
UTG: Towards a Unified View of Snapshot and
Event Based Models for Temporal Graphs

Shenyang Huang1,2,∗ Farimah Poursafaei1,2,∗

Reihaneh Rabbany1,2,5 Guillaume Rabusseau1,4,5 Emanuele Rossi3

1Mila - Quebec AI Institute, 2School of Computer Science, McGill University
3VantAI, 4DIRO, Université de Montréal, 5CIFAR AI Chair

Abstract
Many real world graphs are inherently dynamic, constantly evolving with node
and edge additions. These graphs can be represented by temporal graphs, either
through a stream of edge events or a sequence of graph snapshots. Until now, the
development of machine learning methods for both types has occurred largely
in isolation, resulting in limited experimental comparison and theoretical cross-
pollination between the two. In this paper, we introduce Unified Temporal
Graph (UTG), a framework that unifies snapshot-based and event-based machine
learning models under a single umbrella, enabling models developed for one
representation to be applied effectively to datasets of the other. We also propose
a novel UTG training procedure to boost the performance of snapshot-based
models in the streaming setting. We comprehensively evaluate both snapshot
and event-based models across both types of temporal graphs on the temporal
link prediction task. Our main findings are threefold: first, when combined with
UTG training, snapshot-based models can perform competitively with event-
based models such as TGN and GraphMixer even on event datasets. Second,
snapshot-based models are at least an order of magnitude faster than most event-
based models during inference. Third, while event-based methods such as
NAT and DyGFormer outperforms snapshot-based methods on both types of
temporal graphs, this is because they leverage joint neighborhood structural
features thus emphasizing the potential to incorporate these features into snapshot-
based models as well. These findings highlight the importance of comparing
model architectures independent of the data format and suggest the potential
of combining the efficiency of snapshot-based models with the performance of
event-based models in the future.

1 Introduction

Recently, Graph Neural Networks (GNNs)[1, 2] and Graph Transformers[3, 4] have achieved remark-
able success in various tasks for static graphs, such as link prediction, node classification, and graph
classification [5]. These successes are driven by standardized empirical comparisons across model
architectures [5] and theoretical insights into the expressive power of these models [6].

However, real-world networks such as financial transaction networks [7], social networks [8], and
user-item interaction networks [9] are constantly evolving and rarely static. These evolving networks
are often modeled by Temporal Graphs (TGs), where entities are represented by nodes and temporal
relations are represented by timestamped edges between nodes. Temporal graphs are categorized
into two types: Discrete-Time Dynamic Graphs (DTDGs) and Continuous-Time Dynamic Graphs
(CTDGs) [10]. DTDGs are represented by an ordered sequence of graph snapshots, while CTDGs

∗Equal contributions.

Huang et al., UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs.
Proceedings of the Third Learning on Graphs Conference (LoG 2024), PMLR 269, Virtual Event, November
26–29, 2024.

UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs

consist of timestamped edge streams. Both representations of temporal graphs are prevalent in
real-world applications.

Until now, the development of ML methods for both types has occurred mostly independently,
resulting in limited experimental comparison and theoretical cross-pollination between the two. We
argue that the time granularity of the data collection process together with the requirements of the
downstream task have created a gap between DTDG and CTDG in model development and evaluation.

Isolated Model Development. Despite the similarities between DTDGs and CTDGs, models for
these graphs have been developed largely in isolation. Adopting the terminology of [11], models
targeting DTDGs focus on learning from a sequence of graph snapshots (snapshot-based models) [12–
14] , while methods for CTDGs focus on learning from a stream of timestamped edge events
(event-based models) [15–17]. The disparate data representations of DTDGs and CTDGs have
impeded comprehensive comparison across models developed for each category. Consequently, there
are limited theoretical insights and empirical evaluations of the true potential of these models when
compared together. In real-world applications, representing the data as CTDGs or DTDGs is often
a design choice, and the ambiguity of the actual performance merits of both categories makes it
challenging to select the optimal model in a practical setting.

Distinct Evaluation Settings. Another obstacle to comparing snapshot and event-based methods
is their distinct evaluation settings. Snapshot-based methods have been primarily tested under the
deployed setting [12, 14] 2, where the test set information is strictly not available to the model, and
training set information is used for prediction. In contrast, event-based models are designed for the
streaming setting [15, 19], where streaming predictions allow the model to use recently observed
information, enabling event-based models to update their node representations at test time.

In this work, we aim to bridge the gap between event-based and snapshot-based models by providing
a unified framework to train and evaluate them to predict future events on any type of temporal graph.
Our main contributions are as follows:

• Unified framework: We propose Unified Temporal Graph (UTG), a framework that unifies
snapshot-based and event-based temporal graph models under a single umbrella, enabling
models developed for one representation to be applied effectively to datasets of the other.

• Updating snapshot-based models: We propose a novel UTG training strategy to boost the per-
formance of snapshot-based models in the streaming setting. This allows snapshot-based models
to achieve competitive performance with event-based models such as TGN and GraphMixer on
the tgbl-wiki and Reddit CTDG datasets.

• Benchmarking: By leveraging the UTG framework, we conduct the first systematic comparison
between snapshot and event-based models on both CTDG and DTDG datasets. While some
event-based methods such as NAT and DyGFormer outperform snapshot-based methods on both
CTDGs and DTDGs, we posit this is due to leveraging joint neighborhood structural features
rather than a fundamental property of event-based methods. Additionally, snapshot-based
methods are at least an order of magnitude faster than event-based methods while achieving
competitive performance. This suggests several future directions, such as integrating joint
neighborhood structural features in snapshot-based models and developing a universal method
that combines accuracy and efficiency for both DTDGs and CTDGs.

Reproducibility: The code and data for this project is publicly available on Github:
https://github.com/shenyangHuang/UTG

2 Related Work
Holme et al. [20] provided a general overview of the many types of real world temporal networks
showing that temporal graphs are ubiquitous in many applications. Recently, many ML methods were
developed for temporal graphs. The well-adopted categorization by Kazemi et al. [10] are defined by
the two types of temporal graphs: Discrete Time Dynamic Graphs (DTDGs) and Continuous Time
Dynamic Graphs (CTDGs). Due to difference in input data format, empirical comparison between
methods designed for CTDGs and DTDGs are under-explored and these two categories are often

2An exception to this is ROLAND [18], which proposed the live-update setting (see Appendix B for a more
detailed discussion).

2

https://github.com/shenyangHuang/UTG

UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs

considered distinct lines of research despite many similarities in models’ design. More detailed
discussions on related work can be found in Appendix C.

Discrete Time Dynamic Graphs. Early methods often represent temporal graphs as a sequence
of graph snapshots while adapting common graph neural networks such as Graph Covolution Net-
work (GCN) [1] used in static graphs for DTDGs. For example, EGCN [14] employs a Recurrent
Neural Network (RNN) to evolve the parameters of a GCN over time. In comparison, GCLSTM [13]
learns the graph structure via a GCN while capturing temporal dependencies with an LSTM net-
work [21]. Pytorch Geometric-Temporal (PyG Temporal) [22] is a comprehensive framework that
facilitate neural spatiotemporal signal processing which implements existing work such as EGCN
and GCLSTM in an efficient manner. HTGN [12] utilizes hyperbolic geometry to better capture
the complex and hierarchical nature of the evolving networks. Recently, You et al. [18] introduced
a novel live-update setting where GNNs are always trained on the most recent observed snapshot
after making predictions. In comparison, the streaming setting in this work allows the model to use
observed snapshots for forward pass but no training are permitted on test set. Zhu et al. [23] designed
the WinGNN framework for the live-update setting where a simple GNN with meta-learning strategy
is used in combination with a novel random gradient aggregation scheme, removing the need for
temporal encoders.

Continuous Time Dynamic Graphs. Event-based methods process temporal graphs as a stream of
timestamped edges. DyRep [24] and JODIE [9] are two pioneering work on CTDGs. TGAT [25] is
one of the first work for studying inductive representation learning on temporal graphs. Rossi et al.
[15] introduce Temporal Graph Networks (TGNs), a generic inductive framework of Temporal Graph
Networks, showing DyRep, JODIE and TGAT as its special cases. Methods such as CAWN [26]
and NAT [17] both focuses on learning the joint neighborhood of the two nodes of interest in
the link prediction task. CAWN focuses on learning from temporal random walks while NAT is
a neighborhood-aware temporal network model that introduces a dictionary-type neighborhood
representation for each node. TCL [27] and DyGFormer [28] applies transformer based architecture
on CTDGs, inspired by the success of transformer based architectures on time series [29], images [30]
and natural language processing [31]. Despite the promising performance of event-based methods,
recent work showed significant limitations in the standard link prediction evaluation due to the
simplicity of negative samples used for evaluation [16]. To improve the evaluation for CTDG, Huang
et al. [19] proposed the Temporal Graph Benchmark (TGB), a collection of large-scale and realistic
datasets from distinct domains for both link and node level tasks.

3 Preliminaries
Definition 1 (Continuous Time Dynamic Graphs) A Continuous Time Dynamic Graph (CTDG) G
is formulated as a collection of edges represented as tuples with source node, destination node, start
time and end time;

G = {(s0, d0, ts0, te0), (s1, d1, ts1, te1), . . . , (sk, dk, tsk, tek)}
where, for edge i ∈ [0, k], si and di denote source and destination respectively. The start times are
ordered chronologically ts0 ≤ ts1 ≤ ... ≤ tsk, each start time is less than or equal to the corresponding
end time tsi ≤ tei , hence for each timestamp t we have t ∈ [ts0, t

e
k].

Without loss of generality, one can normalize the timestamps in G from [t0, tk] to [0, 1] by applying
t = t−t0

tk
∀t ∈ [t0, tk]. Real world temporal networks can be broadly classified into two inherent

types based on the nature of their edges: transient networks and persistent networks. Examples of
spontaneous networks include transaction networks, retweet networks, Reddit networks, and other
activity graphs. Here, the edges are spontaneous thus resulting in the start time and end time of an
edge being the same, i.e. ts = te. This formulation is inline with related studies in [10, 16, 19, 32].
For relationship networks such as friendship networks, contact networks, and collaboration networks,
the edges often persist over a period of time resulting in ts ̸= te.

Definition 2 (Discrete Time Dynamic Graphs) A Discrete Time Dynamic Graph (DTDG) G is a
sequence of graph snapshots sampled at regularly-spaced time intervals [10]:

G = {G0,G1, . . . ,GT }
Gt = {Vt,Et} is the graph at snapshot t ∈ [0, T], where Vt, Et are the set of nodes and edges in
Gt, respectively.

3

UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs

4 UTG Framework

Figure 1: Illustration of the UTG framework. The
input graph is processed by the UTG input mapper
to generate the appropriate input data format for
TG models. The model predictions are then pro-
cessed by the UTG output mapper for prediction.

In this section, we present the Unified Temporal
Graph (UTG) framework which aims to unify
snapshot-based and event-based temporal graph
models under the same framework, enabling
temporal graph models to be applied to both
CTDGs and DTDGs. UTG has two key compo-
nents: input mapper and output mapper. Input
mapping converts the input temporal graph into
the appropriate representation needed for a given
method, i.e. snapshots or events. Output mapper
transforms the prediction of the model to the
required time granularity of the task. Figure 1
shows the workflow of UTG framework. UTG
enables any temporal graph learning methods to
be applied to any input temporal graph.

4.1 UTG Input Mapper

Both snapshot and event-based TG methods re-
quire specific input data format. For snapshot-
based models, discretizing CTDG data into a se-
quence of snapshots is required. For event-based
models, DTDG snapshots need to be converted
into batches of events.

Converting CTDG to Snapshots. Here, we
formulate the discretization process which con-
verts a continuous-time dynamic graph into a
sequence of graph snapshots for snapshot-based
models.

Definition 3 (Discretization Partition) Let 0
and 1 be the normalized start and end time of a
temporal graph G. A discretization partition P of the interval [0, 1] is a collection of intervals:

P = {[τ0, τ1], [τ1, τ2], . . . , [τk−1, τk]}

such that 0 = τ0 < τ1 < · · · < τk = 1 and where k ∈ N.

Hence, a discretization partition P defines a finite collection of non-overlapping intervals and its
norm is defined as:

||P|| = max{|τ1 − τ0|, |τ2 − τ1|, . . . , |τk − τk−1|}
The norm ||P|| can also be interpreted as the max duration of a snapshot in the temporal graph G.
The cardinality of P is denoted by |P|.

Definition 4 (Regular Discretization Partition) A given discretization partition P is regular if and
only if:

∀[τi, τj] ∈ P, |τj − τi| = ||P|| = |τk − τ0|
|P|

In this case, all intervals have the same duration equal to ||P||.

Definition 5 (Induced Graph Snapshots) Given a Continuous Time Dynamic Graph G and a Reg-
ular Discretization Partition P, the Induced Graph Snapshots G are formulated as:

G = {Gτ1
τ0 ,G

τ2
τ1 , . . . ,G

τk
τk−1

}

where G
τj
τi is defined as the aggregated graph snapshot containing all edges that have a start time

ts < τj and an end time te ≥ τi, i.e. edges that are present solely within the [τi, τj) interval.

4

UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs

Note that for spontaneous networks, each edge exist at a specific time point ts = te thus only
belonging to a single interval/snapshot. For relationship networks however, it is possible for an edge
to belong to multiple intervals depending on its duration.

Definition 6 (Discretization Level) Given a regular discretization partition P and the timestamps
in a temporal graph G normalized to [0, 1], the discretization level ∆ of P is computed as :

∆ =
1

|P|

where |P| is the cardinality of the partition or the number of intervals.

Note that ∆ ∈ [0, 1]. When |P| = 1 then ∆ = 1 which means the temporal graph is collapsed
into a single graph snapshot (i.e. a static graph). On the other extreme, we have lim|P|→∞ ∆ = 0,
preserving the continuous nature of the continuous time dynamic graph G.

Definition 7 (Time Gap) Given a Continuous Time Dynamic Graph G and a Regular Discretization
Partition P, a Time Gap occurs when there exist one or more snapshots in the Induced Graph
Snapshots G with an empty edge set.

In this work, we choose the number of intervals in discretization by selecting the finest time granularity
which would not induce a time gap. This ensures that there are no empty snapshots in the induced
graph snapshots.

Converting DTDG to Events. While it may seem straightforward to convert DTDG to events
— simply create one event with timestep t for each edge in snapshot Gt — some subtleties related
to batch training and memory update of event-based models have to be considered to avoid data
leakage. Event-based models often receive batches of events (or edges) with a fixed dimension as
inputs [15, 17, 28]. In discrete-time dynamic graphs, all edges in a snapshot have the same timestamp
and are assumed to arrive simultaneously. Therefore, using a fixed batch size can result in splitting
the snapshot into multiple batches. Because models in the streaming setting [19] such as TGN [15]
and NAT [17] update their representation of the temporal graph at the end of each batch, predicting a
snapshot across multiple batches leads to data leakage: a portion of the edges from the snapshot is
used to predict other (simultaneous) edges from the same snapshot. To avoid data leakage on DTDGs,
we ensure that each snapshot is contained in a single batch for event-based models3. Note that the
issue of splitting edges that share the same timestamp into multiple batches can exist in general
CTDG datasets as well, more likely for datasets with a large burst of edges at a single timestamp.

4.2 UTG Output Mapper

The output task on the temporal graph can be either discrete or continuous. Discrete tasks refer to
predicting which edges will be present at a future snapshot (with an integer timestep). Continuous
tasks refer to predicting which edges will be present for a given UNIX timestamp in the future.
Snapshot-based models often omits the timestamp of the prediction as an input, implicitly assuming
the prediction is for the next snapshot. Therefore, applying snapshot-based models for a continuous
task requires 1). always updating the model with all the information available until the most recent
observed snapshot (test-time update) and 2). mapping the discrete-time prediction to a continuous
timestamp. We explain here how to map the prediction to a continuous space with zero-order hold.

Definition 8 (Zero-order Hold) A discrete time signal y[i], i ∈ N, can be converted to a continuous
time signal y(t), t ∈ R, by broadcasting the value y[i] as a constant in the interval [τi, τj]:

y(t) = y[i], for all τi ≤ t ≤ τj

where [τi, τj] specifies the duration of the discrete signal.

By applying zero-order hold for snapshot-based models, the predictions can now be broadcasted
for a period of time (specifically for the duration of a given snapshot [τi, τj]). Therefore, it is now
possible to utilize snapshot-based models on continuous-time dynamic graphs. Note that often

3In case the resulting batch would not fit in memory, one can delay the memory update (and parameter
updates during training) only after all edges from the current snapshot have been processed, something akin to
gradient accumulation.

5

UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs

snapshot-based model are designed to predict for the immediate next snapshot and not capable of
predicting snapshots in more distant future. Therefore, inherently their ability to predict events in
the far future is limited when compared to event-based model that explicitly takes a timestamp as
input. With zero-order hold, we assume that the event to predict next is within the next snapshot to
circumvallate the aforementioned limitation of snapshot-based model. To achieve this, we select the
finest time granularity on the CTDG datasets which results in no time gap to construct snapshots.

4.3 Streaming Evaluation UTG Training

Snapshot

GNN

Gradient

Streaming Evaluation

Recurrent

Module

Loss

Snapshot

GNN

Recurrent

Module

Prediction Snapshot Prediction Snapshot

Evaluation
MRR

(Training Set) (Test Set)

Figure 2: UTG training and evaluation workflow. UTG
training enables snapshot-based models to perform better for
the streaming setting.

Event-based models often evaluate
with the streaming setting [15, 17, 26,
28]. In this setting, information from
the previously observed batches of
events (or graph snapshot) can be used
to update the model however no infor-
mation from the test set is used to train
the model. In comparison, snapshot-
based models are often evaluated in
either the live-update setting [18] or
the deployed setting [12, 14]. De-
tailed differences between evaluation
settings are discussed in Appendix B.

In this work, to provide a unified
comparison, we focus on the widely
used streaming setting for experimen-
tal evaluation as it closely resembles
real-world settings where after the
model is trained, it is required to in-
corporate newly observed information
into its predictions. Note that the UTG framework can also be applied to test under the deployed
setting with little changes. For the live-update setting, the changes are required for each model’s
training procedure as the training set is not split chronologically but rather being a subgraph of each
observed snapshot. Figure 2 shows the evaluation pipeline used for snapshot-based models in UTG.
After a snapshot is observed, it can be used to update the node representation of the snapshot-based
models for the prediction of the next snapshot (only forward pass for inference).

4.4 UTG Training for Snapshot-based Models

Here, we discuss the changes to the snapshot-based methods in the UTG framework. Figure 2
illustrates the work flow of UTG training for snapshot-based models. The standard training for
snapshot-based models, e.g. with Pytorch Geometric Temporal [33], are designed for tasks such as
graph regression or node classification, for the deployed setting. Therefore, the training procedure
needs to be adapted accordingly for the link prediction with the streaming setting.

Difference of UTG Training. The first required change is that in standard training, the snapshots up
until time t is used as input for predictions at time t. This is feasible for node classification and graph
regression tasks: the graph structure at time t is used to predict the unknown target labels. However,
this is problematic for the link prediction task as the target itself (the graph structure) is not available
as input to the model. Therefore, to account for this, we modified the training to use only snapshots
up to Gt−1 as input to predict the graph structure at the current step Gt.

The second change is that, in UTG, the loss is backpropagated to the model at each snapshot. This
is in contrast with accumulating the loss through the whole sequence and only backpropagation
once at the end of training (as seen in standard training). This change is motivated by the training
procedure often seen in event-based models for the streaming setting. For example, in TGN [15], loss
on each batch is computed based on information from the previous batch. UTG training enhances the
performance of snapshot-based models for the streaming setting and in Section 5, we demonstrate the
performance advantage of UTG training on a number of snapshot-based models.

Connection to Truncated Backprop Through Time. By considering the temporal graph as a
sequence (of snapshots), the link prediction problem can be seen as a time series prediction task

6

UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs

Table 1: Dataset statistics.

Dataset # Nodes # Edges # Unique Edges Surprise Time Granularity # Snapshots

D
T

D
G

UCI 1,899 26,628 20,296 0.535 Weekly 29
Enron 184 10,472 3,125 0.253 Monthly 45
Contact 694 463,558 79,531 0.098 Hourly 673
Social Evo. 74 87,479 4,486 0.005 Daily 244
MOOC 7,144 236,808 178,443 0.718 Daily 31

C
T

D
G tgbl-wiki 9,227 157,474 18,257 0.108 UNIX timestamp 745 (Hourly)

tgbl-review 352,637 4,873,540 4,730,223 0.987 UNIX timestamp 237 (Monthly)
Reddit 10,984 672,447 78,516 0.069 UNIX timestamp 745 (Hourly)

where the information until time (t− 1) is used to predict for time t. Many snapshot-based models
utilize a RNN to model temporal dependency. In this view, accumulating gradients throughout the
whole sequence before backpropagation is equivalent to the classical backpropagation through time
algorithm [34]. From this perspective, backpropagating the loss at each snapshot in UTG training
can be interpreted as using the Truncated Backpropagation Through Time (TBTT) algorithm to train
the model, with a window size of one. It is known that TBTT helps circumvent common issues of
training RNNs such as exploding memory usage and vanishing gradient problem [35, 36]. Therefore,
UTG training might help alleviate the vanishing gradient problem.

5 Experiments
In this section, we benchmark both snapshot-based and event-based methods across both CTDG and
DTDG datasets under the UTG framework.

Datasets. In this work, we consider five discrete-time dynamic graph datasets and three continuous-
time dynamic graph datasets. tgbl-wiki and tgbl-review are datasets from TGB [19] while
the rest are found in Poursafaei et al. [16]. The dataset statistics are shown in Table 1. The time
granularity or discretization level of each DTDG dataset is selected as the finest time granularities
where there are no time gaps. The surprise index is defined as surprise = |Etest\Etrain|

Etest
[16] which

measures the proportion of unseen edges in the test set when compared to the training set.

Evaluation Setting. A common approach for evaluating dynamic link prediction tasks is similar
to binary classification, where one negative edge is randomly sampled for each positive edge in the
test set, and performance is measured using metrics like the Area Under the Receiver Operating
Characteristic curve (AUROC) or Average Precision (AP) [15, 25]. However, recent studies have
shown that such evaluation is overly simplistic and tends to inflate performance metrics for most
models [16, 19]. One main reason is that randomly sampled negative edges are too easy and the more
challenging historical negatives (past edges absent in the current timestamp) are rarely sampled [16].
To address these issues, several improvements have been proposed, framing the problem as a ranking
task where the model must identify the most probable edge from a large pool of negative samples
as well as adding challenging negatives. Therefore, we adopt the improved evaluation methodology
used in TGB [19], where link prediction is treated as a ranking problem and the Mean Reciprocal
Rank (MRR) metric is applied. This metric calculates the reciprocal rank of the true destination node
among a large number of possible destinations.

For each dataset, we generate a fixed set of negative samples for each positive edge consisting of 50%
historical negatives and 50% random negative, same as in [19]. For DTDG datasets, we generate
1000 negative samples per positive edge. For TGB datasets, we use the same set of negatives provided
in TGB and for Reddit, we generate 1000 negatives similar to before. For graphs with less than 1k
nodes, we generate negative samples equal to number of nodes. We follow the streaming setting
where the models are allowed to update their representation at test time while gradient updates are
not permitted. For DTDG datasets, we select the best results from learning rate 0.001 or 0.0002. For
CTDG datasets, we report the results from TGB [19] where available or by learning rate 0.0002.

Compared Methods. We compare four event-based methods including TGN [15], DyGFormer [28],
NAT [17] and GraphMixer [37]. We also include Edgebank [16], a scalable and non-parameteric
heuristics. In addition, we compare three existing snapshot-based methods including HTGN [12],
GCLSTM [13], EGCNo [14], and ROLAND-GRU [18]. Lastly, we adapt a common 2-layer (static)
GCN [1] under the UTG framework to demonstrate the flexibility of UTG (without a recurrent

7

UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs

Table 2: Test MRR comparison for snapshot and event-based methods on DTDG datasets, results
reported from 5 runs. Top three models are marked by First, Second, Third.

Method UCI Enron Contacts Social Evo. MOOC
ev

en
t

TGN [15] 0.091 ± 0.002 0.191 ± 0.027 0.153 ± 0.007 0.283 ± 0.009 0.174 ± 0.009

DyGFormer [28] 0.334 ± 0.024 0.331 ± 0.010 0.283 ± 0.006 0.366 ± 0.004 OOM
NAT [17] 0.356 ± 0.048 0.276 ± 0.014 0.245 ± 0.015 0.258 ± 0.036 0.283 ± 0.058

GraphMixer [37] 0.105 ± 0.008 0.296 ± 0.019 0.055 ± 0.003 0.157 ± 0.005 OOM
EdgeBank∞ [16] 0.055 0.115 0.016 0.049 0.040
EdgeBanktw [16] 0.165 0.157 0.050 0.070 0.070

sn
ap

sh
ot HTGN (UTG) [12] 0.093 ± 0.012 0.267 ± 0.007 0.165 ± 0.001 0.228 ± 0.003 0.093 ± 0.005

GCLSTM (UTG) [13] 0.093 ± 0.006 0.170 ± 0.008 0.128 ± 0.004 0.286 ± 0.003 0.143 ± 0.006

EGCNo (UTG) [14] 0.121 ± 0.010 0.233 ± 0.008 0.192 ± 0.001 0.253 ± 0.006 0.126 ± 0.009

GCN (UTG) [1] 0.068 ± 0.009 0.164 ± 0.011 0.104 ± 0.002 0.289 ± 0.008 0.084 ± 0.010

ROLAND (UTG) [18] 0.103 ± 0.011 0.243 ± 0.017 0.145 ± 0.002 0.240 ± 0.005 0.121 ± 0.003

module). If a method runs out of memory on a NVIDIA A100 GPU (40GB memory), it is reported
as out of memory (OOM). If a method runs for more than 5 days, it is reported as out of time (OOT).

With the UTG framework, we can now compare snapshot-based methods and event-based methods
on any temporal graph dataset. This comparison allows us to focus on analyzing the strength and
weaknesses of the model design, independent of the data format.

DTDG Results. Table 2 shows the performance of all methods on the DTDG datasets. Surprisingly,
we find that event-based methods achieve state-of-the-art performance on the DTDG datasets, partic-
ularly with DyGFormer and NAT consistently outperforming other methods. With the improvements
from UTG, snapshot-based models can obtain competitive performance on datasets such as Enron
and Social Evo. Interestingly, even the simple GCN with UTG training can achieve second place per-
formance on the Social Evo. dataset. Note that this dataset has the lowest surprise out of all datasets
meaning the majority of test set edges have been observed during training, possibly explaining the
strong performance of GCN in this case. Lastly, on the MOOC dataset which has the largest number
of nodes out of all DTDG datasets, both DyGformer and GraphMixer ran out of memory (OOM)
showing their difficulty in scaling with the number of nodes in a snapshot.

Table 3: Test MRR comparison for snapshot and event-based
methods on CTDG datasets, results reported from 5 runs. Top
three models are marked by First, Second, Third.

Method tgbl-wiki tgbl-review Reddit

ev
en

t

TGN [15] 0.396 ± 0.060 0.349 ± 0.020 0.499 ± 0.011

DyGFormer [28] 0.798 ± 0.004 0.224 ± 0.015 OOT
NAT [17] 0.749 ± 0.010 0.341 ± 0.020 0.693 ± 0.015

GraphMixer [37] 0.118 ± 0.002 0.521 ± 0.015 0.136 ± 0.078

EdgeBank∞ [16] 0.495 0.025 0.485
EdgeBanktw [16] 0.571 0.023 0.589

sn
ap

sh
ot HTGN (UTG) [12] 0.464 ± 0.005 0.104 ± 0.002 0.533 ± 0.007

GCLSTM (UTG) [13] 0.374 ± 0.010 0.095 ± 0.002 0.467 ± 0.004

EGCNo (UTG) [14] 0.398 ± 0.007 0.195 ± 0.001 0.321 ± 0.009

GCN (UTG) [1] 0.336 ± 0.009 0.186 ± 0.002 0.242 ± 0.005

ROLAND (UTG) [18] 0.289 ± 0.003 0.297 ± 0.006 0.211 ± 0.006

CTDG Results. Table 3 shows the
performance of all methods on the
CTDG datasets. Similar to DTDG
datasets, DyGformer and NAT retains
competitive performance here. On
the tgbl-wiki and Reddit dataset,
HTGN, a snapshot-based model is
able to outperform widely-used TGN
and GraphMixer model. This shows
that learning from the discretized
snapshots can be effective even on
CTDG datasets. However, snapshot-
based models have lower performance
on the tgbl-review dataset where
the surprise index is high. This shows that the inductive reasoning capability on snapshot-based
models should be further improved to generalize to unseen edges.

Computational Time Comparison Figure 3a and Figure 3b shows the test inference time comparison
for all methods on the Social Evo. and the tgbl-review dataset respectively. The test time for each
dataset is reported in Appendix A. Overall, we observe that snapshot-based methods are at least an
order of magnitude faster than most event-based methods. In comparison, high performing model
such as DyGformer has significantly higher computational time thus limiting its scalability to large
datasets. One promising direction is to combine the performance of event-based models such as NAT
and DyGFormer with that of the efficiency of the snapshot-based models for improved scalability.

Benefits of UTG Training. UTG training enables snapshot-based models to effectively incorporate
novel information during inference. Table 4 shows the performance benefit of using UTG training on
the GCLSTM, HTGN and EGCNo models when compared to the original training scheme (such as

8

UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs

TGN

DyGFormer
NAT

GraphMixer
HTGN

GCLSTM
EGCN

ROLAND
GCN

EdgeBank

Method

101

102

Te
st

 T
im

e

24

349.2

148.4132.4

14.6
9.3

7.4
11

6.4

2.4

(a) Test time (seconds) for Social Evo. dataset.

TGN

DyGFormer
NAT

GraphMixer
HTGN

GCLSTM
EGCN

ROLAND
GCN

EdgeBank

Method

103

104

Te
st

 T
im

e

1137.7

26477.5

8925.2

4167.6

718.2
436.3433.2430.6384.5

143.5

(b) Test time (seconds) for tgbl-review dataset.

Figure 3: Snapshot-based models with UTG training are at least an order of magnitude faster than
event-based models for inference.

Table 4: Base models with UTG training when compared to original training, results averaged across
five runs, best results for each model are bolded.

Dataset GCLSTM
(UTG)

GCLSTM
(original)

EGCNo
(UTG)

EGCNo
(original)

HTGN
(UTG)

HTGN
(original)

UCI 0.093 ± 0.006 0.047 ± 0.006 0.121 ± 0.010 0.124 ± 0.007 0.093 ± 0.012 0.052 ± 0.006

Enron 0.170 ± 0.006 0.131 ± 0.003 0.233 ± 0.008 0.227 ± 0.012 0.267 ± 0.007 0.196 ± 0.025

Contacts 0.128 ± 0.004 0.101 ± 0.031 0.192 ± 0.001 0.195 ± 0.001 0.165 ± 0.001 0.129 ± 0.020

Social Evo. 0.286 ± 0.003 0.287 ± 0.009 0.253 ± 0.006 0.231 ± 0.009 0.228 ± 0.003 0.178 ± 0.024

MOOC 0.143 ± 0.006 0.076 ± 0.003 0.126 ± 0.009 0.119 ± 0.009 0.093 ± 0.005 0.079 ± 0.011

in Pytorch Geometric Temporal) for DTDG datasets. UTG training significantly enhances model
performance across most datasets and performs identically on the rest.

Discussion. Event-based methods such as NAT and DyGFormer tend to perform best on both CTDG
and DTDG, potentially leading to the premature conclusion that event-based modeling is the preferred
paradigm and that snapshot-based models should be avoided. However, the superior performance
of NAT and DyGFormer could be primarily due to their ability to leverage joint neighborhood
structural features, specifically the common neighbors between the source and destination nodes
of a link [17, 28]. This approach has been shown to be fundamental for achieving competitive
link prediction on static graphs [38, 39]. In contrast, none of the existing snapshot-based methods
incorporate joint neighborhood structural features. Therefore, the performance difference could be
mainly attributed to this factor rather than an intrinsic difference between event-based and snapshot-
based models. This is suggested by the fact that event-based models such as TGN and GraphMixer,
which omits these features, have no clear performance advantage over snapshot-based methods.
Moreover, snapshot-based methods are more computationally efficient and might be preferred when
efficiency is important. These considerations suggest that both event-based and snapshot-based
methods have their own merit. We believe that combining the strengths of both approaches is an
important future direction.

6 Conclusion

In this work, we introduce the UTG framework, unifying both snapshot-based and event-based
temporal graph models under a single umbrella. With the UTG input mapper and UTG output mapper,
temporal graph models developed for one representation can be applied effectively to datasets of
the other. To compare both types of methods in the streaming setting for evaluation, we propose the
UTG training to boost the performance of snapshot-based models. Extensive experiments on five
DTDG datasets and three CTDG datasets are conducted to comprehensively compare snapshot and
event-based methods. We find that top performing models on both types of datasets leverage joint
neighborhood structural features such as the number of common neighbors between the source and
destination node of a link. In addition, snapshot-based models can achieve competitive performance
to event-based model such as TGN and GraphMixer while being an order of magnitude faster in
inference time. Thus, an important future direction is to combine the strength of both types of
methods to achieve high performing and scalable temporal graph learning methods.

9

UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs

Acknowledgements
This research was supported by the Canadian Institute for Advanced Research (CIFAR AI chair
program), Natural Sciences and Engineering Research Council of Canada (NSERC) Postgraduate
Scholarship Doctoral (PGS D) Award and Fonds de recherche du Québec - Nature et Technologies
(FRQNT) Doctoral Award.

References
[1] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional

networks. In International Conference on Learning Representations, 2016. 1, 3, 7, 8, 13, 14

[2] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. 1

[3] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in
neural information processing systems, 34:28877–28888, 2021. 1

[4] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in
Neural Information Processing Systems, 35:14501–14515, 2022. 1

[5] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118–22133, 2020. 1

[6] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018. 1

[7] Kiarash Shamsi, Friedhelm Victor, Murat Kantarcioglu, Yulia Gel, and Cuneyt G Akcora.
Chartalist: Labeled graph datasets for utxo and account-based blockchains. Advances in Neural
Information Processing Systems, 35:34926–34939, 2022. 1

[8] Amirhossein Nadiri and Frank W Takes. A large-scale temporal analysis of user lifespan
durability on the reddit social media platform. In Companion Proceedings of the Web Conference
2022, pages 677–685, 2022. 1

[9] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory
in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pages 1269–1278, 2019. 1, 3

[10] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth,
and Pascal Poupart. Representation learning for dynamic graphs: A survey. Journal of Machine
Learning Research, 21(70):1–73, 2020. 1, 2, 3

[11] Antonio Longa, Veronica Lachi, Gabriele Santin, Monica Bianchini, Bruno Lepri, Pietro Lio,
Andrea Passerini, et al. Graph neural networks for temporal graphs: State of the art, open
challenges, and opportunities. Transactions on Machine Learning Research, 2023. 2

[12] Menglin Yang, Min Zhou, Marcus Kalander, Zengfeng Huang, and Irwin King. Discrete-
time temporal network embedding via implicit hierarchical learning in hyperbolic space. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pages 1975–1985, 2021. 2, 3, 6, 7, 8, 13, 14

[13] Jinyin Chen, Xueke Wang, and Xuanheng Xu. Gc-lstm: Graph convolution embedded lstm for
dynamic network link prediction. Applied Intelligence, pages 1–16, 2022. 3, 7, 8, 13, 14

[14] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kaneza-
shi, Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional
networks for dynamic graphs. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pages 5363–5370, 2020. 2, 3, 6, 7, 8, 13, 14

[15] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and
Michael Bronstein. Temporal graph networks for deep learning on dynamic graphs. arXiv
preprint arXiv:2006.10637, 2020. 2, 3, 5, 6, 7, 8, 13, 14, 15, 16

10

UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs

[16] Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better
evaluation for dynamic link prediction. Advances in Neural Information Processing Systems,
35:32928–32941, 2022. 3, 7, 8, 13, 14, 16

[17] Yuhong Luo and Pan Li. Neighborhood-aware scalable temporal network representation learning.
In Learning on Graphs Conference, pages 1–1. PMLR, 2022. 2, 3, 5, 6, 7, 8, 9, 13, 14, 15, 16

[18] Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: graph learning framework for dynamic
graphs. In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data
mining, pages 2358–2366, 2022. 2, 3, 6, 7, 8, 13

[19] Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele
Rossi, Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Tempo-
ral graph benchmark for machine learning on temporal graphs. Advances in Neural Information
Processing Systems, 2023. 2, 3, 5, 7

[20] Petter Holme. Modern temporal network theory: a colloquium. The European Physical Journal
B, 88:1–30, 2015. 2

[21] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997. 3

[22] Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexander Riedel,
Maria Astefanoaei, Oliver Kiss, Ferenc Beres, Guzman Lopez, Nicolas Collignon, et al. Py-
torch geometric temporal: Spatiotemporal signal processing with neural machine learning
models. In Proceedings of the 30th ACM international conference on information & knowledge
management, pages 4564–4573, 2021. 3, 15

[23] Yifan Zhu, Fangpeng Cong, Dan Zhang, Wenwen Gong, Qika Lin, Wenzheng Feng, Yuxiao
Dong, and Jie Tang. Wingnn: Dynamic graph neural networks with random gradient aggregation
window. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 3650–3662, 2023. 3

[24] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In International conference on learning representations,
2019. 3

[25] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive
representation learning on temporal graphs. arXiv preprint arXiv:2002.07962, 2020. 3, 7, 16

[26] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
learning in temporal networks via causal anonymous walks. In International Conference on
Learning Representations. 3, 6, 13, 15

[27] Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song,
Jingren Zhou, and Hongxia Yang. Tcl: Transformer-based dynamic graph modelling via
contrastive learning. arXiv preprint arXiv:2105.07944, 2021. 3

[28] Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning: New
architecture and unified library. Advances in Neural Information Processing Systems, 36:
67686–67700, 2023. 3, 5, 6, 7, 8, 9, 13, 14, 16

[29] Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: a survey. In Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, pages 6778–6786, 2023. 3

[30] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representations, 2020. 3

[31] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020. 3

[32] Ingo Scholtes. When is a network a network? multi-order graphical model selection in pathways
and temporal networks. In Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 1037–1046, 2017. 3

11

UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs

[33] Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexander Riedel,
Maria Astefanoaei, Oliver Kiss, Ferenc Beres, Guzman Lopez, Nicolas Collignon, and Rik
Sarkar. PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine
Learning Models. In Proceedings of the 30th ACM International Conference on Information
and Knowledge Management, page 4564–4573, 2021. 6

[34] Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE, 78(10):1550–1560, 1990. 7

[35] Yoshua Bengio, Paolo Frasconi, and Patrice Simard. The problem of learning long-term
dependencies in recurrent networks. In IEEE international conference on neural networks,
pages 1183–1188. IEEE, 1993. 7

[36] R Pascanu. On the difficulty of training recurrent neural networks. arXiv preprint
arXiv:1211.5063, 2013. 7

[37] Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and
Mehrdad Mahdavi. Do we really need complicated model architectures for temporal networks?
In The Eleventh International Conference on Learning Representations, 2022. 7, 8, 13, 14

[38] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in
neural information processing systems, 31, 2018. 9

[39] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of
using graph neural networks for multi-node representation learning, 2020. 9

[40] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019. 15

[41] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive repre-
sentation learning on temporal graphs. In International Conference on Learning Representations,
2020. 15

[42] Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song,
Jingren Zhou, and Hongxia Yang. Tcl: Transformer-based dynamic graph modelling via
contrastive learning. arXiv preprint arXiv:2105.07944, 2021. 15

12

UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs

A Computational Time

Table 5: Test inference time comparison for snapshot and event based methods on DTDG datasets,
we report the average result from 5 runs. Top three models are coloured by First, Second, Third.

Method UCI Enron Contacts Social Evo. MOOC

ev
en

t

TGN [15] 1.07 1.71 137.57 24.04 50.04
DyGFormer [28] 155.58 57.72 15423.99 349.22 OOM
NAT [17] 3.82 8.39 596.22 148.43 299.00
GraphMixer [37] 32.88 13.85 3542.88 132.39 OOM
EdgeBank∞ [16] 0.52 0.24 45.33 2.07 5.17
EdgeBanktw [16] 0.52 0.25 50.77 2.45 6.12

sn
ap

sh
ot HTGN (UTG) [12] 0.61 0.87 76.64 14.59 28.64

GCLSTM (UTG) [13] 0.35 0.46 40.83 9.27 19.78
EGCNo (UTG) [14] 0.43 0.45 40.62 7.35 15.49
GCN (UTG) [1] 0.50 0.31 56.88 6.40 13.30

Table 5 shows the inference time for all methods on DTDG datasets. Table 6 shows the inference
time for all methods on CTDG datasets. OOM means out of memory and OOT means out of time.
We observe that snapshot-based models are at least one order of magnitude faster than event-based
models such as NAT, DyGFormer and GraphMixer. In addition, the best performing model on most
datasets, DyGFormer, is also consistently the slowest method.

B Evaluation Settings

Figure 4: Different setting for evaluation of future link prediction include between deployed,
streaming and live-update setting. UTG framework is designed for the streaming setting.

Deployed setting The deployed setting is often used as the evaluation setting for snapshot-based
methods [12, 14]. In this setting, no information from the test set is passed to the model, and the node
embeddings from the last training snapshot are used for predictions in all test snapshots.

Streaming setting event-based models often evaluate with the streaming setting [15, 17, 26, 28]. In
this setting, information from the previously observed batches of events can be used to update the
model however no information from the test set can be used to train the model.

Live-update Setting You et al. [18] proposed the live-update setting where the model weights are
constantly updated to newly observed snapshots while predicting the next snapshot. To predict links

13

UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs

Table 6: Test inference time comparison for snapshot and event based methods on CTDG datasets,
results reported from 5 runs. Top three models are coloured by First, Second, Third.

Method tgbl-wiki tgbl-review Reddit

ev
en

t

TGN [15] 39.24 1137.69 286.79
DyGFormer [28] 7196.52 26477.51 OOT
NAT [17] 340.51 8925.21 1159.19
GraphMixer [37] 1655.44 4167.63 7166.24
EdgeBank∞ [16] 20.06 140.25 26.91
EdgeBanktw [16] 20.67 143.49 27.08

sn
ap

sh
ot HTGN (UTG) [12] 28.96 718.17 117.05

GCLSTM (UTG) [13] 20.54 436.30 82.88
EGCNo (UTG) [14] 20.15 433.23 84.85
GCN (UTG) [1] 18.25 384.51 78.78

in Gt+1, first the observed snapshot Gt−1 are split into a training set and a validation set. The model
is trained on Gtrain

t−1 while using Gval
t−1 for early stopping. Lastly, the trained model receives Gt and

predicts for Gt+1.

Figure 4 illustrates the difference between these three settings. In this work, we focus on the streaming
setting as it closely resembles the common use case where even after a model is trained, it is expected
to incorporate new information from the data stream for accurate predictions.

C Temporal Graph Learning Methods
C.1 Snapshot-based Methods

snapshot-based methods receives a sequence of graph snapshots as input, representing the temporal
graph at specific time intervals (hours, days, etc.). Therefore, DTDG methods are designed to process
entire snapshot at once (often with a graph learning model) and then utilize mechanisms to learn
temporal dependencies between snapshots. Example methods are as follows:

• HTGN. Many DTDG methods focus on learning structural and temporal dependencies in an Eu-
clidean space thus omitting the complex and hierarchical properties which arises in real world net-
works. To address this, Yang et al. [12] proposed a Hyperbolic Temporal Graph Network (HTGN)
which utilizes the exponential capacity and hierarchical awareness of hyperbolic geometric. More
specifically, HTGN incorporates hyperbolic graph neural network and hyperbolic gated recurrent
neural network to capture the structural and temporal dependencies of a temporal graph, implicitly
preserving hierarchical information. In addition, the hyperbolic temporal contextual self-attention
module is used to attend to historical states while the hyberbolic temporal consistency module
ensures model stability and generalization.

• GCLSTM. To learn over a sequences of graph snapshots, Chen et al. [13] proposed a novel end-to-
end ML model named Graph Convolution Network embedded Long Short-Term Memory (GC-
LSTM) for the dynamic link prediction task. In this work, the LSTM act as the main framework to
learn temporal dependencies between all snapshots if a temporal graph while GCN is applied on
each snapshot to capture the structural dependencies between nodes. Two GCNs are used to learn
the hidden state and the cell state for the LSTM and the decoder is a MLP mapping the feature at
the current time back to the graph space. The design of GC-LSTM allows it to handle both link
additions and link removals.

• EGCN. Existing approaches often require the knowledge of a node during the entire time span of a
temporal graph while real world networks often changes its node set. To address this challenge,
Pareja et al. [14] proposed the EvolveGCN (EGCN) model which captures the dynamic of the
graph sequence by using an RNN to update the weight of a GCN. In this way, The RNN regulates
the GCN model parameter directly and effectively performing model adaptation. This allows node
changes because the learning is performed on the model itself, rather than specific sequence of
node embeddings. Note that the GCN parameters are not trained and only computed from the RNN.

14

UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs

Empirically, the model achieves good performance for link prediction, edge classification and node
classification on DTDGs.

• PyG-Temporal. PyTorch Geometric Temporal (PyG-Temporal) is an open-source Python library
which combines state-of-the-art methods for neural spatiotemporal signal processing [22]. Many
existing methods such as EGCN, GCLSTM and more are implemented directly in PyG-Temporal
for research. PyG-Temporal is designed with a simple and consistent API following existing
geometric deep learning library such as Pytorch Geometric [40]. Originally, PyG-Temporal are
designed for node level regression tasks on datasets available exclusively within the framework.
In this work, we apply PyG-Temporal models for the link prediction tasks on publicly available
datasets.

C.2 Event-based Methods

Continuous Time Dynamic Graph (CTDG) methods receive a continuous stream of edges as input
and make predictions over any possible timestamps. CTDG methods incorporate newly observed
information into its predictions by updating its internal representation of the world. For efficiency,
the stream of edges are divided into fixed size batches while predictions are made for each batch
sequentially. To incorporate the latest information, edges from each batch becomes available to
the model once the predictions are made. Different from DTDG, CTDG has no inherent notion of
graph snapshots, models often track internal representations of a node over time and sample temporal
neighborhoods surrounding the node of interest for prediction.

• TGAT. Xu et al. [41] argued that models for temporal graphs should be able to quickly generate
embeddings in an inductive fashion when new nodes are encountered. The key component of the
proposed Temporal Graph Attention (TGAT) layer is to combine the self-attention mechanism
with a novel functional time encoding technique derived from Bochner’s theorem from classical
harmonic analysis. In this way, a TGAT layer can efficiently learn from temporal neighborhood
features as well as temporal dependencies. The functional time encoding provides a continuous
functional mapping from the time domain to a vector space. The hidden vector of time then replaces
positional encoding used in the self-attention mechanism.

• TGN. Rossi et al.. [15] introduce Temporal Graph Network (TGN), a versatile and efficient
framework for dynamic graphs, represented as stream of timestamped events. TGN leverage a
combination of memory modules and graph-based operators to improve computational efficiency.
Essentially, TGN is a framework that subsumes several previous models as specific instances.
When making predictions for a new batch, TGN first update the memory with messages coming
from previous batches to allow the model to incorporate novel information from observed batches.

• CAWN. Causal Anonymous Walks (CAWs) [26] are proposed for representing temporal networks
inductively to learn the laws governing the link evolution on networks such as the triadic closure
law. CAWs, derived from temporal random walks, act as automatic retrievals of temporal network
motifs, avoiding the need for their manual selection and counting. An anonymization strategy
was also proposed to replace node identities with hitting counts from sampled walks, maintaining
inductiveness and motif correlation. CAWN is a neural network model proposed to encode CAWs,
paired with a CAW sampling strategy that ensures constant memory and time costs for online
training and inference.

• TCL. TCL [42] effectively learns dynamic node representations by capturing both temporal and
topological information. It features three main components: a graph-topology-aware transformer
adapted from the vanilla Transformer, a two-stream encoder that independently extracts temporal
neighborhood representations of interacting nodes and models their interdependencies using a
co-attentional transformer, and an optimization strategy inspired by contrastive learning. This
strategy maximizes mutual information between predictive representations of future interaction
nodes, enhancing robustness to noise.

• NAT. In modeling temporal networks, the neighborhood of nodes provides essential structural
information for interaction prediction. It is often challenging to extract this information efficiently.
Luo et al. [17] propose the Neighborhood-Aware Temporal (NAT) network model that introduces a
dictionary-type neighborhood representation for each node. NAT records a down-sampled set of
neighboring nodes as keys, enabling fast construction of structural features for joint neighborhoods.
A specialized data structure called N-cache is designed to facilitate parallel access and updates on
GPUs.

15

UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs

• EdgeBank. EdgeBank [16] is a non-learnable heuristic baseline which simply memorizes previ-
ously observed edges. The surprisingly strong performance of EdgeBank in existing evaluation
inspired the authors to also propose novel, more challenging and realistic evaluation protocals for
dynamic link prediction.

• DyGFormer DyGFormer. Yu et al. [28] introduces a transformer-based architecture for dynamic
graph learning. DyGFormer focuses on learning from nodes historical first-hop interactions and
employs a neighbor co-occurrence encoding scheme to capture correlations between source and
destination nodes through their historical sequences. A patching technique was also proposed
to divide each sequence into patches for the transformer, enabling effective utilization of longer
histories. DyGLib was also presented as a library for standardizing training pipelines, extensible
coding interfaces, and thorough evaluation protocols to ensure reproducible dynamic graph learning
research.

D Computing Resources
For our experiments, we utilized one of the following GPUs. The first option was NVIDIA A100
GPUs (40GB memory) paired with 4 CPU nodes. These nodes featured CPUs such as the AMD
Rome 7532 @ 2.40 GHz with 256MB cache L3, AMD Rome 7502 @2.50 GHz with 128MB cache
L3, or AMD Milan 7413 @ 2.65 GHz with 128MB cache L3, each equipped with 100GB memory.
The second option was using NVIDIA V100SXM2 GPUs (16GB memory) alongside 4 CPU nodes,
which housed Intel Gold 6148 Skylake CPUs @ 2.4 GHz, each with 100GB memory. Our last choice
was to run experiments using NVIDIA P100 Pascal GPUs (12GB HBM2 memory) with 4 CPU nodes
from Intel E5-2683 v4 Broadwell @ 2.1GHz with 100GB memory. Each experiment had a five-day
time limit and was repeated five times, with results reported as averages and standard deviations.
Notably, aside from methods adopted from the PyTorch Geometric library, several other models
(assessed using their original source code or the DyGLib repository) encountered out-of-memory or
out-of-time errors when applied to larger datasets.

E Model Configurations
For all methods and datasets, we employed the Adam optimizer with a two different learning rates
namely 0.001 and 0.0002, and the configuration with the higher average performance was selected
for reporting the results. Each experiment was repeated five times and the average and standard
deviations were reported.

The train, validation, and test splits for tgbl-wiki and tgbl-review are provided by the TGB
benchmark. For other datasets (namely, UCI, Enron, Contacts, Social Evo., MOOC, and Reddit),
we used a chronological split of the data with 70%, 15%, and 15% for the training, validation, and
test set, respectively, which is inline with previous studies [15–17, 25]. We set the batch size equal
to 64 for NAT, and for all other models (i.e., TGN, DyGFormer, GraphMixer, EdgeBank, HTGN,
GCLSTM, EGCNo, and GCN) the batch size was 200. For the experiments on CTDGs, we set the
number of epoch equal to 40 and implemented an early stopping approach with a patience of 20
epochs and tolerance of 10−5. For the experiments on DTDGs, the number of epochs was set to
200 with a similar early stopping approach. Dropout was set to 0.1. We set the number of attention
heads equal to 2 for the models with an attention module, and node embedding size was fixed at 100.
For TGN, the time embedding size was 100 and the memory dimension was specified as 172, with
a message dimension of 100. For NAT, we set the bias=1e-5, and replacement probability=0.7.
All other parameters were set according to the suggested values by Luo and Li [17]. The special
hyperparameters of the DyGFormer and GraphMixer are set according to the recommendations
presented by Yu et al. [28].

16

https://github.com/yule-BUAA/DyGLib

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 UTG Framework
	4.1 UTG Input Mapper
	4.2 UTG Output Mapper
	4.3 Streaming Evaluation
	4.4 UTG Training for Snapshot-based Models

	5 Experiments
	6 Conclusion
	A Computational Time
	B Evaluation Settings
	C Temporal Graph Learning Methods
	C.1 Snapshot-based Methods
	C.2 Event-based Methods

	D Computing Resources
	E Model Configurations

