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Abstract
Tokamaks are the leading candidates to achieve nu-1

clear fusion as a sustainable source of energy, and2

plasma control plays a crucial role in their opera-3

tions. However, the complex behavior of plasma4

dynamics makes control of these devices challeng-5

ing through traditional methods. Recent works6

proved the usefulness of reinforcement learning7

as an efficient alternative, in order to fulfill these8

high-dimensional and non-linear situations. De-9

spite their performance, controlling relevant plasma10

configurations requires expensive and long training11

sessions on simulations. In this work, we leverage12

the use of a curriculum strategy to achieve signifi-13

cant speed-up in learning a controller for the con-14

trol coils, which tracks plasma quantities such as15

shape, position and current. To this end, we devel-16

oped a fast, asynchronous and reliable framework17

to enable interactions between a distributed actor-18

critic and a C++ code simulating the WEST toka-19

mak. By sequentially increasing task complexity,20

results show a clear reduction in convergence time21

and training cost. This work is one of the first at-22

tempts to enable fast production of robust magnetic23

controllers, for routine use in the operations of a24

magnetically confined fusion device.25

1 Introduction26

Mastering nuclear fusion could significantly impact the27

world, unlocking the path towards sustainable and attrac-28

tive means of energy production. With no direct high-level29

byproducts of the reaction, it has many advantages over con-30

ventional energy sources [Ariola and Pironti, 2008]. To har-31

ness this potential alternative, tokamaks are promising de-32

vices to maintain the stability and performance of plasma’s33

confinement, despite numerous physical and control chal-34

lenges [Meade, 2009].35

Tokamaks are torus-shaped devices which aim at sustain-36

ing fusion reactions within a plasma under specific temper-37

ature and density conditions [Wesson, 2004]. They rely on38

magnetic fields generated by both toroidal and poloidal field39

coils (PFC) to shape it. Interactions occur at different levels40

with complex dynamics involved between the plasma and its41

surroundings. Control systems are then required to adjust the 42

voltages applied to the PFCs (Figure 2), allowing control of 43

quantities intrinsically linked to plasma’s evolution, like po- 44

sition of the magnetic center m, Last Closed Flux Surface 45

(LCFS), elongation κ and current Ip (Figure 1). To study 46

the effects of various plasma configurations, scientists rely 47

on real-time linear controllers [Nouailletas and et al., 2023], 48

which require substantial engineering effort whenever target 49

scenarios undergo variations. Hence, there is a essential need 50

for flexibility, adaptability and robustness of magnetic control 51

systems through the entirety of the device lifetime, without 52

which no sustained plasma could be produced. 53

Figure 1: Control quantities of interest with toroidal (red) and
poloidal (strided gold) sections.

Reinforcement Learning (RL) [Sutton and Barto, 2018] 54

emerged as an innovative approach to numerous real-time 55

control problems. Despite impressive results in a variety 56

of domains [Han et al., 2023; Brohan and et al., 2023; 57

Kiran and et al., 2022], it usually relies on either fast and 58

precise simulation enabling the collection of vast amount of 59

experiences, or on direct sampling from a physical device. 60

Both cases can not be fulfilled in our context: sampling of ex- 61

perimental data on the plant for the sole purpose of training is 62

impractical, and simulations remain expensive in order to ac- 63



count for the coupled behavior of plasma dynamics. Despite64

the existence of distributed architectures as powerful tools to65

compensate for these bottlenecks, training still remains long66

and costly as the number of parallel environments increases.67

In this work, we study the effects of a curriculum strategy68

on learning a magnetic controller through a distributed rein-69

forcement learning framework. By improving training speed70

and performance, we intend to accelerate the production71

of robust magnetic controllers for the operation of WEST,72

a supraconductive tokamak located at CEA Cadarache1 in73

Saint-Paul-lez-Durance, France [Bourdelle and et al., 2015;74

Bucalossi and et al., 2022]. Indeed, such methodology could75

assist plasma researchers in quickly obtaining controllers, or76

adapt existing ones, for each new experimental campaign,77

hence improving flexibility and adaptability of RL-based78

magnetic control.79

Next sections will be organized as follows. First, we will80

give an overview of the related work regarding RL for toka-81

maks, and curriculum strategies in RL. We will then describe82

the curriculum methodology within plasma magnetic control,83

and the overall training framework. Finally, experiments are84

discussed through validation and analysis of the learned pol-85

icy. The latter will be compared to a baseline agent obtained86

without the strategies of interest. Finally, we will conclude87

on this study and its perspectives.88

Figure 2: Cross-section with surrounding control coils, namely
poloidal field coils.

2 Background89

2.1 Reinforcement learning for tokamaks90

A classical RL framework sets an agent which interacts91

with an environment formalized as a Markov Decision Pro-92

cess (MDP) denoted M. This MDP is defined by a state93

space S , an action space A, its state transition distribution94

P (s′|s, a) : S × A × S → [0, 1], an initial state distribution95

P 0(s) : S → [0, 1], and a reward signal R(s, a) : S×A → R.96

Starting from state s0 ∼ P 0(.), the agent must learn an97

optimal policy π∗ : S × A → [0, 1], which maximizes the98
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discounted cumulative reward, or return, over the course of 99

an episode, i.e a trajectory over states and actions from the 100

interactions with the environment: 101

π∗ = argmax
πθ

E(s0,a0,...,st,at)[

∞∑
k=0

γkrt+k] (1)

with discount factor γ ∈ [0, 1] working as a penalization 102

term for long-term rewards, and rt = R(s, a) = E[rt+1|st = 103

s, at = a]. Most importantly, the reward function is a scalar 104

feedback signal which indicates how well the agent performs 105

with respect to the overall objectives, hence the importance 106

of its design. The feedback loop between the agent and the 107

environment ends once a terminal condition is reached, like 108

a situation that we want to avoid, or a threshold on simulated 109

time. As a side note, the policy can be deterministic, assign- 110

ing a probability of 1 to the same action for each observed 111

state. Moreover, it can be a parametrized function, like a neu- 112

ral network. In such cases, it is usually denoted by πθ, where 113

θ are the weights of the said model. 114

Fundamental definitions arise with the value function 115

Vπθ
(s) = Eπθ

[
∑∞

k=0 γ
krt+k|st = s], and the action-value 116

function Qπθ
(s, a) = Eπθ

[
∑∞

k=0 γ
krt+k|st = s, at = a]. 117

It is worth mentioning that relying on the first is difficult 118

in real-world applications such as fusion, since they do not 119

exhibit proper knowledge of the probability transition func- 120

tion P . Because of that, making actions explicit is an in- 121

teresting way of computing the expected return, as state- 122

action pairs can be easily sampled throughout learning. Over 123

the past years, the use of neural networks (NN) as power- 124

ful action-value and policy approximators lead to major ad- 125

vancements in continuous control problems. Deep RL algo- 126

rithms such as ones from the actor-critic family kept increas- 127

ing in efficiency, leading to precise control in several high- 128

dimensional and non-linear control problems [Grondman et 129

al., 2012], both in on-policy [Schulman and et al., 2015; 130

Schulman and et al., 2017; Mnih and et al., 2016] and off- 131

policy settings [Haarnoja et al., 2018; Fujimoto et al., 2018; 132

Lillicrap and et al., 2015]. 133

Consequently, deep reinforcement learning is becoming in- 134

creasingly popular among the plasma control community. For 135

example, RL has been used for model-based control [Char 136

and et al., 2023], for vertical stabilization [Dubbioso et al., 137

2023; De Tommasi et al., 2022], to build feedforward tra- 138

jectories of plasma parameters [Seo and et al., 2021], for 139

temperature and profile control [Wakatsuki and et al., 2019; 140

Wakatsuki et al., 2021], or even for tearing instability control 141

and disruption avoidance [Seo et al., 2024]. Recent works 142

[Degrave and et al., 2022] designed a RL-based system which 143

achieved magnetic control of the Tokamak à Configuration 144

Variable (TCV), in Lausanne, Switzerland. The learned con- 145

troller demonstrates the capability for RL-based systems to 146

tackle various complex plasma configurations while tracking 147

many quantities of interest at the same time. A similar proce- 148

dure was proposed by [Kerboua-Benlarbi et al., 2024], with 149

the same limitations of the initial proposal, while refining the 150

simulation on which magnetic controllers were trained. 151

These examples highlight a shift of focus from classical 152

controllers, designed using prior knowledge on how control 153



should be performed with respect to physical properties of the154

dynamical system, to controllers learning by trial-and-error155

to act on the system based on what should be achieved in156

terms of final objectives. In summary, deep RL advantages157

over classical tokamak control stem from its ability to: ful-158

fil these high dimensional, uncertain and non-linear systems;159

explore possible strategies in order to make the control policy160

more flexible in contrast with the fixed heuristics of classical161

control; learn from raw magnetic signals using neural net-162

works, since plasma quantities can not be measured directly,163

and are instead usually inferred in real-time from reconstruc-164

tion codes [Faugeras, 2020; Carpanese, 2021] for use by clas-165

sical controllers.166

2.2 Curriculum learning for reinforcement167

learning168

Curriculum learning (CL) [Bengio et al., 2009] is a method-169

ology to optimize the order in which experiences are pro-170

cessed by an agent over the course of training. From the171

early stages of human development to adulthood, learning is172

structured and organized sequentially, so that the knowledge173

acquired over time facilitates the understanding of new no-174

tions or tasks that occur later to us. Therefore, a sequence175

of increasingly difficult tasks implicitly builds a curriculum,176

as knowledge is transferred from one intermediate objective177

to the other. Scheduling and designing such strategy helps in178

acquiring transferable skills to guide exploration during train-179

ing, with the premise of increasing performance and reduce180

convergence time towards a final set of tasks.181

Recent works classified the taxonomy of existing methods182

[Soviany et al., 2022] as well a mathematical framework for183

curriculum learning in reinforcement learning domains using184

graphs [Narvekar et al., 2020]. In most cases, we consider185

different MDPs between each task and three main concepts186

arise with which CL methods can be classified: the interme-187

diate task generation, the partial ordering on the obtained set188

of tasks and how knowledge could be shared between its ele-189

ments. Considering the importance of human intuition to de-190

fine simple tasks [Bengio et al., 2009], domain experts could191

efficiently make a distinction between objectives that are nei-192

ther ”too easy” or ”too hard”. Indeed, task generation and se-193

quencing of the latter could be handcrafted from human op-194

erators [MacAlpine and Stone, 2018; Stanley et al., 2005],195

but both concepts could be built up automatically as part196

of the curriculum learning procedure [Graves et al., 2017;197

Wu and Tian, 2017; Ivanovic and et al., 2019]. Transfer learn-198

ing methods are required to share knowledge representation199

at each step of the curriculum, and concern several elements200

of the training loop, such as entire policies and value func-201

tions, rewards, etc [Zhu et al., 2023]. Care must be taken202

while choosing the right combinations of methods, to avoid203

negative transfer which could harm controllers performance204

[Wołczyk et al., 2022].205

3 Approach206

3.1 Motivation207

RL is still an emerging field within plasma magnetic con-208

trol, and few applications are observable. It can take sev-209

eral days of training for efficiency on relative simple plasma 210

scenarios [Degrave and et al., 2022; Kerboua-Benlarbi et al., 211

2024]. Nevertheless, the routine operation of a tokamak re- 212

quires flexibility over the design of controllers. Minimum 213

engineering efforts should be targeted to adapt and fine-tune 214

the controllers with respect to the objectives of each new ex- 215

perimental campaign. 216

For this reason, this study aims at assessing the effects of 217

CL in the context of fusion, where poor reward signal and 218

state representation at the beginning of learning, can desta- 219

bilize the whole training process. We do not specifically in- 220

tend to reach a new general performance threshold, but look 221

for increased performance at start of each new task, special- 222

izing exploration as training evolves towards its final goal. 223

Considering the cost of data sampling using WEST simula- 224

tions, yet in the real world, curriculum learning could be of 225

great help to stabilize the entire procedure, and reduce con- 226

vergence time by several orders of magnitude. Furthermore, 227

each new experimental campaign on WEST requires the def- 228

inition of multiple control scenarios. The latter might have 229

shared plasma states, and overall control objectives. This 230

means that the same events can be used within different sce- 231

narios, especially while choosing initial conditions or termi- 232

nal ones. Since a scenario is a sequence of events, their or- 233

dering already defines a curriculum in an implicit manner, 234

as plasma equilibriums must follow each other in a realistic 235

and feasible way. Moreover, one could go further by explic- 236

itly building a curriculum on the reward function, considering 237

a sequence on its definition, i.e directly on the explicit con- 238

trol objective which might be similar between scenarios. A 239

simple reward on the shape for example could be used as a 240

starter, latter including the elongation, etc. Both ideas lead to 241

the same conclusion regarding CL in fusion: 242

• curriculum generation and ordering could describe tasks 243

as events, or intermediate reward definitions; 244

• the two approaches shows that a curriculum working for 245

one plasma scenario, could be intuitively generalizable 246

with little effort on similar ones, enhancing production 247

of controllers for several cases during experimental cam- 248

paigns. 249

It is worth noticing that [Tracey et al., 2023] addressed the 250

initial drawbacks of the method described by [Degrave and 251

et al., 2022], i.e. training speed and steady-state performance 252

of the controller. Their approach resembles curriculum learn- 253

ing by borrowing its codes. Researchers partitions a target 254

scenario in smaller chunks, each related to one part of the 255

general task. Distributed environments are then divided into 256

subsests of different cardinalities, each linked to one of the 257

said chunks. Experiences are accumulated from MDPs that 258

differs implicitly in their underlying dynamics. Sampled ex- 259

periences are more diverse, and mix multiple levels of diffi- 260

culty inside the same training procedure. This procedure al- 261

ready reduced training time by a factor of 4. However, despite 262

different initial state distributions, the overall task remain the 263

same between chunks, and no proper curriculum is defined, 264

i.e no knowledge transfer is present and task ordering is not 265

specifically mentioned. 266



3.2 Curriculum definition267

Formalism Let τ be a set of tasks with mi :268

(S,A, Pi, Ri) ∈ τ , all sharing the same state and action269

space. Moreover, we denote Dτ , the set of all transitions270

belonging to τ , so that Dτ = {(s, a, r, s′) | ∃mi ∈ τ, s ∈271

S, a ∈ A, s′ ∼ Pi(.|s, a), r = Ri(s, a)}. A curriculum C can272

then be defined as a direct acyclic graph (V , ε, H , τ), with V273

vertices, ε edges, H : V → P(Dτ ), connecting v ∈ V to a274

subset of samples of Dτ . An edge < vj , vk > of C links two275

tasks, using all samples associated by H to vj before transfer-276

ring to vk. For each mi ∈ τ , we have Dτ
i = {(s, a, r, s′) | s ∈277

Si = S, a ∈ Ai = A, s′ ∼ Pi(.|s, a), r = Ri(s, a)}. We278

need to associate all v ∈ V with corresponding mi and Dτ
i ,279

meaning that each path on the graph directly influences how280

H : V → {Dτ
i |mi ∈ τ} filter knowledge transfer between281

tasks, with edges built on properties of the samples associ-282

ated with successive nodes. Indeed, tasks must be ordered283

properly so that π∗
i is useful for acquiring good samples at284

each transition to the current vertex. In our case, a task is as-285

sociated with only one vertex, and each intermediate vertex286

sinks in only one node until the final one is reached, .i.e the287

final task [Narvekar et al., 2020]. This defines an oriented288

sequence of tasks, similar to what was previously stated in289

terms of curriculum learning.290
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Figure 3: Schematic view of the scenario of interest. It starts from a
limiter configuration, and ends up by stabilizing an elongated plasma
in an x-point configuration.

Tasks In this work, we consider only one of the two pos-291

sibilities mentioned earlier. Indeed, tasks are defined on292

the reward function, and only one scenario is considered for293

learning a controller. We focus on transitioning from a ”cir-294

cular” shaped plasma in limiter configuration, to an elon-295

gated plasma in X-point configuration, i.e κ > 1 (Figure 3).296

Elongated configurations have improved thermal confinement297

properties compared to limiter plasmas, at the cost of devel-298

oping growing vertical instabilities which make control more299

difficult. Once formed, the Last Closed Flux Surface (LCFS)300

defines the plasma boundary and the X-point appears at its301

intersection. The chosen curriculum is entirely conditioned302

by a set of predefined rewards Ri. This means that while it303

could have been defined automatically, the uncertainty around304

tokamak dynamics makes the choice for a handcrafted se-305

quence of tasks quite straightforward for this first application.306

Prior control experience on the device informs on which tasks 307

could be considered easier than others. This work then relies 308

on human experts for both determining τ , as well as the re- 309

sulting sequence order based on V and ε. More precisely, the 310

curriculum has been built from physical intuition around sev- 311

eral key control challenges studied for all tokamaks (Figure 312

4): 313

1. vertical stabilization of elongated plasmas while track- 314

ing plasma current is a well-known control problem. 315

Using classical feedback control, simple proportional- 316

integral-derivative (PID) controllers [Ang et al., 2005] 317

can stabilize plasma’s magnetic center (mr,mz), as well 318

as plasma current Ip. Their relative simplicity are not far 319

from a basic RL-based solution, as a naive agent can be 320

summarized as proportional-integral control which re- 321

duces errors between measurements and targets. The ini- 322

tial reward function then includes targets for the two el- 323

ements of interest. Hence, handling such classical prob- 324

lem is a good start in order to build strong foundations 325

for the next tasks; 326

2. tracking the entire plasma boundary becomes more chal- 327

lenging, as approaches from classical control often relies 328

on more advanced methods to synthesize efficient con- 329

trollers. Since the difficulty becomes more important, 330

we add the LCFS as well as the elongation to the initial 331

targets. This creates a way to guide the agent towards an 332

elongated shape, properly positioning it before the final 333

task; 334

3. finally, once the plasma is set up towards its X-point 335

configuration, we modify the reward to include tar- 336

gets on the X-point itself (distance, magnetic flux, etc). 337

This could be considered as a fine-tuning exploration, 338

since the agent must have already positioned the plasma 339

boundary according to the final configuration. Never- 340

theless, we must proceed with caution, in order to avoid 341

loosing accuracy on previous tasks through catastrophic 342

forgetting [Goodfellow et al., 2015]. 343

R1 : (rM , zM ), Ip R2 : R1, κ,LCFS R3 :
R2,X-point targets

Figure 4: Curriculum overview. We start from a simple vertical con-
trol stabilization problem with a free plasma current, to a complex
one involving shape and X point.

Transfer learning We transfer the policy and the action- 344

value function between tasks, as both of them are neural net- 345

works. The parameters of Qi learned during an interme- 346

diate task, serves as initialization for the parameters of the 347



next action-value function Qj , without any freezing proce-348

dure which could negatively impact transfer [Wołczyk et al.,349

2022]. Doing so bias the agent towards more efficient ex-350

ploration in the next domain. The policy’s weights are also351

used to initialize the parameters of the new one, again with-352

out any freezing procedure. One could have incrementally353

frozen layers between tasks in order to keep previous repre-354

sentations learned by the controller. However, we empirically355

observed that it is not necessary for the curriculum learning356

to work well in practice. Furthermore, it limits the amount357

of tasks present in the curriculum, as the number of layers is358

bounded. We further use potential-based advice reward shap-359

ing (PBARS) so that R′
j(s, a) = Ri(s, a)+F (s, a)+Rj(s, a)360

with F (s, a, s′, a′) = Qi(s
′, a′)−Qi(s, a). Ri retains knowl-361

edge from the source task and F encourages exploration from362

states that were valuable and overlap with the target j. They363

form the potential-based bonus with guarantees that it will not364

change the optimal policy [Harutyunyan et al., 2015],.365

Transfer metrics While final performance on the target366

task will be analyzed, our main objective is to observe how367

CL could produce RL-based magnetic controllers faster, for368

routine use on WEST. Metrics must be chosen accordingly in369

order to measure by how much it speeds up training, com-370

pared to the vanilla method where the agent learn directly on371

the final task. We will refer to this question with two tools:372

the jumpstart and the Time to threshold (TTT). The former373

measures the initial performance increase at the beginning of374

each new task either for a unique task, or as a result of trans-375

fer; the latter checks how much faster the agent learns the376

policy which achieves a threshold on the episode return, with377

or without curriculum. Each intermediate task is caped to a378

maximum duration of 60 episodes, mostly to stay in line with379

empirical observations regarding MPO’s warmup phase, i.e380

the phase during which NN do not undergo real variations.381

4 Experiments382

4.1 Setup383

The NICE code The environment is based on the NICE384

C++ code [Faugeras, 2020], which solves the Grad-385

Shafranov equation [Wesson, 2004] for the plasma domain,386

with resistive diffusion [Heumann, 2021] and transport equa-387

tion enabled. We use its forward evolution mode which com-388

putes the environment’s state at each timestep. Moreover,389

power supply and diagnostic models are implemented in or-390

der to account for bias, delays and offsets of actuators. Over-391

all, it gives an accurate representation of the plasma, as well392

as the WEST control system. NICE is safely initialized to393

a limiter shaped plasma extracted from recent experimental394

data, and whose internal profiles are randomized to promote395

diversity among examples. The relative error of the Newton396

solver is increased to accelerate execution without significant397

loose of accuracy in its outputs. Termination is triggered if398

thresholds are reached on active coils currents or safety fac-399

tor (proportional to the geometry of the plasma and its cur-400

rent), to avoid any damage on the device. Episodes typically401

last for 500ms, as it appeared enough for generalization on402

longer shots.403

State and Action spaces The environment’s state is de- 404

fined as s = {y, Ia,m} with y the plasma equilibrium in- 405

formation, Ia the currents in the active control coils, and 406

m the raw magnetic measurements. y typically contains 407

all quantities of interest described in the curriculum defini- 408

tion. It is usually difficult to observe the entirety of s in 409

real-time. To overcome this issue, the learned policy is re- 410

stricted to a Partially Observable MDP (POMDP) where the 411

state space is limited to the observation space O. As such, 412

we have o(s) = {tr,mb, f l, Ia,
dmb

dt }, with tr target refer- 413

ences, {mb, f l} magnetic probes and flux loops raw mea- 414

surements, and dmb

dt , temporal derivatives of magnetic probes 415

signals. Noise is injected in observations at each timestep 416

from Gaussian laws with parameters identified from WEST 417

plasma discharges database, as well as delays to model real 418

data acquisition from sensors. For actions, voltages are sam- 419

pled from Gaussian distributions which parameters are the 420

outputs of the control policy, and then supplied to each of 421

the 11 PFCs circumventing the device (Figure 1 - Naming 422

conventions stated in Figure 2). After exploring possible out- 423

comes during training, only the mean of each distribution is 424

kept at inference to predict optimal actions. Offsets, bias and 425

delays are part of the power supply model within NICE to 426

ensure correct handling of WEST actuators in the real world. 427

Component Good Bad α weight
LCFS [m] 0.005 0.1 -1 3.

Magnetic center [m] 0.002 0.03 x 1.
κ 0.005 0.03 x 1.

Ip [kA] 0.5 20 x 3.
X point distance [m] 0.01 0.15 x 2.

Flux at current x point 0. 1. x 2.
Flux at target x point 0. 0.08 x 2.

Flux gradient at target x point 0. 4. x 1.
Final combiner: Smoothmax(α = -0.5)

Table 1: Reward components description with dimensions. Scal-
ing to [0, 1] range is performed, before combination to a final scalar
value. Alpha is specified for each component if it has multiple tar-
gets. Flux setpoints are set to 1 since their measure is normalized ,
while flux gradient must tend towards zero.

Rewards Each reward Ri is a normalized weighted com- 428

bination of error signals, extended with PBARS. Each com- 429

ponent cji is computed as the difference Ej between its 430

target value and the one retrieved from the environment, 431

then scaled to [0, 1] with Softplus(Ej) := min(max(2 · 432

σ(−ξ(
Ej−good
bad−good )), 0), 1). They are then combined into a 433

final scalar within the same interval using the function 434

Smoothmax(α,Ri,W) :=
∑

j wjR
j
i e

αRj
i /

∑
j wje

αRj
i . If one 435

component is made out of several targets, an intermediate 436

combination using the latter is also performed. Good and 437

bad parameters in the Softplus formulation, scales the reward 438

signal according to regions of interest in the reward space. 439

Tight values in both parameters will lead to higher focus on 440

the component to achieve high reward. Smoother values will 441

help exploration at the cost of precise control. Weights in the 442

Smoothmax definition affects the importance of each reward 443



component, while the α defines focus balance between them.444

Specifically, we combine all 32 distances of the LCFS with445

w = 1 and α = −1. Reward undergo a final scaling, so446

that the maximum cumulative reward for 500 ms equals 50.447

For a description of each component’s weight and parameters,448

please refer to table 1.449

Agent In this work, a distributed Maximum à Posteriori450

Policy Optimization (MPO) [Abdolmaleki and et al., 2018a;451

Abdolmaleki and et al., 2018b] is used, which have shown452

strong empirical results on a wide range of control prob-453

lems, including fusion. It is part of a recent interpretation454

of RL as probabilistic inference [Levine, 2018]. Since our455

environment is computationally expensive, such paradigm is456

useful to enhance sample-efficiency and reach faster con-457

vergence compared to a variety of policy gradient methods,458

while avoiding the use of on-policy algorithm such as Proxi-459

mal Policy Optimization (PPO) [Schulman and et al., 2017].460

Our implementation is composed of 95 multi-layered percep-461

trons for the actors and a LSTM for the critic. Specifically,462

we use stochastic policies which predict a mean and a stan-463

dard deviation for each of the 11 control coils. Once training464

is completed, exploring possible outcomes is not needed any-465

more. As a consequence, only the mean of each distribution is466

kept at inference to predict optimal actions. Sequences were467

partitioned so that a burn-in phase would take place at each468

learner step, i.e. part of each input sequence sampled from469

the replay buffer is used to initialize the LSTM core [Kaptur-470

owski and et al., 2018]. Adam optimizer was used both in the471

critic and the actor networks. Specific hyperparameters cho-472

sen for NNs definition can be found in table 2, with others as473

well as initialization practices following [Kerboua-Benlarbi474

et al., 2024].475

Hyperparameter Chosen value
Batch size 256

Discount factor 0.99
Sequence length for critic 64

Burn-in length critic 10
πσ 0.5
ϵ 0.5
ϵµ 9.09e-5
ϵσ 9.09e-8

learning rate 3e-4
dual learning rate 1.5e-2

Table 2: Agent’s hyperparameters.

Training framework The interaction loop can be described476

as follows: a learner worker uses information gathered within477

a replay buffer to optimize policy and critic NNs; actor478

threads work independently from each other. Each thread479

spans a UDS protocol client-server interface with its own ran-480

dom seed, in which the policy interacts with an instance of481

NICE, sending data to the replay buffer asynchronously; each482

actor updates its control policy by copying weights periodi-483

cally from the learner. Evaluation is performed on a sepa-484

rate thread during training using only the mean of the current485

policy as stated before. This results in a fast and reliable,486

multi-language, multi-threaded and multi-GPU framework, 487

running numerous instances of the NICE environment in par- 488

allel to learn a control policy in Python (Figure 5). Policy 489

networks were all restricted to CPU, in order to lower sim- 490

ulation to reality gaps. Every aspect of the framework then 491

ensures that training can put the agent in realistic conditions 492

with regards to the machine’s usual operation. Experiments 493

are performed on a NVIDIA® Tesla™ V100S for the learner, 494

and Intel® Cascade Lake® 6248 at 2.50GHz for the C++ en- 495

vironments. As a side note, the framework is flexible enough 496

to allow fast update or addition of new control scenarios. 497

Figure 5: Framework’s overview.

4.2 Results 498

Training results are averaged over 3 different seeds of the 499

evaluator thread. The reward threshold for the TTT is set to 500

20, as control starts to perform well in such conditions. 501

Firstly, we know that an environment’s step within NICE 502

lasts for about 13 seconds on average during exploration, 503

since the plasma reaches locations of the vacuum chamber in 504

which convergence of the simulation is more difficult. This 505

means that in the complex case, where poor reward signals are 506

common, exploration is long and tedious, increasing comput- 507

ing time of an episode up to 2 hours. Based on this idea, the 508

monitored training time for the vanilla method easily reaches 509

the symbolic threshold of an entire week. Moreover, the re- 510

ward never exceeds 10 in average, even with training outside 511

the 60 episodes cap scope, which is way under our expecta- 512

tions regarding TTT (Figure 7 - upper). One could mention 513

the fact that we could have undergo further hyperparameters 514

search on the reward definition. However, we kept it general 515

enough to avoid overspecializing the method towards one sce- 516

nario, leaving more room for adaptation. On the other hand, 517



the CL procedure implicitly leads to reachable states that are518

easier at the beginning of the initial task. As a consequence,519

the duration of a simulation’s step in this case is shorter in520

average, and the simulation converges to an equilibrium in521

about 2 seconds. Next tasks follow on top of this idea, which522

leads to 10 seconds in average for what is remaining from the523

curriculum. This leads to episodes computed at worst in 1524

hour for complex tasks, which is already an interesting out-525

come. With that in mind, the reward threshold is reached in526

about 100 episodes, and the TTT is reduced to approximately527

60 hours. As a matter of fact, we observe a clear reduction528

in convergence time towards the reward threshold, sufficient529

to gain proper control of the plasma in the configuration of530

interest (Figure 6a). We stopped training before 60 episodes531

for the final task, since the return was stable above 20.532

If we look at the jumpstart using the total number of533

episodes, CL actually performs equally, if not worse, than534

the vanilla method for each curriculum steps (Figure 7 - up-535

per). A simple explanation comes from the fact that the536

added reward complexity inevitably drops the initial return.537

Another explanation could arise from so-called catastrophic538

forgetting. After those sudden drops, the agent fails its first539

attempt, especially on the last task, but ends up recovering.540

Recall that we are not stopping previous tasks based on per-541

formance, but rather constraining the entire training time to542

60 episodes. So, this situation is not entirely surprising, since543

no optimal behavior was guaranteed at the end of each in-544

termediate curriculum step. Moreover, MPO requires several545

initial exploratory episodes, in order for training to start con-546

cretely. This means that the overall method could also be547

analyzed without those warm-up interactions, restricting the548

figure to the last 20 meaningful episodes for example (Figure549

7 - lower). In this case, both metrics gives better results, as550

only improved behaviors are taken into account: the jump-551

start is significantly higher, despite the last drop for the last552

transition, and the time to threslhold is even lower. Actu-553

ally, drooping the warm-up interactions becomes even more554

meaningful if we extend transfer to the overall MPO’s inter-555

nal mechanism. A such, exploration would not be as strong as556

at MPO’s initilization, and fine-tuning would be predominant557

throughout the reward function.558

CL does clearly improve the average performance on the559

final task (Figure 6b), as it performs better than the vanilla560

policy (Figures 7 - both). It enhances magnetic control, show-561

ing that the method does not induce any training instabilities,562

apart from potential catastrophic forgetting.563

Method Jumpstart on the final task TTT
Vanilla 4.3 180h

CL -10.2 60h

(a) Transfer metrics.
Episode mean reward Error margin

Vanilla 5.2 ±3.65
CL 18.4 ±4.23

(b) Mean error for each component.

Figure 6: Analysis of the vanilla control policy against the CL
method.

Figure 7: Episodic return for both methods (vanilla - red, CL -
green). Since MPO takes several hours to properly start learning,
we consider the last episodes that were meaningful regarding reward
convergence.

5 Conclusion and perspectives 564

Curriculum learning displays interesting results in terms of 565

convergence time, while reaching higher levels of perfor- 566

mance that a controller exhibits when trained from scratch. 567

Through the simple definition of a sequence of tasks in terms 568

of reward functions, robust magnetic controllers are obtained 569

three times faster than baseline training which requires at 570

least a wee.=k. 571

This work is one of the first attempts along with [Tracey 572

et al., 2023] to look for practical means of speeding up train- 573

ing of RL-based magnetic controllers. The two methods are 574

also not orthogonal, and combining them could lead to train- 575

ing times even shorter. Moreover, we fixed the action space 576

between tasks, but using the 11 coils might not be useful all 577

the time. Same goes for the magnetic measurements, since 578

nothing indicates that all sensors are useful all the time. Au- 579

tomatic sequencing of the action and state spaces definitions 580

could help in improving the curriculum generation. 581

A clear limitation of the method comes from the risk of 582

catastrophic forgetting, since we transfer without freezing 583

procedure. A perspective lies in the use of Progressive Neu- 584

ral Networks (PNN)[Rusu et al., 2016b], which are not af- 585

fected by catastrophic forgetting and are theoretically capa- 586

ble of handling complete different tasks. However, big ar- 587

chitectures can not efficiently work on real-time control sys- 588

tems due to predictions slower than the timescale of many 589

plasma events. One solution could come from Policy Distil- 590

lation [Rusu et al., 2016a]. By training PNNs through cur- 591

riculum learning, powerful expert policies could be obtained 592

quickly, and distilled into a smaller network in line with our 593

operational constraints. 594
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