (2019) argues that models pretrained on Imagenet with
higher accuracy tend to perform better on other downstream tasks. However, such a conclusion
has been challenged by more recent works (Kornblith et al., 2021; Nayman et al., 2022). These
results showed that the training loss and diversity of the features could be more important fac-
tors of transferability than the pretrained accuracy. However, compared to our work, they only
study few aspects (e.g., training loss) of deep network architectures that affect transferability, and
they only focus on the diversity aspect on the source dataset. At the same time, the work Islam
et al. (2021) showed that models learned using contrastive type of loss functions could have bet-
ter transferability, and Wang & Isola (2020) showed that their representations are more uniform
over hyperspheres. The architecture and depth of CNNs were also shown to impact transfer per-
formance (Azizpour et al., 2015). Other work Zhang et al. (2019) exploited the importance of
layers in overparameterized networks, suggesting the shallow and deep layers are more important
in fine-tuning pretrained models for downstream tasks.

2 EVALUATING REPRESENTATIONS OF PRETRAINED MODELS VIA NC
In this section, let us first give a brief overview of the NC phenomenon, upon which we introduce
the metrics for evaluating the quality of learned representations for transfer learning in Section 3.
Basics of deep neural networks. Let us first introduce some basic notations by considering a
multi-class (e.g., K class) classification problem with finite training samples. Let {nk}Kk=1 be the
number of training samples in each class and we assume the training samples are balanced n =
n1 = n2 = · · ·nK . Let xk,i denote the ith input data in the kth class (1 ≤ i ≤ n, 1 ≤ k ≤ K),
and we use yk ∈ RK to denote a one-hot training label with only the kth entry equal to unity. Thus,
given any input data xk,i, deep network fits the corresponding (one-hot) training label yk via

yk ≈ ψΘ(xk,i) = WL
linear classifier W

· ϕθ(xk,i)
feature hk,i = ϕθ(xk,i)

+ bL, (1)

where W = WL is the last-layer linear classifier and hk,i = h(xk,i) = ϕθ(xk,i) denotes a
deep hierarchical representation (or feature) of the input xk,i. Here, for a L-layer deep network
ψΘ(x), each layer is composed of an affine transformation, followed by a nonlinear activation σ(·)
and normalization functions (e.g., BatchNorm (Ioffe & Szegedy, 2015)). We use Θ to denote all
network parameters of ψΘ(x) and θ to denote the network parameters of ϕθ(x). Additionally, we
use

H = [H1 H2 · · · HK ] ∈ Rd×N , Hk = [hk,1 · · · hk,n] ∈ Rd×n, 1 ≤ k ≤ K,

to denote all the features in the matrix form. Additionally, we write the class mean for each class as

H :=
[
h1 · · · hK

]
∈ Rd×K , and hk :=

1

n

n∑
i=1

hk,i, 1 ≤ k ≤ K.

Accordingly, we denote the global mean of H as hG = 1
K

∑N
k=1 hk.

A review of neural collapse. Over the training dataset {xk,i,yk}, it has been widely observed that
last-layer features H and classifiers W of a trained network exhibit simple but elegant mathematical
structures (Papyan et al., 2020; Papyan, 2020), that we highlight two key properties below2

2Additionally, self-duality convergence has also been observed in the sense that wk = c′hk for some
c′ > 0, but this is not the main focus of this work.
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• Intra-class variability collapse: for each class, the last-layer features collapse to their means,

hk,i → hk, ∀ 1 ≤ i ≤ n, 1 ≤ k ≤ K. (2)

• Maximum between-class separation: the class-means
{
hk

}K

k=1
centered at their global mean

hG are not only linearly separable, but are actually maximally distant and they form a Simplex
Equiangular Tight Frame (ETF): for some c > 0, H =

[
h1 − hG · · · hK − hG

]
satisfies

H
⊤
H =

cK

K − 1

(
IK − 1

K
1K1⊤

K

)
. (3)

Recent work shows that NC persists across a range of canonical classification problems, on different
loss functions (e.g., CE (Papyan et al., 2020; Fang et al., 2021), MSE (Mixon et al., 2020; Zhou et al.,
2022; Han et al., 2022), SupCon (Fang et al., 2021; Graf et al., 2021)), on different neural network
architectures (e.g., VGG (Simonyan & Zisserman, 2014), ResNet (He et al., 2016), and DenseNet
(Huang et al., 2017)), and on a variety of standard datasets (e.g., MNIST (LeCun et al., 2010),
CIFAR (Krizhevsky et al., 2009), and ImageNet (Deng et al., 2009)). As we observe from above,
although the maximum between-class separation suggests the learned features are discriminative
in (3), the intra-class variability collapse to a single dimension in (2) implies that the network is
memorizing the labels rather than preserving the intrinsic structures of the data. As such, the loss of
information of the input data could be detrimental for feature transferability.
Measuring feature quality via NC metrics. Based upon above discussion, the study of NC offers
us new metrics to evaluate the transferability of pre-trained models.
• Variability and separation collapses (Papyan et al., 2020; Zhu et al., 2021). We can measure

the variability and separation collapse via

NC1 :=
1

K
trace

(
ΣWΣ†

B

)
, (4)

by measuring the magnitude of the within-class covariance ΣW ∈ Rd×d of the learned features
compared to the inter-class covariance ΣB ∈ Rd×d, where

ΣW :=
1

nK

K∑
k=1

n∑
i=1

(
hk,i − hk

) (
hk,i − hk

)⊤
, ΣB :=

1

K

K∑
k=1

(
hk − hG

) (
hk − hG

)⊤
,

and Σ†
B denotes the pseudo inverse of ΣB . Here, Σ†

B serves as an normalization for ΣW to
capture the relativity between the two covariances. Intuitively, if the features are more collapse to
their means, the smaller NC1 is; on the other hand, with the same ΣW , if the features have more
separated class means, NC1 would also be smaller. Since the metric involves pseudo inverse of
ΣB , computation of such a metric in (4) could be intractable when the feature dimension is large
(for huge models).

3 METHODS & EXPERIMENTS

In the following, we will utilize the above metrics to experimentally evaluate the quality of learned
representations in terms of transferability, to corroborate our claims in Section 1. More specifically,
in Section 3.1 we focus on pre-training, that we demonstrate a positive correlation between NC
metrics and transfer accuracy on pre-trained dataset. In Section 3.2, we turn our attention to down-
stream tasks, where we discover the NC metrics and the associated transfer accuracy are negatively
correlated. Finally, in Section 3.3, based on the above findings, we propose a simple and efficient
fine-tuning method in a principled manner.

Experimental setups. We pre-train ResNet18 and ResNet50 (He et al., 2016) models on Cifar-100
(Krizhevsky et al., 2009) and MiniImageNet (Vinyals et al., 2016) datasets. Unless otherwise spec-
ified, we pre-train the models for 200 epochs using the SGDR learning rate scheduler (Loshchilov
& Hutter, 2017) with initial learning rate 0.1 and minimum learning rate 0.0001. More details are
postponed to Appendix A.2.

3.1 STUDY OF NC & TRANSFER ACCURACY ON MODEL PRETRAINING

We begin our investigation by studying the relationship between NC metrics on pre-training dataset
and transfer accuracy. To certain extent, we find the two are positively correlated: larger NC metrics
often leads to better transfer accuracy. Our key intuition is that if the learned representations are less
collapse on the pre-trained data, they better preserve the intrinsic structures of the input data.
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Training MSE (w/o proj.) Cross-entropy (w/o proj.) SupCon (w/ linear proj.) SupCon (w/ mlp proj.)

NC1 (Cifar-100) 0.001 0.771 0.792 2.991

Transfer Acc. 53.96 71.2 69.89 79.51

Table 1: Transfer learning results & model NC1 comparison among different training settings.
ResNet18 models are pre-trained on the Cifar-100 dataset and transfered on Cifar-10. We use proj.
to denote projection head.
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Figure 1: Trend of NC1 during training and transfer learning accuracy of the pretrained mod-
els. ResNet50 models are pretrained using Cifar-100 dataset with CE loss (Left), MSE loss (Mid-
dle) and SupCon loss (Right). Models are pretrained with different numbers of layers for projection
heads and transfered on the Cifar-10 dataset.

Choices of training losses and architecture impact feature variability and hence transferability.
First, we show that the choice of training losses and design of architecture substantially affects the
collapse of the features on the penultimate layer, and hence the transfer accuracy.3 To show this, we
pre-train ResNet18 models on the Cifar-100 dataset with three different choices of loss functions
(CE, MSE (Hui & Belkin, 2020), and supervised contrastive loss (SupCon) (Khosla et al., 2020)),
and then test the transfer accuracy on the Cifar-10 dataset. For the SupCon (Khosla et al., 2020), we
follow the original setup that uses a nonlinear multi-layer perception (MLP) module as a projection
head after the ResNet18 encoder. Once the model has been pre-trained, the projection head will
be abandoned and only the encoder network will be utilized as the model for downstream tasks.
In Table 1, we summarize the results of model NC1 and transfer accuracy for different training
scenarios. As we can see, the model trained with the MSE loss is severely collapsed on the source
dataset and has the worst transfer accuracy. On the other hand, the model trained using the SupCon
with an MLP projection head is less collapse compared to the other models and has superior transfer
performance. This observation is consistent with (Islam et al., 2021) that SupCon leads to better
transferability than CE. Here, we further show that this is because SupCon learns relatively more
diverse features (larger NC1) than CE. However, given both SupCon and CE learn the same NC
representations in the so-called unconstrained features model (Fang et al., 2021; Zhu et al., 2021;
Graf et al., 2021), it raises an interesting question on why the features learned by SupCon are more
diverse. We further address this question in the following.

.Projection layers in pre-training increase feature diversity for better transferability. We con-
jecture that the inclusion of an MLP projection head serves as an important role for the better per-
formance of SupCon. This is based on the recent works (Papyan, 2020; Hui et al., 2022; He & Su,
2022) that show the within-class variability collapse actually happens progressively from shallow to
deep layers: the closer to the final layer, the severer the variability collapse (i.e., the smaller the NC1

of that layer). Therefore, the additional MLP projection layers prevent severe variability collapse of
the encoder network. We empirically verify this conjecture by replacing the MLP by a linear layer
for the projection head in SupCon and then train the model under the same setting. We observe from
Table 1 that SupCon with a linear projection head indeed achieves similar NC and transfer accuracy
as CE. Note that the layer-wise progressive collapse is universal across the choice of training losses,
the usage of projection head is not limited to contrastive losses. Thus, we can also improve the trans-
ferability for supervised pre-training models with the CE / MSE loss by adding a MLP projection
head. To verify this, we pre-train ResNet-50 models (we use it for better performance) on the Cifar-
100 dataset. We report the NC and transfer accuracy for different choices of projection heads. In

3For the choices of loss, the works (Islam et al., 2021; Kornblith et al., 2021) have similar observations,
where different choices of training losses for pre-training lead to different transfer performance.
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Figure 1, we can observe that the inclusion of projection heads substantially increase the diversity of
the representations and the transfer accuracy compared with that of no projection head. We note that
the usage of projection head is first introduced and popularized for self-supervised learning (Chen
et al., 2020; Chen & He, 2021). But the reasons behind the success of such a method remain as
mystery. Here, we demystify the underlying mechanism of projection head based upon progressive
variability collapse, where our experiments show that the usage of projection heads is not limited to
pre-training by contrastive losses.
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Figure 2: NC1 vs. Trans-
fer learning accuracy. Models
are pretrained using the Cifar-100
dataset with different data augmen-
tation levels and adversarial train-
ing strength, transfer accuracy is
evaluated on the Cifar-10 dataset.

Pre-training NC does not always explain transfer accu-
racy. So far, we have shown that models that are very col-
lapsed on the source dataset have inferior transferability, which
is aligned with the observation in (Hui et al., 2022). However,
does this imply the truth of the opposite direction: models that
are not collapsed on the source dataset will always transfer
better? The answer is obviously no. A naive counter exam-
ple would be an untrained model with randomly initialized
weights, which will not collapse but also has poor transfer ac-
curacy. Because the reason for the increase in NC1 could be
either from the increase of feature diversity within each class
or from the loss of discriminate power between classes. To
more comprehensively characterize this relationship, we pre-
train ResNet50 models on the Cifar-100 dataset using different
levels of data augmentations and different adversarial training
(Madry et al., 2018; Salman et al., 2020; Deng et al., 2021)
strength, and then test the transfer accuracy on the Cifar-10
dataset, where the result is summarized in Figure 2. We ob-
serve that positive relationship between the level of collapse on the source dataset and the transfer-
ability only holds up to certain threshold4 based upon the NC1 metric. As shown in Figure 2, if the
feature variability is beyond the threshold, the transfer accuracy decreases as the feature variability
increases (i.e., NC1 increases).

3.2 STUDY OF NC & TRANSFER ACCURACY ON DOWNSTREAM TASKS

Second, given the pre-trained models, on downstream data we experimentally investigate the rela-
tionship between NC metrics of their representations and transfer accuracy. Transferring pre-trained
large models to smaller downstream tasks has become the dominant approach in both vision (Doso-
vitskiy et al., 2021) and language (Devlin et al., 2019) domains. Also, in many cases the source
data for pre-training is unavailable,5 we can only evaluate the representation quality based upon the
downstream data.

Here, to control the factors for affecting our study, the experimental setting is quite simple: for each
downstream task, we freeze the whole pre-trained model with no fine-tuning, and for the model we
only train the linear classifier on the downstream data. On the contrary to model pre-training, our
discovery is that the transfer accuracy is negatively correlated with the NC metrics on downstream
data. In other words, the more collapsed the representations of the layer on the downstream data
or simpler dataset, the better the transfer accuracy. Moreover, as we show in the following, this
phenomenon is quite universal: it not only happens across pre-trained models with different pre-
training strategies, but also across different layers of the same pre-trained model.
Pre-trained models with more collapsed last-layer features result in better transferability. To
validate our statement, we pre-train different ResNet50 models on the Cifar-100 dataset by using
different levels of data augmentations and different levels of adversarial training strengh. Once a
model is pre-trained, we test its transfer accuracy on 4 downstream datasets: Cifar-10 (Krizhevsky
et al., 2009), FGVS-Aircraft (Maji et al., 2013), DTD (Cimpoi et al., 2014) and Oxford-IIIT-Pet
(Parkhi et al., 2012) datasets. In Figure 3, we observe that the NC1 on Cifar-10 dataset has a
negative (almost linear) correlation with the transfer accuracy on different downstream tasks. The
more collapse of feature on the Cifar-10 dataset (i.e, the smaller the NC1 metric is), the higher the

4We note the work (Kornblith et al., 2021) studied similar correlation by introducing a notion called class
separation. However, the work has not studied the aspects when the class separation approaches 0 which is
similar to entirely not collapsing with the NC notions.

5e.g., JFT dataset (Sun et al., 2017), which is used in the pretraining of Vision Transformer, is not publicly
available.
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Figure 3: Transfer accuracy on different downstream tasks and NC1. We pre-train ResNet50
models on Cifar-100 using different levels of data augmentation or adversarial training. NC1 is
measured on the downstream Cifar-10 dataset.

transfer accuracy.6 As such, we observe that the NC1 metric on Cifar-10 evaluated on pre-trained
models can serve as a good performance indicator for the transfer accuracy on downstream tasks.

Figure 4: Illustration of layer-wise
transfer learning. We pre-train a
MLP model and use the outputs from
each layer to do transfer learning.

The opposite relationships between NC metrics and trans-
fer accuracy on pre-trained data and on downstream data
may seem contradictory at first glance. However, for pre-
training, as we explained in Section 3.1, we desire less col-
lapsed models on source data so that the learned features
can capture the structure of the input data. On the contrary,
on downstream data, the NC metrics act as a measure on
model’s ability of representing the input data to fit the out-
put label. As such, the less collapse on pre-trained data,
the better representation power of the pre-trained model.
Therefore, the larger NC1 on pre-trained data translates to
smaller NC1 on downstream data and better transfer accu-
racy.

Layers with more collapsed output features result
in better transferability. More intriguingly, the phe-
nomenon we observed above not only happens across dif-
ferent pre-trained models, but also happens across (the out-
puts of) different layers on exactly the same pre-trained model. More precisely, given the same
pre-trained model, as shown in Figure 4, we use the output of each individual layer as a “feature
extractor”, and we test the transfer accuracy of the given layer by training a linear classifier on top
of it. Surprisingly, if the outputs of the layer are more collapsed, using the corresponding features
leads to better transfer accuracy, which happens regardless of the layer’s depth.

To corroborate our claim, we pre-train a 12-layer MLP network with the same output dimension for
every layer,7 and we evaluate the NC1 metric on the layer’s output feature upon the downstream
data. To evaluate the transfer accuracy of the given layer, we train a linear classifier on top of the
layer’s output based upon downstream training data. As we observe in Figure 5, the smaller NC1

of the features of a given layer, the better transfer accuracy we get. We can observe a near linear
relationship between NC1 and transfer accuracy from Figure 5 (Right). Thus, the transfer accuracy
is more correlated with the variability collapse upon the layer rather than the depth of the layer.
Furthermore, the phenomenon we illustrated above holds more universally beyond the vanilla MLP
architecture. To demonstrate this, we conducted the same experiment on ViT-B (vision transformer
base model) (Dosovitskiy et al., 2021) by using a pre-trained checkpoint released online 8. Similarly,
we compute the NC1 of each layer and train a linear classifier for each of the encoder layers in the
ViT-B. The results are reported in Figure 6, where we can observe the same trend and more linear
relationship compared to the MLP experiment.

6When evaluating the relationship between NC1 and transfer accuracy measured on the same downstream
dataset, the correlation is not as strong as we find on Cifar-10 dataset, we leave the results and discussion in
Appendix A.3.

7We choose the MLP architecture instead of other architectures (e.g., ResNet) is to get rid of the influence of
feature dimensions for fair comparisons across layers. For MLP, we can freely choose the the output dimension
of each layer. However, the layer’s output dimension in ResNet is usually fixed and varies significantly across
different depth.

8The Vit-B model checkpoint we used could be found here.
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Figure 5: NC1 and transfer learning accuracy of different layers from a pretrained MLP model
(Left); Nearly linear relationship between transfer learning accuracy and NC1 (Right). The
12 layer, 3072 hidden dimension MLP model is pretrained on the Cifar-100 dataset and transfered
on the Cifar-10 dataset. NC1 is evaluated on the Cifar-10 dataset.

2 4 6 8 10 12
Vit-B Layers (shallow -> deep)

0

5

10

15

20

25

30

35

1

50

60

70

80

90

Tr
an

sf
er

 A
cc

ur
ac

y

1
Transfer Acc

0 5 10 15 20 25 30 35
1

50

60

70

80

90

Tr
an

sf
er

 A
cc

ur
ac

y

r2 = 0.946
Transfer Accuracy
Fitted Line

Figure 6: NC1 and transfer learning accuracy of different layers from a pretrained ViT-B
model (Left); Nearly linear relationship between transfer learning accuracy and NC1 (Right).
We use a pretrained ViT-B model and transfered on the Cifar-10 dataset. NC1 is evaluated on the
Cifar-10 dataset.

3.3 A SIMPLE & EFFICIENT FINE-TUNING STRATEGY FOR IMPROVING TRANSFERABILITY

Finally, we show that the phenomenon we discovered in Section 3.2 can be very useful for designing
simple yet more efficient fine-tuning strategies without sacrificing the performance. For vision tasks,
model transfer learning (Kornblith et al., 2019; 2021; Deng et al., 2021; Salman et al., 2020) typically
adopts two strategies: (1) fixed feature training, use pre-trained model up to the penultimate layer
as a feature extractor and only train a new linear classifier on top of the features for a downstream
task; (2) full model fine-tuning, use the pre-trained model as an initialization and fine-tune the
whole model to fit a downstream task. However, the full fine-tuning could be very expensive for large
models, while fixed feature training often results in worse performance without adapting the model
to the downstream data. Thus, the middle case, fine-tuning only a selected subset of layers, could
be a promising approach for balancing the computation and performance, while it is seldom studied
for vision problems (Utrera et al., 2021; Shen et al., 2021). Based upon the correlation between
penultimate layer collapse and the transfer learning performances we discovered in Section 3.2, our
conjecture is that

The topmost transfer accuracy can be achieved by selectively fine-tuning the layers such that the
features of penultimate layer are the most collapsed on the downstream training data.

Towards this goal, in this work we propose a simple strategy to increase the level of collapse of the
penultimate layer – fine-tuning one additional layer besides the final linear classifier. We notice that
by fine-tuning only one additional layer, the penultimate NC can be substantially decreased along
with better transfer performance. More specifically, in table 2, we examine this simple strategy
on various architectures and source / downstream datasets, where for each architecture, we pick
several layers from the network, fine-tune each of them with the linear classifier and report the
maximum transfer accuracy. As we observe, the additional one layer fine-tuning leads to substantial
performance gain compared with linear probing regardless of pre-training scenarios and downstream
datasets.

8
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Backbone ResNet18 ResNet50 Vit-B

Dataset Cifar-10 Cifar-100 Cifar-10 Cifar-100 Aircraft DTD PET

Linear Probe 43.12 23.84 49.70 29.71 43.65 73.88 92.23
Layer FT 82.00 54.03 85.03 59.39 65.83 77.13 93.02
SCL FT 84.83 58.51 86.14 64.90 65.80 77.34 93.19

Full Model FT 85.61 55.75 88.54 53.42 64.57 76.49 93.02

Table 2: Transfer learning results for Linear probing, layer fine-tuning, SCL fine-tuning and
full model fine-tuning on various downstream datasets. We use released ResNet models pre-
trained on ImageNet-1k (Deng et al., 2009) and ViT-B model pre-trained on JFT (Sun et al., 2017)
and ImageNet-21k (Ridnik et al., 2021) datasets.

Despite the success of the above simple approach, we note that fine-tuning a shallow layer could
only implicitly impact the NC dynamics of the penultimate layer because all the intermediate layers
remain un-trained. To make the impact more direct, as shown in Figure 7, we add a skip connection
from the fine-tuned layer features to the penultimate layer features and use the combined features to
serve as the inputs for the final linear classifier. Such method enables the network to more effectively
fine-tune the selected layer by explicitly passing the learned information to the classifier without
suffering the information loss through the cascade of intermediate layers. On the other hand, since
we are using a skip connection rather than discarding the top layers and using the fine-tuned layer
features directly for classification, the network still benefits from being deep. We term our method
SCL (Skip Connection Layer) fine tuning and compare its results with layer fine-tuning, linear probe
and full model fine-tuning in Table 2. We observe that SCL fine-tuning nearly always outperforms
layer fine-tuning and achieves comparable or even better results compared with full model fine-
tuning.

4 DISCUSSION & CONCLUSION

Trained Layer i

Downstream 
Data

Layer FT

Trained Layer 1

Trained Layer i

Downstream 
Data

New Classifier

Trained Layer 1

Trained Layer L

Trained Layer i

Downstream 
Data

SCL FT

Trained Layer 1

Trained Layer i

Downstream 
Data

New Classifier

Trained Layer 1

Trained Layer L

Skip Connection

Layers Frozen

Layers to update

Figure 7: Illustration of SCL fine-
tuning.

Twofold relationship between NC and transferability.
In this work, we examine the relationship between NC
and transferability through various aspects. Previous work
(Hui et al., 2022) points out that NC is mainly an opti-
mization phenomenon which does not necessarily relate to
generalization (or transferability). Our work, on one hand,
corroborates with the finding that pretraining NC does not
always suggest better transferbality, but also shows a pos-
itive correlation between pretraining NC and transferabil-
ity to certain extent. On the other hand, our work also
shows that downstream NC on a dataset where NC is well-
defined correlates with the transfer performances across
different datasets and thus could be a general indicator
for the transferability. This suggests that NC may not be
merely an optimization phenomenon. An important future
direction we will pursue is to theoretically understand the
connection between transferability and NC .
Boost model transferability by insights from NC . Our findings can be used to improve model
transferability through the following two perspective. First, the positive correlation between pre-
training NC and transferability suggests that increase diversity of features to certain extent can
improve transferability. This can be achieved by popular techniques such as multi-layer projection
heads and data augmentation. We believe other principled approaches could also be developed by
explicitly working on the geometry of the representations. Second, by demonstrating the close cor-
relation between downstream NC and associated transfer accuracy, we are able to make simple yet
effective strategies to do model transfer learning. However, our simple approach is by no means
the optimal method to exploit such relationship. We believe there are more powerful approaches
that could utilize this phenomenon better and thus achieves better transferability. We leave this as a
future work.
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A APPENDIX

A.1 OTHER METRICS FOR MEASURING NC

Class-distance normalized variance (CDNV) Galanti et al. (2022). To alleviate the computa-
tional issue of NC1, the class-distance normalized variance (CDNV) introduced in (Galanti et al.,
2022) provides an alternative metric that is inexpensive to evaluate. Let X denotes the space of
the input data x and let Qk be the distribution over X conditioned on the class k. For two differ-
ent classes with Qi and Qj (i ̸= j), the CDNV metric can be described by the following equa-
tion: Vϕθ

(Qi,Qj) =
Varϕθ

(Qi)+Varϕθ
(Qj)

2||µϕθ
(Qi)−µϕθ

(Qj)||22
, where µϕθ

(Qk) = Ex∼Qk
[ϕθ(x)] denotes the class-

conditional feature mean and Varϕθ
(Qk) = Ex∼Qk

[||ϕθ(x) − µϕθ
(Qk)||2] denotes the feature

variance for the distribution Qk. Although the exact expectation is impossible to evaluate, we can
approximate them via their empirical means and empirical variances on the given training samples,
so that

V̂ϕθ
(Qi,Qj) =

V̂arϕθ
(Qi) + V̂arϕθ

(Qj)

2||µ̂ϕθ
(Qi)− µ̂ϕθ

(Qj)||2
, (5)

µ̂ϕθ
(Qk) =

1

nk

nk∑
i=1

ϕθ(xk,i), V̂arϕθ
(Qk) =

1

nk

nk∑
i=1

||ϕθ(xk,i)− µϕθ
(Xk)||2 (6)

To characterize the overall degree of collapse for a model, we can use the average CDNV between
all pairwise classes (i.e., Avgi ̸=j [V̂ϕθ

(Qi,Qj)]). If a model achieves perfect NC, obviously we
have Avgi ̸=j [V̂ϕθ

(Qi,Qj)] = 0. Because the CDNV metric is purely norm-based, computation
complexity scales linearly with the feature dimension d, so that it serves as a good surrogate for
NC1 when the feature dimension d is large.

Numerical rank of the features H . The NC1 does not directly reveal the dimensionality of the
features spanned for each class. Measuring rank of the features (Hk) is more suitable. However, the
calculations for both NC1 and rank are expensive when feature dimension gets too large. Thus, we
introduce numerical rank (Timor et al., 2022) as an approximation

r̃ank(H) :=
1

K

K∑
k=1

∥Hk∥2F / ∥Hk∥22 ,

where ∥·∥F represents the Frobenius norm and ∥·∥2 represents the Spectral norm.
r̃ank(H)(numerical rank) could be seen as an estimation of the true rank for any matrix. Note
that for calculating the Spectral norm, we use the Power Method to find an approximation. The
metric is evaluated by averaging over all the classes. It is expected that the smaller r̃ank(H) is, the
more collapsed the features are to their class means.

A.2 TECHNICAL DETAILS FOR SECTION 3.

In the main paper, for the ease of presentation, some technical details in the experiments are not
presented explicitly. We discuss the missing implementation details here.

Experimental set-up for Section 3.1 In Figure 1, we pretrain ResNet50 models with different
number of projection layers using Cifar-100 and MiniImageNet datasets for 200 epochs. Then we
use the learned model to do transfer learning on Cifar-10. The NC1 and CDNV are then evaluated
on the source dataset.

Experimental set-up for Section 3.2 In Figure 2, we pretrain ResNet50 models using different
levels of data augmentation and adversarial training. For data augmentation, we consider Random-
Crop, RandomHorizontalFlip, ColorJitter and RandomGrayScale. We add an additional augmenta-
tion for each level. I.e., for augmentation level 1, we don’t add any data augmentation, for level 2,
we add RandomCrop, for level 3, we add RandomCrop + RandomHorizontalFlip, and etc. For ad-
versarial training, we follow the ℓ∞ norm bounded adversarial training framework in (Madry et al.,
2018) with 5 levels of attack size: { 1

255 ,
2

255 ,
3

255 ,
5

255 ,
8

255}.
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Figure 9: Change of NC1 dynamic for trained MLP / ResNet18 models. The MLP model is
trained on MNIST (LeCun et al., 2010), FashionMNIST (Xiao et al., 2017), Cifar-10, respectively
and the ResNet18 model is trained on Cifar-100.

With the same pretraining setup as in Figure 2, we transfer the learned models on 4 different down-
stream datasets: Cifar-10, FGVS-Aiscraft, DTD and Oxford-IIIT-Pet. We note that there are many
benchmark datasets that we can potentilly use, we choose these 4 datasets because the number of
samples for each class is balanced in these datasets, which is the same scenario where NC is first
studied (Papyan et al., 2020).

In Figure 6, we use the Vit-B32 model with pretrained weights released online. For each encoder
layer in Vit-B32, the outputs are of size 145 (# of patches + an additional classification token) × 768
(hidden dimension). For the layer-wise transfer learning experiment, we first do a average pooling
on the 145 patches and then train a linear classifier with input dimension 768 on top of each encoder
layer.

Figure 8: Fine-tuning unit of ResNet. Image of ResNet18
from (Ramzan et al., 2019)

Experimental set-up for Section 3.3
For Table 2, we use a wide variety
of experimental setups, including dif-
ferent model architectures, pretrain-
ing datasets and downstream datasets.
We then compare the performance
between linear probing, layer fine-
tuning, SCL fine-tuning and full
model fine-tuning. For ResNet mod-
els, we consider each block as a fine-
tuning unit and fine-tune the first block
of each layer (e.g., as shown in Fig-
ure 8, ResNet18 has 4 layers where
each layer has 2 blocks, we then fine-tune on the first block of each layer). For Vit-B32 model,
we treat each of the 12 encoder layer as a fine-tuning unit. In terms of skip connection, for ViT-
B32 model, since the feature dimension from each layer remain constant, the skip connection could
be directly applied for the features of the fine-tuned layer and the penultimate layer. However, for
ResNet models, the number of channels and the feature dimension change across layers. Therefore,
to calculate the skip connection, we first do an adaptive average pooling on the fine-tuned layer fea-
tures to make each channel has only one entry; then we further do a 1 × 1 convolution to make the
number of channels match with the penultimate layer features. Finally, we do a BatchNorm (Ioffe
& Szegedy, 2015) on the processed fine-tuned layer features and apply the skip connection.

A.3 ADDITIONAL RESULTS

A.3.1 ADDITIONAL RESULTS FOR SECTION 3.1

In Section 3.1, we conjecture that the success of adding projection layers on transfer learning can be
attributed to the progressively within-class variability collapse. Recently, a work (He & Su, 2022)
further found that log(NC1) decays linearly across layers. We train MLP and ResNet18 models
on different datasets and validate their observation in Figure 9. Such phenomenon accompanies our
results in Section 3.1 and explains why adding projection heads is useful in the perspective of feature
collapse.
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Figure 10: Transfer accuracy on different downstream tasks and NC1. Transfer accuracy and
NC1 are measured on the same downstream datasets.

FT method Linear Probe Block 1 Block 3 Block 5 Block 7 Full ModelLayer FT SCL FT Layer FT SCL FT Layer FT SCL FT Layer FT SCL FT

Cifar-10 43.12 65.03 82.33 80.84 84.83 82.00 83.10 71.66 73.08 85.61
Cifar-100 23.84 35.98 53.52 46.26 58.51 54.03 57.72 45.85 46.97 55.75

Table 3: Transfer learning performance of ResNet18 (pretrained on Imagenet) on downstream
datasets with different fine tuning methods.

A.3.2 ADDITIONAL RESULTS FOR SECTION 3.2

In Section 3.2, we show that the NC1 on Cifar-10 dataset negative correlates with the transfer accu-
racy on different downstream tasks. Nevertheloss, in Figure 10, when we evaluate the relationship
between the transfer accuracy and the associated NC1 on the same downstream dataset, we cannot
find a strong correlation. We conjecture that the reason behind such mismatch is the similar with
our analysis in Section 3.1: when the values of NC1 get too large, the metric starts to become less
meaningful since the increase may come from either an expansion in the feature variance within
each class, or a loss of discriminative power between classes.

A.3.3 ADDITIONAL RESULTS FOR SECTION 3.3

In Table 2, for the clarity of presentation, we report the maximum transfer performance gained fine-
tuning different layers. Here, we report the results for all of the fine-tuned layers in Table 3, Table 4
and Table 5 for ResNet18, ResNet50 and Vit-B32 respectively. We can observe that fine-tune middle
layers nearly always give the best transfer performance.

Moreover, to confirm that SCL fine-tuning yields more collapsed penultimate layer features, we fine-
tune a ResNet18 model trained with Cifar-100 dataset on Cifar-10 using the layer fine-tuning and
SCL fine-tuning methods. We then visualize the change in the NC1 dynamic across network layers
before and after fine-tuning in Figure 11 (Left). Fine-tuning a block would make the features from
the block and all following blocks become more collapse on the downstream task, and adding skip
connections make the collapse more severe and thus lead to more collapsed penultimate layers and
potentially better transfer performance. In Figure 11 (Right), we plot the correlation between NC1

and the transfer accuracy. We notice the negative correlation is well-aligned with our observation in
Figure 3. However, we note that although more collapsed penultimate features almost surely leads
to better transferability for fixed feature transfer learning (linear probing), it is not always reliable
in the case of model fine-tuning. This is because the more we change model parameters before
the linear classifier, the model becomes more prune to remember the data-label relationship in the
downstream datasets and hence make the fine-tuned model likely to overfit. Eventually when the full
model is being fine-tuned, we would get neural collapsed model on the downstream training data
as well but the collapse in this case may not translate to better performances on the test set. Such
phenomenon happens especially severe for the datasets with limited number size, as shown in (Hui
et al., 2022).
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FT method Linear Probe Block 1 Block 4 Block 8 Block 14 Full ModelLayer FT SCL FT Layer FT SCL FT Layer FT SCL FT Layer FT SCL FT

Cifar-10 49.70 38.65 78.58 49.76 79.24 85.03 86.14 75.78 76.02 88.54
Cifar-100 29.71 6.98 55.94 25.02 59.36 59.39 64.90 52.29 53.56 53.42

Table 4: Transfer learning performance of ResNet50 (pretrained on Imagenet) on downstream
datasets with different fine tuning methods.

FT method Linear Probe Layer 1 Layer 4 Layer 7 Layer 10 Full ModelLayer FT SCL FT Layer FT SCL FT Layer FT SCL FT Layer FT SCL FT

DTD 73.88 76.54 77.02 75.85 77.18 77.13 77.34 76.12 76.54 76.49
PET 92.23 92.42 92.23 92.67 93.19 92.94 93.13 93.02 93.13 93.01

Aircraft 43.65 57.64 56.50 64.93 62.35 65.83 65.80 62.80 62.32 64.57

Table 5: Transfer learning performance of Vit-B32 (pretrained on JFT and ImageNet-21k) on
downstream datasets with different fine tuning methods.
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Figure 11: Change of NC1 dynamic before and after fine-tuning (Left), Correlation between
downstream NC1 and transfer accuracy (Right). Transfer accuracy and NC1 are measured on
the same downstream datasets.
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