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Abstract
In this paper, we derive refined generalization
bounds for the Deep Ritz Method (DRM) and
Physics-Informed Neural Networks (PINNs). For
the DRM, we focus on two prototype elliptic par-
tial differential equations (PDEs): Poisson equa-
tion and static Schrödinger equation on the d-
dimensional unit hypercube with the Neumann
boundary condition. Furthermore, sharper gen-
eralization bounds are derived based on the lo-
calization techniques under the assumptions that
the exact solutions of the PDEs lie in the Bar-
ron spaces or the general Sobolev spaces. For
the PINNs, we investigate the general linear sec-
ond order elliptic PDEs with Dirichlet boundary
condition using the local Rademacher complex-
ity in the multi-task learning setting. Finally, we
discuss the generalization error in the setting of
over-parameterization when solutions of PDEs
belong to Barron space.

1. Introduction
Partial Differential Equations (PDEs) play a pivotal role
in modeling phenomena across physics, biology and engi-
neering. However, solving PDEs numerically has been a
longstanding challenge in scientific computing. Classical nu-
merical methods like finite difference, finite element, finite
volume and spectral methods may suffer from the curse of
dimensionality when dealing with high-dimensional PDEs.
Recent years, the remarkable successes of deep learning in
diverse fields like computer vision, natural language pro-
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cessing and reinforcement learning have sparked interest
in applying machine learning techniques to solve various
types of PDEs. In fact, the idea of using machine learning
to solve PDEs dates back to the last century (Lagaris et al.,
1998), but it has recently gained renewed attention due to
the significant advancements in hardware technology and
the algorithm development.

There are numerous methods proposed to solve PDEs using
neural networks. One popular method, known as PINNs
(Raissi et al., 2019), utilizes neural network to represent
the solution and enforces the neural network to satisfy the
PDE constraints, initial conditions and boundary conditions
by encoding these conditions into the loss function. The
flexibility and scalability of the PINNs make it a widely
used framework for addressing PDE-related problems. The
Deep Ritz method (Yu et al., 2018), on the other hand, incor-
porates the variational formulation into training the neural
networks due to the widespread use of the variational formu-
lation in traditional methods. In comparison to PINNs, the
form of DRM has a lower derivative order, but the fact that
not all PDEs have variational forms limits its applications.
Both methods hinge on the approximation ability of the
deep neural networks.

The approximation power of feed-forward neural networks
(FNNs) with diverse activation functions has been stud-
ied for different types of functions, including smooth func-
tions (Lu et al., 2021a), continuous functions (Shen et al.,
2022), Sobolev functions (Belomestny et al., 2023; Yang
et al., 2023b;a; Yarotsky, 2017), Barron functions (Barron,
1993). It was proven in the last century that a sufficiently
large neural network can approximate a target function in
a certain function class with any given tolerance. Specif-
ically, it has been shown in Hornik (1991) that the two-
layer neural network with ReLU activation function is a
universal approximator for continuous functions. More re-
cently, specific approximate rate of neural networks has
been shown for different function classes in terms of depth
and width. Lu et al. (2021a) showed that a ReLU FNN with
width O(N logN) and depth O(L logL) can achieve ap-
proximation rate O(N−2s/dL−2s/d) for the function class
Cs([0, 1]d) in the L∞ norm, which is nearly optimal. In
the context of applying neural networks to solve PDEs, the
focus shifts to the approximation rates in the Sobolev norms.
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Belomestny et al. (2023) utilized multivariate spline to de-
rive the required depth, width, and sparsity of a ReLU2

deep neural network to approximate any Hölder smooth
function in Hölder norms with the given approximation
error. And the weights of the neural network are also con-
trolled, which is essential to derive generalization error.
Yang et al. (2023b) derived the nearly optimal approxima-
tion results of deep neural networks in Sobolev spaces with
Sobolev norms. Specifically, deep ReLU neural networks
with width O(N logN) and depth O(L logL) can achieve
approximation rate O(N−2(n−1)/dL−2(n−1)/d) for func-
tions in Wn,∞((0, 1)d) with W 1,∞ norm. For higher or-
der approximation in Sobolev spaces, Yang et al. (2023a)
introduced deep super ReLU networks for approximating
functions in Sobolev spaces under Sobolev norms Wm,p

for m ∈ N with m ≥ 2. The optimality was also estab-
lished by estimating the VC-dimension of the function class
consisting of higher-order derivatives of deep super ReLU
networks.

In this work, we focus on the DRM and PINNs, aiming to
derive sharper generalization bounds. Compared to Jiao et al.
(2021); Duan et al. (2021), the localized analysis utilized
in this paper leads to improved generalization bounds. We
believe that this study provides a unified framework for
deriving generalization bounds for methods that solve PDEs
involving machine learning.

1.1. Related Works

Deep learning based PDE solvers: Solving high-
dimensional PDEs has been a long-standing challenge in
scientific computing due to the curse of dimensionality. In-
spired by the ability and flexibility of neural networks for
representing high dimensional functions, numerous studies
have focused on developing efficient deep learning-based
PDE solvers. In recent years, the PINNs have emerged
as a flexible framework for addressing problems related to
PDEs and have achieved impressive results in numerous
tasks. Despite their success, there are areas where further
improvements can be made, such as developing better op-
timization targets (Chiu et al., 2022) and neural network
architectures (Ren et al., 2022; Zhang et al., 2020). Inspired
by the use of weak formulation in traditional solvers, Zang
et al. (2020) proposed to solve the weak formulation of
PDEs via an adversarial network and the DRM (Yu et al.,
2018) trains a neural network to minimize the variational
formulations of PDEs. By reformulating the parabolic PDEs
as backward stochastic differential equations, (Han et al.,
2018) introduced a deep learning-based approach that can
handle general high dimensional parabolic PDEs and similar
method has been used for high dimensional eigenvalue prob-
lems (Han et al., 2020). In addition, there are other methods
that combine traditional techniques with deep learning, such
as Deep Least-Squares Methods (Cai et al., 2020; Lyu et al.,

2022), Deep Finite Volume Method (Cen & Zou, 2024), and
so forth.

Fast rates in machine learning: In statistical learning, the
excess risk is expressed as the form (COMPn(F)

n )α, where n
is the sample size, COMPn(F) measures the complexity of
the function class F and α ∈ [ 12 , 1] represents the learning
rate. The slow learning rate 1√

n
(α = 1

2 ) can be easily
derived by invoking Rademacher complexity (Bartlett &
Mendelson, 2002), but achieving the fast rate 1

n (α = 1)
is much more challenging. Based on localization tech-
niques, the local Rademacher complexity (Bartlett et al.,
2005; Koltchinskii, 2006; 2011) was introduced to statisti-
cal learning and has become a popular tool to derive fast
rates. It has been successfully applied across a variety of
tasks, like clustering (Li & Liu, 2021), learning kernels
(Cortes et al., 2013), multi-task learning (Yousefi et al.,
2018), empirical variance minimization (Belomestny et al.,
2017), among others. Variants of Rademacher complexity,
such as shifted Rademacher complexity (Zhivotovskiy &
Hanneke, 2018) and offset Rademacher complexity (Liang
et al., 2015), also offer a potential direction for achieving
the fast rates (Duan et al., 2023; Kanade et al., 2022; Yang
et al., 2019).

Generalization bounds for machine learning based PDE
solvers: Based on the probabilistic space filling arguments
(Calder, 2019), Shin et al. (2020) demonstrated the con-
sistency of PINNs for the linear second order elliptic and
parabolic type PDEs. An abstract framework was introduced
in Mishra & Molinaro (2022) and stability properties of the
underlying PDEs were leveraged to derive upper bounds on
the generalization error of PINNs. Following similar meth-
ods widely used in machine learning for deriving generaliza-
tion bounds, the convergence rate of PINNs was derived in
Jiao et al. (2021) by decomposing the error and estimating
related Rademacher complexity. For the DRM, when the
solutions are in the spectral Barron space, Lu et al. (2021c)
demonstrated the generalization error bounds of two-layer
neural networks for solving the Poisson equation and static
Schrödinger equation, but in expectation and with the slow
rates. When solutions of the PDEs fall in general Sobolev
spaces, Duan et al. (2021) established non-asymptotic con-
vergence rate for DRM using a method similar to Jiao et al.
(2021). The most relevant work to ours is Lu et al. (2021b),
which used peeling methods to derive sharper generalization
bounds of the DRM and PINNs for the Schrödinger equa-
tion on a hypercube with zero Dirichlet boundary condition.
However, Lu et al. (2021b) assumed that the function class
of neural networks is a subset of H1

0 , which is challenging
to achieve. For the DRM, the peeling method in Lu et al.
(2021b) cannot be applied to derive the generalization error
of the Poisson equation, as in this scenario, the population
loss isn’t the expectation of the empirical loss. For PINNs,
Lu et al. (2021b) required strong convexity and only con-

2



Refined Generalization Analysis of the DRM and PINNs

sidered the static Schrödinger equation with zero Dirichlet
boundary conditions, which results in the loss function of
PINNs comprising solely the interior term. In contrast, our
approach does not require strong convexity and is applicable
to general linear second-order elliptic PDEs.

1.2. Contributions

• For the aspect of approximation via neural networks,
we show that the functions in B2(Ω) can be well ap-
proximated in the H1 norm by two-layer ReLU neural
networks with controlled weights, and similar results
are also presented for functions in B3(Ω) in the H2

norm. Compared to the results in Lu et al. (2021c),
our approximation rate is faster and the Barron space
in our setting is larger than the spectral Barron space
in Lu et al. (2021c). Compared with other approxima-
tion results for Barron functions (Siegel & Xu, 2022a;
Siegel, 2023), the constant in our result is independent
of the dimension.

• For the DRM, we derive sharper generalization bounds
for the Poisson equation and Schrödinger equation with
Neumann boundary condition, regardless of whether
the solutions fall in Barron spaces or Sobolev spaces.
Our methods rely on the strongly convex property
of the variational form and a new localized analysis.
For the Poisson equation, the expectation of empirical
loss is not equal to the variational formulation, which
complicates the analysis. Additionally, for the static
Schrödinger equation, the strongly convex property
cannot be simply regarded as the Bernstein condition
in Bartlett et al. (2005), as the solutions of the PDEs
often do not belong to the function class of neural
networks in our setting. After applying a novel error
decomposition technique, we are able to utilize the lo-
cal Rademacher complexity to derive sharper bounds.

• For the PINNs, we regard this framework as a sce-
nario within multi-task learning (MTL). At this time,
there are two key points: one is that the loss functions
are non-negative and the other one is that a non-exact
oracle inequality suffices. To achieve our goal, we
extend the entropy method to derive a Talagrand-type
concentration inequality for MTL, which offers better
constants than those provided by Theorem 1 in Yousefi
et al. (2018). Consequently, similar results to those in
single-task setting can be established, yielding a non-
exact oracle inequality tailored for PINNs. Unlike Lu
et al. (2021b), which required the strong convexity, our
approach does not impose this requirement. While we
have only presented results for the linear second order
elliptic equations with Dirichlet boundary conditions,
our method can serve as a framework for PINNs for
a wide range of PDEs, as well as other methods that

share similar forms with PINNs.

• Moreover, we investigate the complexity of over-
parameterized two-layer neural networks when approx-
imating functions in Barron space, and demonstrate
meaningful generalization errors in the setting of over-
parameterization. Additionally, in the Discussion Sec-
tion, we explore other boundary conditions for the
Deep Ritz Method

1.3. Notation

For x ∈ Rd, |x|p denotes its p-norm and we use |x| as
shorthand for |x|2. We denote the inner product of vectors
x, y ∈ Rd by x · y. For the d-dimensional ball with radius r
in the p-norm and the boundary of this ball, we denote them
by Bdp(r) and ∂Bdp(r) respectively. For a set F that is a sub-
set of a metric space with metric d, we use N (F , d, ϵ) to de-
note its covering number with given radius ϵ and the metric d.
For given probability measure P and a sequence of random
variables {Xi}ni=1 distributed according to P , we denote
the empirical measure of P by Pn, i.e. Pn = 1

n

∑n
i=1 δXi

.
For the activation functions, we write σk(x) for the ReLUk

activation function, i.e., σk(x) := (max(0, x))k. And we
use σ for σ1 for simplicity. Given a domain Ω ⊂ Rd, we
denote |Ω| and |∂Ω| the measure of Ω and its boundary ∂Ω,
respectively.

2. Deep Ritz Method
2.1. Set Up

Let Ω = (0, 1)d be the unit hypercube on Rd and ∂Ω be
the boundary of Ω. We consider the Poisson equation and
static Schrödinger equation on Ω with Neumann boundary
condition.

Poisson equation:

−∆u = f in Ω,
∂u

∂ν
= 0 on ∂Ω. (1)

Static Schrödinger equation:

−∆u+ V u = f in Ω,
∂u

∂ν
= 0 on ∂Ω. (2)

In this section, we follow the framework established in Lu
et al. (2021c), which characterizes the solutions through
variational formulations. For completeness, the detailed
results are presented as follows.

Proposition 2.1 (Proposition 1 in Lu et al. (2021c) ).

(1) Assume that f ∈ L2(Ω) with
∫
Ω
fdx = 0. Then there ex-

ists a unique weak solution u∗P ∈ H1
∗ (Ω) := {u ∈ H1(Ω) :∫

Ω
udx = 0} to the Poisson equation. Moreover, we have
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that

u∗P = argmin
u∈H1(Ω)

EP (u)

:= argmin
u∈H1(Ω)

{∫
Ω

|∇u|2dx+

(∫
Ω

udx

)2

− 2

∫
Ω

fudx

}
,

(3)
and that for any u ∈ H1(Ω),

EP (u)− EP (u∗P ) ≤ ∥u− u∗P ∥2H1(Ω) ≤ CP (EP (u)− EP (u∗P )),
(4)

where CP = max{2cP + 1, 2} and cP is the Poincaré
constant on the domain Ω.

(2) Assume that f, V ∈ L∞(Ω) and that 0 < Vmin ≤
V (x) ≤ Vmax < ∞ for all x ∈ Ω and some constants
Vmin and Vmax. Then there exists a unique weak solution
u∗S ∈ H1(Ω) to the static Schrödinger equation. Moreover,
we have that

u∗S = argmin
u∈H1(Ω)

ES(u)

:= argmin
u∈H1(Ω)

{∫
Ω

|∇u|2 + V |u|2dx− 2

∫
Ω

fudx

}
,

(5)

and that for any u ∈ H1(Ω),

ES(u)− ES(u∗S)
max(1, Vmax)

≤ ∥u− u∗S∥2H1(Ω) ≤
ES(u)− ES(u∗S)
min(1, Vmin)

.

(6)

Throughout the paper, we assume that f ∈ L∞(Ω) and
V ∈ L∞(Ω) with 0 < Vmin ≤ V (x) ≤ Vmax < ∞. The
boundedness is essential in our method for deriving fast
rates and it also leads to the strongly convex property in
Proposition 2.1 (2). There are also some methods for deriv-
ing generalization error beyond boundedness, as discussed
in Mendelson (2015; 2018); Lecué & Mendelson (2013).
However, these approaches often require additional assump-
tions, such as specific properties of the data distributions or
function classes, which can be difficult to verify in practice.

The core concept of DRM involves substituting the func-
tion class of neural networks for Sobolev spaces and then
training the neural networks to minimize the variational
formulations. Subsequently, we can employ Monte-Carlo
method to compute the high-dimensional integrals, as tradi-
tional quadrature methods are constrained by the curse of
dimensionality in this context.

Let {Xi}ni=1 be an i.i.d. sequence of random variables
distributed uniformly in Ω. As in our setting, the volume of
Ω is 1, thus the empirical losses can be written directly as

En,P (u)

=
1

n

n∑
i=1

(|∇u(Xi)|2 − 2f(Xi)u(Xi)) +

(
1

n

n∑
i=1

u(Xi)

)2

(7)

and

En,S(u)

=
1

n

n∑
i=1

(
|∇u(Xi)|2 + V (Xi)|u(Xi)|2 − 2f(Xi)u(Xi)

)
,

(8)
where we write En,P and En,S for the empirical losses of
the Poisson equation and static Schrödinger equation respec-
tively. Note that the expectation of En,P (u) is not equal to
EP (u), which restricts the applicability of common meth-
ods, such as local Rademacher complexity, in deriving a fast
generalization rate for the Poisson equation.

2.2. Main results

The aim of this section is to establish a framework for de-
riving improved generalization bounds for the DRM. In the
setting where the solutions lie in the Barron space B2(Ω),
we demonstrate that the generalization error between the
empirical solutions from minimizing the empirical losses
and the exact solutions grows polynomially with the under-
lying dimension, enabling the DRM to overcome the curse
of dimensionality in this context when the optimization error
is omitted. Furthermore, when the solutions fall in the gen-
eral Sobolev spaces, we provide tight generalization bounds
through the localization analysis.

We begin by presenting the definition of the Barron space,
as introduced in Barron (1993).

Bs(Ω) := {f : Ω → C :

∥f∥Bs(Ω) := inf
fe|Ω=f

∫
Rd

(1 + |ω|1)s|f̂e(ω)|dω <∞},

(9)
where the infimum is over extensions fe ∈ L1(Rd) and f̂e
is the Fourier transform of fe. Note that we choose 1-norm
for ω in the definition just for simplicity.

There are also several different definitions of Barron space
(Ma et al., 2022) and the relationships between them have
been studied in Siegel & Xu (2023). The most important
property of functions in the Barron space is that those func-
tions can be efficiently approximated by two-layer neural
networks without the curse of dimensionality. It has been
shown in Barron (1993) that two-layer neural networks
with sigmoidal activation functions can achieve approxi-
mation rate O(1/

√
m) under the L2 norm, where m is the

number of neurons. And the results have been extended
to the Sobolev norms (Siegel & Xu, 2022a;b). However,
some constants in these extensions implicitly depend on
the dimension and there is a possibility that the weights
may be unbounded. To address these concerns, we demon-
strate the approximation results for functions in the Barron
space under the H1 norm. Additionally, for completeness,
the approximation result in W k,∞(Ω) with W 1,∞ norm is
also presented, which was originally derived in Yang et al.
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(2023b).

Proposition 2.2 (Approximation results in the H1 norm).

(1) Barron space: For any f ∈ B2(Ω), there exists a two-
layer neural network fm ∈ Fm,1(5∥f∥B2(Ω)) such that

∥f − fm∥H1(Ω) ≤ c∥f∥B2(Ω)m
−( 1

2+
1
3d ), (10)

where Fm,1(B) := {
m∑
i=1

γiσ(ωi · x+ ti) : |ωi|1 = 1, ti ∈

[−1, 1),
m∑
i=1

|γi| ≤ B} for a positive constant B and c is a

universal constant.

(2) Sobolev space: For any f ∈ Wk,∞(Ω) with k ∈ N, k ≥
2 and ∥f∥Wk,∞(Ω) ≤ 1, any N,L ∈ N+, there exists a
ReLU neural network ϕ with the width (34+d)2dkd+1(N+
1) log2(8N) and depth 56d2k2(L+ 1) log2(4L) such that

∥f(x)−ϕ(x)∥W1,∞(Ω) ≤ C(k, d)N−2(k−1)/dL−2(k−1)/d,
(11)

where C(k, d) is the constant independent with N,L.

Remark 2.3. When approximation functions in B2(Ω), our
derived bound exhibits a faster rate than the bound of m− 1

2

presented in Xu (2020). Although our bound is slower than
the bound m−( 1

2+
1

2(d+1) ) shown in Siegel & Xu (2022a),
it is important to note that the constant within the approxi-
mation rate of Siegel & Xu (2022a) may depend exponen-
tially on the dimension and the weights of two-layer neural
network could potentially be unbounded. In contrast, the
constant in our approximation is dimension-independent
and the weights are controlled. Moreover, our method is
also applicable to the differently defined Barron spaces in
Ma et al. (2022), yielding approximation result similar to
that in Proposition 2.2 (1).

For the convenience of expression, we write Φ(N,L,B) for
the function class of ReLU neural networks in Proposition
2.2 (2) with width (34+d)2dkd+1(N+1) log2(8N), depth
56d2k2(L + 1) log2(4L) and W 1,∞ norm bounded by B
such that the approximation result in Proposition 2.2 (2)
holds for any f ∈ Wk,∞(Ω) with ∥f∥Wk,∞(Ω) ≤ 1.

With the approximation results above, we can derive the
generalization error for the Poisson equation and the static
Schrödinger equation through the localized analysis.

Theorem 2.4 (Generalization error for the Poisson equation).
Let u∗P ∈ H1

∗ (Ω) solve the Poisson equation and un,P be
the minimizer of the empirical loss En,P in the function class
F .

(1) For u∗P ∈ B2(Ω), taking F = Fm,1(5∥u∗P ∥B2(Ω)), then

with probability as least 1− e−t

EP (un,P )− EP (u∗P )

≤ CM2 logM

(
md log n

n
+

(
1

m

)1+ 2
3d

+
t

n

)
,

(12)

where C is a universal constant and M is the upper bound
for ∥f∥L∞ , ∥u∗P ∥B2(Ω).

By taking m =
(
n
d

) 3d
2(3d+1) , we have

EP (un,P )− EP (u∗P )

≤ CM2 logM

((
d

n

) 3d+2
2(3d+1)

log n+
t

n

)
.

(13)

(2) For u∗P ∈ Wk,∞(Ω), taking F =
Φ(N,L,B∥u∗P ∥Wk,∞(Ω)), then with probability at
least 1− e−t

EP (un,P )− EP (u∗P )

≤ C

(
(NL)2(logN logL)3

n
+ (NL)−4(k−1)/d +

t

n

)
,

(14)
where n ≥ C(NL)2(logN logL)3 and C is a constant
independent of N,L, n.

By taking N = L = n
d

4(d+2(k−1)) , we have

EP (un,P )− EP (u∗P ) ≤ C

(
n−

2k−2
d+2k−2 (log n)6 +

t

n

)
.

(15)

The generalization error for the static Schrödinger equa-
tion shares a similar form with that in Theorem 2.4, but the
proof methodology differs. Although the method for the
Poisson equation is also applicable to the static Schrödinger
equation, it is quite complicated. Unlike (7), it can be seen
from (8) that the expectation of the empirical loss for the
static Schrödinger equation is the energy functional (5) in
Proposition 2.1 (2). This allows the use of local Rademacher
complexity after employing a new error decomposition ap-
proach.

Theorem 2.5. Let u∗S solve the static Schrödinger and un,S
be the minimizer of the empirical loss En,S in the function
class F .

(1) For u∗S ∈ B2(Ω), taking F = Fm,1(5∥u∗S∥B2(Ω)), then
with probability as least 1− e−t

ES(un,S)− ES(u∗S) ≤ CM2
(
md logn

n +
(

1
m

)1+ 2
3d + t

n

)
,

(16)
where C is a universal constant and M is the upper bound
for ∥f∥L∞ , ∥u∗S∥B2(Ω), ∥V ∥L∞ .
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By taking m = (nd )
3d

2(3d+1) , we have

ES(un,S)− ES(u∗S) ≤ CM2

((
d

n

) 3d+2
2(3d+1)

log n+
t

n

)
.

(17)

(2) For u∗S ∈ Wk,∞(Ω), taking F =
Φ(N,L,B∥u∗S∥Wk,∞(Ω)), then with probability at
least 1− e−t

ES(un,S)− ES(u∗S)

≤ C

(
(NL)2(logN logL)3

n
+ (NL)−4(k−1)/d +

t

n

)
,

(18)
where n ≥ C(NL)2(logN logL)3 and C is a constant
independent of N,L, n.

By taking N = L = n
1

4(d+2(k−1)) , we have

ES(un,S)− ES(u∗S) ≤ C

(
n−

2k−2
d+2k−2 (log n)6 +

t

n

)
.

(19)

Remark 2.6. By utilizing the strong convexity of the en-
ergy functional and localized analysis, we improve the con-
vergence rate n−

2k−2
d+4k−4 as shown in Duan et al. (2021)

to n−
2k−2

d+2k−2 . Furthermore, when the solution belongs to
B2(Ω), our convergence rate ( dn )

3d+2
2(3d+1) is faster than n−

1
3

in Lu et al. (2021c) and explicitly demonstrates its depen-
dency on the dimension.

In the setting of over-parameterization (i.e. m is large
enough), the generalization bounds in (14) and (16) become
meaningless. Fortunately, the function class of two-layer
neural networks in Proposition 2.2 (1) forms a convex hull
of a function class with a covering number similar to that
of VC-classes. Consequently, we can extend the convex
hull entropy theorem (Theorem 2.6.9 in (Vaart & Wellner,
2023)) to the H1 norm, enabling us to derive meaningful
generalization bounds in this setting.

Proposition 2.7. Under the same settings in Theorem 2.4
(1) and Theorem 2.5 (1), we have that

(1) with probability at least 1− e−t,

EP (un,P )− EP (u∗P ) ≲ (d
3
2 )1+

1
3d+1

(
1

n

) 1
2+

1
2(3d+1)

+

(
1

m

)1+ 2
3d

+
t

n
.

(20)

(2) with probability at least 1− e−t,

ES(un,S)−ES(u∗S) ≲ d
3
2

(
1

n

) 1
2+

1
2(3d+1)

+

(
1

m

)1+ 2
3d

+
t

n
,

(21)

where ≲ indicates a constant depending only on the upper
bound M defined in Theorem 2.4 (1) is omitted.
Remark 2.8. Due to the equivalence between H1-error and
the energy excess as shown in Proposition 2.1, we are able to
deduce the generalization error for both the Poisson equation
and the static Schrödinger equation under the H1 norm. For
example, one can derive that for the Poisson equation, if
u∗P ∈ B2(Ω), then

∥un,P − u∗P ∥2H1(Ω) ≤ CM2 logM

((
d
n

) 3d+2
2(3d+1) log n+ t

n

)
.

(22)

3. Physics-Informed Neural Networks
3.1. Set Up

In this section, we will consider the following linear second
order elliptic equation with Dirichlet boundary condition.

−
d∑

i,j=1

aij∂iju+

d∑
i=1

bi∂iu+ cu = f, in Ω,

u = g, on ∂Ω,

(23)

where aij ∈ C(Ω̄), bi, c, f ∈ L∞(Ω), g ∈ L∞(∂Ω) and
Ω ⊂ (0, 1)d is an open bounded domain with properly
smooth boundary.

In the framework of PINNs, we train the neural network u
with the following loss function.

L(u) :=
∫
Ω

(−
d∑

i,j=1

aij(x)∂iju(x) +

d∑
i=1

bi(x)∂iu(x)

+ c(x)u(x)− f(x))2dx+

∫
∂Ω

(u(y)− g(y))2dy.

(24)

By employing the Monte Carlo method, the empirical ver-
sion of L can be written as
LN (u) :=

|Ω|
N1

N1∑
k=1

(−
d∑

i,j=1

aij(Xk)∂iju(Xk) +

d∑
i=1

bi(Xk)∂iu(Xk)

+ c(Xk)u(Xk)− f(Xk))
2 +

|∂Ω|
N2

N2∑
k=1

(u(Yk)− g(Yk))
2
,

(25)
where N = (N1, N2), {Xk}N1

k=1 and {Yk}N2

k=1 are i.i.d. ran-
dom variables distributed according to the uniform distribu-
tion U(Ω) on Ω and U(∂Ω) on ∂Ω, respectively.

Given the empirical loss LN , the empirical minimization
algorithm aims to seek uN which minimizes LN , that is:

uN ∈ argmin
u∈F

LN (u),

where F is a parameterized hypothesis function class.

6
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3.2. Main Results

We begin by presenting the approximation results in the H2

norm.

Proposition 3.1 (Approximation results in the H2 norm).

(1) Barron space: For any f ∈ B3(Ω), there exists a two-
layer neural network fm ∈ Fm,2(c∥f∥B3(Ω)) such that

∥f − fm∥H2(Ω) ≤ c∥f∥B3(Ω)m
−( 1

2+
1
3d ), (26)

where Fm,2(B) := {
m∑
i=1

γiσ2(ωi · x+ ti) : |ωi|1 = 1, ti ∈

[−1, 1),
m∑
i=1

|γi| ≤ B} for a positive constant B and c is a

universal constant.

(2) Sobolev space: For any f ∈ Wk,∞(Ω) with k > 3 and
any integer K ≥ 2, there exists some sparse ReLU3 neu-
ral network ϕ ∈ Φ(L,W,S,B;H) with L = O(1),W =
O(Kd), S = O(Kd), B = 1, H = O(1), such that

∥f(x)− ϕ(x)∥H2(Ω) ≤
C

Kk−2
, (27)

where C is a constant independent of K, Φ(L,W,S,B;H)
denote the function class of ReLU3 neural networks with
depth L, width W and at most S non-zero weights taking
their values in [−B,B]. Moreover, the W 2,∞ norms of
functions in Φ(L,W,S,B;H) have the upper bound H .

The framework of PINNs can be regarded as a form of multi-
task learning (MTL), as a single neural network is designed
to simultaneously learn multiple related tasks, involving
the enforcement of physical laws and constraints within
the learning process. In contrast to traditional single-task
learning, MTL encompasses T supervised learning tasks
sampled from the input-output space X1×Y1, · · · ,XT×YT
respectively. Each task t is represented by an independent
random vector (Xt, Yt) distributed according to a probabil-
ity distribution µt.

Before presenting our results, we first introduce some no-
tations. Let (Xi

t , Y
i
t )
Nt
i=1 be a sequence of i.i.d. random

samples drawn from the distribution µt for t = 1, · · · , T .
For any vector-valued function f = (f1, · · · , fT ), we de-
note its expectation and its empirical part as

Pf :=
1

T

T∑
t=1

Pft, PNf :=
1

T

T∑
t=1

PNt
ft, (28)

where N = (N1, · · · , NT ), Pft := E[ft(Xt)] and
PNt

ft := 1
Nt

∑Nt

i=1 ft(X
i
t). We denote the component-

wise exponentiation of f as fα = (fα1 , · · · , fαT ) for any
α ∈ R. In the following, we use bold lowercase letters to
represent vector-valued functions and bold uppercase letters

to indicate the class of functions consisting of vector-valued
functions.

To derive sharper generalization bounds for the PINNs, we
require results from the field of MTL, with a core component
being the Talagrand-type concentration inequality. Yousefi
et al. (2018) has established a Talagrand-type inequality
for MTL. Of independent interest, we provide a new proof
based the entropy method. Moreover, the concentration
inequality derived from this method yields better constants
compared to those offered by Theorem 1 in Yousefi et al.
(2018).

Theorem 3.2. Let F = {f := (f1, · · · , fT )} be a class
of vector-valued functions satisfying max

1≤t≤T
sup
x∈Xt

|ft(x)| ≤

b. Also assume that X := (Xi
t)

(T,Nt)
(t,i)=(1,1) is a vector

of
∑T
t=1Nt independent random variables. Let {σit}t,i

be a sequence of independent Rademacher variables. If
1
T sup

f∈F

T∑
t=1

V ar(ft(X
1
t )) ≤ r, then for every x > 0, with

probability at least 1− e−x,

sup
f∈F

(Pf − PNf)

≤ inf
α>0

(
2(1 + α)R(F) + 2

√
xr

nT
+

(
1 +

4

α

)
bx

nT

)
,

(29)
where n = min1≤t≤T Nt and the multi-task Rademacher
complexity of function class F is defined as

R(F) := EX,σ

[
sup
f∈F

1

T

T∑
t=1

1

Nt

Nt∑
i=1

σitft(X
i
t)

]
. (30)

Moreover, the same bound also holds for supf∈F (PNf −
Pf).

Remark 3.3. In comparison with the concentration inequal-
ity provided in Yousefi et al. (2018), which is stated as

sup
f∈F

(Pf − PNf) ≤ 4R(F) +

√
8xr

nT
+

12bx

nT
, (31)

our result exhibits improved constants by taking α = 1.

Note that the loss functions of the PINNs are all non-
negative, which facilitates the derivation of analogous re-
sults to those obtained in the single-task context. With the
results in MTL, the generalization error for the PINNs can
be established.

Theorem 3.4 (Generalization error for PINN loss of the
linear second order elliptic equation).

Let u∗ be the solution of the linear second order elliptic
equation and n = min(N1, N2).

(1) If u∗ ∈ B3(Ω), taking F = Fm,2(c∥u∗∥B3(Ω)), then

7
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with probability at least 1− e−t,

L(uN ) ≤ cC1(Ω,M)

(
m log n

n
+

(
1

m

)1+ 2
3d

+
t

n

)
,

(32)
where c is a universal constant and C1(Ω,M) :=
max{d2M2, C(Tr,Ω), |Ω|d2M4+ |∂Ω|M2}, C(Tr,Ω) is
the constant in the Trace theorem for Ω.

By taking m = n
3d

2(3d+1) , we have

L(uN ) ≤ cC1(Ω,M)

((
1

n

) 3d+2
2(3d+1)

log n+
t

n

)
. (33)

(2) If u∗ ∈ Wk,∞(Ω) for k > 3, taking F =
Φ(L,W, S,B;H) with L = O(1),W = O(Kd), S =
O(Kd), B = 1, H = O(1), then with probability at least
1− e−t,

L(uN ) ≤ C

(
Kd(logK + log n)

n
+

(
1

K

)2k−4

+
t

n

)
,

(34)
where C is a constant independent of K,N .

By taking K = n
1

d+2k−4 , we have

L(uN ) ≤ C

(
n−

2k−4
d+2k−4 log n+

t

n

)
. (35)

Remark 3.5. The convergence rate n−
2k−4

d+2k−4 is faster than
n−

2k−4
d+4k−8 presented in Jiao et al. (2021) and is same as that

in Lu et al. (2021b) for the static Schrödinger equation with
zero Dirichlet boundary condition. However, our result does
not require the strong convexity of the objective function.
More importantly, the objective function in Lu et al. (2021b)
only involves one task. Moreover, our method can be ex-
tended to a broader range of PDEs, as our approach does
not impose stringent requirements on the form of the PDEs.

Note that in certain cases, for instance, when Ω = (0, 1)d,
the constant C(Tr,Ω) is at most d, at this time, L(uN )
in Theorem 3.4 (1) only depends polynomially with the
underlying dimension. Moreover, when solutions belong to
Barron space, similar to Proposition 2.7, we can also derive
generalization bounds in the over-parameterized setting for
PINNs. These bounds are omitted here for simplicity.

Although Theorem 3.4 provides a generalization error for
the loss function of PINNs, it is often necessary to measure
the generalization error between the empirical solution and
the true solution under a certain norm. Fortunately, from
Lemma C.11, we can deduce that

∥uN − u∗∥2
H

1
2 (Ω)

≤ CΩ(∥LuN − f∥2L2(Ω) + ∥uN − g∥2L2(∂Ω)) = CΩL(uN ).
(36)

Therefore, under the settings of Theorem 3.4, we can obtain
the generalization error for the linear second order elliptic
equation in the H

1
2 norm. Note that here we require the

second-order elliptic equation (23) to satisfy the strong el-
lipticity condition and the boundary to possess a certain
degree of smoothness. For error estimates similar to (36)
for a broader class of PDEs, see reference Zeinhofer et al.
(2024).

For the PINNs, we only focus on the L2 loss, as considered
in the original study (Raissi et al., 2019). Actually, the
design of the loss function should incorporate some priori
estimation, which serves as a form of stability property
(Wang et al., 2022). Specifically, the design of the loss
function should follow the principle that if the loss of PINNs
L(u) is small for some function u, then u should be close to
the true solution under some appropriate norm. For instance,
Theorem 1.2.19 in Garroni & Menaldi (2002) shows that,
under some suitable conditions for domain Ω and related
functions aij , bi, c, f, g, the solution u∗ of the linear second
order elliptic equation satisfies that

∥u∗∥H2(Ω) ≤ C
(
∥f∥L2(Ω) + ∥g∥

H
3
2 (∂Ω)

)
. (37)

Thus, if we apply the loss

L(u) = ∥Lu− f∥2L2(Ω) + ∥u− g∥2
H

3
2 (∂Ω)

, (38)

we may obtain the generalization error in the H2 norm.
However, this term ∥g∥

H
3
2 (∂Ω)

is challenging to compute
because it also requires ensuring Lipschitz continuity with
respect to the parameters, which is essential for estimating
the covering number. We leave this as a direction for fu-
ture work. On the other hand, some variants of PINNs do
not fit the standard MTL framework. For instance, within
the extended physics-informed neural networks (XPINNs)
framework, to ensure continuity, samples from adjacent
regions have cross-correlations. The detailed theoretical
framework for XPINNs remains an area for future research.
And the detailed future directions and limitations of this
work are deferred to the Discussion section of the appendix.

4. Conclusion
In this paper, we have refined the generalization bounds
for the DRM and PINNs through the localization tech-
niques. For the DRM, our attention was centered on the
Poisson equation and the static Schrödinger equation on
the d-dimensional unit hypercube with Neumann boundary
condition. As for the PINNs, our focus shifted to the gen-
eral linear second elliptic PDEs with Dirichlet boundary
condition. Additionally, our method is adaptable to a wider
variety of PDEs, such as time-dependent ones, since our
approach is not constrained by the form of the PDEs. In
both neural networks based approaches for solving PDEs,

8
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we considered two scenarios: when the solutions of the
PDEs belong to the Barron spaces and when they belong
to the Sobolev spaces. Furthermore, we believe that the
methodologies established in this paper can be extended to
a variety of other methods involving machine learning for
solving PDEs.
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Appendix
The Appendix is organized into four parts: Proof of Section 2, Proof of Section 3, Auxiliary Lemmas, and Discussion.

A. Proof of Section 2
A.1. Proof of Proposition 2.2

The proof follows a similar procedure to that in Barron (1993), but the method in Barron (1993) can only yield a slow rate of
approximation. We start with a sketch of the proof. For any function in the Barron space, we first prove that it belongs to the
H1(Ω) closure of the convex hull of some set. Then estimating the metric entropy of the set and applying Theorem 1 in
Makovoz (1996) (see Lemma C.4) leads to the fast rate of approximation.

For the function f ∈ B2(Ω), according to the definition of Barron space, we can assume that the infimum can be attained at
the function fe. To simplify the notation, we write fe as f , since fe|Ω = f . From the formula of Fourier inverse transform
and the fact that f is real-valued,

f(x) = Re

∫
Rd

eiω·xf̂(ω)dω

= Re

∫
Rd

eiω·xeiθ(ω)|f̂(ω)|dω

=

∫
Rd

cos(ω · x+ θ(ω))|f̂(ω)|dω

=

∫
Rd

B cos(ω · x+ θ(ω))

(1 + |ω|1)2
Λ(dω)

=

∫
Rd

g(x, ω)Λ(dω),

(39)

where B =
∫
Rd(1 + |ω|1)2|f̂(ω)|dω, Λ(dω) = (1+|ω|1)2|f̂(ω)|dω

B is a probability measure , eiθ(ω) is the phase of f̂(ω) and

g(x, ω) =
B cos(ω · x+ θ(ω))

(1 + |ω|1)2
. (40)

From the integral representation of f and the form of g, i.e. (39) and (40), we can deduce that f is in the H1(Ω) closure of
the convex hull of the function class

Gcos(B) :=

{
B cos(ω · x+ t)

(1 + |ω|1)2
: ω ∈ Rd, t ∈ R

}
. (41)

It could be easily verified via the probabilistic method. Assume that {ωi}ni=1 is a sequence of i.i.d. random variables
distributed according to Λ, then

E

[
∥f(x)− 1

n

n∑
i=1

g(x, ωi)∥2H1(Ω)

]

=

∫
Ω

E

[
|f(x)− 1

n

n∑
i=1

g(x, ωi)|2 + |∇f(x)− 1

n

n∑
i=1

∇g(x, ωi)|2
]
dx

=
1

n

∫
Ω

V ar(g(x, ω))dx+
1

n

∫
Ω

Tr(Cov[∇g(x, ω)])dx

≤
E[∥g(x, ω)∥2H1(Ω)]

n

≤ 2B2

n
,

where the first equality follows from Fubini’s theorem and the last inequality holds due to the facts that |g(x, ω)| ≤ B and
|∇g(x, ω)| ≤ B for any x, ω.
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Then, for any given tolerance ϵ > 0, by Markov’s inequality,

P

(
∥f(x)− 1

n

n∑
i=1

g(x, ωi)∥H1(Ω) > ϵ

)
≤ 1

ϵ2
E

[
∥f(x)− 1

n

n∑
i=1

g(x, ωi)∥2H1(Ω)

]
≤ 2B2

nϵ2
.

By choosing a large enough n such that 2B2

nϵ2 < 1, we have

P

(
∥f(x)− 1

n

n∑
i=1

g(x, ωi)∥H1(Ω) ≤ ϵ

)
> 0,

which implies that there exist realizations of the random variables {ωi}ni=1 such that ∥f(x) − 1
n

n∑
i=1

g(x, ωi)∥H1(Ω) ≤ ϵ.

Therefore, the conclusion holds.

Next, we are going to show that those functions in Gcos(B) are in the H1(Ω) closure of the convex hull of the function class
Fσ(5B) ∪ Fσ(−5B) ∪ {0}, where

Fσ(b) := {bσ(ω · x+ t) : |ω|1 = 1, t ∈ [−1, 1]} (42)

for any constant b ∈ R.

Note that although Gcos(B) consists of high-dimensional functions, those functions depend only on the projection of
multivariate variable x. Specifically, each function g(x, ω) = B cos(ω·x+t)

(1+|ω|1)2 ∈ Gcos(B) is the composition of a one-

dimensional function g(z) = B cos(|ω|1z+t)
(1+|ω|1)2 and a linear function z = ω

|ω|1 · x with value in [−1, 1]. Therefore, it suffices to
prove that the conclusion holds for g(z) on [−1, 1], i.e., to prove that for each ω, g is in the H1([−1, 1]) closure of convex
hull of F1

σ(5B) ∪ F1
σ(−5B) ∪ {0}, where

F1
σ(b) := {bσ(ϵz + t) : ϵ = −1 or 1, t ∈ [−1, 1]} (43)

for any constant b ∈ R. Then applying the variable substitution leads to the conclusion for g(x, ω).

In fact, it is easier to handle that in one-dimension due to the relationship between the ReLU functions and the basis function
in the finite element method (FEM) (He et al., 2018), specifically the basis functions in the FEM can be represented by
ReLU functions. To make it more precise, let us consider the uniform mesh of interval [−1, 1] by taking m+ 1 points

−1 = x0 < x1 < · · · < xm = 1,

and set h = 2
m , x−1 = −1− h, xm+1 = 1 + h. For 0 ≤ i ≤ m, introduce the function φi(z), which is defined as follows:

φi(z) =


1

h
(z − zi−1), if z ∈ [zi−1,, zi],

1

h
(zi+1 − z), if z ∈ [zi, zi+1],

0, otherwise.

(44)

Clearly, the set {φ0, · · · , φm} is a basis of P1
h, which is a vector space of continuous, piece-wise linear functions (P1

Lagrange finite element, see Chapter 1 of Ern & Guermond (2004) for more details). And φi can be written as

φi(z) =
σ(z − zi−1)− 2σ(z − zi) + σ(z − zi+1)

h
. (45)

Now, we are ready to present the definition of interpolation operator and the estimation of interpolation error (Ern &
Guermond, 2004) (Proposition 1.5 in Ern & Guermond (2004)).

Consider the so-called interpolation operator

I1
h : v ∈ C([−1, 1]) →

m∑
i=0

v(zi)φi ∈ P 1
h . (46)
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Then for all h and v ∈ H2([−1, 1]), the interpolation error can be bounded as

∥v − I1
hv∥L2([−1,1]) ≤ h2∥v

′′
∥L2([−1,1]) and ∥v

′
− (I1

hv)
′
∥L2([−1,1]) ≤ h∥v

′′
∥L2([−1,1]). (47)

By invoking the interpolation operator and the connection between the ReLU functions and the basis functions, we can
establish the following conclusion for one-dimensional functions.

Lemma A.1. Let g ∈ C2([−1, 1]) with ∥g(s)∥L∞ ≤ B for s = 0, 1, 2. Then there exists a two-layer ReLU network gm of
the form

gm(z) =

6m−1∑
i=1

aiσ(ϵiz + ti), (48)

with |ai| ≤ 2B
m ,

6m−1∑
i=1

|ai| ≤ 5B, |ti| ≤ 1, ϵi ∈ {−1, 1}, 1 ≤ i ≤ 6m− 1 such that

∥g − gm∥H1([−1,1]) ≤
4
√
2B

m
. (49)

Therefore, g is in the H1([−1, 1]) closure of the convex hull of F1
σ(5B) ∪ F1

σ(−5B) ∪ {0}.

Proof. Note that from (45) and (46), the interpolant of g can be written as a combination of ReLU functions as follows

I1
h(g) =

m∑
i=0

g(zi)φi(z)

=

m∑
i=0

g(zi)
σ(z − zi−1)− 2σ(z − zi) + σ(z − zi+1)

h

=
g(z0)(σ(z − z−1)− 2σ(z − z0))

h
+
g(z1)σ(z − z0)

h
+

m−1∑
i=1

g(zi−1)− 2g(zi) + g(zi+1)

h
σ(z − zi)

= g(z0) +
g(z1)− g(z0)

h
σ(z − z0) +

m−1∑
i=1

g(zi−1)− 2g(zi) + g(zi+1)

h
σ(z − zi).

(50)

By the mean value theorem, there exist ξ0 ∈ [z0, z1] and ξi ∈ [zi−1, zi+1] for 1 ≤ i ≤ m− 1 such that g(z1)− g(z0) =
g

′
(ξ0)h and g(zi−1)− 2g(zi) + g(zi+1) = g

′′
(ξi)h

2 for 1 ≤ i ≤ m− 1.

Therefore, I1
h(g) can be rewritten as

I1
h(g) = g(z0) + g

′
(ξ0)σ(z − z0) +

m−1∑
i=1

g
′′
(ξi)σ(z − zi)h. (51)

On the other hand, the constant can also be represented as a combination of ReLU functions on [−1, 1]. By the observation
that σ(z) + σ(−z) = |z|, we have that for any z ∈ [−1, 1]

1 =
|1 + z|+ |1− z|

2
=
σ(z + 1) + σ(−z − 1) + σ(−z + 1) + σ(z − 1)

2
. (52)

Plugging (52) into (51) yields that

I1
h(g) =

m∑
i=1

g(z0)(σ(z + 1) + σ(−z − 1) + σ(−z + 1) + σ(z − 1))

2m
+

m∑
i=1

g
′
(ξ0)σ(z − z0)

m

+

m−1∑
i=1

2g
′′
(ξi)σ(z − zi)

m
.

(53)
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Combining the expression of I1
h(g) and the estimation for interpolation error, i.e. (53) and (47), leads to that there exists a

two-layer neural network gm of the form

gm(z) = I1
h(g) =

6m−1∑
i=1

aiσ(ϵiz + ti),

with |ai| ≤ 2B
m ,

6m−1∑
i=1

|ai| ≤ 5B, |ti| ≤ 1, ϵi ∈ {−1, 1}, 1 ≤ i ≤ 6m− 1 such that

∥g − gm∥H1([−1,1]) ≤
4
√
2B

m
.

Although the interpolation operator can be view as a piece-wise linear interpolation of g, which is similar to Lemma 18 in Lu
et al. (2021c), our result does not require g

′
(0) = 0 and the value of g at the certain point is also expressed as a combination

of ReLU functions. Specifically, the gm in Lemma 18 of Lu et al. (2021c) has the form gm(z) = c+
∑2m
i=1 aiσ(ϵiz + ti),

where c = g(0) and they partition [−1, 1] by 2m points with z0 = −1, zm = 0, z2m = 1. And our result can also be
extended in W 1,∞([−1, 1]) norm like Lemma 18 of Lu et al. (2021c). Note that on [zi−1, zi]

I1
h(g)(z) = g(zi−1)

zi − z

h
+ g(zi)

z − zi−1

h
,

which is the piece-wise linear interpolation of g. Then by bounding the remainder in Lagrange interpolation formula, we
have ∥Ih(g)− g∥L∞[zi−1,zi] ≤ h2

8 ∥g′′∥L∞[zi−1,zi] and

|(I1
h(g))

′
(z)− g

′
(z)| = |g(zi)− g(zi−1)

h
− g

′′
(z)|

≤ |g
′
(ξi)− g

′
(zi)|

≤ h∥g
′′
∥L∞[zi−1,zi],

(54)

where the first inequality follows from the mean value theorem.

Therefore, ∥I1
h(g)− g∥W 1,∞([−1,1]) ≤ 2B

m .

Lemma A.1 implies that for any ω, the one-dimension function g(z) = B cos(|ω|1z+t)
(1+|ω|1)2 is in the H1([−1, 1]) closure of

convex hull of F1
σ(5B) ∪ F1

σ(−5B) ∪ {0}. Then applying the variable substitution yields that those functions in Gcos(B)
are in the H1(Ω) closure of the convex hull of the function class Fσ(5B) ∪ Fσ(−5B) ∪ {0}. Specifically, for any function
h : R → R and ω ∈ Rd with |ω|1 = 1, without loss of generality, we can assume that ω1 > 0. Then for the integral∫

Ω

|h(ω · x)|2dx =

∫
[0,1]d

|h(ω · x)|2dx,

let y1 = ω · x, y2 = x2, · · · , yd = xd, we have∫
[0,1]d

|h(ω · x)|2dx =
1

ω1

∫ 1

0

· · ·
∫ ω2·y2+···ωd·yd+ω1

ω2·y2+···ωd·yd
|h(y1)|2dy1 · · · dyd ≤

1

ω1

∫ 1

−1

|h(y1)|2dy1.

Therefore, the conclusion holds for Gcos(B). Recall that f is in the H1(Ω) closure of the convex hull of Gcos(B), thus we
have the following conclusion.
Proposition A.2. For any given function f in B2(Ω), f is in the H1(Ω) closure of the convex hull of Fσ(5∥f∥B2(Ω)) ∪
Fσ(−5∥f∥B2(Ω)) ∪ {0}, i.e., for any ϵ > 0, there exist m ∈ N and ωi, ti, ai, 1 ≤ i ≤ m such that

∥f(x)−
m∑
i=1

aiσ(ωi · x+ ti)∥H1(Ω) ≤ ϵ, (55)

where |ωi|1 = 1, ti ∈ [−1, 1], 1 ≤ i ≤ m and
m∑
i=1

|ai| ≤ 5∥f∥B2(Ω).
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Proposition A.2 implies that functions in B2(Ω) can be approximated by a linear combination of functions in Fσ(1).

Recall that Fσ(1) = {σ(ω · x+ t) : |ω|1 = 1, t ∈ [−1, 1]}. For simplicity, we write Fσ for Fσ(1).

Then to invoke Theorem 1 in Makovoz (1996) (see Lemma C.4), it remains to estimate the metric entropy of the function
class Fσ , which is defined as

ϵn(Fσ) := inf{ϵ : Fσ can be covered by at most n sets of diameter ≤ ϵ under the H1 norm}. (56)

By Lemma C.6, we just need to estimate the covering number of Fσ , which is easier to handle.

Proposition A.3 (Estimation of the metric entropy). For any n ∈ N,

ϵn(Fσ) ≤ cn−
1
3d ,

where c is a universal constant.

Proof. For (ω1, t1), (ω2, t2) ∈ ∂Bd1 (1)× [−1, 1], we have

∥σ(ω1 · x+ t1)− σ(ω2 · x+ t2)∥2H1(Ω)

=

∫
Ω

|σ(ω1 · x+ t1)− σ(ω2 · x+ t2)|2dx+

∫
Ω

|∇σ(ω1 · x+ t1)−∇σ(ω2 · x+ t2)|2dx

≤
∫
Ω

|(ω1 − ω2) · x+ (t1 − t2)|2dx+

∫
Ω

|ω1I{ω1·x+t1≥0} − ω2I{ω2·x+t2≥0}|2dx

≤ 2(|ω1 − ω2|21 + |t1 − t2|2) +
∫
Ω

|(ω1 − ω2)I{ω1·x+t1≥0} + ω2(I{ω1·x+t1≥0} − I{ω2·x+t2≥0})|2dx

≤ 2(|ω1 − ω2|21 + |t1 − t2|2) + 2|ω1 − ω2|21 + 2

∫
Ω

|I{ω1·x+t1≥0} − I{ω2·x+t2≥0}|2dx

≤ 4(|ω1 − ω2|21 + |t1 − t2|2) + 2

∫
Ω

|I{ω1·x+t1≥0} − I{ω2·x+t2≥0}|2dx,

(57)

where the first inequality is due to that σ is 1-Lipschitz continuous, the second and the third inequalities follow the from the
mean inequality and the fact that the 2-norm is dominated by the 1- norm.

It is challenging to handle the first and second terms simultaneously due to the discontinuity of indicator functions, thus we
turn to handle two terms separately. Note that the first term is related to the covering of ∂Bd1 (1)× [−1, 1] and the second
term is related to the covering of a VC-class of functions (see Chapter 2.6 of Vaart & Wellner (2023) or Chapter 9 of Kosorok
(2008)). Therefore, we consider a new space G1 defined as

G1 := {
(
(ω, t), I{ω·x+t≥0}

)
: ω ∈ ∂Bd1 (1), t ∈ [−1, 1]}.

Obviously, it is a subset of the metric space

G2 := {
(
(ω1, t1), I{ω2·x+t2≥0}

)
: ω1, ω2 ∈ ∂Bd1 (1), t1, t2 ∈ [−1, 1]}

with the metric d that for b1 =
(
(ω1

1 , t
1
1), I{ω1

2 ·x+t12≥0}

)
, b2 =

(
(ω2

1 , t
2
1), I{ω2

2 ·x+t22≥0}

)
,

d(b1, b2) :=
√
2(|ω1

1 − ω2
1 |21 + |t11 − t21|2) + ∥I{ω1

2 ·x+t12≥0} − I{ω2
2 ·x+t22≥0}∥L2(Ω).

The key point is that G2 can be seen as a product space of ∂Bd1 (1) × [−1, 1] and the function class F1 := {I{ω·x+t≥0} :

(ω, t) ∈ ∂Bd1 (1)× [−1, 1]} is a VC-class. Therefore, we can handle the two terms separately.

By defining the metric d1 in ∂Bd1 (1)× [−1, 1] as

d1
(
(ω1

1 , t
1
1), (ω

2
1 , t

2
1)
)
=
√

2(|ω1
1 − ω2

1 |21 + |t11 − t21|2)
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and the metric d2 in F1 as

d2

(
I{ω1

2 ·x+t12≥0}, I{ω2
2 ·x+t22≥0}

)
= ∥I{ω1

2 ·x+t12≥0} − I{ω2
2 ·x+t22≥0}∥L2(Ω),

the covering number of G2 can be bounded as

N (G2, d, ϵ) ≤ N (∂Bd1 (1)× [−1, 1], d1,
ϵ

2
) · N (F1, d2,

ϵ

2
).

As F1 is a subset of the collection of all indicator functions of sets in a class with finite VC-dimension, then Theorem 2.6.4
in Vaart & Wellner (2023) implies

N (F1, d2, ϵ) ≤ K(d+ 1)(4e)d+1

(
2

ϵ

)2d

with a universal constant K, since the collection of all half-spaces in Rd is a VC-class of dimension d + 1 (see Lemma
9.12(i) in Kosorok (2008)).

By the inequality
√
|a|+ |b| ≤

√
|a|+

√
|b|, we have√

2|ω1
1 − ω2

1 |21 + |t11 − t21|2 ≤
√
2(|ω1

1 − ω2
1 |1 + |t11 − t21|),

therefore

N (∂Bd1 (1)× [−1, 1], d1, ϵ) ≤ N (∂Bd1 (1), | · |1,
√
2

2
ϵ) · N ([−1, 1], | · |,

√
2

2
ϵ).

Combining all results above and Lemma C.5, we can compute an upper bound for the covering number of G1.

N (G1, d, ϵ) ≤ N (G2, d,
ϵ

2
)

≤ N (∂Bd1 (1)× [−1, 1], d1,
ϵ

4
) · N (F1, d2,

ϵ

4
)

≤ N (∂Bd1 (1), | · |1,
√
2

8
ϵ) · N ([−1, 1], | · |,

√
2

8
ϵ) · N (F1, d2,

ϵ

4
)

≤ K(d+ 1)(4e)d+1
(c
ϵ

)3d
,

where c is a universal constant.

Therefore, applying Lemma C.6 yields the desired conclusion.

Note that in Proposition 2.2, we require ti ∈ [−1, 1) instead of ti ∈ [−1, 1] due to the measurability (see Remark A.4). At
this time, the approximation result does not change. In fact, for any ω ∈ Rd, taking a sequence {tn}n∈N that is monotonically
increasing and tends to 1, we can deduce that ∥σ(ω · x+ tn)∥H1(Ω) → ∥σ(ω · x+ 1)∥H1(Ω). It suffices to prove that∫

Ω

|I{ω·x+tn≥0} − I{ω·x+1≥0}|2dx =

∫
Ω

|I{ω·x+tn>0} − I{ω·x+1>0}|2dx→ 0.

Since the function t 7→ I{u<t} is left-continuous for any u ∈ R, so that I{ω·x+tn>0} → I{ω·x+1>0} for all x ∈ Ω. Then,
applying the dominated convergence theorem leads to the conclusion.

A.2. Proof of Theorem 2.4

The proof is based on a new error decomposition and the peeling method. The key point is the fact that
∫
Ω
u∗(x)dx = 0,

thus for any u ∈ H1(Ω),(∫
Ω

u(x)dx

)2

=

(∫
Ω

(u(x)− u∗(x))dx

)2

≤
∫
Ω

(u(x)− u∗(x))2dx ≤ ∥u− u∗∥2H1(Ω), (58)
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which implies that if u is close enough to u∗ in the H1 norm, then
(∫

Ω
u(x)dx

)2
is also proportionately small. Furthermore,

if u is bounded, we can also prove that the empirical part of
(∫

Ω
u(x)dx

)2
, i.e.,

(
1
n

n∑
i=1

u(Xi)

)2

is also small in high

probability via the Hoeffding inequality.

In the proof, we omit the notation for the Poisson equation, i.e., we write E and En for the population loss EP and empirical
loss En,P respectively. Additionally, we assume that there is a constant M such that |u∗|, |∇u∗|, |f | ≤M .

Assume that un is the minimal solution obtained by minimizing the empirical loss En in the function class F , here we just
take F as a parameterized hypothesis function class. When considering the specific setting, we can choose F to be the
function class of two-layer neural networks or deep neural networks. Additionally, we assume that those functions in F and
their gradients are bounded by M in absolute value and 2-norm.

Recall that the population loss and its empirical part are

E(u) =
∫
Ω

|∇u(x)|2dx−
∫
Ω

2f(x)u(x)dx+

(∫
Ω

u(x)dx

)2

(59)

and

En(u) =
1

n

n∑
i=1

|∇u(Xi)|2 −
2

n

n∑
i=1

f(Xi)u(Xi) +

(
1

n

n∑
i=1

u(Xi)

)2

. (60)

By taking uF ∈ argminu∈F ∥u− u∗∥H1(Ω), we have the following error decomposition:

E(un)− E(u∗) = E(un)− λEn(un) + λ(En(un)− En(uF )) + λEn(uF )− E(u∗)
≤ E(un)− λEn(un) + λEn(uF )− E(u∗)
= E(un)− λEn(un) + λ(En(uF )− En(u∗)) + λEn(u∗)− E(u∗)
= (E(un)− E(u∗))− λ(En(un)− En(u∗)) + λ(En(uF )− En(u∗))
≤ sup
u∈F

[(E(u)− E(u∗))− λ(En(u)− En(u∗))] + λ(En(uF )− En(u∗)),

(61)

where the first inequality follows from the definition of un and λ is a constant to be determined.

In the following, we estimate the two terms separately.

Rearranging the term En(uF )− En(u∗) yields

En(uF )− En(u∗)

=
1

n

n∑
i=1

|∇uF (Xi)|2 +

(
1

n

n∑
i=1

uF (Xi)

)2

− 2

n

n∑
i=1

f(Xi)uF (Xi)

−

[
1

n

n∑
i=1

|∇u∗(Xi)|2 + (
1

n

n∑
i=1

u∗(Xi))
2 − 2

n

n∑
i=1

f(Xi)u
∗(Xi)

]

=
1

n

n∑
i=1

[
(|∇uF (Xi)|2 − 2f(Xi)uF (Xi))− (|∇u∗(Xi)|2 − 2f(Xi)u

∗(Xi))
]

+

( 1

n

n∑
i=1

uF (Xi)

)2

−

(
1

n

n∑
i=1

u∗(Xi)

)2


:= ϕ1n + ϕ2n,

(62)

where in the last equality, we denote the right two terms in the second equality as ϕ1n and ϕ2n respectively.

Define
h(x) = (|∇uF (x)|2 − 2f(x)uF (x))− (|∇u∗(x)|2 − 2f(x)u∗(x)),
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then by the boundedness of uF , |∇uF |, u∗, |∇u∗| and f , we can deduce that

V ar(h) ≤ P (h2) ≤ 8M2∥uF − u∗∥2H1(Ω) = 8M2ϵ2app and |h− E[h]| ≤ 2 sup |h| ≤ 12M2, (63)

where ϵapp denotes the approximation error in the H1(Ω) norm, i.e., ϵapp = ∥uF − u∗∥H1(Ω).

Therefore, from Bernstein inequality (see Lemma C.1) and (63), we have that with probability at least 1− e−t,

ϕ1n =
1

n

n∑
i=1

[(|∇uF (Xi)|2 − 2f(Xi)uF (Xi))− (|∇u∗(Xi)|2 − 2f(Xi)u
∗(Xi))]

≤ E[h(X)] +

√
24M2t

n
ϵ2app +

4M2t

n

= E(uF )− E(u∗)−
(∫

Ω

uFdx

)2

+

√
24M2t

n
ϵ2app +

4M2t

n

≤ C

(
ϵ2app +

M2t

n

)
,

(64)

where the last inequality follows by the basic inequality 2
√
ab ≤ a+ b for any a, b > 0 and Proposition 2.1.

For ϕ2n, the Hoeffding inequality (see Lemma C.2) implies

P

(∣∣∣∣∣ 1n
n∑
i=1

uF (Xi)−
∫
Ω

uF (x)dx

∣∣∣∣∣ ≥ 2M

√
2t

n

)
≤ 2e−t.

Therefore with probability at least 1− 2e−t,

ϕ2n =

(
1

n

n∑
i=1

uF (Xi)

)2

−

(
1

n

n∑
i=1

u∗(Xi)

)2

≤

(
1

n

n∑
i=1

uF (Xi)

)2

≤ 2

∣∣∣∣∣ 1n
n∑
i=1

uF (xi)−
∫
Ω

uF (x)dx

∣∣∣∣∣
2

+

∣∣∣∣∫
Ω

uF (x)dx

∣∣∣∣2


≤ C

(
ϵ2app +

M2t

n

)
.

(65)

Combining the upper bounds for ϕ1n and ϕ2n, i.e. (64) and (65), we can deduce that with probability as least 1− 3e−t,

En(uF )− En(u∗) ≤ C

(
ϵ2app +

M2t

n

)
. (66)

Plugging this into the error decomposition (61) yields that with probability as least 1− 3e−t,

E(un)− E(u∗) ≤ sup
u∈F

[(E(u)− E(u∗))− λ(En(u)− En(u∗))] + λC

(
ϵ2app +

M2t

n

)
. (67)

For the first term in the right of (67), we employ the peeling technique to establish an upper bound for it.

Let ρ0 be a positive constant to be determined and ρk = 2ρk−1 for k ≥ 1.

Consider the sets Fk := {u ∈ F : ρk−1 < ∥u− u∗∥2H1(Ω) ≤ ρk} for k ≥ 1 and F0 = {u ∈ F : ∥u− u∗∥2H1(Ω) ≤ ρ0} for
k = 0.
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The boundedness of the functions in F , u∗ and their respective gradients implies that

K := max k ≤ C log
M2

ρ0
,

since ρK = 2Kρ0 and supu∈F ∥u− u∗∥2H1(Ω) ≤ 4M2.

Then for the fixed constant δ ∈ (0, 1), set δk = δ
K+1 for 0 ≤ k ≤ K.

From Lemma C.8, we know that with probability at least 1− δk

sup
u∈Fk

(E(u)− E(u∗))− (En(u)− En(u∗))

≤ C(
αM2 log(2β

√
n)

n
+

√
M2ρkα log(2β

√
n)

n
+

√
M2ρk log

1
δk

n

+
M2 log 1

δk

n
+

√
aM2ρk
n

log
4b

M
),

(68)

where α, β, a, b are constants depending on the complexity of F (see the definitions in Lemma C.8).

Note that
ρk ≤ max{ρ0, 2ρk−1}

≤ max{ρ0, 2∥u− u∗∥2H1(Ω)}
≤ max{ρ0, 2CP (E(u)− E(u∗))}
≤ ρ0 + 2CP (E(u)− E(u∗))

(69)

holds for any u ∈ Fk and

log
1

δk
= log

K + 1

δ
≤ log

1

δ
+ C log log

M2

ρ0
. (70)

Therefore, setting ρ0 = 1/n, then with (69) for ρk, for the right terms in (68), we can deduce that the following inequality
holds for all u ∈ Fk.

C

√
M2ρkα log(2β

√
n)

n

≤ C

√
M2(ρ0 + 2CP (E(u)− E(u∗)))α log(2β

√
n)

n

≤ C

√
M2ρ0α log(2β

√
n)

n
+ C

√
2M2CP (E(u)− E(u∗))α log(2β

√
n)

n

≤ C

√
M2ρ0α log(2β

√
n)

n
+ C(

E(u)− E(u∗)
4C

+
2CM2CPα log(2β

√
n)

n
)

=
E(u)− E(u∗)

4
+ C(

√
M2ρ0α log(2β

√
n)

n
+
M2CPα log(2β

√
n)

n
)

≤ E(u)− E(u∗)
4

+
CM2CPα log(2β

√
n)

n
,

(71)

where the third inequality follows from the basic inequality 2
√
ab ≤ a+ b for any a, b ≥ 0.

Similarly, with the upper bound for log 1
δk

, i.e. (70), we can deduce that

C

√
M2ρk log

1
δk

n
≤ E(u)− E(u∗)

4
+
CCPM

2(log 1
δ + log log(nM2))

n
, (72)

M2 log 1
δk

n
≤
M2(log 1

δ + log log(nM2))

n
(73)
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and

C

√
aM2ρk
n

log
4b

M
≤ E(u)− E(u∗)

4
+
CM2CPa log

4b
M

n
. (74)

Combining (71), (72), (73), (74) and (68) yields that with probability at least 1− δk for all u ∈ Fk,

(E(u)− E(u∗))− 4(En(u)− En(u∗))

≤ C

(
M2CPα log(2β

√
n)

n
+
CCPM

2(log 1
δ + log log(nM2))

n
+
M2CPa log

4b
M

n

)
.

(75)

Note that
∑K
k=0 δk = δ, therefore the above inequality (75) holds with probability at least 1− δ uniformly for all u ∈ F ,

i.e.,
sup
u∈F

(E(u)− E(u∗))− 4(En(u)− En(u∗))

≤ C

(
M2CPα log(2β

√
n)

n
+
CPM

2(log 1
δ + log log(nM2))

n
+
M2CPa log

4b
M

n

)
.

(76)

By taking λ = 4 and δ = e−t in (76), together with the error decomposition (61), we have that with probability at least
1− 4e−t,

E(un)− E(u∗)

≤ C

(
M2CPα log(2β

√
n)

n
+
CPM

2(t+ log log(nM2))

n
+
M2CPa log

4b
M

n
+ ϵ2app +

M2t

n

)
.

(77)

From Lemma C.9, we know that

(1) when F = Fm,1(5∥u∗P ∥B2(Ω)),
b = cM, a = cmd, β = cM2, α = cmd,

where c is a universal constant.

(2) when F = Φ(N,L,B∥u∗P ∥Wk,∞(Ω)),

b = Cn, a = CN2L2(logN logL)3, β = Cn,α = CN2L2(logN logL)3,

where n ≥ CN2L2(logN logL)3 and C is a constant independent of N,L.

Finally, recall the tensorization of variance:

V ar[f(X1, · · · , Xn)] ≤ E

[
n∑
i=1

V arif(X1, · · · , Xn)

]

whenever X1, · · · , Xn are independent, where

V arif(x1, · · · , xn) := V ar[f(x1, · · · , xi−1, Xi, xi+1, · · · , xn)].

Combining this fact and the observation of the product structure of [0, 1]d yields that the Poincaré constant is a universal
constant.

Hence, the conclusion follows.
Remark A.4. In the proof of Theorem 2.4, we have made an implicit assumption that the empirical processes are measurable.
Typically, when considering some empirical process, corresponding functions are Lipschitz continuous with respect to the
parameters and the parameter space is separable, thus the measurability holds directly. However, in our setting where ReLU
neural networks are used in the DRM, the functions fail to satisfy the Lipschitz continuity with respect to the parameters.
Thus, it’s necessary to discuss the measurability of the empirical processes. For simplicity, we only consider the two-layer
neural networks.
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Here, we require the concept of pointwise measurability. Recall that a function class F of measurable functions in X is
pointwise measurable if there exists a countable subset G ⊂ F such that for every f ∈ F , there exists a sequence {gm} ∈ G
with gm(x) → f(x) for every x ∈ X (see Chapter 2.3 in Vaart & Wellner (2023) or Chapter 8.2 in Kosorok (2008)).

Note that when applying two-layer neural networks in the DRM, the term I{ω·x+t≥0} is not Lipschitz continuous with
respect to ω and t. Fortunately, we can adapt the proof of Lemma 8.12 in Kosorok (2008) to show that the function class is
pointwise measurable. Specifically, consider the function class

G = {I{−ω·x≤t} : ω ∈ ∂Bd1 (1) ∩Qd, t ∈ [−1, 1) ∩Q},

where Q is the set consisting of all rationals.

Fix ω and t, we can construct {(ωm, tm)} as follows: pick ωm ∈ ∂Bd1 (1) ∩Qd such that |ωm − ω|1 ≤ 1/(2m) and pick
tm ∈ (t+ 1/(2m), t+ 1/m]. Now, for any x ∈ [0, 1]d, we have that

I{−ωm·x≤tm} = I{−ω·x≤tm+(ωm−ω)·x}.

Since |(ωm − ω) · x| ≤ |ωm − ω|1 ≤ 1/(2m), we have that rm := tm + (ωm − ω) · x− t > 0 for all m and rm → 0 as
m→ ∞. Note that the function t 7→ I{u≤t} is right-continuous for any u ∈ R, so that I{−ωm·x≤tm} → I{−ω·x≤t} for all
x ∈ [0, 1]d. Thus, the pointwise measurability is established.

Therefore, for the function class of two-layer neural networks Fm,1(B),

Fm,1(B) =

{
m∑
i=1

γiσ(ωi · x+ ti) : |ωi|1 = 1, ti ∈ [−1, 1),

m∑
i=1

|γi| ≤ B

}
,

we can pick γi, ωi, ti to be rationals. To prove the measurability for the empirical processes of the form supu∈F (E(u)−
λEn(u)), where F is related to ReLU functions and their gradients, it remains to focus on the term Pf .

Note that for u, û ∈ Fm,1(B) with the forms

u(x) =

m∑
i=1

γiσ(ωi · x+ ti), û(x) =

m∑
i=1

γ̂iσ(ω̂i · x+ t̂i),

we have that
|P (|∇u|2 − 2fu)− P (|∇û|2 − 2fû)|
≤ C(P |∇u−∇û|+ P |u− û|)

≤ C

(
m∑
i=1

|γi − γ̂i|+ |ωi − ω̂i|1 + |ti − t̂i|+ P |I{ωi·x+ti≥0} − I{ω̂i·x+t̂i≥0}|

)
.

The dominated convergence theorem implies that

P |I{ω·x+t≥0} − I{ωm·x+tm≥0}| → 0.

Therefore, with a little abuse of notation, we have supu∈F (E(u)− λEn(u)) = supu∈G(E(u)− λEn(u)), which implies that
the empirical processes in the proof of Theorem 2.4 are measurable, as the parameters in F can be replaced by rationals.

A.3. Proof of Theorem 2.5

Proof. For the static Schrödinger equation, we can also use the method in the proof of Theorem 2.4 or other methods in Lu
et al. (2021b), Lei et al. (2025) and Farrell et al. (2021), due to the similarity between the problem and the generalization
error of L2 regression with bounded noise. However, the methods mentioned above are quite complex. Here, we provide a
simple proof through a different error decomposition and LRC, which can be easily adapted for other problems with similar
strongly convex structures.

As before, in the proof, we write E and En for the population loss ES and empirical loss En,S respectively. Additionally, we
assume that |u∗|, |∇u∗|, |V |, |f | ≤M for some positive constant M .
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Recall that
u∗ = argmin

u∈H1(Ω)

E(u) :=
∫
Ω

|∇u|2 + V |u|2dx− 2

∫
Ω

fudx (78)

and un is the minimal solution to the empirical loss En in the function class F . We also assume that supu∈F |u|,
supu∈F |∇u| ≤M .

Through an error decomposition, the same as that for the Poisson equation (61), we have

E(un)− E(u∗) = E(un)− λEn(un) + λ(En(un)− En(uF )) + λEn(uF )− E(u∗)
≤ E(un)− λEn(un) + λEn(uF )− E(u∗)
= E(un)− λEn(un) + λ(En(uF )− En(u∗)) + λEn(u∗)− E(u∗)
= (E(un)− E(u∗))− λ(En(un)− En(u∗)) + λ(En(uF )− En(u∗))
≤ sup
u∈F

[(E(u)− E(u∗))− λ(En(u)− En(u∗))] + λ(En(uF )− En(u∗)),

(79)

where the first inequality follows from the definition of un and λ is a constant to be determined.

Let ϵapp := ∥uF − u∗∥H1(Ω) be the approximation error.

From the Bernstein inequality, we can deduce that with probability at least 1− e−t

(En(uF )− En(u∗))− (E(uF )− E(u∗)) ≤
√

2tV ar(g)

n
+
t∥g∥L∞

3n
, (80)

where
g(x) := (|∇uF |2 + V (x)|uF (x)|2 − 2f(x)uF (x))− (|∇u∗(x)|2 + V (x)|u∗(x)|2 − 2f(x)u∗(x)).

From the boundedness of uF , u∗,∇uF ,∇u∗, f and V , we can deduce that |g| ≤ 8M2 and

V ar(g) ≤ Pg2 ≤ cM2∥uF − u∗∥2H1(Ω) = cM2ϵ2app. (81)

Therefore, plugging (81) into (80) yields that with probability at least 1− e−t

En(uF )− En(u∗) ≤ cϵ2app +

√
2tcM2ϵ2app

n
+

8tM2

3n

≤ c

(
ϵ2app +

tM2

n

)
,

(82)

where the first inequality follows from Proposition 2.1 and the second inequality follows from the mean inequality.

Plugging (82) into the error decomposition (79) yields that

E(un)− E(u∗) ≤ sup
u∈F

[(E(u)− E(u∗))− λ(En(u)− En(u∗))] + λc

(
ϵ2app +

M2t

n

)
(83)

holds with probability at least 1− e−t.

Note that (E(u)− E(u∗))− λ(En(u)− En(u∗)) can be rewritten as

(E(u)− E(u∗))− λ(En(u)− En(u∗)) = Ph− λPnh, (84)

where h(x) := (|∇u(x)|2 + V (x)|u(x)|2 − 2f(x)u(x))− (|∇u∗(x)|2 + V (x)|u∗(x)|2 − 2f(x)u∗(x)). And the form (84)
motivates the use of LRC.

To invoke the LRC, we begin by defining the function class

H := {(|∇u(x)|2 + V (x)|u(x)|2 − 2f(x)u(x))− (|∇u∗(x)|2 + V (x)|u∗(x)|2 − 2f(x)u∗(x)) : u ∈ F}

and a functional on H as T (h) := Ph2. It is easy to check that

V ar(h) ≤ T (h) ≤ cM2Ph, (85)
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as Ph2 ≤ cM2∥u− u∗∥2H1(Ω) ≤ cM2(E(u)− E(u∗)) = cM2Ph. It implies that the functional T satisfies the condition
of Theorem 3.3 in Bartlett et al. (2005).

Following the procedure of Theorem 3.3 in Bartlett et al. (2005), we are going to seek a sub-root function and compute its
fixed point.

Define the sub-root function

ψ(r) := 80M2ERn(h ∈ star(H, 0) : Ph2 ≤ r) + 704
M4 log n

n
, (86)

where star(H, 0) := {αh : α ∈ [0, 1], h ∈ H} and invoking the star-hull of H around 0 is to make ψ to be a sub-root
function.

Next, our goal is to bound the fixed point of ψ.

If r ≥ ψ(r), then Corollary 2.2 in Bartlett et al. (2005) implies that with probability at least 1− 1
n ,

{h ∈ star(H, 0) : Ph2 ≤ r} ⊂ {h ∈ star(H, 0) : Pnh2 ≤ 2r},

and thus

ERn(h ∈ star(H, 0) : Ph2 ≤ r) ≤ ERn(h ∈ star(H, 0) : Pnh2 ≤ 2r) +
8M2

n
. (87)

Assume that r∗ is the fixed point of ψ, then

r∗ = ψ(r∗) ≤ cM2ERn(h ∈ star(H, 0) : Pnh2 ≤ 2r∗) + c
M4 log n

n
, (88)

where we use a universal constant c to represent the upper bound for the constants in the definition of ψ(r), i.e. (86).

To estimate the first term in (88), we need the assumption about the empirical covering number of H.

Assumption A.5. For any ϵ > 0, assume that

N (H, L2(Pn), ϵ) ≤
(
β

ϵ

)α
a.s.,

for some constant β > suph∈H |h|.

Then by Dudley’s theorem,
ERn(h ∈ star(H, 0) : Pnh2 ≤ 2r∗)

≤ c√
n
E
∫ √

2r∗

0

√
logN (ϵ, star(H, 0), L2(Pn))dϵ

≤ c√
n
E
∫ √

2r∗

0

√
logN (

ϵ

2
,H, L2(Pn))

(
2

ϵ
+ 1

)
dϵ

≤ c

√
α

n

∫ √
2r∗

0

√
log

(
β

ϵ

)
dϵ

= cβ

√
α

n

∫ √
2r∗
β

0

√
log

(
1

ϵ

)
dϵ

≤ c

√
α

n

√
r∗ log

(
β√
r∗

)

≤ c

√
α

n

√
r∗ log

(√
nβ

M2

)
,

where the fourth inequality follows from Lemma C.7 and the last inequality follows by the fact that r∗ = ψ(r∗) ≥ cM
4 logn
n .
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Therefore,

r∗ ≤ cM2

√
α

n

√
r∗ log

(√
nβ

M2

)
+ c

M4 log n

n
,

which implies

r∗ ≤ cM4

(
α

n
log

(√
nβ

M2

)
+

log n

n

)
.

The final step is to estimate the empirical covering numbers of the function classes of two-layer neural networks and deep
neural networks, i.e., to determine α and β for F = Fm(5∥u∗S∥B2(Ω)) and F = Φ(N,L,B∥u∗S∥W 1,∞(Ω)).

(1) When F = Fm,1(5∥u∗S∥B2(Ω)), estimation of the covering number of H is almost same as the estimation of G for the
two-layer neural networks in Lemma C.9 (1). It is not difficult to deduce that α = cmd, β = cM2. For simplicity, we omit
the proof.

(2) When F = Φ(N,L,B∥u∗S∥Wk,∞(Ω)), we can also deduce that α = CN2L2(logN logL)3, β = Cn by a similar
method as that in Lemma C.9 (2).

As a result, given the upper bound for r∗, applying Theorem 3.3 in Bartlett et al. (2005) with λ = 2 allows us to reach the
conclusion.

A.4. Proof of Proposition 2.7

Proof. (1) We first consider the setting of Poisson equation. From Lemma 2.5 in (Mendelson, 2002), we can obtain that for
bounded function class F , if

logN (F , L2(Pn), ϵ) ≤
α

ϵp
,

then

ERn(f ∈ F : Pf2 ≤ r) ≤ Cmax

{ √
α

2− p
n−

1
2 r

2−p
4 ,

( √
α

2− p

) 4
2+p

n−
2

p+2

}
, (89)

where α ≥ 2, 0 < p < 2 and C only depends the upper bound for the functions in F .

Compared to the original Lemma 2.5 in (Mendelson, 2002), here in (89), we provide the result with explicit dependence on
α, p.

Note that Theorem D.2 implies that α = Cd, p = 6d
3d+2 . At this point, what we need to modify is the proof of Lemma C.8

and the localization process in the proof of Theorem 2.4.

For Lemma C.8, from (150), it suffices to estimate ψ(1)
n (δ) and ψ(2)

n (δ), since ψ(3)
n (δ) remains unchanged.

For ψ(2)
n (δ), we only need to estimate the global Rademacher complexity. Specifically, from Dudley’s theorem, we have

Rn(F) ≲
1√
n

∫ M

0

√
α

ϵp
dϵ

≲

√
α√
n

1

1− p
2

=

√
α

2− p

1√
n
.

(90)

Thus,

ψ(2)
n (δ) ≲

√
δ

( √
α

2− p

1√
n
+

√
t

n

)
. (91)

For ψ(1)
n (δ), we can replace (155) with (89). Thus we can obtain Lemma C.8 under the new covering number assumption.

It remains only to modify the localization process in the proof of Theorem 2.4, i.e., the procedure following equation (67).
We take ρ0 = n−

2
p+2 , so that n−

1
2 ρ0

2−p
4 = n−

2
p+2 .
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Then when k = 0, (68) becomes

sup
u∈F0

[(E(u)− E(u∗))− (En(u)− En(u∗))]

≲

( √
α

2− p

) 4
2+p

n−
2

p+2 +

√
α

2− p

√
ρ0√
n

+

√
tρ0
n

+
t

n

≤ E(u)− E(u∗)
4

+

( √
α

2− p

) 4
2+p

n−
2

p+2 +

√
α

2− p

√
ρ0√
n

+

√
tρ0
n

+
t

n

≲
E(u)− E(u∗)

4
+

( √
α

2− p

) 4
2+p

n−
2

p+2 +

√
tρ0
n

+
t

n

(92)

where the second inequality is due to that E(u)− E(u∗) ≥ 0 and the last inequality follows from that n−1 ≤ n−
2

2+p = ρ0.

For k > 0, we now only need to focus on the first term on the right-hand side of equation (89), applying Young’s inequality
with a = 4

2+p , b =
4

2−p , we have

1

C

C
√
α

2− p
n−

1
2 ρ

2−p
4

k ≤

(
C
√
α

2−p n
− 1

2

)a
a

+

(
ρ

2−p
4

k

)b
b

≤ 1

C

(
C
√
α

2− p

) 4
2+p

n−
2

p+2 +
1

C

2− p

4
ρk

≤ 1

C

(
C
√
α

2− p

) 4
2+p

n−
2

p+2 +
1

C

2− p

2
ρk−1

≤ 1

C

(
C
√
α

2− p

) 4
2+p

n−
2

p+2 +
1

4
[E(u)− E(u∗)],

(93)

where C can be chosen such that the last inequality holds for all u ∈ Fk.

Finally, by following the remaining steps in the proof of Theorem 2.4, we can conclude.

(2) For the static Schrödinger equation, since the proof utilizes the local Rademacher complexity, we only need to provide
an upper bound for the fixed point r∗. This can be achieved through the Dudley’s theorem, similar to (90).

B. Proof of Section 3
B.1. Proof of Proposition 3.1

Proof. (1) The proof mainly follows the procedure in the proof the Proposition 2.2, but the tools from the FEM may not
work for ReLU2 functions. Therefore, we turn to use Taylor’s theorem with integral remainder, which enables us to establish
a connection between the one-dimensional C2 functions and the ReLU2 functions. And the method has been also used in
Klusowski & Barron (2018); Xu (2020).

Recall that Taylor’s theorem with integral remainder states that for f : R → R that has k+ 1 continuous derivatives in some
neighborhood U of x = a, then for x ∈ U

f(x) = f(a) + f
′
(a)(x− a) + · · ·+ f (k)(a)

k!
(x− a)k +

∫ x

a

f (k+1)(t)
(x− t)k

k!
dt.

Similar as the proof of Proposition 2.2 (1), for any f ∈ B3(Ω), we have

f(x) =

∫
Rd

g(x, ω)Λ(dω),
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where B =
∫
Rd(1 + |ω|1)3|f̂(ω)|dω, Λ(dω) = (1 + |ω|1)3|f̂(ω)|/B and

g(x, ω) =
B cos(ω · x+ θ(ω))

(1 + |ω|1)3
.

Therefore, f is in the H2(Ω) closure of the convex hull of the function class

Gcos(B) :=

{
B cos(ω · x+ t)

(1 + |ω|1)3
: ω ∈ Rd, t ∈ R

}
.

Note that any function g(x, ω) = B cos(ω·x+t)
(1+|ω|1)3 is a composition of a one-dimensional function g(z) = B cos(|ω|1z+t)

(1+|ω|1)3 and a
linear function z = ω

|ω|1 · x with value in [−1, 1]. Therefore, in order to prove that f is in the H2(Ω) closure of the convex
hull of the function class Fσ2(cB)∪Fσ2(−cB)∪ {0}, it suffices to prove that g is in the H2([−1, 1]) closure of the convex
hull of the function class F1

σ2
(cB) ∪ F1

σ2
(−cB) ∪ {0}, where

Fσ2
(b) := {bσ2(ω · x+ t) : |ω|1 = 1, t ∈ [−1, 1]} and F1

σ2
(b) := {bσ2(ϵz + t) : ϵ = +1 or1, t ∈ [−1, 1]}

for any constant b ∈ R.

For

g(z) =
B cos(|ω|1z + t)

(1 + |ω|1)3
=
B(cos(|ω|1z) cos t− sin(|ω|1z) sin t)

(1 + |ω|1)3

with z ∈ [−1, 1], applying Taylor’s theorem with integral remainder for cos(|ω|1z) and sin(|ω|1z) at the point 0, we have

cos(|ω|1z) = 1− |ω|21
2
z2 +

∫ z

0

|ω|31 sin(|ω|1s)
(z − s)2

2
ds

and

sin(|ω|1z) = |ω|1z −
∫ z

0

|ω|31 cos(|ω|1s)
(z − s)2

2
ds.

Note that z2, z, 1 can be represented by combinations of ReLU2 functions, specifically

z2 = σ2(z) + σ2(−z), z =
(z + 1)2 − (z − 1)2

4
, 1 =

(z + 1)2 + (z − 1)2

2
− z2.

Therefore, we only need to prove that the integral remainders are in the H2([−1, 1]) closure of the convex hull of the
function class F1

σ2
(cB)∪F1

σ2
(−cB)∪{0}. In the following, the constant c may change line by line, but it is still a universal

constant, so we still denote it by c.

Due to the form of the integral remainder, we consider the general form h(z) =
∫ z
0
φ(s)(z − s)2ds with φ ∈ C([−1, 1]).

By the fact that (z − s)2 = (z − s)2+ + (−z + s)2+, we have∫ z

0

φ(s)(z − s)2ds =

∫ z

0

φ(s)(z − s)2+ds+

∫ z

0

φ(s)(−z + s)2+ds := A1 +A2

In the following, we aim to prove that

A1 +A2 =

∫ 1

0

φ(s)(z − s)2+ds−
∫ 1

0

φ(−s)(−z − s)2+ds := B1 +B2,

which enables the method used in the proof of Proposition 2.2 (1) to be feasible.

(1) When z ≥ 0, it is easy to obtain that

A1 =

∫ z

0

φ(s)(z − s)2+ds =

∫ 1

0

φ(s)(z − s)2+ds = B1, and A2 = 0, B2 = 0. (94)
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Therefore, A1 +A2 = B1 +B2.

(2) When z < 0, it is easy to check that A1 = B1 = 0. Therefore, it remains only to check that A2 = B2.

For A2, we can deduce that

A2 =

∫ z

0

φ(s)(−z + s)2+ds

= −
∫ 0

z

φ(s)(−z + s)2+ds

= −
[∫ 0

z

φ(s)(−z + s)2+ds+

∫ z

−1

φ(s)(−z + s)2+ds

]
= −

∫ 0

−1

φ(s)(−z + s)2+ds

= −
∫ 1

0

φ(−y)(−z − y)2+dy = B2,

(95)

where the third equality follows by that
∫ z
−1
φ(s)(−z + s)2+ds=0 and the fifth equality is due to the variable substitution

s = −y.

Combining (94) and (95), we can deduce that

h(z) =

∫ z

0

φ(s)(z − s)2ds =

∫ 1

0

φ(s)(z − s)2+ds−
∫ 1

0

φ(−s)(−z − s)2+ds. (96)

The next step is to prove that h is the H2([−1, 1]) closure of convex hull of F1
σ2
(cB) ∪ F1

σ2
(−cB) ∪ {0}.

Let h1(z) =
∫ 1

0
φ(s)(z − s)2+ds, h2(z) =

∫ 1

0
φ(−s)(−z − s)2+ds, then h(z) = h1(z)− h2(z).

Note that h
′

1(z) =
∫ 1

0
2φ(s)(z − s)+ds and h

′′

1 (z) =
∫ 1

0
2φ(s)I{z−s≥0}ds a.e., since (z − s)+ is differentiable for s a.e. .

Let {si}ni=1 be an i.i.d. sequence of random variables distributed according the uniform distribution of the interval [0, 1],
then by Fubini’s theorem

E

∥∥∥∥∥h1(z)−
n∑
i=1

φ(si)(z − si)
2
+

n

∥∥∥∥∥
2

H2([−1,1])

=

∫ 1

−1

E

[
|h1(z)−

n∑
i=1

φ(si)(z − si)
2
+

n
|2 + |h

′

1(z)−
n∑
i=1

2φ(si)(z − si)+
n

|2 ++|h
′′

1 (z)−
n∑
i=1

2φ(si)I{z−si≥0}

n
|2
]
dz

=

∫ 1

−1

V ar(φ(·)(z − ·)2+) + V ar(2φ(·)(z − ·)+) + V ar(2φ(·)I{z−·≥0})

n
dz

≤ C

n
,

where the last inequality follows from the boundedness of φ. And the same conclusion also holds for h2(z) and h(z).
Therefore, we can deduce that h is in theH2([−1, 1]) closure of convex hull of the function class F1

σ2
(cB)∪F1

σ2
(−cB)∪{0}.

Then applying the variable substitution yields that for any f ∈ B3(Ω) and ϵ > 0, there exists a two-layer σ2 neural network
such that

∥f(x)−
m∑
i=1

aiσ2(ωi · x+ ti)∥H2(Ω) ≤ ϵ, (97)

where |ωi|1 = 1, |ti| ≤ 1,
m∑
i=1

|ai| ≤ c∥f∥B3(Ω) and c is a universal constant.

Just as the proof of Proposition 2.2 (1), it remains only to estimate the metric entropy of the function class

F2 := {σ2(ω · x+ t) : |ω|1 = 1, t ∈ [−1, 1]}
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under the H2 norm.

For (ω1, t1), (ω2, t2) ∈ ∂Bd1 (1)× [−1, 1], we have

∥σ2(ω1 · x+ t1)− σ2(ω2 · x+ t2)∥2H2(Ω)

= ∥σ2(ω1 · x+ t1)− σ2(ω2 · x+ t2)∥2L2(Ω) + ∥|2ω1σ(ω1 · x+ t1)− 2ω2σ(ω2 · x+ t2)|∥2L2(Ω)

+

d∑
i=1

d∑
j=1

∥2ω1iω1jI{ω1·x+t1≥0} − 2ω2iω2jI{ω2·x+t2≥0}∥2L2(Ω)

:= (i) + (ii) + (iii),

where we denote the i-th element of the vector ωk by ωki for k = 1, 2, 1 ≤ i ≤ d.

For (i), since σ2 is 4-Lipschitz in [−2, 2],

(i) = ∥σ2(ω1 · x+ t1)− σ2(ω2 · x+ t2)∥2L2(Ω)

≤ 16∥(ω1 − ω2) · x+ (t1 − t2)∥2L2(Ω)

≤ 32(|ω1 − ω2|21 + |t1 − t2|2).

(98)

For (ii),
(ii) = ∥|2ω1σ(ω1 · x+ t1)− 2ω2σ(ω2 · x+ t2)|∥2L2(Ω)

= 4∥|(ω1 − ω2)σ(ω1 · x+ t1) + ω2(σ(ω1 · x+ t1)− σ(ω2 · x+ t2))|∥∥2L2(Ω)

≤ 8∥|(ω1 − ω2)σ(ω1 · x+ t1)|∥2L2(Ω) + 8∥|ω2(σ(ω1 · x+ t1)− σ(ω2 · x+ t2))|∥2L2(Ω)

≤ 32|ω1 − ω2|21 + 16(|ω1 − ω2|21 + |t1 − t2|2),

(99)

where the first inequality follows from the mean inequality and the boundedness of σ.

For (iii),

(iii) =

d∑
i=1

d∑
j=1

∥2ω1iω1jI{ω1·x+t1≥0} − 2ω2iω2jI{ω2·x+t2≥0}∥2L2(Ω)

= 4

d∑
i=1

d∑
j=1

∥(ω1iω1j − ω2iω2j)I{ω1·x+t1≥0} + ω2iω2j(I{ω1·x+t1≥0} − I{ω2·x+t2≥0})∥2L2(Ω)

≤ 8

d∑
i=1

d∑
j=1

|ω1iω1j − ω2iω2j |2 + (ω2iω2j)
2∥I{ω1·x+t1≥0} − I{ω2·x+t2≥0}∥2L2(Ω)

≤ 8
d∑
i=1

d∑
j=1

2|ω1i − ω2i|2|ω1j |2 + 2|ω1j − ω2j |2|ω2i|2 + (ω2iω2j)
2∥I{ω1·x+t1≥0} − I{ω2·x+t2≥0}∥2L2(Ω)

≤ 32|ω1 − ω2|21 + 8∥I{ω1·x+t1≥0} − I{ω2·x+t2≥0}∥2L2(Ω),

(100)

where the last inequality follows from the fact that |ω1| ≤ |ω1|1 = 1, |ω2| ≤ |ω2|1 = 1.

Combining the upper bounds for (i), (ii), (iii), we obtain that

∥σ2(ω1 ·x+ t1)−σ2(ω2 ·x+ t2)∥2H2(Ω) ≤ 112(|ω1 −ω2|21 + |t1 − t2|2)+ 8∥I{ω1·x+t1≥0} − I{ω2·x+t2≥0}∥2L2(Ω). (101)

Therefore, based on the same method used in the proof of Proposition A.3, we can deduce that

ϵn(F2) ≤ cn−
1
3d .

Finally, applying Theorem 1 in Makovoz (1996) (see Lemma C.4) yields the conclusion for f in B3(Ω).
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(2) Recall that based on the spline theory, Belomestny et al. (2023) has demonstrated the approximation rates for Hölder
continuous functions with sparse ReLU2 neural networks. Then Belomestny et al. (2024) extended these results for sparse
ReLU3 neural networks. In fact, the approximation results also hold for Sobolev functions, we only need to replace the
Theorem 3 in Belomestny et al. (2023) with the results from Schumaker (2007) on approximating Sobolev functions with
multivariate splines. For simplicity, we omit the proof.

B.2. Proof of Theorem 3.2

Before the proof, we first provide some preliminaries about the entropy method, which is a common method to derive
concentration inequalities. For Ω =

∏n
k=1 Ωk, µ =

∏n
k=1 µk, where µk is a probability measure, let (Ω,Σ) be a measurable

space and A(Ω) denote the algebra of bounded, measurable real valued function on Ω. For f ∈ A, β ∈ R, define the
expectation functional as

Eβf [g] =
E[geβf ]
E[eβf ]

= Z−1
βf E[ge

βf ], for g ∈ A,

where Zβf = E[eβf ] is the normalizing quantity. Then, we can define the entropy as

Entf (β) := βEβf [f ]− logZβf .

The connection between the entropy and the exponential moment makes the entropy method popular for deriving concentra-
tion inequalities, i.e.,

logE[eβ(f−Ef)] ≤ β

∫ β

0

Entf (γ)

γ2
dγ (102)

holds for any f ∈ A and β ≥ 0.

For any real-valued function F on Ω and y ∈ Ωk for k ∈ {1, · · · , n}, define the substitution operator Sky on F as

Sky (F )(x1, · · · , xn) := F (x1, · · · , xk−1, y, xk+1, · · · , xn), (103)

i.e., the k-th argument is simply replaced by y. And define the operator V 2
+ : A → A by

V 2
+F (x) :=

n∑
k=1

Ey∼µk

[(
(F (x)− SkyF (x))+

)2]
. (104)

Proof. Assume that sup
1≤t≤T

sup
x∈Xt

|ft(x)| ≤ b and 1
T sup

f∈F

T∑
t=1

V ar(ft(X
1
t )) ≤ r.

Let

Z := sup
f∈F

1

T

T∑
t=1

(Pn − P )ft = sup
f∈F

1

T

T∑
t=1

1

Nt

Nt∑
i=1

ft(X
i
t)− Eft(Xi

t) (105)

and

F (x) :=
1

2b
sup
f∈F

T∑
t=1

n

Nt

Nt∑
i=1

ft(x
i
t)− Eft(Xi

t), (106)

where n = min1≤i≤T Nt and x = (x11, · · · , xit, · · · , x
Nt

T ).

Define

W (x) :=
1

4b2
sup
f∈F

T∑
t=1

n2

N2
t

Nt∑
i=1

(ft(x
i
t)− Eft(Xi

t))
2 + E(ft(Xi

t)− Eft(Xi
t))

2. (107)

Similar to Theorem 38 in Maurer (2021) for the single task, fix (xt,i)1≤t≤T,1≤i≤n and assume that the maximum in the
definition of F is achieved at f̂ = (f̂1, · · · , f̂T ) ∈ F .
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Then for any y, (F (x)− St,iy F (x))+ ≤ n
2bNt

(f̂t(xt,i)− f̂t(y))+, therefore

V 2
+F (x) =

T∑
t=1

Nt∑
i=1

Ey∼µt,i

[(
(F − St,iy F )+

)2]
≤ 1

4b2

T∑
t=1

n2

N2
t

Nt∑
i=1

Ey∼µt,i

[(
(f̂t(x

i
t)− f̂t(y))+

)2]

≤ 1

4b2

T∑
t=1

n2

N2
t

Nt∑
i=1

Ey∼µt,i

[
(f̂t(x

i
t)− f̂t(y))

2
]

=
1

4b2

T∑
t=1

n2

N2
t

Nt∑
i=1

Ey∼µt,i

[(
f̂t(x

i
t)− Ef̂t(Xi

t)− (f̂t(y)− Ef̂t(Xi
t))
)2]

=
1

4b2

T∑
t=1

n2

N2
t

Nt∑
i=1

(f̂t(x
i
t)− Ef̂t(Xi

t))
2 + E(f̂t(Xi

t)− Ef̂t(Xi
t))

2

≤W,

(108)

where Xi
t follows the distribution µit, i.e., µit = µt.

Therefore, V 2
+F ≤W . Then equation (26) in Maurer (2021) yields that for 0 < γ ≤ β < 2,

EntF (γ) ≤
γ

2− γ
logEeγV

2
+F ≤ γ

2− γ
logEeγW . (109)

Next, we are going the prove that W is self-bounding, so that Lemma 32 (i) in Maurer (2021) can be applied to bound
EeγW . Assume that the maximum in the definition of W is achieved at f̄ = (f̄1, · · · , f̄T ) ∈ F , then for any y,

(W − St,iy W )+ ≤ n2

4b2N2
t

((f̄t(x
i
t)− Ef̄t(Xi

t))
2 − (f̄t(y)− Ef̄t(Xi

t))
2)+ ≤ n2

4b2N2
t

(f̄t(x
i
t)− Ef̄t(Xi

t))
2,

therefore

V 2
+W (x) =

T∑
t=1

Nt∑
i=1

Ey∼µt,i
(W (x)− St,iy W (x))2+

≤ 1

16b4

T∑
t=1

n4

N4
t

Nt∑
i=1

Ey∼µt,i

[
((f̄t(x

i
t)− Ef̄t(Xi

t))
2 − (f̄t(y)− Ef̄t(Xi

t))
2)2+
]

≤ 1

16b4

T∑
t=1

n4

N4
t

Nt∑
i=1

(f̄t(x
i
t)− Ef̄t(Xi

t))
4

≤ 1

4b2

T∑
t=1

n2

N2
t

Nt∑
i=1

(f̄t(x
i
t)− Ef̄t(Xi

t))
2

≤W.

(110)

Combining (110) with Lemma 32(i) in Maurer (2021), we have

logE[eγW ] ≤ γ2E[W ]

2− γ
+ γE[W ] =

γE[W ]

1− γ/2
. (111)

Plugging (111) into (109) yields that

EntF (γ) ≤
γ

2− γ
logE[eγW ] ≤ γ

2− γ
(
γE[W ]

1− γ/2
) =

γ2

(1− γ/2)2
E[W ]

2
. (112)

32



Refined Generalization Analysis of the DRM and PINNs

Combining (102) and (112), we can conclude that

logEeβ(F−EF ) ≤ β

∫ β

0

EntF (γ)

γ2
dγ

≤ β
E[W ]

2

∫ β

0

1

(1− γ/2)2
dγ

=
β2

1− β/2

E[W ]

2
.

(113)

In fact, the above inequality implies that F is a sub-gamma random variable. Thus with the following lemma, we can derive
the concentration inequality for F .

Lemma B.1. Let Z be a random variable, A,B > 0 be some constants. If for any λ ∈ (0, 1/B) it holds

logE[eλ(Z−EZ)] ≤ Aλ2

2(1−Bλ)
,

then for all x ≥ 0,

P (Z ≥ EZ +
√
2Ax+Bx) ≤ e−x.

Applying Lemma B.1 with A = E[W ], B = 1/2 for F , we can deduce that with probability at least 1− e−x

F ≤ EF +
√
2xEW +

x

2
. (114)

From the definitions of F and Z, i.e. (106) and 105), we have Z = 2bF
nT , then with probability at least 1− e−x

Z ≤ EZ +
2b

nT

√
2xEW +

bx

nT
. (115)

Note that EZ ≤ 2R(F) and

EW =
1

4b2
E sup

f∈F

T∑
t=1

n2

N2
t

Nt∑
i=1

(ft(X
i
t)− Eft(Xi

t))
2 + E(ft(Xi

t)− Eft(Xi
t))

2

=
1

4b2
E sup

f∈F

T∑
t=1

n2

N2
t

Nt∑
i=1

[
[(ft(X

i
t)− Eft(Xi

t))
2 − E(ft(Xi

t)− Eft(Xi
t))

2] + 2E(ft(Xi
t)− Eft(Xi

t))
2
]

≤ 1

4b2

(
2E sup

f∈F

T∑
t=1

n2

N2
t

Nt∑
i=1

σit(ft(X
i
t)− Eft(Xi

t))
2 + sup

f∈F
2

T∑
t=1

n2

Nt
E(ft(X1

t )− Eft(X1
t ))

2

)

≤ 1

4b2
(8bE sup

f∈F

T∑
t=1

n

Nt

Nt∑
i=1

σit(ft(X
i
t)− Eft(Xi

t)) + 2nTr)

≤ 1

4b2
(16bnTR(F) + 2nTr)

≤ 4nTR(F)

b
+
nTr

2b2
,

(116)

where the first inequality follows from the standard symmetrization technique and the second inequality follows from the
contraction property of the Rademacher complexity.
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Plugging (116) into the concentration inequality for Z, i.e. (115), we have

Z ≤ EZ +
2b

nT

√
2xEW +

bx

nT

≤ 2R(F) +
2b

nT

√
2x(

4nTR(F)

b
+
nTr

2b2
) +

bx

nT

= 2R(F) + 2

√
8bxR(F)

nT
+
xr

nT
+
bx

nT

≤ 2R(F) + 2

√
8bxR(F)

nT
+ 2

√
xr

nT
+
bx

nT

≤ 2(1 + α)R(F) + 2

√
xr

nT
+

(
1 +

4

α

)
bx

nT
,

(117)

where the last inequality follows from the inequality 2
√
ab ≤ αa+ b

α for any α > 0, a > 0, b > 0.

B.3. Proof of Theorem 3.4

In the following, we assume that for any f = (f1, · · · , fT ) ∈ F , 0 ≤ ft ≤ b (1 ≤ t ≤ T ).

Define
UN (F) := sup

f∈F
(Pf − PNf).

Lemma B.2. For normalized function class Fr,

Fr :=

{
r

Pf2 ∨ r
f : f ∈ F

}
(118)

and assume that for some fixed constants K > 1 and r > 0,

UN (Fr) ≤
r

bK
(119)

Then for any f ∈ F the following inequality holds:

Pf ≤ K

K − 1
PNf +

r

bK
. (120)

Proof. Let us consider two cases:

1: Pf2 ≤ r,

2: Pf2 > r.

For the first case, f = r
Pf2∨rf ∈ Fr, therefore

Pf ≤ PNf + UN (Fr) ≤ PNf +
r

K
≤ K

K − 1
PNf +

r

bK
.

For the second case, r
Pf2∨rf = r

Pf2f ∈ Fr, thus

P
r

Pf2
f ≤ PN

r

Pf2
f + UN (Fr) ≤ PN

r

Pf2
f +

r

bK
.

Basic algebraic transformation yields that

Pf ≤ PNf +
Pf2

bK
≤ PNf +

Pf

K
,

which implies

Pf ≤ K

K − 1
PNf ≤ K

K − 1
PNf +

r

bK
.
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Lemma B.3. Let us consider a sub-root function ψ(r) with fixed point r∗ and suppose that ∀r > r∗,

ψ(r) ≥ bR(Fr). (121)

Then for any K > 1, we have that, with probability at least 1− e−x, for ∀f ∈ F

Pf ≤ K

K − 1
PNf +

32Kr∗

b
+

(10b+ 8bK)x

nT
. (122)

Proof. The aim is to find some r such that UN (Fr) ≤ r
bK , then applying Lemma B.2 yields the conclusion.

Note that the variance of functions in Fr is at most r. For any f ∈ Fr, we consider two cases:

1: Pf2 ≤ r,

2: Pf2 > r.

For the first case, f = r
Pf2∨rf ∈ Fr, thus V ar

(
r

Pf2∨rf
)
= V ar(f) ≤ Pf2 ≤ r.

For the second case,

V ar

(
r

Pf2 ∨ r
f

)
= V ar

(
r

Pf2
f

)
≤ P

(
r

Pf2
f

)2

=
r2

Pf2
< r.

Then applying Theorem 3.2 for UN (Fr) with α = 1, we have that with probability at least 1− e−x,

UN (Fr) ≤ 4R(Fr) + 2

√
xr

nT
+

5bx

nT

≤ 4
ψ(r)

b
+ 2

√
xr

nT
+

5bx

nT

≤ 4

√
rr∗

b
+ 2

√
xr

nT
+

5bx

nT

:= A
√
r +B,

where the third inequality follows from the property of the sub-root function, i.e., ψ(r)/
√
r ≤ ψ(r∗)/

√
r∗ =

√
r∗ for any

r > r∗ and A = 4
√
r∗

b + 2
√

x
nT , B = 5bx

nT .

Solving the equation
A
√
r +B =

r

bK
yields that

√
r =

bKA+
√
b2K2A2 + 4bKB

2
.

Thus

r ≥ b2K2A2

2
> r∗

and

r ≤ b2K2A2 + 2bKB.

Therefore by Lemma B.2, we have

Pf ≤ K

K − 1
PNf +

r

bK

≤ K

K − 1
PNf + bKA2 + 2B

≤ K

K − 1
PNf + 2bK(

16r∗

b2
+

4x

nT
) +

10bx

nT

=
K

K − 1
PNf +

32Kr∗

b
+

(10b+ 8bK)x

nT
.

(123)
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There remain some problems regarding the selection of the sub-root function ψ and the computation of its fixed point. Just
as in the single-task scenario, we can take ψ as the local Rademacher averages of the star-hull of F around 0.

Specifically, let

ψ(r) := 16bERN{f : f ∈ star(F , 0), Pf2 ≤ r}+ 14b2 log(nT )

nT
, (124)

where star(F , 0) := {αf : f ∈ F , α ∈ [0, 1]}.

Note that the normalized function class Fr defined in the Lemma B.2 is a subset of the function class {f : f ∈
star(F , 0), Pf2 ≤ r}, thus ψ(r) ≥ bR(Fr).

For the first term in the definition of ψ(r), i.e. (124), with the following lemma, we can translate the ball in L2(P ) into the
ball in L2(PN ), so that Dudley’s theorem can be applied.

Lemma B.4. Let G be a class of vector-valued functions that map X into [−b, b]T with b > 0. For every x > 0 and r satisfy

r ≥ 16bERN{g : g ∈ G, Pg2 ≤ r}+ 14b2x

nT
, (125)

then with probability at least 1− e−x

{g ∈ G : Pg2 ≤ r} ⊂ {g ∈ G : PNg2 ≤ 2r}. (126)

Proof. Define Gr := {g2 : g ∈ G, Pg2 ≤ r}.

Note that ∥g2∥∞ ≤ b2, V ar(g2) ≤ Pg4 ≤ b2Pg2 ≤ b2r. Then applying the Theorem 3.2 for Gr with α = 1 yields that
with probability at least 1− e−x, for any g ∈ G such that g2 ∈ Gr,

PNg2 ≤ Pg2 + 4ERN{g2 : g ∈ G, Pg2 ≤ r}+ 2

√
b2xr

nT
+

5b2x

nT

≤ r + 8bERN{g : g ∈ G, Pg2 ≤ r}+ r

2
+

7b2x

nT
≤ 2r,

where the second inequality follows from the contraction property of the Rademacher complexity and the mean inequality.

Remark B.5. Although the contraction property used in the proof of Lemma B.4 is slightly different from the standard form
(see Lemma 5.7 in Mohri et al. (2018)), it is just an adaptation of the standard one.

Specifically, let Φi be li-Lipschitz functions from R to R for i = 1, · · · ,m and σ1, · · · , σm be Rademacher random
variables. Then for any set A ⊂ Rm, the following inequality holds.

Eσ sup
a∈A

m∑
i=1

σiΦi(ai) ≤ Eσ sup
a∈A

m∑
i=1

σiliai.

For completeness, we give a brief proof.

By the Fubini’s theorem, we have

Eσ sup
a∈A

m∑
i=1

σiΦi(ai) = Eσ1,··· ,σm−1
Eσm

[sup
a∈A

um−1(a) + σmΦm(am)],

where um−1(a) =
m−1∑
i=1

σiΦi(ai).
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From the proof of Lemma 5.7 in Mohri et al. (2018), we know

Eσm [sup
a∈A

um−1(a) + σmΦm(am)] ≤ Eσm [sup
a∈A

um−1(a) + σmlmam].

Proceeding in the same way for all other σi(i ̸= m) leads to the conclusion. In fact, we have used the conclusion with
Φt,i(x) =

x2

Nt
in the proof of Lemma B.4.

With Lemma B.4, we can bound r∗ as follows.

Lemma B.6.
r∗ ≤ 16bERN{f : f ∈ star(F , 0), PNf2 ≤ 2r∗}+ 16b2 + 14b2 log(nT )

nT
. (127)

Proof. From Lemma B.4 and the fact that

r∗ = ψ(r∗) = 16bERN{f : f ∈ star(F , 0), Pf2 ≤ r∗}+ 14b2 log(nT )

nT
,

we can deduce that with probability at least 1− 1
nT ,

{f : f ∈ star(F , 0), Pf2 ≤ r∗} ⊂ {f : f ∈ star(F , 0), PNf2 ≤ 2r∗}.

Therefore,

r∗ ≤ 16b

[
ERN{f : f ∈ star(F , 0), PNf2 ≤ 2r∗}+ b

nT

]
+

14b2 log(nT )

nT

= 16bERN{f : f ∈ star(F , 0), PNf2 ≤ 2r∗}+ 16b2 + 14b2 log(nT )

nT
.

Now, we are ready to use the Dudley’s theorem to bound the first term in the right.

Specifically, define Fs,r := {f : f ∈ star(F , 0), PNf2 ≤ 2r}, with the samples (Xi
t)

(T,Nt)
(t,i)=(1,1) fixed, define a random

process (Xf )f∈Fs,r
as

Xf :=
1

T

T∑
t=1

1

Nt

Nt∑
i=1

σitft(X
i
t) for f = (f1, · · · , fT ) ∈ Fs,r. (128)

From the fact that σit is sub-gaussian, we can deduce that for any λ ∈ R and f
′
= (f

′

1, · · · , f
′

T ) ∈ Fs,r

Eeλ(Xf−Xf
′ ) = Ee

λ
T

T∑
t=1

1
Nt

Nt∑
i=1

σi
t(ft(X

i
t)−f

′
t (X

i
t))

≤ e
λ2

2T2

T∑
t=1

1

N2
t

Nt∑
i=1

(ft(X
i
t)−f

′
t (X

i
t))

2

≤ e
λ2

2 K
2d2(f ,f

′
),

where K = 1√
nT

and

d(f ,f
′
) :=

√√√√ 1

T

T∑
t=1

1

Nt

Nt∑
i=1

(ft(Xi
t)− f

′
t (X

i
t))

2. (129)

It implies that ∥Xf −Xf ′∥ψ2
≤ CKd(f ,f

′
) with a universal constant C.

Then using Dudley’s theorem yields that

E sup
f∈Fs,r

Xf ≤ CK

∫ diam(Fs,r)

0

√
logN (Fs,r, d, ϵ)dϵ ≤ CK

∫ 2
√
r

0

√
logN (Fs,r, d, ϵ)dϵ, (130)

where diam(Fs,r) := supf ,f ′∈Fs,r
d(f ,f

′
).
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Proof of Theorem 3.4: In the following, we assume that F is a parameterized hypothesis function class to be determined.
When considering the framework of PINNs for the linear second order elliptic equation as MTL, the function class in MTL
associated with F is defined as

F := {u =
(
|Ω|(Lu(x)− f(x))2, |∂Ω|(u(y)− g(y))2

)
: u ∈ F}. (131)

Note that here we use notation u to represent a function in F and u to denote the corresponding vector-valued function
associated with u.

Then the empirical loss can be written as

LN (u) =
|Ω|
N1

N1∑
k=1

−
d∑

i,j=1

aij(Xk)∂iju(Xk) +

d∑
i=1

bi(Xk)∂iu(Xk) + c(Xk)u(Xk)− f(Xk)

2

+
|∂Ω|
N2

N2∑
k=1

(u(Yk)− g(Yk))
2

= 2PNu,

where N = (N1, N2) and n = min(N1, N2).

The aim is to seek uN ∈ F which minimizes LN . It is equivalent to seek uN ∈ F which minimizes PNu i.e.,

uN ∈ argmin
u∈F

PNu. (132)

Assume that u∗ is the solution of the linear second order elliptic PDE and there is a constant M such that
|aij |, |bi|, |c|, |g|, |u∗|, |∂iu∗|, |∂iju∗| ≤M and |u|, |∂iu|, |∂iju| ≤M for any u ∈ F , 1 ≤ i, j ≤ d.

Then supu∈F max(|Ω|(Lu− f)2, |∂Ω|(u− g)2) ≤ c(|Ω|d2M4 + |∂Ω|M2) := b with a universal constant c.

Therefore, with probability at least 1− e−t

PNuN ≤ PNuF ≤ PuF + 2

√
tV ar(uF )

2n
+

2bt

2n

≤ PuF + 2

√
tbPuF

2n
+
bt

n

≤ 3

2
PuF +

2bt

n
,

(133)

where uF =
(
|Ω|(LuF − f)2, |∂Ω|(uF − g)2

)
, uF ∈ argminu∈F ∥u− u∗∥2H2(Ω) and the second inequality follows from

Theorem 3.2 by taking F = {uF} and α = 4, T = 2, which can be seen as a vector version of the Bernstein inequality.
Here, we define the approximation error as ϵapp := ∥uF − u∗∥H2(Ω).

Then applying Lemma B.2 with K = 2 yields that with probability at least 1− 2e−t

PuN ≤ 2PNuN +
64r∗

b
+

13bt

n

≤ 3PuF +
64r∗

b
+

17bt

n
,

(134)

which implies that

L(uN ) = 2PNuN ≤ 3L(uF ) +
128r∗

b
+

34bt

n
. (135)

38



Refined Generalization Analysis of the DRM and PINNs

Note that L(uF ) can be bounded by the approximation error, since for any u ∈ H2(Ω)

L(u) =
∫
Ω

(Lu− f)2dx+

∫
∂Ω

(u− g)2dy

=

∫
Ω

−
d∑

i,j=1

aij∂iju+

d∑
i=1

bi∂iu+ cu− f

2

dx+

∫
∂Ω

(u− g)2dy

=

∫
Ω

−
d∑

i,j=1

aij∂ij(u− u∗) +

d∑
i=1

bi∂i(u− u∗) + c(u− u∗)

2

dx+

∫
∂Ω

(u− u∗)2dy

≤ 3

∫
Ω

−
d∑

i,j=1

aij∂ij(u− u∗)

2

+

(
d∑
i=1

bi∂i(u− u∗)

)2

+ (c(u− u∗))2dx+

∫
∂Ω

(u− u∗)2dy

≤ 3d2M2∥u− u∗∥2H2(Ω) + C(Tr,Ω)2∥u− u∗∥2H1(Ω)

≤ (3d2M2 + C(Tr,Ω)2)∥u− u∗∥2H2(Ω),

(136)

where in the last inequality, we use the boundedness of aij , bi, c and the Sobolev trace theorem with the constant C(Tr,Ω)
that depends only on the domain Ω.

Thus,
L(uF ) ≤ (3d2M2 + C(Tr,Ω)2)ϵ2app (137)

and with probability at least 1− 2e−t

L(uN ) = 2PNuN ≤ 3(3d2M2 + C(Tr,Ω)2)ϵ2app +
128r∗

b
+

34bt

n
. (138)

It remains only to bound the fixed point r∗. With Lemma B.6, it suffices to bound the covering number of F under d, which
is done in the Lemma C.10. Thus, we have the following results.

(1) For the two-layer neural networks, we know

logN (F , d, ϵ) ≤ cmd log

(
b

ϵ

)
, (139)

where c is a universal constant.

Therefore

r∗ ≤ cb

√
md

n

∫ 2
√
r∗

0

√
log

(
b

ϵ

)
dϵ+

cb2 log n

n

= cb2
√
md

n

∫ 2
√

r∗
b2

0

√
log

(
1

ϵ

)
dϵ+

cb2 log n

n

≤ cb

√
mdr∗

n

√
log

(
2b√
r∗

)
+ c

cb2 log n

n

≤ cb

√
mdr∗

n

√
log n+

cb2 log n

n
,

(140)

where second inequality follows from Lemma C.7.

It implies that

r∗ ≤ cb2md log n

n
. (141)

(2) For the deep neural networks, we know

logN (F , d, ϵ) ≤ CKd log

(
K

ϵ

)
, (142)
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where C is a constant independent of K.

Similar to that in (1), we have

r∗ ≤ CKd(logK + log n)

n
(143)

with a constant C independent of K,N, n.

C. Auxiliary Lemmas
Lemma C.1 (Bernstein inequality). Let Xi, 1 ≤ i ≤ n be i.i.d. centered random variables a.s. bounded by b < ∞ in

absolute value. Set σ2 = EX2
1 and Sn = 1

n

n∑
i=1

Xi. Then, for all t > 0,

P

(
Sn ≥

√
2σ2t

n
+
bt

3n

)
≤ e−t.

Lemma C.2 (Hoeffding inequality). Let Xi, 1 ≤ i ≤ n be i.i.d. centered random variables a.s. bounded by b < ∞ in

absolute value. Set Sn = 1
n

n∑
i=1

Xi, then for all t > 0,

P

(
|Sn| ≥ b

√
2t

n

)
≤ 2e−t.

Lemma C.3 (Bounded difference inequality). Let X1, · · · , Xm ∈ Xm be a set of m ≥ 1 independent random variables
and assume that there exists c1, · · · , cm such that f : Xm → R satisfies the following conditions:

|f(x1, · · · , xi, · · · , xm)− f(x1, · · · , x
′

i, · · · , xm)| ≤ ci,

for all i ∈ [m] and any points x1, · · · , xm, x
′

i ∈ X . Let f(S) denote f(X1, · · · , Xm), then, for all ϵ > 0, the following
inequalities hold:

P (f(S)− E(f(S)) ≥ ϵ) ≤ exp

(
−2ϵ2∑m
i=1 c

2
i

)
,

P (f(S)− E(f(S)) ≤ −ϵ) ≤ exp

(
−2ϵ2∑m
i=1 c

2
i

)
Lemma C.4 (Theorem 1 in Makovoz (1996)). Let Φ := {ϕ1, ϕ2, · · · } be an arbitrary bounded sequence of elements of the
Hilbert space H . For every f ∈ H of the form

f =
∑
i

ciϕi,
∑
i

|ci| <∞,

and for every natural number n, there is a g =
∑
i aiϕi with at most n non-zero coefficients ai and with

∑
i |ai| ≤

∑
i |ci|,

for which
∥f − g∥ ≤ 2ϵn(Φ)n

−1/2
∑
i

|ci|.

The definition of metric entropy ϵn is given in Proposition A.3.

Lemma C.5 (Covering number of ∂Bd1 (1) in the L1 norm). For any ϵ > 0,

N (∂Bd1 (1), | · |1, ϵ) ≤ 2

(
12

ϵ

)d−1

.

Proof. By the symmetry of ∂Bd1 (1), it suffices to consider the set

S := {(x1, · · · , xd) ∈ ∂Bd1 (1), xi ≥ 0, 1 ≤ i ≤ d}, (144)
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as N (∂Bd1 (1), | · |1, ϵ) ≤ 2dN (S, | · |1, ϵ).

Note that for (x1, · · · , xd) ∈ ∂Bd1 (1), xd is determined by x1, · · · , xd−1. Thus the problem of estimating the covering
number of ∂Bd1 (1) can be reduced to estimating the covering number of

S1 := {(x1, · · · , xd−1) : x1 + · · ·+ xd−1 ≤ 1, xi ≥ 0, 1 ≤ i ≤ d− 1}, (145)

which is a subset of Bd−1
1 (1).

By Lemma 5.7 in Wainwright (2019), we know N (Bd−1
1 (1), | · |1, ϵ) ≤ ( 2ϵ +1)d−1 ≤ ( 3ϵ )

d−1. Thus, there exists a ϵ
2 - cover

of Bd−1
1 (1) with cardinality ( 6ϵ )

d−1 which we denote by C. Although C is also a ϵ
2 - cover of S1, the elements in C may not

belong to S1. To fix this issue, we can transform C to a subset of S1 and the transformation doesn’t change the property that
C is a ϵ

2 - cover of S1. Specifically, for (y1, · · · , yd−1) ∈ C, we do the transformation as follows

(y1, · · · , yd−1) → (y1I{y1≥0}, · · · , yd−1I{yd−1≥0}).

Note that
y1I{y1≥0} + · · ·+ yd−1I{yd−1≥0} ≤ |y1|+ · · ·+ |yd−1| ≤ 1, (146)

and for any (x1, · · · , xd−1) ∈ S1

|x1 − y1I{y1≥0}|+ · · · |xd−1 − yd−1I{yd−1≥0}| ≤ |x1 − y1|+ · · ·+ |xd−1 − yd−1|, (147)

which imply that after transformation, it is a subset of S1 and also a ϵ
2 - cover of S1. For simplicity, we still denote it by C.

Now we are ready to give a ϵ-cover of S via extending C to a subset of ∂Bd1 (1). Define Ce := {(y1, · · · , yd) :
(y1, · · · , yd−1) ∈ C, yd = 1− (y1 + · · ·+ yd−1)}.

Thus for any (x1, · · · , xd) ∈ S, since (x1, · · · , xd−1) ∈ S1 and C is a ϵ
2 -cover of S1, there exists a element of C, we denote

it by (z1, · · · , zd−1), such that

|x1 − z1|+ · · ·+ |xd−1 − zd−1| ≤
ϵ

2
. (148)

Note that for zd = 1− (z1 + · · ·+ zd−1), (z1, · · · , zd) ∈ Ce and

|x1 − z1|+ · · ·+ |xd−1 − zd−1|+ |xd − zd|
= |x1 − z1|+ · · ·+ |xd−1 − zd−1|+ |x1 − z1 + · · ·+ xd−1 − zd−1|
≤ 2(|x1 − z1|+ · · ·+ |xd−1 − zd−1|)
≤ ϵ,

which implies that Ce is a ϵ-cover of S.

Recall that |Ce| = |C| = ( 6ϵ )
d−1, then N (∂B1(1), | · |1, ϵ) ≤ 2d

(
6
ϵ

)d−1
= 2

(
12
ϵ

)d−1
.

Note that in this lemma, our goal is not to investigate the optimal upper bound, but to give an upper bound with explicit
dependence on the dimension.

Lemma C.6 (Equivalence between metric entropy and covering number). Let (T, d) be a metric space and there is a
continuous and strictly increasing function f : R+ → R+ such that for any ϵ > 0,

N (T, d, ϵ) ≤ f(ϵ),

Then for any ϵ > 0,
ϵn(T ) ≤ f−1(n),

where f−1 represents the inverse of f .

Proof. It’s obvious, since N (T, d, f−1(n)) ≤ f(f−1(n)) = n.
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Lemma C.7. For any 0 < x ≤ 1, we have ∫ x

0

√
log

1

ϵ
dϵ ≤ 2x

√
log

4

x
.

Proof. For 0 < x ≤ 1, let f(x) =
√
x log 1

x , g(x) =
√
x, h(x) = x log 1

x , then f(x) = g(h(x)). Note that g is increasing,
concave and h is concave, thus

f(λx+ (1− λ)y) = g(h(λx+ (1− λ)y))

≥ g(λh(x) + (1− λ)h(y))

≥ λg(h(x)) + (1− λ)g(h(y))

= λf(x) + (1− λ)f(y),

which means f is concave in [0, 1].

Let ϵ = y
3
2 , then

∫ x

0

√
log

1

ϵ
dϵ = (

3

2
)

3
2

∫ x
2
3

0

√
y log

1

y
dy

≤ (
3

2
)

3
2x

2
3

√
x

2
3

2
log

2

x
2
3

= (
3

2
)

3
2x

√
1

3
log

2
3
2

x

≤ 2x

√
log

4

x
,

where the first inequality follows from Jensen’s inequality.

Lemma C.8 (The remaining part of the proof of Theorem 2.4). For the function class F and

G := {(|∇u(x)|2 − 2f(x)u(x))− (|∇u∗(x)|2 − 2f(x)u∗(x)) : u ∈ F},

we assume that for any ϵ > 0,

N (F , ∥ · ∥L2(Pn), ϵ) ≤
(
b

ϵ

)a
a.s. and N (G, ∥ · ∥L2(Pn), ϵ) ≤

(
β

ϵ

)α
a.s.

for some positive constants a, b, α, β with b > supf∈F |f |, β > supg∈G |g|.

Then we have that with probability at least 1− e−t

sup
u∈Fδ

(E(u)− E(u∗))− (En(u)− En(u∗))

≤ C(
αM2 log(2β

√
n)

n
+

√
M2δα log(2β

√
n)

n
+

√
M2δt

n

+
M2t

n
+

√
aM2δ

n
log

4b

M
),

(149)

where
Fδ := {u ∈ F : ∥u− u∗∥2H1(Ω) ≤ δ}

and C is a universal constant.

42



Refined Generalization Analysis of the DRM and PINNs

Proof. As before, rearranging supu∈Fδ
(E(u)− E(u∗))− (En(u)− En(u∗)) yields that

sup
u∈Fδ

(E(u)− E(u∗))− (En(u)− En(u∗))

= sup
u∈F(δ)

[∫
Ω

[
(|∇u(x)|2 − 2f(x)u(x))− (|∇u∗(x)|2 − 2f(x)u∗(x))

]
dx

− 1

n

n∑
i=1

[
(|∇u(Xi)|2 − 2f(Xi)u(Xi))− (|∇u∗(Xi)|2 − 2f(Xi)u

∗(Xi))
]

+

(∫
Ω

u(x)dx

)2

−

(
1

n

n∑
i=1

u(Xi)

)2

+

(
1

n

n∑
i=1

u∗(Xi)

)2


≤ sup
g∈G(δ)

(P − Pn)g + sup
u∈F(δ)

(∫
Ω

u(x)dx

)2

−

(
1

n

n∑
i=1

u(Xi)

)2
+

(
1

n

n∑
i=1

u∗(Xi)

)2

:= ψ(1)
n (δ) + ψ(2)

n (δ) + ψ(3)
n (δ),

(150)

where
G(δ) := {(|∇u(x)|2 − 2f(x)u(x))− (|∇u∗(x)|2 − 2f(x)u∗(x)) : u ∈ F , ∥u− u∗∥2H1(Ω) ≤ δ}.

Applying the Hoeffding inequality for ψ(3)
n (δ), we can obtain that with probability at least 1− e−t

ψ(3)
n (δ) =

(
1

n

n∑
i=1

u∗(Xi)

)2

≤ 2M2t

n
. (151)

For ψ(2)
n (δ), we can deduce that

ψ(2)
n (δ) = sup

u∈F(δ)

(∫
Ω

u(x)dx

)2

−

(
1

n

n∑
i=1

u(Xi)

)2


= sup
u∈F(δ)

[(Pu)2 − (Pnu)
2]

= sup
u∈F(δ)

[(Pu)2 − ((Pnu− Pu) + Pu)2]

= sup
u∈F(δ)

[2(Pu)((P − Pn)u)− (Pnu− Pu)2]

≤ 2
√
δ sup
u∈F(δ)

|(P − Pn)u|,

(152)

where the last inequality follows from the fact that for any u ∈ F(δ),

|Pu| =
∣∣∣∣∫

Ω

udx

∣∣∣∣ = ∣∣∣∣∫
Ω

(u− u∗)dx

∣∣∣∣ ≤ (∫
Ω

(u− u∗)2dx

) 1
2

≤
√
δ.

Note that here, we only need a positive upper bound for ψ(2)
n (δ). In (152), for fixed u ∈ F(δ), if 2(Pu)((P − Pn)u) ≤ 0,

then it is obvious that
2(Pu)((P − Pn)u)− (Pnu− Pu)2 ≤ 0 ≤ 2|Pu||(P − Pn)u|;

if 2(Pu)((P − Pn)u) > 0, then

2(Pu)((P − Pn)u)− (Pnu− Pu)2 ≤ 2(Pu)((P − Pn)u) = 2|Pu||(P − Pn)u|.

Therefore, in any case, (152) holds true.
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Then, to bound ψ(2)
n (δ), it suffices to bound the empirical process sup

u∈F(δ)

|(P − Pn)u|. By applying the bounded difference

inequality and the symmetrization technique, we can deduce that with probability at least 1− e−t

sup
u∈F(δ)

|(P − Pn)u| ≤ E sup
u∈F(δ)

|(P − Pn)u|+M

√
2t

n

≤ 2E sup
u∈F(δ)

∣∣∣∣∣ 1n
n∑
i=1

ϵiu(Xi)

∣∣∣∣∣+M

√
2t

n

≤ 2E sup
u∈F

∣∣∣∣∣ 1n
n∑
i=1

ϵiu(Xi)

∣∣∣∣∣+M

√
2t

n
.

(153)

The first term is the expectation of the empirical process and it can be easily bounded by using Dudley’s theorem.

Specifically,

E sup
u∈F

∣∣∣∣∣ 1n
n∑
i=1

ϵiu(Xi)

∣∣∣∣∣ = EXEϵ sup
u∈F∪(−F)

1

n

n∑
i=1

ϵiu(Xi)

≤ EX

[
12√
n

∫ M

0

√
logN (F ∪ (−F), ∥ · ∥L2(Pn), u)du

]

≤ EX

[
12√
n

∫ M

0

√
log 2N (F , ∥ · ∥L2(Pn), u)du

]

≤ 12√
n

∫ M

0

√
log 2 + a log

b

u
du

≤ 12√
n

(√
log 2M +

√
ab

∫ M
b

0

√
log

1

u
du

)

≤ 12√
n

(√
log 2M + 2

√
aM

√
log

4b

M

)

≤ C

√
aM2

n
log

4b

M
,

(154)

where the fifth inequality follows by the fact that b > M and Lemma C.7.

Now, it remains only to bound ψ1
n(δ).

Recall that

G(δ) = {(|∇u(x)|2 − 2f(x)u(x))− (|∇u∗(x)|2 − 2f(x)u∗(x)) : u ∈ F , ∥u− u∗∥2H1(Ω) ≤ δ}.

Therefore, we can deduce that |g| ≤ 6M2 and V ar(g) ≤ P (g2) ≤ 4M2δ for any g ∈ G(δ). Then, from Talagrand’s
inequality for empirical processes (Theorem 2.1 in Bartlett et al. (2005) with α = 1), we obtain that with probability at least
1− e−t

sup
g∈G(δ)

(P − Pn)g ≤ 4ERn(G(δ)) +
√

8M2tδ

n
+

16M2t

n
. (155)

Note that Pg2 ≤ 4M2δ for any g ∈ G(δ), therefore

ERn(G(δ)) ≤ ERn(g ∈ G : Pg2 ≤ 4M2δ).

The right term frequently appears in the articles related to the LRC and can be more easily handled than the term on the left.
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By applying Corollary 2.1 in Lei et al. (2016) under the assumption for the empirical covering number of G, we know

ERn(g ∈ G : Pg2 ≤ 4M2δ) ≤ C

(
αM2 log(2β

√
n)

n
+

√
M2δα log(2β

√
n)

n

)
, (156)

where C is a universal constant.

Combining the upper bounds for ψ(1)
n (δ), ψ

(2)
n (δ) and ψ(3)

n (δ), i.e. (151), (152), (154) and (149), the conclusion holds.

Lemma C.9. For the empirical covering number of F and G defined in the Lemma C.8, we can deduce that

(1) when F = Fm,1(B), we have

N (F , L2(Pn), ϵ) ≤
(
cB

ϵ

)m(d+1)

and N (G, L2(Pn), ϵ) ≤
(
cmax(MB,B2)

ϵ

)cmd
, (157)

where M is a upper bound for |f | and c is a universal constant.

(2) when F = Φ(N,L,B), we have

N (F , L2(Pn), ϵ) ≤
(
Cn

ϵ

)CN2L2(logN logL)3

and N (G, L2(Pn), ϵ) ≤
(
Cn

ϵ

)CN2L2(logN logL)3

, (158)

where C is a constant independent of N,L and n ≥ CN2L2(logN logL)3.

Proof. (1) For the function class of two-layer neural networks, recall that

Fm,1(B) =

{
m∑
i=1

γiσ(ωi · x+ ti) :

m∑
i=1

|γi| ≤ B, |ωi|1 = 1, ti ∈ [−1, 1)

}
.

Due to the Lipschitz continuity of σ, we can just consider the covering number in the L∞ norm.

Without loss of generality, we can assume that B = 1. Then for

uk(x) =

m∑
i=1

γki σ(ω
k
i · x+ tki ) ∈ Fm,1(1), k = 1, 2,

we have

|u1(x)− u2(x)| = |
m∑
i=1

γ1i σ(ω
1
i · x+ t1i )− γ2i σ(ω

2
i · x+ t2i )|

≤
m∑
i=1

|γ1i σ(ω1
i · x+ t1i )− γ2i σ(ω

2
i · x+ t2i )|

=

m∑
i=1

|(γ1i − γ2i )σ(ω
1
i · x+ t1i ) + γ2i (σ(ω

1
i · x+ t1i )− σ(ω2

i · x+ t2i ))|

≤
m∑
i=1

2|γ1i − γ2i |+ |γ2i |(|ω1
i − ω2

i |1 + |t1i − t2i |),

where the last inequality follows from that σ is bounded by 2 in absolute value and is 1-Lipschitz continuous.

Therefore, when
m∑
i=1

|γ1i − γ2i | ≤
ϵ

4
and |ω1

i − ω2
i |1 ≤ ϵ

4
, |t1i − t2i | ≤

ϵ

4
, 1 ≤ i ≤ m,

we have that supx∈Ω |u1(x)− u2(x)| ≤ ϵ, which implies
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N (Fm,1(1), L2(Pn), ϵ) ≤ N (Fm,1(1), L∞, ϵ) ≤
(c
ϵ

)m (c
ϵ

)m(d−1) (c
ϵ

)m
=
(c
ϵ

)m(d+1)

,

where c is a universal constant.

Therefore, N (Fm,1(B), L2(Pn), ϵ) ≤
(
cB
ϵ

)m(d+1)
, where we assume that B ≥ 1.

Recall that
G = {(|∇u(x)|2 − 2f(x)u(x))− (|∇u∗(x)|2 − 2f(x)u∗(x)) : u ∈ F}.

Since u∗ is fixed, the estimation for the term f(x)u(x) can be conducted in the same manner as for F . Therefore, we only
need to estimate the first term.

For

uk =

m∑
i=1

γki σ(ω
k
i · x+ tki ) ∈ Fm(1), k = 1, 2

we have

∥|∇u1|2 − |∇u2|2∥L2(Pn)

≤ 2∥|∇u1 −∇u2|∥L2(Pn)

≤ 2∥
m∑
i=1

|γ1i ω1
i I{ω1

i ·x+t1i≥0} − γ2i ω
2
i I{ω2

i ·x+t2i≥0}|∥L2(Pn)

≤ 2

m∑
i=1

∥|γ1i ω1
i I{ω1

i ·x+t1i≥0} − γ2i ω
2
i I{ω2

i ·x+t2i≥0}|∥L2(Pn)

= 2

m∑
i=1

∥|(γ1i − γ2i )ω
1
i I{ω1

i ·x+t1i≥0} + γ2i (ω
1
i I{ω1

i ·x+t1i≥0} − ω2
i I{ω2

i ·x+t2i≥0})|∥L2(Pn)

≤ 2

m∑
i=1

|γ1i − γ2i |+ 2

m∑
i=1

|γ2i |∥|ω1
i I{ω1

i ·x+t1i≥0} − ω2
i I{ω2

i ·x+t2i≥0}|∥L2(Pn)

≤ 2

m∑
i=1

|γ1i − γ2i |+ 2

m∑
i=1

|γ2i |(|ω1
i − ω2

i |1 + ∥I{ω1
i ·x+t1i≥0} − I{ω2

i ·x+t2i≥0}∥L2(Pn)),

where the first inequality follows from that |∇uk| ≤ |∇uk|1 ≤ 1 for k = 1, 2 and the second, third, fourth and the last
inequalities follow from the triangle inequality.

Thus if
m∑
i=1

|γ1i − γ2i | ≤
ϵ

4
and |ω1

i − ω2
i |1 + ∥I{ω1

i ·x+t1i≥0} − I{ω2
i ·x+t2i≥0}∥L2(Pn) ≤

ϵ

4
, 1 ≤ i ≤ m,

we can deduce that ∥|∇u1|2 − |∇u2|2∥L2(Pn) ≤ ϵ.

Based on same method in the proof of Proposition A.3, the L2(Pn) covering number of the function class {|∇u|2 : u ∈ F}
can be bounded as (c

ϵ

)m (c
ϵ

)(d−1+2d)m

=
(c
ϵ

)3md
.

Combining the result for F , we obtain that

N (G, L2(Pn), ϵ) ≤
(
cmax(MB,B2)

ϵ

)cmd
,

where M is a upper bound for |f | and c is a universal constant.

(2) Note that the empirical covering number N (F , L2(Pn), ϵ) can be bounded by the uniform covering number N (F , n, ϵ),
which is defined as

N (F , n, ϵ) := sup
Zn∈Xn

N (F|Zn
, ϵ, ∥ · ∥∞),
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where Zn = (z1, · · · , zn) and F|Zn
:= {(f(z1), · · · , f(zn)) : f ∈ F}.

As for the uniform covering number, it can be estimated using the pseudo-dimension Pdim(F). Specifically, let F be a
class of function from X to [−B,B]. Then for any ϵ > 0, we have

N (F , n, ϵ) ≤
(

2enB

ϵPdim(F)

)Pdim(F)

for n ≥ Pdim(F) (See Theorem 12.2 in Anthony et al. (1999)).

From Bartlett et al. (2019) and Yang et al. (2023b), we know that

Pdim(Ψ) ≤ CN2L2 logL logN and Pdim(DΨ) ≤ CN2L2 logL logN

with a constant C independent with N,L, where Ψ is the function class of ReLU neural networks with width N and depth
L.

Therefore, we can deduce that for F = Φ(N,L,B), we have

N (F , L2(Pn), ϵ) ≤
(
Cn

ϵ

)CN2L2(logN logL)3

and

N (G, L2(Pn), ϵ) ≤
(
Cn

ϵ

)CN2L2(logN logL)3

with a constant C independent of N,L and n ≥ CN2L2(logN logL)3, as the width and depth of Φ(N,L,B) are
O(N logN) and O(L logL) respectively.

Lemma C.10 (Estimation of the covering numbers for PINNs).

(1) For F = Fm,2(B) with B = O(M), we have

logN (F , d, ϵ) ≤ cmd log

(
b

ϵ

)
with a universal constant c.

(2) For F = Φ(L,W, S,B;H) with L = O(1),W = O(Kd), S = O(Kd), B = 1, H = O(1), we have

logN (F , d, ϵ) ≤ CKd log

(
K

ϵ

)
,

where C is a constant independent of K.

Proof. Recall that

(Lu− f)2 =

−
d∑

i,j=1

aij(x)∂i,ju(x) +

d∑
i=1

bi(x)∂iu(x) + c(x)u(x)− f(x)

2

and
F = {u = (|Ω|(Lu(x)− f(x))2, |∂Ω|(u(y)− g(y))2) : u ∈ F}.

(1) For the two functions u = (|Ω|(Lu− f)2, |∂Ω|(u− g)2), ū = (|Ω|(Lū− f)2, |∂Ω|(ū− g)2) ∈ F , where u, ū belong
to Fm,2(B) and are of the form

u(x) =

m∑
k=1

γkσ2(ωk · x+ tk), ū(x) =

m∑
k=1

γ̄kσ2(ω̄k · x+ t̄k)
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respectively. We write u, ū as (u1, u2) and (ū1, ū2) for simplicity.

As for the samples from Ω and ∂Ω, we denote their empirical measure as

PN1
:=

1

N1

N1∑
i=1

δXi
and PN2

:=
1

N2

N2∑
i=1

δYi
,

respectively.

Now, we are ready to estimate d(u, ū), recall that

d(u, ū) =

√
1

2

√
∥u1 − ū1∥2L2(PN1

) + ∥u2 − ū2∥2L2(PN2
)

≤
√

1

2
(∥u1 − ū1∥L2(PN1

) + ∥u2 − ū2∥L2(PN2
)),

which allows us to estimate these two terms separately.

From the boundedness of related functions, we have

∥u1 − ū1∥L2(PN1
) = ∥|Ω|(Lu− f)2 − |Ω|(Lū− f)2∥L2(PN1

)

≤ cd2M2|Ω|∥L(u− ū)∥L2(PN1
)

and

∥u2 − ū2∥L2(PN2
) = ∥|∂Ω|(u− g)2 − |∂Ω|(ū− g)2∥L2(PN2

)

≤ cM |∂Ω|∥u− ū∥L2(PN2
).

Therefore, it can be turned to bound ∥L(u− ū)∥L2(PN1
) and ∥u− ū∥L2(PN2

).

For ∥L(u− ū)∥L2(PN1
), applying the triangle inequality yields

∥L(u− ū)∥L2(PN1
) = ∥ −

d∑
i,j=1

aij∂i,j(u− ū) +

d∑
i=1

bi∂i(u− ū) + c(u− ū)∥L2(PN1
)

≤ ∥
d∑

i,j=1

aij∂i,j(u− ū)∥L2(PN1
) + ∥

d∑
i=1

bi∂i(u− ū)∥L2(PN1
) + ∥c(u− ū)∥L2(PN1

)

:= A1 +A2 +A3.

Note that ∂iu, u are Lipschitz continuous with respect to the parameters, thus for A2, we have

A2 = ∥
d∑
i=1

bi∂i(u− ū)∥L2(PN1
)

≤ ∥
d∑
i=1

bi∂i(u− ū)∥L∞(Ω)

= ∥
d∑
i=1

2bi

(
m∑
k=1

γkω
i
kσ(ωk · x+ tk)− γ̄kω̄

i
kσ(ω̄k · x+ t̄k)

)
∥L∞(Ω)

= ∥
d∑
i=1

2bi

(
m∑
k=1

(γk − γ̄k)ω
i
kσ(ωk · x+ tk) + γ̄kω

i
kσ(ωk · x+ tk)− γ̄kω̄

i
kσ(ω̄k · x+ t̄k)

)
∥L∞(Ω)

≤ 4M

m∑
k=1

|γk − γ̄k|+ 2M

d∑
i=1

∥
m∑
k=1

γ̄kω
i
kσ(ωk · x+ tk)− γ̄kω̄

i
kσ(ω̄k · x+ t̄k)∥L∞(Ω),
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where the last inequality follows from the facts that |bi| ≤M, 1 ≤ i ≤ d and ωk = (ω1
k, · · · , ωdk),

∑d
i=1 |ωik| = 1. And we

denote the second term by A22, then

A22 = 2M

d∑
i=1

∥
m∑
k=1

γ̄kω
i
kσ(ωk · x+ tk)− γ̄kω̄

i
kσ(ω̄k · x+ t̄k)∥L∞(Ω)

= 2M

d∑
i=1

∥
m∑
k=1

γ̄k(ω
i
k − ω̄ik)σ(ωk · x+ tk) + γ̄kω̄

i
k(σ(ωk · x+ tk)− σ(ω̄k · x+ t̄k))∥L∞(Ω)

≤ 4M

d∑
i=1

m∑
k=1

|γ̄k||ωik − ω̄ik|+ 2M

d∑
i=1

m∑
k=1

|γ̄k||ω̄ik|(|ωk − ω̄k|1 + |tk − t̄k|)

= 4M

m∑
k=1

|γ̄k||ωk − ω̄k|1 + 2M

m∑
k=1

|γ̄k|(|ωk − ω̄k|1 + |tk − t̄k|),

where the inequality follows from the triangle inequality and the facts that σ is 1-Lipschitz continuous and ∥σ∥L∞([−2,2]) ≤ 2.

Combining the results for A2, we have

A2 ≤ 4M

m∑
k=1

|γk − γ̄k|+ 4M

m∑
k=1

|γ̄k||ωk − ω̄k|1 + 2M

m∑
k=1

|γ̄k|(|ωk − ω̄k|1 + |tk − t̄k|).

Similarly, we have

A3 = ∥c(u− ū)∥L2(PN1
)

≤ 4M

m∑
k=1

|γk − γ̄k|+ 4M

m∑
k=1

|γ̄k|(|ωk − ω̄k|1 + |tk − t̄k|)

and

∥u− ū∥L2(PN2
) ≤ 4

m∑
k=1

|γk − γ̄k|+ 4

m∑
k=1

|γ̄k|(|ωk − ω̄k|1 + |tk − t̄k|).

As A1 involves the second derivative of σ2, the method described above cannot be applied. However, we can borrow the
idea from the proof of Proposition A.3.

A1 = ∥
d∑

i,j=1

aij∂i,j(u− ū)∥L2(PN1
)

= 2∥
m∑
k=1

γkωk
TAωkI{ωk·x+tk≥0} − γ̄kω̄

T
k Aω̄kI{ω̄k·x+t̄k≥0}∥L2(PN1

)

= 2∥
m∑
k=1

(γkωk
TAωk − γ̄kω̄

T
k Aω̄k)I{ωk·x+tk≥0} + γ̄kω̄

T
k Aω̄k(I{ωk·x+tk≥0} − I{ω̄k·x+t̄k≥0})∥L2(PN1

)

≤ 2

m∑
k=1

|γkωkTAωk − γ̄kω̄
T
k Aω̄k|+ 2

m∑
k=1

|γ̄kω̄Tk Aω̄k|∥I{ωk·x+tk≥0} − I{ω̄k·x+t̄k≥0}∥L2(PN1
).

For the first term, we have
m∑
k=1

|γkωkTAωk − γ̄kω̄
T
k Aω̄k| ≤

m∑
k=1

|(γk − γ̄k)ωk
TAωk|+ |γ̄k(ωkTAωk − ω̄Tk Aω̄k)|

≤
m∑
k=1

M |γk − γ̄k|+ |γ̄k||ωkTA(ωk − ω̄k) + ω̄Tk A(ωk − ω̄k)|

≤M

(
m∑
k=1

|γk − γ̄k|+ 2|γ̄k||ωk − ω̄k|1

)
,
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where the inequalities follow from the triangle inequality and the fact that for any x ∈ ∂Bd1 (1), y ∈ Rd and matrixA ∈ Rd×d
with |A(i, j)| ≤M(1 ≤ i, j ≤ d), we have |xTAy| = |(ATx)T y| ≤ |ATx|∞|y|1 ≤M |y|1.

Thus we obtain the final upper bound for A1.

A1 ≤ 2M

m∑
k=1

(|γk − γ̄k|+ 2|γ̄k||ωk − ω̄k|1) + 2M

m∑
k=1

|γ̄k|∥I{ωk·x+tk≥0} − I{ω̄k·x+t̄k≥0}∥L2(PN1
).

Combining all results above, we can deduce that

d(u, û) ≤ c(d2M3|Ω|+M |∂Ω|)(
m∑
k=1

(|γk − γ̄k|+ |γ̄k||ωk − ω̄k|1)

+

m∑
k=1

|γ̄k|∥I{ωk·x+tk≥0} − I{ω̄k·x+t̄k≥0}∥L2(PN1
)).

Similar to bounding the empirical covering number of G for the two-layer neural networks in Lemma C.9 (1), the covering
number of F under d is(

c(d2M3|Ω|+M |∂Ω|)B
ϵ

)cmd
≤
(
c(d2M4|Ω|+M2|∂Ω|)

ϵ

)cmd
≤
(
cb

ϵ

)cmd
,

where c is a universal constant.

(2) Note that d(u, ū) ≤ C∥u− ū∥C2(Ω̄), then Proposition 1 Belomestny et al. (2024) implies that

logN (F , ∥ · ∥C2(Ω̄), ϵ) ≤ CKd log

(
K

ϵ

)
,

where C is a constant independent of K.

Therefore, the conclusion holds.

Lemma C.11 ((Agmon et al., 1959)). For u ∈ H
1
2 (Ω) ∩ L2(∂Ω),

∥u∥2
H

1
2 (Ω)

≤ C

∥∥∥∥∥∥−
d∑

i,j=1

aij∂iju+

d∑
i=1

bi∂iu+ cu

∥∥∥∥∥∥
2

H− 3
2 (Ω)

+ C∥u∥2L2(∂Ω)

≤ CΩ

∥ −
d∑

i,j=1

aij∂iju+

d∑
i=1

bi∂iu+ cu∥2L2(Ω) + ∥u∥2L2(∂Ω)

 ,

(159)

where CΩ is a constant that depends only on Ω.

D. Discussion
D.1. Over-parameterized setting

In the context of over-parameterization, the generalization bounds for two-layer neural networks may become less meaningful
due to the termm/n. However, fortunately, the function class of two-layer neural networks in Proposition 2.2 and Proposition
3.1 forms a convex hull of a function class with a covering number similar to that of VC-classes. Consequently, we can
extend the convex hull entropy theorem (Theorem 2.6.9 in Vaart & Wellner (2023)) to the H1 norm, allowing us to derive
generalization bounds that are independent of the network’s width. Theorem D.2 is a modification of Theorem 2.6.9 in Vaart
& Wellner (2023) to obtain explicit dependence on the dimension.

This section is inspired by two works Sreekumar & Goldfeld (2022) and Liu et al. (2024). Sreekumar & Goldfeld (2022)
utilizes two-layer neural networks to estimate statistical divergences and establishes a non-asymptotic absolute error bound
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using techniques from empirical processes. A key component is the estimation of the metric entropy of the closed convex
hull (see Theorem 58 and equation A.33 in Sreekumar & Goldfeld (2022)). Compared to Theorem 2.6.9 in Vaart & Wellner
(2023), Sreekumar & Goldfeld (2022) provides explicit constants with respect to the dimension d , but does not offer a proof
and is limited to the L2 norm. Liu et al. (2024) considers a different type of Barron space (Ma et al., 2022) and derives
generalization bounds under path norm constraints in the over-parameterized regime. Moreover, Liu et al. (2024) provides a
slightly more detailed proof for the estimation of the metric entropy of the closed convex hull, but this is still within the L2

norm, with a O(d5) dependence on dimension d. We extend the results from the L2 norm to the H1 norm and establish
the explicit dimensional dependence, specifically obtaining an O(d) bound, which is the same as that of (Sreekumar &
Goldfeld, 2022).

Lemma D.1. Let F be arbitrary set consisting of n measurable function f : Ω → R of finite H1(Q)-diameter diam(F).
Then for every ϵ > 0, we have

N (ϵdiam(F), conv(F), H1(Q)) ≤
(
e+

enϵ2

2

) 2
ϵ2

.

Proof. Assume that F = {f1, · · · , fn}. For given λ in the n-dimensional simplex. Let Y1, · · · , Yk be i.i.d. random
elements such that P (Y1 = fj) = λi for j = 1, · · · , k and k is natural number to be determined. Then we have

EYi =
n∑
j=1

λjfj and ∇EYi = E∇Yi =
n∑
j=1

λj∇fj .

Let Ȳk = 1
k

∑k
i=1 Yi, then the independence implies

E∥Ȳk − EY1∥2H1(Q) =
1

k2

k∑
i=1

E∥Yi − EY1∥2H1(Q) ≤
1

k
(diam(F))2.

Therefore, Markov inequality implies that there is at least one realization of Ȳk that have H1(Q)-distance at most
k−1/2diam(F) to the convex combination

∑n
j=1 λjfj . Note that every realization has the form k−1

∑k
i=1 fik , where

some functions fj in the set F may be used multiple times. As such forms are at most Ckn+k−1, we can deduce that

N (k−1/2diam(F), conv(F), H1(Q)) ≤ Ckn+k−1 ≤ ek(1 +
n

k
)k,

where the last inequality follows from Stirling’s inequality.

For 0 < ϵ < 1, we can take k = ⌈ 1
ϵ2 ⌉, then the monotonicity of the function ek(1 + n

k )
k and the fact k ≤ 1

ϵ2 + 1 ≤ 2
ϵ2

imply that

ek
(
1 +

n

k

)k
≤
(
e+

enϵ2

2

) 2
ϵ2

. (160)

For ϵ > 1, the right term in (160) is larger than 1, thus the conclusion holds directly.

Theorem D.2. Let Q be a probability on Ω, and let F be a class of measurable functions with ∥F∥Q,2 := sup
f∈F

∥f∥H1(Q) <

∞ and

N (ϵ∥F∥Q,2,F , H1(Q)) ≤ C

(
1

ϵ

)V
, 0 < ϵ < 1

for some V ≥ 1. Then we have

logN (ϵ∥F∥Q,2, conv(F), H1(Q)) ≤ KV (C
1
V + 2)

2V
V +2

(
1

ϵ

) 2V
V +2

,

where K is a universal constant.
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Proof. Note that every element in the convex hull of F has distance ϵ to the convex hull of an ϵ-net over F . Accordingly,
given a fixed ϵ, it suffices to consider scenarios where the set F is finite.

Set W = 1
2 + 1

V and L = C1/V ∥F∥Q,2. Then the assumption implies that F can be covered by n balls of radius at
most Ln−1/V for every natural number n. Form sets F1 ⊂ F2 ⊂ · · · ⊂ F such that for each n, the set Fn is a maximal,
Ln−1/V -separated net over F . Thus Fn has at most n elements. We will show by induction that there exist constant Ck and
Dk depending only on C and V such that supk Cj ∨Dk <∞ and for q ≥ 3V ,

logN (CkLn
−W , conv(Fnkq ), H1(Q)) ≤ Dkn, n, k ≥ 1.

The proof consists of a nested induction argument. The outer layer is induction on k and the inner layer is induction on n.

First, we apply induction for n, i.e., for k = 1, we will prove the conclusion for each n. For fixed n0 = 10, it suffices to
choose C1Ln0

−W = C1L10
−W ≥ ∥F∥Q,2 so that the statement is trivially ture for n ≤ n0 = 10, i.e., C1 ≥ 10WC−1/V .

For 10 < n ≤ 100, set m = ⌊ n10⌋, thus 1 ≤ m ≤ 10. By the definition of Fm, each f ∈ Fn − Fm has distance at most
Lm−1/V of some element πmf of Fm. Thus each element of conv(F) can be written as∑

f∈Fn

λff =
∑
f∈Fm

µff +
∑

f∈Fn−Fm

λf (f − πmf),

where µf ≥ 0 and
∑
µf =

∑
λf = 1. Taking G as the set of function f − πmf with f ranging over Fn − Fm,

thus conv(Fn) ⊂ conv(Fm) + conv(Gn) for a set Gn consisting of at most n elements, each of norm smaller than
Lm−1/V , then diam(Gn) ≤ 2Lm−1/V . Applying Lemma 17 for Gn with ϵ defined by m−1/V ϵ = 1

4C1n
−W , i.e.,

ϵdiam(Gn) ≤ 1
2C1Ln

−W , we can find a 1
2C1Ln

−W -net over conv(Gn) consisting of at most

(e+
enϵ2

2
)2/ϵ

2

=

(
e+

eC2
1

32
(
m

n
)

2
V

) 32n

C2
1
( n
m )

2
V

≤
(
e+

eC2
1

32
(
1

20
)

2
V

) 32n

C2
1
20

2
V

elements, where the inequality follows from the facts that (e+ enx)
1
x is increasing with respect to x > 0 and ⌊ n10⌋ ≥

1
2
n
10

for n ≥ 10. Applying the induction hypothesis to Fm to find a C1Lm
−W -net over conv(Fm) consisting of at most em

elements, where we choose D1 = 1. This defines a partition of conv(Fm) into m-dimensional sets of radius at most
C1Lm

−W . Without loss of generality, we can assume that Fm = {fi1 , fi2 , · · · , fim}. For any fixed element h in the
C1Lm

−W -net over conv(Fm), assume that h = λ1fi1 + · · ·λmfim for λ = (λ1, · · · , λm) ∈ Rm. And we denote the ball
centered at h with H1(Q) radius C1Lm

−W by

H := {λ̄ = (λ̄1, · · · , λ̄m) ∈ A : h̄ = λ̄1fi1 + · · ·+ λ̄mfim , ∥h̄− h∥H1(Q) ≤ C1Lm
−W },

where A is a subset of Rm.

Note that

∥h− h̄∥H1(Q) = ∥λ1fi1 + · · ·λmfim − λ̄1fi1 − · · · − λ̄mfim∥H1(Q)

≤ |λ1 − λ̄1|∥fi1∥H1(Q) + · · ·+ |λm − λ̄m|∥fim∥H1(Q)

≤ (|λ1 − λ̄1|+ · · ·+ |λm − λ̄m|)∥F∥Q,2.

Thus if ∥λ − λ̄∥1 ≤ C1C
1/Vm−W , then ∥h − h̄∥H1(Q) ≤ C1Lm

−W . Therefore, A ⊂ {λ̄ ∈ Rm : ∥λ̄ − λ∥1 ≤
C1C

1/Vm−W }. By Lemma 5.7 in Wainwright (2019), we can find a 1
2C1C

1/V n−W -net of A under the distance ∥ · ∥1
consisting of at most (

6C1C
1/Vm−W

1
2C1C1/V n−W

)m
= (12(

n

m
)W )m ≤

(
12(20)W

) n
10

elements. Moreover, it yields a 1
2C1Ln

−W -net of H under H1(Q). Select a function from each of the given sets. Then,
construct all possible combinations of the sums f + g by preceding procedure, where f is associated with conv(Fm) and g
is associated with conv(Gn). These form a C1Ln

−W -net over conv(Fn) of cardinality bounded by

en/10(12(20)W )n/10

(
e+

eC2
1

32

(
1

20

) 2
V

) 32(20)
2
V n

C2
1

.
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This is bounded by en for some suitable choice of C1. Specifically, note that for V ≥ 1, the term attains the maximum at
V = 1, thus it is bounded by

en/10(12(20)
3
2 )n/10

(
e+

eC2
1

32 · 400

) 32·400n
C2
1

.

We can just take C1 = 1000. This concludes the proof for k = 1 and 10 < n ≤ 100. Proceeding in the same way yields
that the conclusion holds for every n.

We continue by induction on k. By a similar construction as before, conv(Fnkq ) ⊂ conv(Fn(k−1)q ) + conv(Gn,k) for
a set conv(Gn,k) containing at most nkq elements, each of norm smaller than L(n(k − 1)q)−1/V , so that conv(Gn,k) ≤
2Ln−1/V k−q/V 2q/V . Applying Lemma D.1 to conv(Gn,k) with ϵ = 2−1kq/V−22−q/V n−1/2, we can find an Lk−2n−W -
net over conv(Gn,k) consisting of at most

(e+
enkqϵ2

2
)

2
ϵ2 =

(
e+

ekq+
2q
V −4

2
2q
V +3

)n2 2q
V

+3k4−
2q
V

elements. Apply the induction hypothesis to obtain a Ck−1Ln
−W -net over the set conv(Fn(k−1)q ) with respect to H1(Q)

consisting at most eDk−1n elements. Combine the nets as before to obtain a Ck−1Ln
−W -net over conv(Fnkq ) consisting of

at most eDkn elements, for

Ck = Ck−1 +
1

k2
,

Dk = Dk−1 + 2
2q
V +3 1 + log(1 + 2−

2q
V −3kq+

2q
V −4)

k2(
q
V −2)

.

For 2( qV − 2) ≥ 2, the resulting sequences Ck and Dk are bounded. By setting q = 3V , i.e., 2( qV − 2) = 2, we have

Dk = Dk−1 + 29
1 + log(1 + 2−9k3V+2)

k2
.

Therefore, for any k, we can deduce that Ck ≤ C1 + 2 and Dk ≤ D1 +KV , where K is a universal constant. Recall that
C1 = max(10WC−1/V , 1000), thus supk Ck ≤ max(10WC−1/V , 1000) + 2.

Finally,

logN (ϵ∥F∥Q,2, conv(F), H1(Q)) ≤ sup
k
Dk

(
CkC

1
V

ϵ

) 2V
V +2

≤ KV (C
1
V + 2)

2V
V +2

(
1

ϵ

) 2V
V +2

,

where K is a universal constant.

For the function class of two-layer neural networks considered in the DRM, i.e.,

F = {σ(ω · x+ t),−σ(ω · x+ t), 0 : |ω|1 = 1, t ∈ [−1, 1)},

thus for any probability measure Q on [0, 1]d, we have ∥F∥Q,2 ≤ 3 and

N (ϵ∥F∥Q,2,F , H1(Q)) ≤ C(d+ 1)(4e)d+1

(
C

ϵ

)3d

,

where C is a universal constant.

Then, applying Theorem D.2 yields that

logN (ϵ∥F∥Q,2, conv(F), H1(Q)) ≤ Kd

(
1

ϵ

) 6d
3d+2

,

where K is a universal constant.

53



Refined Generalization Analysis of the DRM and PINNs

As a result, in Theorem 2.5 for deriving the generalization error for the static Schrödinger equation, we can deduce that the
fixed point r∗ satisfies

r∗ ≲ d
3
2

(
1

n

) 1
2+

1
2(3d+1)

,

which yields a meaningful generalization bound in the setting of over-parameterization.

D.2. Other boundary conditions for Deep Ritz Method

Let Ω ⊂ [0, 1]d be a convex bounded open set and ∂Ω be the boundary of Ω. Consider the elliptic equation on Ω with
Neumann boundary condition:

−∆u+ wu = h on Ω,
∂u

∂n
= g on ∂Ω, (161)

where
h ∈ L∞(Ω), g ∈ H

1
2 (∂Ω), w ∈ L∞(Ω). (162)

From the variation method, the Ritz functional can be defined by

E(u) =
∫
Ω

(
1

2
∥∇u∥22 +

1

2
w|u|2 − hu

)
dx−

∫
∂Ω

(gTu)ds, (163)

where T is the trace operator.

Then we can deduce that then unique weak solution u∗ ∈ H1(Ω) of (1614) is the unique minimizer of E over H1(Ω).
Moreover, the Ritz functional possesses similar strongly convex property as described in Proposition 1. Specifically, for any
u ∈ H1(Ω),

∥u− u∗∥2H1(Ω) ≲ E(u)− E(u∗) ≲ ∥u− u∗∥2H1(Ω). (164)

At this point, to derive the fast rate for equation (161), we can employ the LRC from the multi-task learning setting. This
is due to the strongly convex property of the Ritz functional (161), which is similar to the approach used to derive faster
generalization bounds for the static Schrödinger equation. Specifically, Theorem B.3 in Yousefi et al. (2018) can be seen
as a generalization of Theorem 3.3 in Bartlett et al. (2005) to the multi-task setting, thus combining it with the error
decomposition in (79) can lead to the conclusion for the Ritz functional (163). For the sake of brevity, we omit the proof
here.

For the Robin boundary condition:

u+ β
∂u

∂n
= g, on Ω, β ∈ R, β ̸= 0, (165)

the corresponding Ritz functional retains strong convexity properties analogous to (163), provided the bilinear form remains
coercive. To approximate homogeneous Dirichlet conditions (u = 0, on ∂Ω), we can set g = 0 and let β → 0+. Since
under certain conditions, we can prove that ∥uβ − u0∥H1(Ω) = O(β), where uβ is the solution to the Robin boundary
condition (165) and u0 is the solution under the homogeneous Dirichlet boundary condition.

D.3. Lower bounds

The derivation of lower bounds plays a critical role in nonparametric statistics. From the upper and lower bounds, we can
establish whether the estimator achieves minimax optimality. What Lu et al. (2021b) has achieved better than our work is
that they also derived lower bounds for both DRM and PINNs. Their results show that the bound for DRM is not minimax
optimal, whereas that for PINNs is minimax optimal. However, the metric used in Lu et al. (2021b) to evaluate PINNs is
the H2 norm, which requires strong convexity assumption on PDEs and neural network functions to belong to H1

0 . Such
assumptions appear too stringent.

Recent studies (Farrell et al., 2021; Schmidt-Hieber, 2020; Jiao et al., 2023; Bauer & Kohler, 2019; Kohler & Langer,
2021; Chen et al., 2022) have shown that neural network-based estimators can achieve minimax optimal rates for regression
problems under certain conditions. These bounds are estimated under the L2 norm. However, for PINNs, different PDEs
require distinct norms to measure the discrepancy between the empirical and true solutions, which differs significantly
from the regression framework. Consequently, lower bounds may only be discussed within the semi-norm structure of
PINNs’ loss functions. Thus, the minimax optimality of the derived bounds for both PINNs and DRM remains an open
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question warranting rigorous investigation. Future work will examine the applicability of Le Cam’s and Fano’s methods in
this context.

D.4. Limitations and future Work

• In the paper, we have made the assumption that all related functions are bounded, as required for the localization
analysis. However, these assumptions can sometimes be strict. Therefore, it is crucial to investigate settings where the
boundedness is not imposed.

• Utilizing ReLU neural networks in the DRM presents optimization challenges due to the non-differentiability of the
ReLU function’s derivative. One potential approach is to employ randomized methods to tackle the objective functions,
like using random neural networks (Wang & Dong, 2024). Specifically, for a two-layer neural network, we sample
the weights of the hidden layer from a certain probability distribution, which allows us to focus solely on optimizing
the parameters of the output layer, thereby simplifying the problem to an easy optimization task. The methods for
deriving improved generalization error remain valid under stronger assumptions. For instance, when the solutions
belong to B3(Ω), employing ReLU2 neural networks allows us to leverage gradient descent or stochastic gradient
descent methods.

• For the PINNs, the loss functions play a crucial role for solving PDEs. It is worth paying more attention to the design
of loss functions for different PDEs. As discussed in Section 3, using the L2 loss function can only yield results
in the H1/2-norm. To obtain results in the H1 or H2-norm, the boundary residual term must employ the H1/2 or
H3/2-norm. However, using the H1/2 or H3/2-norm not only complicates computations but also introduces difficulties
in deriving generalization bounds, because computing fractional Sobolev norms may render the empirical loss function
non-Lipschitz continuous with respect to the parameters (see, e.g., Definition 1.2 in Girault & Raviart (2012) for the
definition of fractional norms). In practice, we can relax the H1/2 and H3/2-norms. For instance, for the H1/2-norm,
we may use the loss function:

L(u) = ∥Lu− f∥2L2(Ω) + ∥u− g∥2H1(∂Ω).

Similar ideas have also been applied in elliptic surface problems (Wu et al., 2023). Moreover, the design of loss
functions is equally crucial for inverse problems (Zhang et al., 2023).

• The optimization error is beyond the scope of this paper. Gao et al. (2023); Luo & Yang (2020) have considered the
optimization error of the two-layer neural networks for the PINNs inspired by the work Du et al. (2018). However, all
these studies focus on the over-parameterized regime, relying on the lazy training property of neural tangent kernel
(NTK).

• The requirements of the function class of deep neural networks may be impractical. Achieving these requirements in
practice might be accomplished by restricting the weights of the networks, but doing so can make optimization more
difficult. Thus, it is worth exploring whether there are more efficient methods.

• The solution theory of PDEs in the Barron spaces remains unclear. Lu et al. (2021c) has addressed the problem for
the Poisson and static Schrödinger equations in the Spectral Barron spaces, yielding a priori estimates similar to the
standard Sobolev regularity estimate. As for the Barron spaces, Chen et al. (2023) has studied the regularity of solutions
to the whole-space static Schrödinger equation in Bs(Rd). However, the results of Lu et al. (2021c) and Chen et al.
(2023) do not work for Bs(Ω). Despite this, at least, there exists solutions in the Bs(Ω), as H

d
2+s+ϵ(Ω) ⊂ Bs(Ω) for

any ϵ > 0.
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