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ABSTRACT
Domain generalization (DG) is an important problem that involves learning a
model which generalizes to unseen test domains by leveraging one or more source
domains, under the assumption of shared label spaces. However, most DG methods
assume access to abundant source data in the target label space, a requirement that
proves overly stringent for numerous real-world applications, where acquiring the
same label space as the target task is prohibitively expensive. For this setting, we
tackle the multimodal version of the unsupervised domain generalization (MUDG)
problem, which uses a large task-agnostic unlabeled source dataset during fine-
tuning. Our framework relies only on the premise that the source dataset can be
accurately and efficiently searched in a joint vision-language space. We make three
contributions in the MUDG setting. Firstly, we show theoretically that cross-modal
approximate nearest neighbor search suffers from low recall due to the large dis-
tance between text queries and the image centroids used for coarse quantization.
Accordingly, we propose paired k-means, a simple clustering algorithm that im-
proves nearest neighbor recall by storing centroids in query space instead of image
space. Secondly, we propose an adaptive text augmentation scheme for target
labels designed to improve zero-shot accuracy and diversify retrieved image data.
Lastly, we present two simple but effective components to further improve down-
stream target accuracy. We compare against state-of-the-art name-only transfer,
source-free DG and zero-shot (ZS) methods on their respective benchmarks and
show consistent improvement in accuracy on 20 diverse datasets. Code is available:
https://anonymous.4open.science/r/mudg-160C

1 INTRODUCTION
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Figure 1: Comparison of Problem Settings. DG assumes
labeled source data for the target task. UDG assumes the
same data, but without labels. Our MUDG setting assumes
a superset of the unlabeled source data, most of which is
irrelevant to the target task. The core challenge of MUDG is
constructing a task-specific dataset for model finetuning.

Domain generalization (DG) is
widely studied in the computer
vision literature because the train
and test image data distributions
often differ for many applications.
However, traditional DG methods
assume access to labeled task-specific
source data, which is expensive
for many real-world applications.
Consequently, more recent studies
have tackled the unsupervised DG
(UDG) problem, where source labels
are not used during finetuning (Zhang
et al., 2022; Narayanan et al., 2022;
Harary et al., 2022). Unfortunately,
this experimental procedure is fairly
restrictive and impractical, since it
still assumes that the source and
target label spaces are identical. To
address this shortcoming, we propose
studying a more realistic multimodal
UDG (MUDG) setting, where the
source data is both unlabeled and
“task-agnostic”, i.e. the source dataset
is not specifically designed for the

target task. Instead, we only require that the source dataset contains the target visual concepts, and
that these target visual concepts are aligned with the corresponding target language concepts in the
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Task-agnostic Task-specific Unlabeled Target
Setting Source Source Target Label Names

DA (Sun et al., 2016; Saito et al., 2019; Acuna et al., 2021) - labeled ✓ ✓
SFDA - - ✓ ✓
ZS (Menon and Vondrick, 2022; Pratt et al., 2023; Roth et al., 2023; Novack et al., 2023) - - - -
DG (Cha et al., 2022; Min et al., 2022; Shu et al., 2023; Khattak et al., 2023) - labeled - ✓
UDG (Zhang et al., 2022; Narayanan et al., 2022; Harary et al., 2022) - unlabeled - ✓
SFDG (Cho et al., 2023) - - - ✓
MUDG (Udandarao et al., 2023) (our work) ✓ - - ✓

Table 1: Comparison to related works based on the information available at training time. DA -
domain adaptation; DG - domain generalization; SF - source free; ZS - zero-shot. UDG - unsupervised
DG. MUDG - multimodal UDG is our setting.

CLIP embedding space used for indexing. Under these relaxed assumptions, we can leverage publicly
available large-scale image datasets to improve DG accuracy by building a subset of images relevant
to the target task. Figure 1 compares our proposed MUDG with the most relevant problem settings.

Multimodal Unsupervised Domain Generalization (MUDG) In order to leverage publicly avail-
able unlabeled image data, such as LAION (Schuhmann et al., 2022), YFCC100M Thomee et al.
(2016), WIT Srinivasan et al. (2021), and CC12M Changpinyo et al. (2021), we study MUDG, a
generalization of UDG classification. “Multimodal” refers to the requirement for the source dataset
to be accurately and efficiently searchable in a joint vision-language space using a pretrained CLIP
model. Using this searchable index, our goal is to build a pseudo-labeled subset of the source
data to train a model for a given target classification task. Table 1 positions our problem setting
relative to related works. Our work can be viewed as an extension of the recent source-free domain
generalization (SFDG) problem (Cho et al., 2023), which only uses the target label names during
finetuning. Compared to SFDG, finding a suitable subset of the source data poses an interesting
challenge, and our results show that the margin for accuracy improvement is much larger under
our MUDG setting. MUDG is most similar to the “name-only transfer” problem posed by SuS-X
Udandarao et al. (2023), but our work is more in line with the DG literature.

To illustrate the practical benefits of MUDG over UDG, consider a set of e-commerce classification
tasks (e.g. “casual” vs. “formal”, “modern” vs. “traditional”). In the traditional UDG setting, a
dataset must be curated for each category in each classification task. In contrast, MUDG allows for
the use of one universal unlabeled dataset of general product images. We accomplish this by selecting
a relevant and representative subset of the general dataset using the target class names, and then
training a customized model for each task. This approach is more practical and scalable, since it
eliminates the need for handcrafted task-specific datasets.

Cross-modal Retrieval with Paired k-means Unsupervised Objective for Adaptive Label Augmentation

Figure 2: Illustration of Paired k-means. In this ex-
ample, image samples are grouped using k-means,
and the search is limited to the group whose cen-
troid is closest to the query. Left: Due to the
large distance between the query and image sam-
ples, the true nearest neighbor is unlikely to reside
within the Voronoi cell of the closest image cen-
troid. Right: We correct this issue by maintaining
the centroids of the Voronoi cells in query space.

Accurate and Efficient Retrieval The core
challenge of MUDG is accurate approximate
nearest neighbor search for finding images rel-
evant to the target task. Similar to retrieval aug-
mentation (Blattmann et al., 2022; Gur et al.,
2021; Long et al., 2022; Iscen et al., 2023),
we propose constructing a subset of images re-
trieved from the source dataset using the text
query “a photo of a ⟨label⟩”. Existing works
use an off-the-shelf inverted feature list (IVF),
which organizes images into buckets based on
the closest feature centroid, as shown in Figure
2. During deployment, the index calculates simi-
larity scores between the query and images only
in the bucket corresponding to the closest cen-
troid. This simple search algorithm works well
when the probability of the query and its nearest
neighbor residing in the same Voronoi cell is
high. However, we show theoretically that this
probability is low when the query belongs to a
different modality due to the well-known modal-
ity gap (Liang et al., 2022; Oh et al., 2024; Shi
et al., 2023; Ming and Li, 2024). We empirically
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confirm that cross-modal approximate nearest neighbor search using an IVF index has lower recall
than in-modal search. In other words, a query may return images that belong to a different label,
leading to low downstream target accuracy. To mitigate this issue, we propose paired k-means, a
clustering algorithm that maximizes the probability of a text query and its closest image sample
belonging to the same Voronoi cell by updating the centroids to be in the query distribution. We
show empirically that paired k-means converges and leads to better cross-modal recall under the same
latency constraint.

Cross-modal Retrieval with Paired k-means Unsupervised Objective for Adaptive Label Augmentation

Figure 3: Adaptive Label Augmentation. Starting
with a base classification problem, our goal is to
find label augmentations that preserve the variance
of the classifier prototypes. Intuitively, maintaining
feature variance enhances zero-shot accuracy by
better capturing the underlying data distribution.

Diversified Retrieval On the other hand, ac-
curate retrieval is not sufficient for high target
accuracy, since a training dataset that covers
only the small, high-confidence region of the tar-
get image distribution is undesirable. To intro-
duce diversity, we must augment the text query,
e.g. “a photo of a chicken, ⟨descriptor⟩.” Pratt
et al. (2023) and Menon and Vondrick (2022)
use LLM-generated descriptors to augment the
query, but Roth et al. (2023) suggest that these
LLM descriptors achieve the same zero-shot
accuracy as random text augmentations. Intu-
itively, querying with descriptors that already
achieve high zero-shot accuracy should lead to
better target performance after finetuning. Fol-
lowing this intuition, we design an unsuper-
vised heuristic to select good label augmenta-
tions adaptively based on the target classification task, without an LLM or image data. Our heuristic
favors augmentations that do not reduce the variance between target text features (see Figure 3). We
show that our adaptive descriptor selection achieves state-of-the-art zero-shot accuracy across 10
standard datasets, and that this translates to additional gains in downstream target accuracy.

Finally, we introduce two additional components that makes our method more robust to irregularities
in the source data and the target task: (1) Sample selection by clustering: cluster image embeddings
into k clusters within each label group and randomly select one sample from each cluster. The purpose
of this step is twofold: to build a balanced dataset, with k samples per label; and to ensure that no two
images are semantically similar. (2) Diversity preserving loss: regularize the KL divergence between
current and initial soft predictions on training samples for every augmentation to avoid collapse of
textual representations.

Overall, we make two core contributions related to retrieval in the context of MUDG:
• We identify a fundamental limitation of cross-modal approximate nearest neighbor search

caused by the modality gap. We investigate this challenge theoretically, and propose a paired
k-means clustering algorithm for building an index with better cross-modal recall.

• We develop an unsupervised adaptive label augmentation scheme for diversified retrieval.

2 RELATED WORK

Multimodal foundational models Multimodal foundational models (Radford et al., 2021; Jia et al.,
2021; Li et al., 2022b; Yu et al., 2022) use separate image and language encoders to embed the two
modalities into a joint space. Once pretrained, these embeddings can be used to create a database
searchable by both image and text (Schuhmann et al., 2022). Large-scale efficient search is enabled
by approximate nearest neighbor search libraries such as FAISS (Douze et al., 2024). A recent work
(Gadre et al., 2023) achieved the latest state-of-the-art on ZS ImageNet by cleaning LAION-5B
with a teacher CLIP model. Another recent work (Sun et al., 2023) uses a large CLIP model and
unpaired web-crawled data to train a smaller foundational model in a distillation-inspired manner.
The above works focus on generalist pretraining from scratch, which remains out-of-reach of most
academic researchers. We focus instead on task-specific finetuning using a constructed dataset of up
to 100K samples. React (Liu et al., 2023) tackles the so-called “model customization” problem; in
comparison, our work is more focused on the source subset construction portion of the finetuning
pipeline, and consequently, we achieve similar accuracy improvements as React with a 100× smaller
retrieved dataset. Our problem setting is most similar to SuS-X (Udandarao et al., 2023), which
retrieves a support set from LAION-5B, but they focus on the training-free regime. Many recent
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Augment(Chihuahua)
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0
Given image embeddings from 
a large source dataset, and 
target class name embeddings.

Diversified Retrieval:
Augment text. Calculate embeddings.
Retrieve nearest image neighbors.

Rank Pseudo-labeling:
Pseudo-label retrieved images with 
highest ranked text neighbor.

Representation of joint image-text embedding space.      Legend:    text embedding    image embedding

Clustering:  Cluster image 
embeddings. Then, randomly select 
one from each cluster.

Training: Train a student CLIP 
model using selected data. 

Figure 4: Illustration of Our Training Pipeline. In step 1, we select good label augmentations
according to Fig. 3 and retrieve their nearest neighbors using the procedure shown in Fig. 2. In step
2, we pseudo-label the retrieved images with the closest label feature. In step 3, we de-duplicate the
retrieved dataset by clustering and then selecting one image from each cluster. Finally, we finetune
the CLIP classifier on the dataset.

works strive to understand and tackle the modality gap (Liang et al., 2022; Oh et al., 2024; Shi et al.,
2023; Ming and Li, 2024) in the context of model transfer; unlike these works, we study the modality
gap’s implications on cross-modal search. Ming and Li (2024); Iscen et al. (2023); Liu et al. (2023)
work around the cross-modal retrieval problem by additionally performing in-modal search, which is
not possible for every application; we work towards more effective cross-modal search.
Flavors of domain generalization Table 1 is a non-exhaustive summary of variations on generaliza-
tion settings studied in recent literature. Domain adaptation (Sun et al., 2016; Saito et al., 2019; Acuna
et al., 2021) aims to leverage out-of-distribution (OOD) but task-specific source data in conjunction
with unlabeled target data. Traditional DG (Muandet et al., 2013; Cha et al., 2022; Min et al., 2022)
trains on OOD task-specific source data from multiple domains, without knowledge of target data. A
more recent flavor of DG (Shu et al., 2023; Khattak et al., 2023) trains on generic labeled source data
(e.g. ImageNet) with the goal of generalizing to any classification task, by leveraging transferability
of the image-text alignment in CLIP. Unsupervised DG (Zhang et al., 2022; Narayanan et al., 2022;
Harary et al., 2022) trains on unlabeled task-specific source data. Source-free DG (SFDG) (Cho et al.,
2023) aims to increase pretrained accuracy with only the target task information, but the improvement
over ZS methods is not consistent empirically. ZS methods (Menon and Vondrick, 2022; Pratt et al.,
2023; Roth et al., 2023; Novack et al., 2023) improve accuracy by ensembling multiple text features.
Our problem setting, multimodal UDG, takes advantage of plentiful unlabeled non-task-specific
image data, which offers more leverage than the SFDG setting, while not relying on any task-specific
or labeled images contrary to the DA and DG studies.
Webly supervised, open world, and open set The webly supervised literature (Chen and Gupta,
2015; Li et al., 2020) focuses on learning from a noisy web-crawled dataset (Li et al., 2017b; Sun
et al., 2021) and is very closely related to the large body of work on noisy supervised learning, see
survey (Song et al., 2022). These works focus on the finetuning algorithm given a dataset, rather than
the construction of the training data, unlike our work. Another popular research direction focuses on
generalization to unseen classes given a certain set of (possibly related) training classes; these works
fall under open-set (Saito et al., 2021; Du et al., 2023; Panareda Busto and Gall, 2017) open-world
(Bendale and Boult, 2015; Boult et al., 2019; Cao et al., 2022) or base-to-novel (Zhou et al., 2022;
Khattak et al., 2023; Kan et al., 2023) semi-supervised learning. Finally, some works selectively
retrieve from an unlabeled data pool to expand a smaller set of labeled training samples (Sener and
Savarese, 2017; Killamsetty et al., 2021; Kim et al., 2023), referred to as core-set sampling. Contrary
to these works, we assume no labeled data of any kind at training time. Retrieval augmentation
(Blattmann et al., 2022; Gur et al., 2021; Long et al., 2022; Iscen et al., 2023) is a related line of work
which requires a retrieval system at test time, adding substantially heavier evaluation overhead.

3 METHOD
Figure 4 illustrates our method. Concisely, we use augmented copies of the target label names to
query a large source dataset and then finetune the student CLIP model on retrieved images, with the
ultimate objective of high target accuracy. Toward achieving this objective, we identify two necessary
sub-goals: building a search index with good cross-modal recall and designing a label augmentation
scheme with high ZS accuracy. Section 3.1 tackles the first sub-goal with a novel cross-modal
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Figure 5: Left: Empirical confirmation of the modality gap; cross-modal similarity scores are lower
than in-modal similarity scores. Middle: Cross-modal nearest neighbor search suffers from lower
recall than in-modal search. Right: Empirical verification of Theorem 1; queries that are farther away
from the closest centroid have lower recall.

indexing scheme for accurate and efficient retrieval; Section 3.2 solves the second sub-goal with an
unsupervised heuristic to select good descriptors for augmenting label names; Section 3.3 finishes
with a diversity preserving loss for model finetuning.

3.1 MORE ACCURATE CROSS-MODAL RETRIEVAL

Background For this paper we will consider a two-level IVF indexing scheme used by Udandarao
et al. (2023); Liu et al. (2023); Iscen et al. (2023). The first level is a coarse quantization consisting
of k buckets obtained by k-means clustering; the index stores the coordinates of the centroids and a
list of sample IDs belonging to each bucket along with their residual features. The second level is a
fine quantization scheme used to reduce disk storage. We will consider only the coarse quantization
scheme. During deployment, the index sorts the centroids by decreasing similarity with the query and
searches through the first nprobe buckets for its nearest neighbor. Assuming that each bucket contains
a similar number of samples, the query speed is proportional to nprobe. The quality of the index can
be measured by the percentage of queries where the true nearest neighbor among all gallery samples
is retrieved, “R@1”, for constant nprobe.

Motivational Issue Figure 5 Middle shows that the R@1 for text-to-image searches is about 30%
lower than in-modal queries for small nprobe. This is a concern for many multimodal applications,
since cross-modal retrieval exhibits a far worse recall-latency tradeoff than in-modal retrieval using
existing technology. We hypothesize that this drop in recall is caused by the modality gap (Liang
et al., 2022; Oh et al., 2024; Shi et al., 2023; Ming and Li, 2024), illustrated in Figure 5 Left. Text
queries tend to be far away from the image centroids. Moreover, on a closed space, points far away
from centroids are closer to the boundaries of the Voronoi cells, and the neighbors of boundary points
are more likely to reside in neighboring cells.
Assumptions 1 Consider n points {x1, ...,xn} drawn uniformly from the unit sphere Sd := {x ∈
Rd | ∥x∥2 = 1}. Consider k additional points{c1, ..., ck} drawn uniformly from Sd. We refer to
these points as “centroids”; k << n. The Voronoi cell around a centroid is the set of all points closer
to that centroid than all other centroids, i.e. Vor(c) := {x ∈ Sd | ∥x − c∥2 ≤ ∥x − ci∥2 ,∀ci ∼
{c1, ..., ck}\c}. We assume that Vor(c) is a strict subset of the hemisphere centered at c.
Theorem 1 (Decreasing recall on closed space) Under Assumptions 1, ∀c ∈ {c1, ..., ck},p ∈
Vor(c):

gc (p) ≤ Pr

[
argmin

xi∼{x1,...,xn}
∥xi − p∥2 ∈ Vor(c)

]
≤ gc (p) + ϵ (1)

where ϵ := 1 − ρ(s′); ρ(cos(θ)) := 1
2Isin2 θ

(
d−1
2 , 1

2

)
; Ix(·, ·) is the regularized incomplete beta

function; and gc (p) is a function defined over Vor(c) which satisfies the following properties:

1. gc(c) = ρ(s′), where, s′ := cos
(
1
2 cos

−1 maxci∈{c1,...,ck}\c⟨c, ci⟩
)
.

2. gc(b) + ϵ = 1
2 for all points b on the boundary of set Vor(c).

3. gc is non-increasing in all directions from c in the following sense:

gc (projSd(au+ c)) ≤ gc (projSd(bu+ c)) , ∀a > b > 0,u ∈ Rd

given that all inputs to function gc remain within Vor(c). projSd denotes L2-normalization.

The proof follows from the convexity of Voronoi regions, see Appendix A.1. Note that ρ(cos(θ))
denotes the surface area of a spherical cap with angle θ as a fraction of the unit sphere’s surface area
(Li, 2010), and ρ(s′) is close to 1. In plain words, Theorem 1 states that under Assumptions 1, the
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Figure 6: Left: Plots of the PDF in Eq. 2 of Theorem 2 for d = 2, illustrating both the small variance
regime when p is in-distribution and the large variance regime when p is out-of-distribution. Right:
Convergence of the two objectives in Eq. 5; note that the paired k-means algorithm is better at
minimizing Lcross-modal, the rate of cross-modal search failures on training data.

bounds on the probability that the nearest neighbor resides in the same Voronoi cell as the query
decrease monotonically in all great circle directions from the centroid. This probability is equivalent
to R@1 with nprobe = 1. The assumptions are somewhat stringent, but Figure 5 Right empirically
verifies this behavior with a 20M subset of LAION-2B.

Theorem 1 partially explains the empirical observations in Figure 5 Middle, and text queries are
certainly far away from their image centroids. However, Theorem 1 assumes that the query belongs
to the same distribution as the gallery set. This is clearly not true for cross-modal retrieval. To
understand the drop in recall when the query is not in the support of the gallery distribution, we
need another set of assumptions. Theorem 2 will show that as a query moves away from a Gaussian
distributed gallery distribution, the probability that the closest gallery sample and the closest centroid
are close decreases. In fact, the distribution of the closest gallery sample approaches a Gaussian
distribution in all except one dimension in the limit, i.e. if a query is far away, its position provides
little information about the location of the closest gallery sample.
Assumptions 2 Consider n points drawn uniformly from N (0, Id), the standard normal distribution
in Rd. Denote as {x1, ...,xn}. Let q(p) := argminxi∼{x1,...,xn} ∥xi − p∥2.
Theorem 2 Under Assumptions 2, the probability density function of the closest point to query p is:

Pr[q(p) = x] = n (1− Pr[xi ∈ Br(p)])
n−1

(2π)−d/2 exp

(
−1

2
∥x∥22

)
, r := ∥x− p∥2 (2)

where Pr[xi ∈ Br(p)] indicates the probability that a single point drawn from N (0, Id) resides in
the Rd ball of radius r centered at p.
Corollary 2 The probability density function derived in Theorem 2 satisfies the following:

1. (Small variance when ∥p∥2 is small)

Pr[∥q(p)− p∥2 > r] ≤

(
1−

(
rd

2d/2Γ
(
d
2 + 1

) exp(−1

2
(∥p∥2 + r)2

)))n

(3)

2. (Large variance when ∥p∥2 is large).

lim
∥p∥2→∞

Pr[q(p) = x] = n
(
Φ
(
∥projp(x)∥2

))n−1
(2π)−d/2 exp

(
−1

2
∥x∥22

)
(4)

where ∥projp(x)∥2 denotes the length of x projected onto p, and Φ denotes the CDF of the
standard normal distribution in 1D.

Proofs are in Appendix A.2. Theorem 2 states the probability density of the closest gallery sample
q(p) in terms of the location of p, and Corollary 2 interprets the density function by splitting it into
a small variance and large variance regime. When ∥p∥ is small, the blue term in Eq.2 dominates
and Pr[q(p) = x] looks like a Dirac delta, see Fig. 6 Left. In other words, the nearest neighbor is
likely to be in a small region; Eq. 3 states this formally. When ∥p∥ is large, the red term in Eq. 2
dominates and Pr[q(p) = x] looks like a Gaussian with the same variance as the sample distribution
in all directions except for p, see Fig. 6 Middle Left. Clearly, this implies that a query that is far away
from the gallery distribution is unlikely to belong to the same Voronoi cell as its nearest neighbor. We
sketch a geometric argument for this implication using the boundary of Voronoi cells in Appendix
A.4 but do not give a formal proof.
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Figure 7: Left: Improvement of nearest neighbor recall with paired k-means at various latency settings
and fine quantization levels. Middle: Correlation between variance of text features and ZS accuracy.
Right: Intermediary ZS accuracy result with adaptive label augmentation.

Algorithm 1 Paired k-means

1: Input: Image samples {x1, ...,xn}, text sam-
ples {p1, ...,pn}, number of clusters k.

2: Initialize cluster centroids {c1, ..., ck}.
3: Calculate the nearest image sample to each

text sample, {q(p1), ...,q(pn)}. Note that
there can be redundancies.

4: for a fixed number of iterations do
5: Assign each image sample in

{q(p1), ...,q(pn)} to the nearest
centroid.

6: Update each centroid c in {c1, ..., ck} to
be the mean of text features paired with
image features assigned to the cluster:

c =
1

|Vor(c)|
∑

p∈{p1,...,pn}|q(p)∈Vor(c)

p

7: Normalize centroids.
8: end for
9: Output: cluster centroids {c1, ..., ck}.

Algorithm 2 MUDG
Input: Source dataset Xs, A1...Am, nneighbors, k1,
pretrained findex and fstudent, {t1, ..., tc}.
Step 1: Let Q = {findex,text(Aj(ti)),∀i = 1 :
c, j = 1 : m} denote the query set. For q ∈ Q,
retrieve nneighbors closest samples in Xs. Combine
retrieved images from all queries; denote as X1.
Step 2: For q ∈ Q, sort x ∈ X1 by decreasing
cosine similarity between q and findex, image(x).
Denote rank of x relative to q as rank(x, q) ≥ 1.
Assign each x ∈ X1 the label corresponding to
the closest ranked query, i.e. argminq rank(x, q).
Denote the labeled set as X2.
Step 3: Initialize an empty labeled dataset X3.
For each label y ∈ 1 : c, find the subset of X2

with label y. Cluster into k1 clusters, using k-
means. Randomly select one sample from each
cluster and append to X3.
X3 contains ck1 samples.
Step 4: Finetune fstudent on X3 for N iterations,
using Ltrain (Eq. 7).
Output: finetuned fstudent.

Paired k-means The fundamental issue causing the degradation in cross-modal recall is that the
image centroids and queries are far away from each other in feature space. Consequently, the nearest
centroid to a query does not provide much information about the location of the true nearest neighbor.
To resolve this issue, we modify the k-means algorithm to update the centroids with the average of
text features instead of image features. See Algorithm 1. This algorithm is an attempt at simultaneous
minimization of the following two objectives heuristically:

Lkmeans =
1

n

k∑
i=1

∑
x∈Vor(ci)

∥x− ci∥22 , Lcross-modal =
1

n

n∑
p∈{p1,...,pn}

1[c(q(p)) ̸= c(p)] (5)

where {p1, ...,pn} ∈ Sd denotes a set of n text queries, and c(p) := argminci∼{c1,...,ck} ∥ci−p∥2
denotes the closest centroid to a query p. The first objective is the k-means objective. The second
objective is the fraction of text queries p whose nearest centroid c(p) is different from the closest
centroid to the nearest image sample c(q(p)). The first objective enforces good clustering, while the
second objective forces query features to be mapped to the same Voronoi cell as the nearest gallery
feature. We show that both objectives converge empirically in Fig. 6 Right.

Nearest neighbor search results Figure 7 Left shows that an index trained with paired k-means
outperforms the standard k-means index in R@1 for various values of nprobe and fine quantization
levels. The cross-modal recall is directly related to the downstream target accuracy, since subsequent
steps in our method rely on retrieving images that are relevant to the target task.
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3.2 DIVERSIFIED RETRIEVAL WITH ADAPTIVE TEXT AUGMENTATION

There is very little semantic diversity among the nearest neighbors of any single query, which likely
leads to severe overfitting during training, see Figures 16 and 17 in the Appendix. To ensure diversity
of finetuning data, we propose to search the source dataset with augmented text queries in the format
of “a photo of a ⟨label⟩, ⟨descriptor⟩.” Previously, the authors of visual descriptors Menon and
Vondrick (2022) proposed to use GPT to generate phrases that describe the label, e.g. “a photo of a
chicken, which has two legs”. Subsequently, waffleCLIP Roth et al. (2023) showed that the visual
descriptors achieve similar zero-shot accuracies as random text augmentations on diverse datasets,
see Figure 7 Right.

We consider two factors when choosing an appropriate augmentation function: (1) the augmented
text does not change the label of the original text; and (2) the resulting distribution of augmented
queries covers the entire concept of the class. The first requirement can be measured by the zero-shot
accuracy of an ensemble of augmented texts. Let {A1, ...,AM} denote a set of M text augmentation
functions. We aim to select a subset of size m << M that does not change the meaning of the labels.
We use the heuristic in Eq. 6 to choose the augmentation subset based on the target labels {t1, ..., tc}.
First, we cluster the label text features into k2 clusters using k-means. Denote the label clusters as
{St,1, ...,St,k2} and the text encoder as ftext:

argmin
A∼{A1,...,AM}

k2∑
i=1

1

 ∑
ti,tj∼St,i

⟨ftext(A(ti)), ftext(A(tj))⟩ >
∑

ti,tj∼St,i

⟨ftext(ti), ftext(tj)⟩

 (6)

Intuitively, an augmentation is desireable if it does not reduce the variance of the text features within
any label cluster. Eq. 6 measures the variance of label features using their average pairwise cosine
similarities, and counts the number of clusters where the augmentation A decreases this variance.
For example, on ImageNet, the augmentation “a photo of a ⟨label⟩, which can be any size or shape”
is a good augmentation because it does not reduce the distance between any two ImageNet labels,
and the indicator function in Eq. 6 evaluates to 0 for all label clusters. On the other hand “a photo of
a ⟨label⟩, which has sharp teeth” is a bad augmentation for ImageNet because it reduces the distance
among text features corresponding to animal labels. This reduction degrades the model’s ability to
discriminate among the labels within the cluster, and the ZS accuracy decreases as a consequence,
see Figure 7 Middle. Table 11 in the Appendix provides qualitative examples of augmentations with
varying loss values.

We select the m augmentations {A1, ...,Am} with the lowest loss according to Eq. 6 and construct
a dataset with mc queries: {findex,text(Aj(ti)),∀i = 1 : c, j = 1 : m}. findex,text denotes the text
encoder used for indexing the source dataset Xs. We retrieve the nneighbors nearest neighbors to each
query in Xs and remove redundancies, resulting in a preliminary dataset size of at most mcnneighbors.
See step 1 of Algorithm 2.

3.3 ADDITIONAL TRICKS FOR SAMPLE SELECTION AND FINETUNING

We label each retrieved image sample according to the text feature to which it is ranked the highest,
see step 2 of Algorithm 2 and Appendix C.2 for a justification. We then select k1 images for each
label according to step 3 of Algorithm 2; the detailed procedure is presented in Appendix C.3. Finally,
we finetune using the diversity preserving loss presented in Liao et al. (2023):

Ltrain =
1

m

∑
A∼{A1,...,Am}

CE (ŷA, (1− λ)y + λŷA,0) (7)

where CE denotes the cross entropy loss, ŷA ∈ ∆c denotes the soft prediction of the model with
augmentation A, y denotes the one-hot encoded pseudo-label, and ŷA,0 denotes the soft prediction of
the initial model with augmentation A. λ is a hyperparameter. Ltrain learns the pseudo-labels while
simultaneously preserving the diversity present in the initial text encoder.

4 EXPERIMENTS
We experiment with the ViT B/16 and ViT L/14 pretrained weights released by Radford et al. (2021)
and available through the Python openclip package (Ilharco et al., 2021). The indexing model is
ViT L/14; we modify FAISS (Douze et al., 2024) to build a search index for the source dataset,
LAION-2B-en (Schuhmann et al., 2022). We experiment with two model sizes to show that we
achieve large gains in target accuracies even when the indexing model and the student model are
identical.
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Setting ImageNet Caltech Pets Cars Flowers Food Aircraft SUN DTD EuroSAT UCF Mean

Open-AI CLIP ViT-B/16

CLIP ZS (Radford et al., 2021) ZS 67.1 93.3 89.0 65.4 71.0 85.7 24.9 63.2 43.6 46.6 67.4 65.2
waffleCLIP (Roth et al., 2023) ZS 68.2 93.5 88.1 65.5 72.1 85.9 25.6 66.2 44.3 47.3 68.1 65.9
Random Desc. (Roth et al., 2023) ZS 68.1 94.3 87.7 65.7 71.7 85.7 25.2 66.2 44.7 47.7 67.3 65.8
Ensemble (Radford et al., 2021) ZS 68.4 93.5 88.8 66.0 71.1 86.0 24.9 66.0 43.9 45.0 68.0 65.6
Vis. Desc. (Menon and Vondrick, 2022) ZS 68.6 93.7 89.0 65.1 72.1 85.7 23.9 67.4 43.9 46.4 66.8 65.7
CuPL Pratt et al. (2023) ZS 69.1 - 91.7 65.0 73.5 86.0 27.7 68.5 48.9 - 70.2 -
SuS-X † Udandarao et al. (2023) MUDG 70.0 93.9 91.6 65.9 73.1 86.1 30.5 67.9 55.3 58.1 66.7 69.0
Nearest neighbors MUDG 69.4 93.9 93.4 70.2 75.8 86.3 27.2 67.4 52.4 41.2 69.9 67.9
Margin (Coleman et al., 2019) MUDG 64.5 94.7 92.8 61.6 75.5 86.3 33.2 61.6 51.0 59.6 71.9 68.4
Least Confident (Coleman et al., 2019) MUDG 62.7 93.9 92.2 68.6 75.3 86.2 33.6 63.3 52.3 58.3 71.2 68.9
Entropy (Coleman et al., 2019) MUDG 63.9 94.5 92.7 61.5 75.5 86.4 33.3 60.6 52.2 59.2 71.5 68.3
Herding (Welling, 2009) MUDG 69.0 95.1 93.0 74.2 75.9 86.4 32.8 68.6 53.4 59.0 72.0 70.9
K-Ctr Greedy (Sener and Savarese, 2017) MUDG 67.5 94.7 93.3 72.5 75.6 86.4 33.3 68.5 53.6 58.7 71.9 70.5
MUDG (ours) MUDG 70.4 94.6 92.9 73.8 76.5 86.7 32.8 68.8 53.3 61.3 71.0 71.1
Upper bound 73.9 95.8 95.1 89.9 95.9 87.5 59.2 77.3 73.2 89.0 86.4 83.9

Open-AI CLIP ViT-L/14

CLIP ZS (Radford et al., 2021) ZS 73.8 94.6 93.6 76.9 79.4 90.9 32.8 68.0 52.7 56.2 74.7 72.1
waffleCLIP (Roth et al., 2023) ZS 75.0 96.1 93.5 77.1 78.8 90.9 33.6 69.3 54.3 57.7 75.3 72.9
Random Desc. (Roth et al., 2023) ZS 75.1 96.9 93.4 76.7 78.5 90.7 33.6 70.1 54.5 59.3 75.5 73.1
Ensemble (Radford et al., 2021) ZS 75.6 95.6 94.0 78.1 79.8 91.2 32.7 70.5 54.0 55.2 75.0 72.9
Vis. Desc. (Menon and Vondrick, 2022) ZS 75.3 96.7 93.8 77.4 79.3 90.9 34.8 71.0 56.4 62.8 73.9 73.8
CuPL Pratt et al. (2023) ZS 76.3 - 94.2 76.3 79.5 91.1 36.0 72.4 60.0 - 75.8 -
Nearest neighbors MUDG 76.2 95.8 95.3 78.0 80.2 91.3 33.3 71.7 56.2 61.6 75.6 74.1
MUDG (ours) MUDG 76.4 96.3 94.9 79.2 79.4 91.3 35.5 72.5 58.2 70.9 76.8 75.6

Table 2: Comparison of our MUDG baseline with ZS baselines and SuS-X on 11 diverse datasets.
Average of three experiments. For MUDG rows, dataset construction and model training is separate
for each dataset. “Nearest neighbors” refers to simple nearest neighbors retrieval. † indicates results
reported by the authors; all other results are our reproductions. We finetune the ViT-B/16 model on
16-shot target training data as an upper bound.

ImageNet Office Home DomainNet

Setting V2 Sketch A R Mean A C P R Mean Mean

Open-AI CLIP ViT-B/16

CLIP ZS Radford et al. (2021) ZS 60.9 46.6 47.2 74.1 57.2 82.6 67.2 88.8 89.6 82.1 57.6
waffleCLIP Roth et al. (2023) ZS 61.8 48.5 50.0 76.3 59.2 83.1 68.2 89.7 90.4 82.9 59.7
Random Desc. Roth et al. (2023) ZS 61.7 48.8 49.9 76.6 59.2 83.0 69.1 89.5 90.2 83.0 59.6
Ensemble Radford et al. (2021) ZS 61.9 48.5 49.2 77.9 59.4 84.3 67.7 89.3 90.2 82.9 60.2
Vis. Desc. Menon and Vondrick (2022) ZS 61.8 48.1 48.6 75.2 58.4 - - - - - -
PromptStyler † Cho et al. (2023) SFDG - - - - - 83.8 68.2 91.6 90.7 83.6 59.4
MUDG (ours) MUDG 63.6 50.4 51.5 80.1 61.4 85.9 73.3 92.0 91.4 85.7 61.2

Open-AI CLIP ViT-L/14

CLIP ZS Radford et al. (2021) ZS 68.0 57.9 68.3 85.5 69.9 87.1 74.8 93.1 93.4 87.1 63.9
waffleCLIP (Roth et al., 2023) ZS 68.8 58.7 70.1 87.1 71.2 87.7 78.2 93.8 94.4 88.5 65.4
Random Desc. Roth et al. (2023) ZS 69.2 59.1 70.5 87.1 71.5 88.2 78.4 94.4 94.0 88.7 65.7
Ensemble Radford et al. (2021) ZS 69.9 59.7 70.2 87.8 71.9 88.5 76.9 93.8 94.5 88.4 66.1
Vis. Desc. Menon and Vondrick (2022) ZS 69.4 58.8 69.6 86.4 71.1 - - - - - -
PromptStyler † Cho et al. (2023) SFDG - - - - - 89.1 77.6 94.8 94.8 89.1 65.5
MUDG (ours) MUDG 70.1 60.9 72.1 89.0 73.0 90.2 81.5 95.1 94.6 90.3 67.0

Table 3: Comparison of our MUDG baseline with ZS baselines and PromptStyler on DG benchmarks.
Average of three trials. Dataset construction and model training is performed once and evaluated on
all domains for Office Home, Terra Incognita, and DomainNet; but we perform the steps separately
for each ImageNet domain, due to differences in label spaces. PromptStyler (Cho et al., 2023) †
results are those reported by the authors; all other results are our reproductions.

Datasets We experiment with a diverse set of target classification tasks. ImageNet-1K (Russakovsky
et al., 2015), Caltech-101 (Li et al., 2022a), Oxford-Pets (Parkhi et al., 2012), Stanford-Cars (Krause
et al., 2013), Flowers-102 (Nilsback and Zisserman, 2008), Food-101 (Bossard et al., 2014), FGVC-
Aircraft (Maji et al., 2013), SUN-397 (Xiao et al., 2010), Describable-Textures (DTD) (Cimpoi et al.,
2013), EuroSAT (Helber et al., 2019), UCF-101 (an action recognition dataset) (Soomro et al., 2012)
in Table 2 and ImageNet-V2 (Recht et al., 2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-A
(natural adversarial examples) (Hendrycks et al., 2021b), and ImageNet-R (Hendrycks et al., 2021a)
in Table 3 are commonly used by zero-shot papers, while Office Home (Venkateswara et al., 2017),
Terra Incognita (Beery et al., 2018), DomainNet (Peng et al., 2019), VLCS (Torralba and Efros,
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Figure 8: Summary of ablation experiments. See Appendix Tables 4, 5 and 6 for detailed tables.

2011), and PACS (Li et al., 2017a) are common DG and DA datasets. TerraInc, VLCS and PACS
results are in Appendix B.
Baselines We compare to ZS (Roth et al., 2023; Radford et al., 2021; Menon and Vondrick, 2022;
Pratt et al., 2023), SFDG (Cho et al., 2023), and MUDG (Udandarao et al., 2023) baselines. We also
include a strong random descriptor baseline which ensembles randomly selected visual descriptors
(Roth et al., 2023). To the best of our knowledge, PromptStyler (Cho et al., 2023) is the only current
SFDG baseline and SuS-X (Udandarao et al., 2023) is the most suitable MUDG baseline. In addition,
we compare against representative coreset selection baselines (Coleman et al., 2019; Welling, 2009;
Sener and Savarese, 2017), using the implementations by Guo et al. (2022). We do not compare
against supervised DG baselines, such as ERM and MIRO (Cha et al., 2022), since those methods
require labeled data for the target task. Ablations We provide ablation studies justifying our paired
k-means indexing, adaptive label augmentation, diversity preserving loss, and sample selection
schemes in Tables 4, 5 and 6 in the Appendix and summarized in Fig. 8. Hyperparameters are
listed in Tables 9 and 10 of the Appendix. An ablation study on m, nneighbors, k1 and nprobe is included
in Figure 15 of the Appendix. Qualitative results We provide qualitative examples of successful
and unsuccessful retrievals in Figures 9 and 10.

Test 
Sample

Closest Training 
Sample (ours)

Closest Training 
Sample 

(baseline)

Test 
Sample

Closest Training 
Sample (ours)

Closest Training 
Sample 

(baseline)

clogs       grey fox      radio telescope    Granny Smith     hot dog     beauty salon television studio     throne room       corral    driveway     Mitsubishi Lancer      Volvo C30       Ferrari FF Coupe    BMW X6 SUV     Ford Expedition     porous       waffled     stratified     matted  potholed

windflower     wallflower    trumpet creeper    pink primrose     bougainvillea       croque madame       crab cakes lobster bisque       devilled eggs    ceviche      Scottish terrier  Staffordshire terrier   keeshond       wheaten terrier     British shorthair    rafting      playing Dhol        hammer throw      baby crawling  mixing Query

Query

Figure 9: Qualitative comparison of our retrieval results against the baseline method (Udandarao
et al., 2023). Our method retrieves images which are more aligned with the target concepts. Dataset
names in order: ImageNet, SUN, Cars, DTD, Flowers, Food, Pets, UCF.

Test 
Samples

Training 
Samples (ours) 

Query paddle     paddle      paddle      paddle       silverbush     silverbush     silverbush     silverbush    clean room       clean room    clean room      clean room     lacelike    lacelike    lacelike       lacelike     playing Daf      playing Daf        playing Daf 

Figure 10: Example retrieval failure modes. Target concepts of “clean room” and “paddle” are
different from the CLIP alignment; the CLIP embedding space is not aligned for the action “playing
Daf”, the texture “lacelike” and the flower “silverbush”.

5 CONCLUSION

This work tackled the multimodal unsupervised domain generalization problem, which finetunes a
model for a target task using images retrieved from a non-task-specific, unlabeled source dataset.
We broke the MUDG problem down into three smaller sub-problems and proposed novel solutions
for each sub-problem. First, we introduced a paired k-means clustering approach to build an index
with superior cross-modal recall. Second, we designed an unsupervised heuristic to select good label
augmentations for diversified retrieval. Finally, we trained the student CLIP model on the retrieved
data with a diversity preserving loss to yield promising accuracy improvements across 20 diverse
benchmarks.
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LIMITATIONS

Even though we do not explicitly assume any relationships between the source and target data, our
work may not be applicable to problems where the target visual concepts are either not present in
the source dataset or completely misaligned with corresponding language concepts, see Figure 10.
Possible examples include synthetic aperture radar images, images of tissue samples, or medical
scans. Additionally, our method may not improve results on datasets where the zero-shot accuracy is
already saturated. For example, the VLCS dataset contains 5 classes: bird, car, chair, dog, and person.
Our method does not achieve any meaningful improvement over the ZS baseline on these simple
classification tasks.

A PROOFS

A.1 PROOF OF THEOREM 1

Step 1. For ease of notation, use c to denote closest centroid to p, and use q to denote the closest
point to p:

q := argmin
xi∼{x1,...,xn}

∥xi − p∥2 (8)

First, we need to solve for the CDF of the probability distribution over the cosine similarity between
p and q.

Pr[⟨p,q⟩ ≥ s] = 1− Pr[⟨p,q⟩ < s]

= 1−Πn
xi
Pr[⟨p,xi⟩ < s]

= 1−Πn
xi
(1− Pr[⟨p,xi⟩ ≥ s])

(9)

For ease of analysis, we assumed that Vor(c) is a strict subset of the hemisphere centered at c, so
we only need to consider s < 0. This corresponds to θ < π/2, where θ denotes the angle between
p and q. Since the xis are independently uniformly distributed over Sd, Pr[⟨p,xi⟩ ≥ s] in Eq. 9
corresponds to the ratio of the surface area of a spherical cap with angle θ = cos−1(s) to the entire
surface area of the sphere. This ratio is given in Li (2010) Li (2010):

Pr[⟨p,xi⟩ ≥ cos θ] =
1

2
Isin2 θ

(
d− 1

2
,
1

2

)
:= ρ(cos(θ)) (10)

where I ∈ [0, 1) is the regularized incomplete beta function. We will use ρ ∈ [0, 0.5) to denote the sur-
face area of a spherical cap as a function of the cosine similarity as a fraction of the surface area of Sd.

Given c, Pick s′ to be the closest point on the boundary to the Voronoi cell to c, i.e. co-
sine of half the angle to the closest centroid:

s′ := cos

(
1

2
cos−1 max

ci∈{c1,...,ck}\c
⟨c, ci⟩

)
(11)

Note that s′ is chosen such that the the spherical cap with θ = cos−1(s′) is the largest possible
spherical cap centered at c that is still fully contained within Vor(c).

The probability in Eq. 1 can then be decomposed as:

Pr[q ∈ Vor(c)] = Pr[⟨p,q⟩ ≥ s′] Pr[q ∈ Vor(c) | ⟨p,q⟩ ≥ s′]︸ ︷︷ ︸
gc(p)

+ Pr[⟨p,q⟩ < s′]︸ ︷︷ ︸
ϵ

Pr[q ∈ Vor(c) | ⟨p,q⟩ < s′]
(12)

In the above equation, we hope that n is large enough and k is small enough such that the second
term is small, and the theorem is only meaningful in this regime. Intuitively, a large n leads to a
exponentially diminishing probability that q is far away from p, see Eq. 9; and a relatively small
k ensures that Pr[⟨p,q⟩ ≥ s′] is large. Let’s denote ϵ := Pr[⟨p,q⟩ < s′], such that the second
term in Eq. 12 can be bounded by 0 and ϵ. This simplifies the analysis, since we now only need to
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worry about what happens inside the spherical cap with angle cos−1(s′) around p. By construction,
Pr[q ∈ Vor(c) | ⟨c,q⟩ ≥ s′] = 1, so gc(c) = Pr[⟨p,q⟩ ≥ s′] = ρ(s′). This is property 1 of
Theorem 1.

Step 2. The proof of property 3 of Theorem 1 (monotonicity of gc) can be proven from
the convexity of Voronoi cells. gc from Eq. 12 can be written as an integral over a spherical cap of
probability density multiplied by an indicator function of whether that part of the spherical cap is still
within the Voronoi cell. We can establish monotonicity of each indicator function by simply noticing
that a ray originating from a point strictly within a convex set can only cross the boundary of that
convex set once.

Let Cθ(p) denote the spherical cap in Sd centered around p with θ = cos−1(s′). Then,

gc(p) = (1− ϵ)

∫
v∈Cθ(p)

Pr[v = q | q ∈ Cθ(p)]1[v ∈ Vor(c)]dv (13)

where Pr[v = q] denotes the probability density function that v is the closest sample to p (out of the
n samples). 1 is the indicator function. When p = c, all the indicator functions in Eq. 13 are equal
to 1. All indicator functions are non-increasing in all directions from within the Voronoi cell in the
following sense:

1 [projSd(au+ v) ∈ Vor(c)] ≤ 1 [projSd(bu+ v) ∈ Vor(c)] , ∀a > b > 0,u ∈ Rd,v ∈ Vor(c)
(14)

Eq. 14 follows from the convexity of Vor(c), and property 3 of Theorem 1 follows from the
combination of Eq. 13 and 14.

Step 3. Finally, we conclude by showing property 2 of Theorem 1. This property states
that Pr[q ∈ Vor(c(b))] ≤ 0.5 for all points b on the boundary of Vor(c). This is easy to see. We
assumed that Vor(c) is a strict subset of a hemisphere. For any point b, it is obviously possible
to construct a hemisphere Cπ/2 such that all of Vor(c) is contained within Cπ/2 and b is on the
boundary of Cπ/2. Clearly, the function Pr[q ∈ Cπ/2] is symmetric around the boundary of the
hemisphere Cπ/2, so Pr[q ∈ Vor(c(b))] ≤ Pr[q ∈ Cπ/2] = 0.5, since Vor(c(b)) ⊆ Cπ/2.

Figure 11: Diagram for proof of Theorem 1.

A.2 PROOF OF THEOREM 2

Firstly, we want to derive the probability that the closest point to p lies in Br(p):

Pr[q(p) ∈ Br(p)] = 1− Pr[q(p) ̸∈ Br(p)]

= 1− Pr[xi ̸∈ Br(p)]
n

= 1− (1− Pr[xi ∈ Br(p)])
n

(15)
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Equation 15 can be considered a CDF with respect to the radius. Let’s derive the PDF w.r.t. the radius
by differentiating:

Pr[q(p) ∈ Sr(p)] =
d

dr
Pr[q(p) ∈ Br(p)]

=
d

dr
[1− (1− Pr[xi ∈ Br(p)])

n]

= − d

dr
(1− Pr[xi ∈ Br(p)])

n

= n (1− Pr[xi ∈ Br(p)])
n−1 d

dr
Pr[xi ∈ Br(p)]

(16)

Let K = (2π)−d/2. Let Pr[xi ∈ Br(p)] denote the probability that a single point drawn from
N (0, Id) resides in the Rd ball of radius r centered at p. Sr(p) denotes the Rd sphere of radius r
around p (the boundary of Br(p)).

Pr[xi ∈ Br(p)] =

∫
v∈Br(p)

K exp

(
−1

2
∥v∥22

)
dv

=

∫ r′=r

r′=0

∫
v∈Sr(p)

K exp

(
−1

2
∥v∥22

)
dvdr′

d

dr
Pr[xi ∈ Br(p)] =

∫
v∈Sr(p)

K exp

(
−1

2
∥v∥22

)
dv

(17)

Substitute Eq. 17 into 16 to get the probability density that the closest sample to p lies in Sr(p).
Note that the fact that q(p) is the closest point to p does not change the marginal distribution w.r.t. r,
so Pr[xi = x | xi ∈ Sr(p)] = Pr[q(p) = x | q(p) ∈ Sr(p)].

Pr[q(p) = x | q(p) ∈ Sr(p)] =
K exp

(
− 1

2∥x∥
2
2

)∫
v∈Sr(p)

K exp
(
− 1

2∥v∥
2
2

)
dv

, ∀x ∈ Sr(p) (18)

When we substitute, the integrals cancel out:

Pr[q(p) = x] = Pr[q(p) = x | q(p) ∈ Sr(p)]Pr[q(p) ∈ Sr(p)]

= n (1− Pr[xi ∈ Br(p)])
n−1

(2π)−d/2 exp

(
−1

2
∥x∥22

)
, r := ∥x− p∥2, ∀x ∈ Rd

(19)

A.3 PROOF OF COROLLARY 2

Part 1. This part is straightforward.

Pr[∥q(p)− p∥ > r] = (1− Pr[xi ∈ Br(p)])
n

<

(
1−

(
VrK exp

(
−1

2
(∥p∥+ r)2

)))n (20)

where Vr = πd/2

Γ(d/2+1) is the volume of a ball of radius r in Rd. K = (2π)−d/2. The upper bound in
Eq. 20 comes from lower bounding the probability density of xi ∼ N (0, Id) within Br(p) with the
smallest value.

Part 2. WLOG assume p lies along the first coordinate axis; let the scalar value of this coordinate be
p := ∥p∥ for simplicity. Let’s introduce a constant k ∈ (0, 1). Consider the probability that the first
coordinate of the n samples is greater than pk. This is the probability that the max of n independent
samples {x1, ..., xn} ∼ N (0, 1) is bigger than pk. This is a standard result using a Chernoff-derived
tail bound and a union bound (Vershynin, 2018):

Pr

[
max(x1, ..., xn) ≤

√
2 ln

n

δ

]
≥ 1− δ , δ ∈ (0, 1) (21)
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Using our value of pk for the bound, we get:

Pr
[
max(x1, ..., xn) ≤ pk

]
≥ 1− ne−p2k/2 (22)

Equation 22 implies that Pr[q(p)[0] > pk] → 0 as p → ∞, for k ∈ (0, 1), where q(p)[0] denotes the
first coordinate of q. Using another union bound, we can easily show that as p → ∞, the probability
that q(p) resides within a hypercube with side lengths 2pk goes to 1, exponentially. Concretely, let
∥ · ∥∞ denote the infinity norm, then:

Pr
[
max(∥x1∥∞, ..., ∥xn∥∞) ≤ pk

]
≥ 1− nde−p2k/2 (23)

Now, we only need to consider the probability mass within this hypercube. We consider the approxi-
mation of the ball B∥x−p∥(p) with the half-space Hx[0] := {x′ ∈ Rd | x′[0] ≥ x[0]}. Considering
only points that lie within the hypercube with side lengths 2pk, the difference in between the union
and intersection of B∥x−p∥(p) and Hx[0] goes to zero. This is because the discrepancy between the
two sets is a spherical cap with max height h =

√
(p− pk)2 + (d− 1)p2k − (p− pk). This occurs

at the corner of the hypercube. As p → ∞, h → 0, for k < 1
2 . This limit can be easily seen by

writing h as a fraction:

h =
a2 − b2

a+ b
=

(d− 1)p2k

Θ(p+
√
dpk)

, a :=
√
(p− pk)2 + (d− 1)p2k , b := p− pk

Therefore, Pr[xi ∈ B∥x−p∥(p)] → Pr[xi[0] ≥ x[0]]. The later probability is the tail of a
1D Gaussian, 1 − Φ(x[0]). Substituting this into Eq. 2 of Theorem 2, we recover the limiting
distribution in Eq. 4 of the corollary.

origin p

corner of hypercube
x

𝑝𝑝𝑘𝑘

𝑝𝑝 − 𝑝𝑝𝑘𝑘

𝑑𝑑 − 1 𝑝𝑝2𝑘𝑘

ℎ

Figure 12: Diagram for proof of Corollary 2.

A.4 ALTERNATIVE GEOMETRIC INTUITION TO THEOREM 2

As an alternative intuition to Theorem 2, consider the set difference between the Voronoi cell defined
by centroids and the union of all Voronoi cells defined by individual gallery samples within the
cluster. Queries that fall into this difference region do not retrieve the correct nearest neighbor. This
difference region grows as a query moves farther away from the gallery distribution. We illustrate
this intuition in Figure 13. For this figure, we generate 10,000 2D Gaussian samples and cluster them
into 20 clusters. The Voronoi cells of the 20 clusters is plotted in solid black lines. The Voronoi cells
formed by the 10,000 samples are also plotted and color-coded by cluster. When a query belongs a
Voronoi cell that is different from the Voronoi cell of the closest sample, nearest neighbor retrieval
fails. Clearly, the approximation of the union of Voronoi cells of samples by the Voronoi regions of
the centroids becomes worse with increasing distance from the origin. This results in lower retrieval
accuracy.

B EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

Domain abbreviations Office Home domains: A - art; C - clipart; P - product; R - real. Terra
Incognita domain names are anonymous location identifiers for camera traps. DomainNet domains:
C - clipart; I - infograph; P - painting; Q - quickdraw; R - real; S - sketch. PACS domains: A - art; C -
cartoon; P - photo; S - sketch. VLCS domain names are dataset names.
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Figure 13: Alternative intuition to Theorem 2 in Section A.4. We generate 10,000 2D Gaussian
samples and assign them to 20 clusters. The Voronoi cells of the 20 clusters is plotted in solid black
lines. The Voronoi cells formed by the 10,000 samples are also plotted and color-coded by cluster.
When a query belongs a Voronoi cell that is different from the Voronoi cell of the closest sample,
retrieval fails. Clearly, the approximation of the union of Voronoi cells of samples by the Voronoi
regions of the centroids becomes worse with increasing distance from the origin.
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Mean V2 Sketch A R Mean

Open-AI CLIP ViT-B/16

! ! 70.3 94.6 93.5 72.7 75.9 86.6 33.9 69.1 54.7 59.1 71.5 71.1 63.5 50.0 51.9 79.0 61.1
! 70.0 94.6 93.5 74.6 75.7 86.5 33.3 69.5 53.7 57.0 69.2 70.7 63.0 49.9 49.1 79.1 60.2
! ! 70.4 94.6 93.4 73.4 75.3 86.4 32.9 69.6 54.0 58.9 69.0 70.7 63.5 50.2 51.3 79.4 61.1

! ! 70.2 94.3 93.2 75.2 76.4 86.5 33.5 68.5 53.1 59.5 71.9 71.1 62.9 50.1 49.8 79.7 60.6
! ! ! 70.4 94.6 92.9 73.8 76.5 86.7 32.8 68.8 53.3 61.3 71.0 71.1 63.6 50.4 51.5 80.1 61.4

Table 4: Ablations experiments part 1.

Hyperparameters The finetuning parameters are displayed in Table 9. The training set construction
parameters nneighbors, m, and k1 are dataset-specific and listed in Table 10. Moreover, the number of
training iterations N and query/prompt template also varies with the dataset, as listed in Table 10.

Ablation study An ablation study on the training set construction parameters nneighbors, m, k1 and
nprobe are included in Figure 15. We perform these experiments for ImageNet, DomainNet, and
Office Home. When varying the values of nneighbors and m, we scale the value of k1 by the same
amount. Note that changing the values of these hyperparameters changes the size of the training
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DomainNet OfficeHome
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C I P Q R S Mean A C P R Mean

Open-AI CLIP ViT-B/16

! ! 74.8 54.3 69.1 15.5 85.5 66.3 60.9 85.5 73.1 92.0 91.4 85.5
! 74.8 52.6 68.9 15.7 85.2 66.1 60.5 85.2 70.7 91.0 90.5 84.3
! ! 74.9 53.7 69.5 16.1 85.4 66.3 61.0 84.8 70.4 90.9 90.9 84.3

! ! 75.3 52.6 69.6 16.3 85.4 66.5 60.9 85.8 72.7 91.9 90.9 85.3
! ! ! 75.3 53.8 69.8 16.4 85.6 66.6 61.2 85.9 73.3 92.0 91.4 85.7

Table 5: Ablation experiments part 2.

ImageNet Caltech Pets Cars Flowers Food Aircraft SUN DTD EuroSAT UCF Mean

Open-AI CLIP ViT-B/16

Nearest neighbors 69.4 93.9 93.4 70.2 75.8 86.3 27.2 67.4 52.4 41.2 69.9 67.9
Soft pseudo labels 69.9 94.8 93.1 70.7 74.7 86.7 31.9 67.6 52.3 51.5 70.8 69.5
Contrastive loss (Khosla et al., 2020) 68.4 93.7 93.4 72.7 77.0 86.3 33.7 68.6 54.3 59.8 71.6 70.9
Our training loss 70.3 94.6 93.5 72.7 75.9 86.6 33.9 69.1 54.7 59.1 71.5 71.1

No sample selection (skip step 3) 69.1 94.4 93.1 73.0 76.4 86.2 33.7 68.4 54.0 57.9 71.8 70.7
Random sample selection 69.8 94.3 93.3 72.8 76.7 86.6 33.4 68.6 54.3 57.7 73.0 70.9
Our sample selection 69.9 94.1 93.4 73.7 76.8 86.6 33.7 68.8 54.1 58.5 72.8 71.1

Table 6: Additional ablation experiments comparing different training losses (top) and different
samples selection strategies (bottom). These experiments use waffleCLIP augmentation instead of
the adaptive augmentation.

dataset. For example, scaling k1 by 2 scales the number of training samples by the same amount. The
main take-away from Figure 15 is that increasing the number of samples in the training data improves
the target accuracy, but only up to a point. The target accuracy saturates at some point, and it is not
beneficial to increase nneighbors, m, or k1 further.

Tables 4 and 5 perform ablation experiments that justifies paired k-means, adaptive label augmentation,
and the diversity preserving loss. we place a check mark next to components being used in the
corresponding row. The baseline for paired k-means is k-means clustering of image features only.
The baseline for adaptive label augmentation is waffleCLIP. The baseline for the diversity preserving
loss (λ = 0.2) is vanilla cross entropy.

Table 6 performs ablation experiments that compare our loss function against existing loss functions.
In this table, soft pseudo labels refer to using the logits of the teacher prediction as the label. We tuned
the teacher’s temperature parameter. Contrastive loss refers to finetuning with LCE+Lcontrastive, where
the first loss is the cross entropy loss with hard labels, and the second loss is the supervised contrastive
loss (Khosla et al., 2020). Lcontrastive is calculated from the image encoder outputs. Training a model
using both CE and a contrastive loss in this manner is commonly used in domain generalization, e.g.
(Yao et al., 2022). Table 6 also performs ablation experiments justifying our sample selection method
in step 3 of Algorithm 2. Our clustering-based sample selection achieves better results than random
selection or skipping sample selection.

Additional Notes We do not verify the check-sums of the downloaded images, instead we filter out
retrieved images where the cosine similarity between the image embedding and query text embedding
is very low (<0.25). The size of the retrieved datasets is listed in Table 10, and we emphasize again
that our framework achieves impressive improvements in accuracy with a small number of retrieved
image samples (<100K).
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Hardware and Computational Cost We ran experiments on a hybrid computing cluster with A40,
A100 and L40S GPUs. All experiments require only one GPU at a time. ViT-B/16 experiments
require a GPU with 40 GB of memory; ViT-B/14 experiments require a GPU with 80 GB of memory.
The paired k-means algorithm was run once on a 20M subset of LAION. This took one hour. Adding
all of LAION-2B to the index takes approximately one day. The 4-bit indices require approximately
850 GB of disk space. For Algorithm 2, using ImageNet-1K as an example, we augment each of
the 1000 class names 16 times, for a total of 16,000 queries. The retrieval step took 30 seconds in
total. For each query, we retrieve the 64 nearest neighbors, but this is not any slower than retrieving
only one nearest neighbor when using FAISS Douze et al. (2024) for approximate nearest neighbors
search. Upon retrieval, the 64 nearest neighbors are already ranked by similarity to the query. The
implementation of step 2 only compares the rank of each image relative to the queries that retrieved it.
This finished in 55 seconds for the ImageNet-1K target task. Clustering (step 3) then took 9 minutes
and 20 seconds on one CPU, but could be easily sped up using a GPU implementation of k-means.
Finally, downloading the 96,000 selected images took 158 seconds.

DomainNet Terra Incognita

C I P Q R S Mean 100 38 43 46 Mean

Open-AI CLIP ViT-B/16

CLIP ZS 71.4 47.1 66.2 13.8 83.4 63.4 57.6 51.5 26.1 34.1 29.3 35.2
waffleCLIP 73.0 52.0 68.3 14.0 84.9 65.8 59.7 54.2 29.5 36.4 30.6 37.7
Random Descriptors 73.5 51.0 67.6 14.6 84.7 65.9 59.6 51.3 21.7 36.7 28.8 34.6
Handcrafted Ensemble 73.7 51.2 69.3 16.0 85.0 66.2 60.2 55.4 28.5 33.4 31.0 37.1
PromptStyler † 73.1 50.9 68.2 13.3 85.4 65.3 59.4 - - - - -
MUDG (ours) 75.3 53.8 69.8 16.4 85.6 66.6 61.2 57.7 34.6 35.7 26.8 38.7

Open-AI CLIP ViT-L/14

CLIP ZS 79.5 52.2 70.9 22.5 86.8 71.5 63.9 46.3 50.9 43.0 32.4 43.1
waffleCLIP 80.4 56.5 72.8 22.0 88.1 73.0 65.4 45.6 45.2 43.7 31.4 41.4
Random Descriptors 80.6 56.0 73.4 23.3 87.9 73.2 65.7 40.9 36.3 38.5 26.3 35.5
Handcrafted Ensemble 81.1 55.8 73.9 24.2 87.9 73.7 66.1 47.5 50.9 41.8 30.5 42.7
PromptStyler † 80.7 55.6 73.8 21.7 88.2 73.2 65.5 - - - - -
MUDG (ours) 81.6 58.3 74.9 24.5 88.5 74.1 67.0 53.4 53.9 46.1 32.7 46.5

Table 7: Terra Incognita and DomainNet results.

PACS VLCS

A C P S Mean Caltech Labelme SUN VOC Mean

Open-AI CLIP ViT-B/16

CLIP ZS 97.1 99.0 99.9 88.0 96.0 99.9 68.3 75.3 85.5 82.2
waffleCLIP 97.3 99.0 99.9 90.3 96.6 99.9 68.6 74.4 86.3 82.3
Random Descriptors 97.1 99.2 99.9 89.2 96.4 99.9 70.3 77.9 87.0 83.8
Ensemble 97.6 99.2 99.9 89.9 96.7 99.9 69.1 76.4 84.2 82.4
PromptStyler † 97.6 99.1 99.9 92.3 97.2 99.9 71.5 73.9 86.3 82.9
MUDG (ours) 97.9 99.2 99.9 90.7 96.9 99.9 65.5 78.5 86.3 82.6

Open-AI CLIP ViT-L/14

CLIP ZS 98.8 99.6 99.9 95.6 98.5 99.9 70.7 73.8 85.7 82.5
waffleCLIP 99.1 99.7 100.0 95.7 98.6 99.9 70.8 74.1 87.1 83.0
Random Descriptors 98.9 99.6 100.0 95.6 98.5 99.9 67.6 78.0 86.4 83.0
Ensemble 98.8 99.6 100.0 95.7 98.5 99.9 65.5 76.1 85.1 81.7
PromptStyler † 99.1 99.7 100.0 95.5 98.6 99.9 71.1 71.8 86.8 82.4
MUDG (ours) 98.8 99.6 100.0 95.8 98.6 99.9 70.0 75.5 86.0 82.9

Table 8: Comparison of our MUDG method with ZS baselines and PromptStyler on PACS and VLCS.
Average of three trials. Dataset construction and model training is performed once and evaluated on
all domains. † denotes author reported numbers; all other results are our reproductions.
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Figure 14: Radial plot of comparisons of the baselines with the pretrained ViT L/14 weights.

C DETAILED DESCRIPTION AND MOTIVATION OF ALGORITHM 2

Algorithm 2 consists of a three-stage pipeline presented in Figure 4 (top) used to build a pseudo-
labeled subset of the source data.

Assumptions and notation. We are given an unlabeled source dataset Xs (e.g. LAION-2B English,
with text labels discarded). Xs must be indexed in a joint image-text embedding space by a pair of
CLIP encoders findex,text and findex,image. Both are frozen. We are also given label tokens for the target
classification task, formatted as “a photo of a ⟨class name⟩”, and denoted as {t1, ..., tc} where c is
the number of classes. The goal is to optimize a “student” CLIP model fstudent to classify images from
the given classes. Note that fstudent and findex can be the same or different models, and we experiment
with both possibilities.

C.1 STEP 1: DIVERSIFIED RETRIEVAL

Goal: Retrieve a diverse set of image data for training.

The simplest way to build a dataset from the list of class names is to calculate the text feature for
each class and retrieve the nearest neighbors from Xs. This is straightforward, but the results are
not promising as shown in the left of Figure 16. The retrieved images are not identical, but contain
very little variation. For instance, images of wallets only contain one possible orientation; images of
couches only contain stock photos of a perfect couch. Figure 18 (the line with blue x) shows that
when trained on these images, the model severely overfits to the retrieved dataset. To diversify the
dataset, we augment the query text tokens using the adaptive label augmentation scheme in Section
3.2 of the main paper. From inspecting Figure 16 right, our augmentation seems to capture a broad
range of visual variation within each class. We also demonstrate this diversity using t-SNE plots in
Figure 17.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

024 8 16 32 64
number of neighbors n

67.0

67.5

68.0

68.5

69.0

69.5

70.0

Im
ag

eN
et

 A
cc

.

0 1 2 4 8 16
number of augmentations m

67.0

67.5

68.0

68.5

69.0

69.5

70.0

04 16 32 48 96
number of clusters k

67.0

67.5

68.0

68.5

69.0

69.5

70.0

1 2 4 8
number of probes per query nprobe

70.20

70.25

70.30

70.35

70.40

024 8 16 32 64
number of neighbors n

57.5

58.0

58.5

59.0

59.5

60.0

60.5

Do
m

ai
nN

et
 A

ve
ra

ge
 Ta

rg
et

 A
cc

.

0 1 2 4 8 16
number of augmentations m

57.5

58.0

58.5

59.0

59.5

60.0

60.5

04 16 32 48 96
number of clusters k

57.5

58.0

58.5

59.0

59.5

60.0

60.5

1 2 4 8
number of probes per query nprobe

61.2

61.3

61.4

61.5

61.6

024 8 16 32 64
number of neighbors nneighbors

82.0

82.5

83.0

83.5

84.0

84.5

85.0

85.5

Of
fic

e 
Ho

m
e 

Av
er

ag
e 

Ta
rg

et
 A

cc
.

0 4 8 16 32 64
number of augmentations m

82.0

82.5

83.0

83.5

84.0

84.5

85.0

85.5

0 48 96 192 384
number of clusters k1

82.0

82.5

83.0

83.5

84.0

84.5

85.0

85.5

1 2 4 8
number of probes per query nprobe

85.35

85.40

85.45

85.50

85.55

85.60

85.65

Figure 15: Ablation experiments for varying values of nneighbors, m, k1, and nprobe. Reference
Algorithm 2 in the main paper and Table 10 in the Appendix for default values. Top row: ImageNet;
middle row: DomainNet; bottom row: Office Home. Increasing either nneighbors, m or k1 improves
the target accuracy by retrieving a larger training set, but these plots show that the accuracy saturates
at a certain value. Generally, increasing nprobe also improves the target accuracy.

Simple nearest neighbor retrieval Diversified retrieval using augmented text queries
Query:
“a photo of a …”

giant panda

wallet

combine
harvester

crate

Chihuahua

rugby ball

couch

cannon

matchstick

Figure 16: Qualitative results for step 1: diversified retrieval. Left: nearest neighbors to text query in
LAION-2B. Right: images retrieved using diversified text features. Images retrieved using diverse
queries cover a broader spectrum of appearances in the wild.
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Paired k-means Parameters
n number of samples in LAION-2B-en
k 131072
number of iterations 10

Adaptive Label Augmentation Parameters
M 4227

{A1, ...,AM} unordered ImageNet descriptors
from Menon and Vondrick (2022)

k2 16
m dataset dependent

Finetuning Parameters
ViT-B/16 ViT-L/14

Finetune last 3 layers of text and vision encoders
batch size 128 64
learning rate 0.00064 0.00016
weight decay 1e-5
number of iterations (N ) dataset dependent
learning rate decay none
softmax temperature 25
optimizer SGD momentum=0.9
label smoothing 0
EMA weight averaging β 0.995
text prompt length 3
text prompt initialization “a photo of”
text prompt learning rate multiplier 10 ×
λ 0.2

Parameters for Baselines
WaffleCLIP ensemble size 8

Table 9: Training hyperparameters.

t-SNE giant panda t-SNE wallet t-SNE combine harvester t-SNE crate
simple nearest neighbors retrieval
diversified retrieval
diversified retrieval + clustering

Figure 17: t-SNE plots of image features in the indexing model’s embedding space, showing the
benefits of steps 1 and 3. Simple nearest neighbor retrieval (blue circle) covers only a small portion
of the image distribution for each label. Diversified retrieval (orange dot) covers a broader portion of
the image distribution, but contains semantically-redundant samples. After the clustering step (green
diamond), the selected image samples are evenly spaced across the entire distribution, and thus the
best representation for each label.

C.2 STEP 2: RANK PSEUDO-LABELING

Goal: Mitigate hubness effect.

If each image sample is only retrieved by queries from one label, then pseudo-labeling is trivial.
However, there is a large amount of overlap between retrievals from different labels, especially for
datasets with a large number of classes or fine-grained concepts. For each image that is retrieved
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Actual training
Dataset nneighbors m k1 N dataset size Query template

ImageNet 64 16 96 300 96K a photo of a {}.
Caltech 64 64 384 100 38K a photo of a {}.
Pets 64 64 384 200 12K a photo of a {}

, a type of pet.
Cars 64 16 96 1000 18K a photo of a {}.
Flowers 64 64 384 200 31K a photo of a {}

, a type of flower.
Food 64 64 384 100 34K a photo of a {}

, a type of food.
Aircraft 64 64 384 1000 26K a photo of a {}

, a type of aircraft.
SUN 64 16 96 300 38K a photo of a {}.
DTD 64 64 384 200 18K a photo of a {} texture.
EuroSAT 64 64 384 200 3K a photo of a {}

, from a satellite.
UCF 64 64 384 200 37K a photo of a person

doing {}.
ImageNet-V2 64 16 96 200 96K a photo of a {}.
ImageNet-Sketch 64 16 96 200 96K a photo of a {}.
ImageNet-A 64 16 96 200 19K a photo of a {}.
ImageNet-R 64 16 96 200 19K a photo of a {}.
DomainNet 64 16 96 200 33K a photo of a {}.
Office Home 64 64 384 200 25K a photo of a {}.
PACS 64 64 384 100 3K a photo of a {}.
VLCS 64 64 384 50 2K a photo of a {}.
Terra Incognita 64 64 384 100 3K a photo of a {}

, from a camera trap.

Table 10: Dataset-specific hyperparameters, reference Algorithm 2 in the main paper. nneighbors is
number of nearest neighbors to be retrieved; m is number of text augmentations; k1 is number of
k-means clusters; N is number of training iterations.

Augmentation A Loss (Eq. 6)

a photo of a {}, which may have multiple settings (low, medium, high). 0
a photo of a {}, which often has a design or logo. 0
a photo of a {}, which has people often in close proximity. 0
a photo of a {}, which is a gradually increasing or decreasing diameter. 0
a photo of a {}, which has usually rectangular or square in shape. 0
... ...
a photo of a {}, which is a piece of clothing. 16
a photo of a {}, which is a piece of armor. 16
a photo of a {}, which is a pie dish. 16
a photo of a {}, which is a phone receiver with a cord. 16
a photo of a {}, which is a pen with a decorative band or ring. 16

Table 11: Qualitative results for our adaptive text augmentation on ImageNet. Losses are calculated
based on Equation 6. k2 = 16. The loss value is an integer in range [0, k2].

by multiple queries, we can assign it either (1) the label of the closest text feature as measured
by their cosine similarity, or (2) the label of the text feature to which it is ranked the highest. We
choose the latter option (detailed concretely in Algorithm 2) to address the well-known hubness effect
(Radovanovic et al., 2010). In simple terms, hubs are samples in the dataset which tend to be closer
to other samples in a high-dimensional embedding space, regardless of relevance. Specific to our
application, a “hub” text feature is one that is close to a disproportionately large number of image
samples, resulting in a large number of image samples being assigned the hub label. In other words,
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Figure 18: Target accuracy vs. training iterations for the datasets corresponding to Figure 17 (colors
match). This confirms our intuition that both the diversified retrieval and clustering steps are necessary.
n here refers to nneighbors.

bir
d

bo
bca

t cat
coy

ote do
g

em
pty

op
oss

um
rab

bit

rac
coo

n

squ
irre

l0

100

200

300

sa
m

pl
e 

co
un

t

Terra Incognita, m = 16, n = 64

rank pseudo-labeled
cosine similarity pseudo-labeled

bir
d

bo
bca

t cat
coy

ote do
g

em
pty

op
oss

um
rab

bit

rac
coo

n

squ
irre

l

0.05

0.00

0.05

0.10

0.15

Precision Improvement

bir
d

bo
bca

t cat
coy

ote do
g

em
pty

op
oss

um
rab

bit

rac
coo

n

squ
irre

l

0.1

0.0

0.1
Recall Improvement

Figure 19: Hubness effect and the value of pseudo-labeling based on rank (step 2). The x-axis
labels are the label names for Terra Incognita. The label “empty” is a hub because about 50 more
images were labeled as empty when cosine similarity is used instead of rank (left bar plot). The
right two bar plots show the precision and recall improvement of rank labeling over cosine similarity
labeling, after clustering and training. Rank labeling improves precision for images labeled as empty
while improving the recall for most animal images. This is desireable: The cost of mislabeling an
animal image as empty is much greater than the cost of mislabeling an empty image. n here refers to
nneighbors.

Figure 20: A selection of images from the 50 that were labeled as “empty” by cosine similarity but as
one of the animals by rank.
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Figure 21: Target accuracy vs. training iterations for the two datasets constructed for Figure 19 left.
Colors match. This confirms our intuition that rank labeling improves overall target accuracy in
addition to the good precision-recall properties in Figure 19 right. n here refers to nneighbors.

the pseudo-label is biased towards any hubs in the label space when cosine similarity is used directly.
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However, when we use rank to assign labels, the hub label cannot be overused because closeness to
the hub is determined by rank relative to other image samples.

Not all datasets have hubs, but we found that the Terra Incognita dataset illustrates the effect perfectly.
This dataset contains camera trap images of different animals, and the labels are the animal names
along with “empty” for empty images. As a case study, we retrieve images from LAION-2B using
step 1 and the query: “a photo of a ⟨class name⟩, from a camera trap.”. We then compare pseudo-
labeling using cosine similarity versus using rank. The left bar plot in Figure 19 shows that cosine
similarity pseudo-labeling assigns some images the “empty” label, which are labeled as one of the
animals when using rank. Figure 20 displays examples of these images. For this dataset, “empty”
likely functions as a hub, since many camera-trap images are mostly empty, especially if the animal
is small. We verify in the two right bar plots of Figure 19 that using rank pseudo-labeling improves
the recall of most animal images at the expense of decreasing the recall of empty images. This is
a favorable trade-off for this application. We further verify in Figure 21 that rank pseudo-labeling
improves the overall accuracy as well, compared to cosine similarity labeling.
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Figure 22: Label distribution of datasets constructed before and after clustering (step 3). For this
figure, m = nneighbors = k1 = 16.

C.3 STEP 3: CLUSTERING

Goal: Select representative samples and balance the label distribution.

Referring back to Figure 18, note that the dataset resulting from diversified retrieval (in orange)
actually lowers target accuracy on ImageNet when used to train the student CLIP model, despite
containing a large number of samples (O(mcnneighbors)). This stems from two problems: (1) Some
images are semantic-duplicates as evident by the small clusters of orange dots in Figure 17, e.g.
pictures of the same object in different orientations. (2) The dataset is imbalanced as shown by the
orange distribution over labels in Figure 22. This is simply caused by asymmetries in the retrieval
and download process (e.g. dead links, linked image changed since dataset creation, etc.). As a result,
the training process overfits to dominant semantic-duplicate images and the pseudo-label distribution;
both are artifacts of the dataset construction process.

To address both of the above issues, we first use k-means clustering to cluster the image features in
the embedding space of the indexing model into k1 << mcnneighbors clusters, then randomly select an
image from each cluster. If k1 is chosen conservatively, semantic duplicates fall into a single cluster,
and only one can be selected for the final training set. Additionally, each label should have k1 training
samples. Figure 22 illustrates the final balanced label distribution in green, and Figure 18 shows the
corresponding target accuracy improvements in matching colors. For reference, ImageNet-1K has
c = 1000 labels, and we found m = 16, nneighbors = 64 and k1 = 48 to yield good results.
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