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Autobidding with Interdependent Values
Anonymous Author(s)

Abstract
In this paper, we initiate the study of autobidding where the signals

for each bidder can be noisy and correlated. Our first set of results

showcases the failure of traditional auctions such as the second-

price auction (SPA) and the first-price auction (FPA). In particular,

uniform bidding is not an optimal bidding strategy for SPA and both

SPA and FPA can have arbitrarily poor efficiency. To circumvent this,

we propose the Contextual Second Price Auction (CSPA), a novel

mechanism which mitigates the aforementioned adverse effects

by leveraging multiple signals to adjust the allocation of SPA. We

show that uniform bidding is an optimal bidding strategy in CSPA

and we prove a tight bound on the price for anarchy for CSPA of

2, thus recovering the well-established results in the independent

setting. Finally, we show that CSPA always achieves at least half

the welfare of SPA; moreover this is also tight.

CCS Concepts
• Applied computing → Electronic commerce; Online auc-
tions; • Theory of computation → Theory and algorithms for

application domains.
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1 Introduction
Recent advancements in machine learning have improved online

advertising auctions, empowering autobidding systems to leverage

granular signals (e.g., clickthrough rates, conversion rates) for each

impression to set bids on behalf of the advertiser. However, such

granularity can potentially introduce two critical challenges that

further complicate the bidding problem:

(1) Inherent Prediction Errors: Noise in the predictions, cou-

pled with the winner selection mechanism, increases the

likelihood that winning bids are driven by overestimation.

(2) Signal Correlation: Shared user characteristics across ad-

vertisers lead to a selection problem, often called the “win-

ner’s curse”: the winning bidder is likely to have a larger
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signal compared to other bidders, and hence, likely to over-

estimate the value of the query.
1

To mitigate this problem, traditional auction theory literature

has shown that open auctions, like an ascending auction, have good

properties to alleviate the winner’s curse problem when bidders

have profit-maximizing goals [24]. Modern ad auction bidders how-

ever adopt automated bidders, or autobidders, to submit their pref-

erences in online auctions [3]. Unlike profit-maximizing bidders,

the objective of these autobidders is to optimize for a campaign’s

total value subject to high-level constraints such as a return-on-

spend (ROS) constraint. How to design an auction that is robust to

the winner’s curse problem when the bidder’s goal is to maximize

value, instead of profit, remains an open question.

In this paper, we provide a first step towards understanding the

problem of the winner’s curse in the autobidding world. We base

our study in a theoretical model where autobidders’ valuations are

private but correlated across the advertisers. There are 𝑛 bidders

interested in buying queries owned by a platform (the auctioneer).

We consider a Bayesian query-model so that the measure (or, prob-

ability) of queries where bidders’ valuations are v = (𝑣1, . . . , 𝑣𝑛)
follows a distribution 𝐹 .2 Bidders have an autobidding objective

and their goal is to maximize the expected value they obtain across

impressions subject to a return on spend constraint. We depart from

the canonical autobidding models and assume that the value per

query 𝑣𝑖 is unknown to everyone and each bidder, using a machine

learning model, predicts an unbiased signal 𝑣𝑖 of 𝑣𝑖 . Importantly,

we assume that a bidder 𝑗 ’s signal 𝑣 𝑗 may be correlated with bidder

𝑖’s unknown value 𝑣𝑖 . For example, the correlation may be due to

features that are common to all autobidders, such as user features.

In particular, this means that the inference made from bidder 𝑗 ’s

prediction model may be valuable information to bidder 𝑖 .We will

refer to this as the interdependent value setting.

Our first set of result explores how classic auction results in the

autobidding literature change in the interdependent value setting.

We show that the second-price auction (SPA) does not retain the

appealing property that the optimal bidding strategy is a simple

multiplier on top of the prediction 𝑣𝑖 , known as a uniform bidding

property [2]. The reason is that, in an environment with interdepen-

dent values, the runner-up’s bid now has two effects: in addition to

the pricing effect, which is due to the second-price nature of the auc-

tion, it has an information effect since it affects the winning bidder’s

assessment of the value of the query. A bidding policy that accounts

for the distance between the runner-up bid and the winning bid

can perform better than uniform bidding (Theorem 5.1).

We then study the welfare implications of running SPA when

the values may be interdependent. We focus on a worst-case study

using the standard price of anarchy metric (PoA), and show that

there are some instances where the welfare of SPA can be arbitrarily

1
Mehta and Lee [23] shows empirical evidence of the winner’s curse effect on electronic

auctions.

2
Even though our baseline model is set as Bayesian model, this can be equivalently

represented as the continuous querymodel studied in Alimohammadi et al. [4], Perlroth

and Mehta [25].
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worse than the optimal allocation. In other words, for SPA we have

PoA = ∞ (Theorem 5.3). This is in stark contrast to the previous

result that PoA = 2 for the case with independent valuations [2].

Next, we turn our attention to the case where the auction is

a first-price auction (FPA). While it is known that with indepen-

dent valuations uniform bidding is suboptimal, research has shown

strong efficiency properties when autobidders are constrained to

a uniform bidding strategy on FPA. In particular, it is an equilib-

rium of the constrained game for bidders to bid their value. The

allocation is always efficient (PoA = 1) [11]. We, however, show

that neither property holds when valuations are interdependent:

bidders (sometimes) shade their value (Theorem 5.2) and we show

that, in the worst case, we can have PoA = ∞ (Theorem 5.3).
3

Given the negative results of FPA and SPA, in Section 6 we intro-

duce a new mechanism called Contextual SPA (CSPA). In CSPA, the

platform weighs each bidder’s bid according to a contextual, col-

lective estimate of the common user type. The platform effectively

aids bidders’ posterior predictions by constructing an intermediate,

more accurate signal that captures the information contained in

each impression separately.
4
The winner and its price is computed

following a SPA, but the bidders’ bids now receive contextual in-

formation, and is thus a more precise estimate of the value of that

impression.

Our mechanism is inspired by the concept of open auctions.

Examples of this include (i) the English auction where an auctioneer

announces a sequence of increasing bids and a bidder is able to

observe if there exists a bidder that is willing to accept the bid and

(ii) the Japanese auction where a public price is announced and

the bidders are able to observe the set of bidders that remain in

the auction. Both of these auctions end when there is only a single

bidder remaining. The important property of open auctions is that,

as the auction progresses, information about the other bidders’ is

implicitly revealed. This allows bidders to update their priors at

each round and, under some natural assumption on the bidder’s

priors, such auctions are effective at mitigating the winner’s curse

problem when bidders have profit-maximizing objectives, as shown

in Milgrom and Weber [24]. Along these lines, CSPA can be viewed

as an extreme form of information revelation where all information

is revealed prior to the auction instead of incrementally.

We then show that the CSPA restores the optimality of uniform

bidding (Theorem 6.1). The reason is that by adding the contextual

information at auction time, CSPA is able to remove the informa-

tion effect problem on the bidder’s decision and, thus, making the

bidding problem look like a SPA problem with independent values.

The next result measures the impact on welfare of CSPA. Compared

to the optimal allocation, we show that PoA = 2 (Theorem 6.2),

thus again recovering this positive property of SPA under inde-

pendent values. We also compare the welfare outcome relative to

SPA. We show that CSPA also achieves at least half of the welfare

that is achievable by SPA but the welfare achievable by CSPA can

be arbitrarily more than the welfare of SPA (Theorem 6.3). In fact,

these results are tight.

3
We further show that even if bidders are unconstrained and can use a non-uniform

bidding policy, we still have PoA = ∞.
4
This can be done in the autobidding setting since it is often assumed that the platform

has access to an estimate of the autobidders’ value [7, 11].

1.1 Contributions
To the best of our knowledge this is the first paper studying the

problem of interdependent values in auctions in the context of auto-

bidding. As we show in the paper, having interdependency between

the bidders’ valuations can dramatically change well-established

results in auction design with autobidders. Our results demonstrate

that it can be important to consider the effect of the winner’s curse

problem and, in particular, how it affects the bidding systems.

A second key contribution of our work is the introduction of

our contextual second-price auction. While there are other known

mechanisms that successfully help to mitigate the winner’s curse,

such as ascending-type auctions, they often require a dynamic

sequence of bid elicitation. As such, they require a non-trival com-

munication cost between the auctioneer and the bidders, which

might make those dynamic auctions less suitable for high frequency

ad auctions. Our CSPA mechanism is static and require, at most,

a single stage of communication between the auctioneer and the

bidders making it more scalable in the ad auction setting.

From a technical standpoint, a key contribution of our work is

the introduction of a mechanism design approach to address the

effects of uncertainty and variance in machine learning prediction

models on downstream selection mechanisms. In particular, ML

techniques such as differential privacy and anonymization (see,

for e.g. [14] for an application to ad modeling), which are often

employed in practice, often inject noise in the signals they pro-

duce. Such signals are often used for selection and decision-making,

opening the door for the systematic introduction of selection bias.

5
Our research opens a new avenue for alleviating sample bias (and

as a consequence, prediction errors) by focusing on the design of

mechanisms that operate in conjunction with these models.

Finally, we provide a novel contribution to the research literature

on interdependent-value auctions by showing results robust to a

general type of distributions. For profit-maximizing bidders, since

the problem of characterizing the bidding equilibrium in the pres-

ence of interdependent value is challenging, most of the literature

has restricted to the case where signals come from a distribution

that is affiliated (for a textbook treatment on this subject, see Kr-

ishna [18, Chapters 6–11]). Notably, our technical results in the

autobidding framework do not rely on such assumption. In fact,

our results hold for any distribution. That technical tractability in

the autobidding setting and the importance of autobidding in the

ad-auctions industry makes our model particularly attractive for

researchers and we expect that this line of work will grow.

2 Related Work
In the profit-maximizing setting, the seminal work of Milgrom

and Weber [24] show that if bidders’ signals on their values come

from a distribution that satisfy the “affiliation property”, then using

an open auction, such as an English auction, can generate strictly

more revenue than using a sealed-bid auction such as a second-price

and first-price auction. Eden et al. [16] takes a computer science

approach to that problem and using a worst-case performance

5
Consider for example the problem of selecting the highest signal among 𝑛 unbiased

signals. Then the selected largest signal will overestimate its true value: it is more

likely to be selected when there is a positive noise on the prediction than when there

is a negative one.

2
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analysis, along the lines of our price of anarchy approach, quantify

the welfare loss of truthful auction when profit-maximizing bidders

have interdependent valuations.

In the specific context of winner’s curse in ad-auctions, Abraham

et al. [1] study how different information structures on the signals

advertisers receive through cookies can impact the performance of

SPA. Arnosti et al. [5] study the case where a subset of advertisers

have a fully precise signal of their value (performance advertisers)

while others are completely unaware (brand advertisers). They

show that SPA has a low performance and show that, instead, a

modified SPA where a brand advertiser’s bid gets a lift factor 𝛼 ≥
1 has good performance guarantees.

6
Both papers assume that

bidders are profit-maximizing, our work instead, departs from that

literature as it focuses on the case where bidders are autobidders

with return-on-spend objectives.

Two other related works are Lahaie and McAfee [19] and Bax

et al. [9] which, in addition to Milgrom and Weber [24], give addi-

tional examples of how mechanism design can be utilized to miti-

gate the effect of noisy signals. Lahaie and McAfee [19] consider

an environment in which uncertainty appears in the clickthrough

rate estimation while Bax et al. [9] consider an environment where

the auctioneer receives unbiased estimates of value along with the

variances. In both of these works, they construct a modified esti-

mator that returns a more efficient ranking than simply ranking

by raw signals. We too take a Bayesian approach to uncertainty by

assuming that the private signal that each bidder receives is only an

unbiased estimate of their true value. Our contextual second-price

auction has a similar effect, in that it restores the efficient ranking

in the auction. Importantly, our estimator leverages all predictions

available at query time (in this sense, contextual information). This

allows the platform to construct the best posterior estimate and

thus rank efficiently as well as generate additional revenue. We

distinguish from this line of work in that our work focuses on

value-maximizing agents instead of profit-maximizing agents.

There is also work on designing mechanisms where the predic-

tion uncertainty appears in a bandit setting [6, 15, 17]. In these

works, the key assumption is that there is a set of ads with a fixed

but unknown quality signal. If an ad is shown then one receives

bandit feedback about the quality signal. For example, if the quality

signal is the clickthrough rate then showing then upon showing

the ad, the auctioneer receives binary feedback about whether the

ad is clicked which the auctioneer can then use to update their

estimate of the clickthrough rates. Note, in particular, that these

works generally maintain independent estimates for each of the

bidders. There is no interaction between the estimates and thus

no correlation between the signals. The goal of these works is to

design mechanisms with “low regret” with respect to a benchmark

where the quality signal is known exactly. In our model instead, we

focus on the case where signals are correlated and hence there is

a winner’s curse problem. Also, we study the mechanism design

problem given a static ML prediction.

A large literature studies the problem of estimating clickthrough

rates and conversion rates in the online ad setting, such as [10,

22, 26, 27] and references therein. The focus on static learning of

6
While Arnosti et al. [5] does not assume affiliation, they do require a heavy-tailed

property on the distributions.

conversion rates highlights that predictions from ANNs and Deep

Learning systems are inherently noisy, which is the starting point

of our analysis.

Finally, we connect our contribution to the growing literature

on autobidders in online ad auctions [2–4, 12, 13, 20, 21]. We show

that in scenarios where bidders’ signals are correlated (and thus a

winner’s curse problem), implementing a contextual auction for-

mat that varies across queries simplifies the problem faced by the

autobidder, guarantees the optimality of uniform bidding even in

the presence of noise in the platform’s estimates, and provide better

efficiency guarantees.

3 Model
We consider a setting with 𝑛 bidders who participate in ad auc-

tions on an online platform. The set of single-slot queries follow

a Bayesian model where the measure (or, probability) of queries

where bidders valuations are v = (𝑣1, . . . , 𝑣𝑛) comes from a distri-

bution 𝐹 which could be correlated across bidders.

Value Uncertainty. We depart from the canonical autobidding

model and assume that valuations 𝑣𝑖 are unknown to all agents

(bidders and platform). Each bidder 𝑖 observes a signal 𝑣𝑖 which is

an unbiased estimate of 𝑣𝑖 . Mathematically, we assume that signals

ṽ = (𝑣1, . . . , 𝑣𝑛) are drawn from a distribution 𝐹 and satisfy that:

(1) Unbiased Estimator: E[𝑣𝑖 |𝑣𝑖 ] = 𝑣𝑖 .

(2) Interdependence: E[𝑣𝑖 |ṽ] may not be equal to E[𝑣𝑖 |𝑣𝑖 ].
If E[𝑣𝑖 |ṽ] = E[𝑣𝑖 |𝑣𝑖 ] = 𝑣𝑖 for all ṽ then we say that the values have

no interdependence.

Following a standard assumption in the autobidding literature,

we assume that the prediction signal 𝑣𝑖 is known to the respective

bidder and to the platform (see, for example [7, 8, 11]).

Autobidding Problem. We formulate the autobidding problem in

our setting which adapts the classic model (see [3] for a compre-

hensive survey) to the setting where there may be interdependency

among the bidders’ values.

At a high level, the auto-bidding problem is to maximize the

bidder’s expected value subject to the constraint that their expected

spend does not exceed the expected value. However, because other

bidders’ bids depend on their own private signals, which in turn,

impacts the winner’ assessment on its valuation, the optimal bid-

ding decision now also depends on how other bidders are using

their own signals at bidding time.

Let I𝑖 denote a function which, given input ṽ, represents the
information I𝑖 (ṽ) that bidder 𝑖 has at the time of bidding. A natural

example of this isI𝑖 (ṽ) = 𝑣𝑖 whichmeans that bidder 𝑖 only receives

their own signal as information. However, we allow this function

to be arbitrary: for example, it could be the identity function. Given

I𝑖 (ṽ), the bidder needs to place a bid𝑏𝑖 which denotes themaximum

the bidder is willing to pay given the information it has. Now on

every query, there is a minimum cost 𝑐𝑖 for the query (note that

𝑐𝑖 can still be random given ṽ; for example, the platform may still

have a reserve price that is independent of ṽ). We assume that the

auction satisfies the property that if bidder 𝑖 bids𝑏𝑖 ≥ 𝑐𝑖 then bidder

𝑖 wins the query. Finally, if bidder 𝑖 wins the query then it has to

pay a cost which we denote by 𝐶𝑖 ∈ [𝑐𝑖 , 𝑏𝑖 ]. For truthful auctions,
we have 𝐶𝑖 = 𝑐𝑖 , the minimum bid that it could have placed to win

3
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the auction. For FPA, we have 𝐶𝑖 = 𝑏𝑖 , the bidder’s bid itself. Note

that 𝑐𝑖 may not be revealed in some auction formats, such as FPA.

The goal of the bidder is to choose a bidding function 𝑏𝑖 (I𝑖 (ṽ)) to
maximize its value subject to its ROS constraint.

The bidding problem can also be restated as follows which is

more convenient from a technical point of view and is also consis-

tent with prior work. We let 𝑥𝑖 (I𝑖 (ṽ), 𝑐𝑖 ) be bidder 𝑖’s decision of

whether to buy a query where 𝑐𝑖 denotes the minimum possible

cost that must be paid to win the query. This means that if the

bidder places a bid 𝑏𝑖 then 𝑥𝑖 (I𝑖 (ṽ), 𝑐𝑖 ) = 1[𝑐𝑖 ≤ 𝑏𝑖 ]. Conversely,
if 𝑥𝑖 (I𝑖 (ṽ), 𝑐𝑖 ) is decreasing in 𝑐𝑖 then we can recover the bid as

𝑏𝑖 = sup{𝑐𝑖 : 𝑥𝑖 (I𝑖 (ṽ), 𝑐𝑖 ) = 1}. Finally, let F𝑖 denote the 𝜎-algebra
generated by the outcome of the auction that is revealed to bidder 𝑖 ,

particularly the value of 𝑥𝑖 (I𝑖 (ṽ), 𝑐𝑖 ) and 𝐶𝑖 if it won. For example,

in both SPA and FPA, F𝑖 reveals a lower bound on the winning bid

if the bidder lost. On the other hand, if the bidder won, then in SPA

F𝑖 reveals the second-highest bid while in FPA F𝑖 reveals only an

upper bound on all other bids. The expected value that bidder 𝑖 gets

under 𝑥𝑖 is given by

Eṽ [Ev [𝑣𝑖 |F𝑖 ] · 𝑥𝑖 (I𝑖 (ṽ), 𝑐𝑖 )]
= Eṽ [Ev [𝑣𝑖 · 𝑥𝑖 (I𝑖 (ṽ), 𝑐𝑖 ) |F𝑖 ]]
= Eṽ,v [𝑣𝑖 · 𝑥𝑖 (I𝑖 (ṽ), 𝑐𝑖 )] .

The first equality holds because the value of 𝑥𝑖 (𝑣𝑖 , 𝑐𝑖 ) is measurable

under F𝑖 , while the second equality is a direct consequence of the

law of iterated expectations. Similarly, the expected cost the bidder

pays is given by Eṽ,v [𝐶𝑖 · 𝑥𝑖 (I𝑖 (ṽ), 𝑐𝑖 )].
The autobidding problem that each bidder solves can be written

as follows, where 𝑥𝑖 is the decision function:

maximize Ev,ṽ [𝑥𝑖 (I𝑖 (ṽ), 𝑐𝑖 ) · 𝑣𝑖 ]
subject to Ev,ṽ [𝑥𝑖 (I𝑖 (ṽ), 𝑐𝑖 ) · (𝑣𝑖 −𝐶𝑖 )] ≥ 0

𝑥𝑖 (I𝑖 (ṽ), 𝑐𝑖 ) is non-increasing in 𝑐𝑖 .
(ROS)

At this point, we remind the reader that for truthful auctions, we

have 𝐶𝑖 = 𝑐𝑖 which is the case for some of the bidding results in

prove in this paper.

Uniform bidding. Some of our results focus on the setting where

bidders bid uniformly. In this paper, when we say uniform bidding,

it will mean one of the following two options, which should be clear

from context. Either𝑏𝑖 (I𝑖 (ṽ)) = 𝛼𝑖 ·𝑣𝑖 or𝑏𝑖 (I𝑖 (ṽ)) = 𝛼𝑖 ·E[𝑣𝑖 |ṽ] for
some constant 𝛼𝑖 > 0. Using the notation from above, this means

that 𝑥𝑖 (I𝑖 (ṽ), 𝑐𝑖 ) = 1[𝛼𝑖𝑣𝑖 ≤ 𝑐𝑖 ] or 𝑥𝑖 (I𝑖 (ṽ), 𝑐𝑖 ) = 1[𝛼𝑖E[𝑣𝑖 |ṽ] ≤
𝑐𝑖 ]. For our results regarding non-contextual auctions, such as SPA

and FPA, this means the former since the bidder only has access to

𝑣𝑖 . For our results regarding contextual auctions, uniform bidding

refers to the latter since the bidder has access to E[𝑣𝑖 |ṽ]. Due to its

simplicity, it has been widely studied in the literature (see [3]).

Equilibrium and Price of Anarchy. Given an auction, a set of bid-

ding functions b(I1 (ṽ), . . . ,I𝑛 (ṽ)) = (𝑏1 (I1 (ṽ)), . . . , 𝑏𝑛 (I𝑛 (ṽ)))
forms an equilibrium if all the bidders satisfy their ROS constraint

and no bidder can deviate to increase the value they receive without

violating their autobidding ROS constraint. More specifically, let

𝑥b : R𝑛 → {0, 1}𝑛 be the resulting allocation function given the

bidding function b (we drop the dependence on I𝑖 for notation).

In an equilibrium, we have that for any 𝑖 ∈ [𝑛], for any bidding

function 𝑏 ′
𝑖
, if b′ = (𝑏 ′

𝑖
, 𝑏−𝑖 ) then either:

(1) E[𝑥b′
𝑖
(ṽ) (𝑣𝑖 −𝐶𝑖 )] < 0; or

(2) E[𝑥b′
𝑖
(ṽ)𝑣𝑖 ] < E[𝑥b𝑖 (ṽ)𝑣𝑖 ].

To quantify the efficiency of different auctions, we make use

of two standard metrics in the autobidding literature: the liquid

welfare and the price of anarchy. For an allocation 𝑥 : R𝑛 → {0, 1}𝑛 ,
the liquid welfare is defined as

Ev,ṽ

[
𝑛∑
𝑖=1

𝑥𝑖 (ṽ)𝑣𝑖

]
. (3.1)

The optimal liquid welfare is obtained by choosing 𝑥 to optimize

Eq. (3.1). Note that we have

Ev,ṽ

[
𝑛∑
𝑖=1

𝑥𝑖 (ṽ)𝑣𝑖

]
= Eṽ

[
𝑛∑
𝑖=1

𝑥𝑖 (ṽ) · Ev [𝑣𝑖 |ṽ]
]
,

so to optimize Eq. (3.1), we define the allocation 𝑥 as follows. For

every ṽ, arbitrarily choose 𝑖∗ ∈ argmax𝑖 E[𝑣𝑖 |ṽ] and set 𝑥𝑖 (ṽ) =
1[𝑖 = 𝑖∗]. We thus define OPT = Eṽ [max𝑖 Ev [𝑣𝑖 |ṽ]]. Note that

OPT is defined with knowledge of all bidders’ estimates and then

choosing the optimal allocation.

Finally, the price of anarchy (PoA) of an auction is defined as the

worst-case ratio of the liquid welfare between the auction and OPT

(over all distributions 𝐹 and 𝐹 ).

4 Special Case: No Interdependence Between
Values

In this section, we look at the special case where there is no in-

terdependence between the bidders’ values. More specifically, we

assume that E[𝑣𝑖 |ṽ] = E[𝑣𝑖 |𝑣𝑖 ] = 𝑣𝑖 for all 𝑖 ∈ [𝑛]. In other words,

the signals of the other bidders do not provide any benefit in im-

proving a bidder’s value signal. This case essentially reduces to

the private value setting that is now common in the autobidding

literature [3]. However, for completeness, we give proofs for most

of the results in this section.

The following theorem shows that if the auction is truthful than

a best response for the bidder is to bid uniformly. Recall that bidding

uniformly means 𝑏𝑖 (I𝑖 (ṽ)) = 𝛼𝑖 · 𝑣𝑖 or, equivalently, 𝑥𝑖 (I𝑖 (ṽ), 𝑐𝑖 ) =
1[𝛼𝑖 · 𝑣𝑖 ≤ 𝑐𝑖 ] for some constant 𝛼𝑖 > 0. Also recall that for truthful

auctions, we have 𝐶𝑖 = 𝑐𝑖 which slightly simplifies Eq. (ROS).

Theorem 4.1. Suppose that values are independent. Suppose that

the auction is truthful and also that there exists a constant 𝜆 > 0 such

that E[1[𝑣𝑖/𝑐𝑖 ≥ 𝜆/(1 + 𝜆)] · (𝑣𝑖 − 𝑐𝑖 )] = 0.
7
Then uniform bidding

is an optimal bidding strategy. This is true even if each bidder has full

access to ṽ.

For the proof, we assume that I𝑖 (ṽ) = ṽ and so we drop the I𝑖 .
Eventually, we show that the bidder only uses 𝑣𝑖 despite having

access to ṽ, as stated in the theorem.

7
A sufficient condition for this assumption to hold is to assume that as we vary the

bid multiplier 𝛼𝑖 from 0 to∞, both the value and cost increase continuously and the

marginal ROI (defined as the ratio of the change in value with respect to an infinitesimal

change in cost) is decreasing.
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Proof. Let 𝜆 denote the dual variable for the constraint in (ROS).

The Lagrangian problem is to find 𝑥𝑖 to maximize

L(𝑥, 𝜆) = E[𝑥𝑖 (ṽ, 𝑐𝑖 ) · 𝑣𝑖 ] + 𝜆 · E𝑣 [𝑥𝑖 (ṽ, 𝑐𝑖 ) · (𝑣𝑖 − 𝑐𝑖 )]
subject to 𝑥𝑖 (ṽ, 𝑐𝑖 ) is non-increasing in 𝑐𝑖 .

(4.1)

An optimizer for L over 𝑥𝑖 , for fixed 𝜆, is 𝑥𝜆
𝑖
(ṽ, 𝑐𝑖 ) = 1[𝑣𝑖/𝑐𝑖 ≥

𝜆/(1 + 𝜆)]. Note that with this choice of 𝑥𝑖 , the constraint that

𝑥𝑖 (ṽ, 𝑐𝑖 ) is non-increasing in 𝑐𝑖 is satisfied. By standardweak duality,
we have that (ROS) is upper bounded by L(𝑥𝜆

𝑖
, 𝜆) for all 𝜆 > 0.

Finally, choose 𝜆∗ to satisfy E[1[𝑣𝑖/𝑐𝑖 ≥ 𝜆∗/(1+𝜆∗)] · (𝑣𝑖 −𝑐𝑖 )] = 0;

the existence of such a value is guaranteed by the assumption of

the theorem. Taking 𝑥𝜆
∗

𝑖
as the solution to (ROS) shows that (ROS)

is equal to L(𝑥𝜆∗
𝑖
, 𝜆∗).

Now, note that 𝑥𝜆
𝑖
(ṽ, 𝑐𝑖 ) = 1[𝑣𝑖/𝑐𝑖 ≥ 𝜆/(1 + 𝜆)] which implies

that (i) uniform bidding is an optimal bidding strategy, by definition

of uniform bidding, and (ii) this is the optimal bidding strategy even

if the bidder has access to all of ṽ. □

The next theorem gives a PoA result when the values are not

interdependent. Note that the theorem assumes that bidders always

bid at least their value. First, we remark that it is straightforward

to check that it is always a best-response for a bidder to bid at

least their value. Second, without such an assumption, the PoA can

be arbitrarily poor; for example, an equilibrium is for a low value

bidder to always bid infinity while the remaining bidders bid 0.

Theorem 4.2. The PoA of SPA is 2 provided that 𝑏𝑖 (I𝑖 (ṽ)) ≥ 𝑣𝑖 for

all ṽ and 𝑖 .

The proof is essentially a simplified version (albeit in the Bayesian

setting) of the proof that appears in [2].

Proof. Let 𝑥OPT (𝑣) denote any optimal allocation and 𝑥SPA (𝑣)
denote an equilibrium allocation in SPA. Consider the two events

E1 = {𝑣 : 𝑥OPT (𝑣) = 𝑥SPA (𝑣)}
and

E2 = {𝑣 : 𝑥OPT (𝑣) ≠ 𝑥SPA (𝑣)}.
On the event E1, we have that

E�̃�

[∑
𝑖

𝑣 ′𝑖 · 𝑥
SPA

𝑖 (𝑣)1[E1]
]
= E�̃�

[∑
𝑖

𝑣 ′𝑖 · 𝑥
OPT

𝑖 (𝑣)1[E1]
]
. (4.2)

On the event E2, we have that the cost is at least
∑
𝑖 𝑣
′
𝑖
· 𝑥OPT

𝑖
since

the bid multiplier of every bidder is at least 1 and that bidder did

not win. Thus, the ROS constraint implies that

E�̃�

[∑
𝑖

𝑣 ′𝑖 · 𝑥
SPA

𝑖 (𝑣)
]
≥ 𝐸�̃�

[∑
𝑖

𝑣 ′𝑖 · 𝑥
OPT

𝑖 (𝑣)1[E2]
]
. (4.3)

Combining Eq. (4.2) and Eq. (4.3) gives that

2 · E�̃�

[∑
𝑖

𝑣 ′𝑖 · 𝑥
SPA

𝑖 (𝑣)
]
≥ 𝐸�̃�

[∑
𝑖

𝑣 ′𝑖 · 𝑥
OPT

𝑖 (𝑣)
]
,

Which proves the upper bound of 2.

For the lower bound, consider the following example with two

bidders. With probability 1/2, bidder 1 (resp. 2) has value 1 (resp. 0)
for the query and with probability 1/2, bidder 1 (resp. 2) has value
𝜀 (resp. 1) for the query. In this case, we claim that multipliers

𝛼1 = 2/𝜀 and 𝛼2 = 1 form an equilibrium. In this case, bidder 1

always wins for an average value of (1 + 𝜀)/2 and an average cost

of 1/2. Bidder 2 cannot deviate since if it does, it will get an average

value of 1/2 but an average cost of 1. □

Next, a well-known result is that in FPA, if all bidders employ a

uniform bidding strategy then optimal efficiency is always achieved.

Theorem 4.3. In FPA, if the bidders use a uniform bidding strategy

then a bid multiplier of 1 is an optimal multiplier and this gives

PoA = 1.

For a proof of this result, see [11, Theorem 6.5]. Note that a

uniform bidding strategy may not be optimal under FPA. If I𝑖 (ṽ) =
ṽ and 𝑏𝑖 (ṽ) can be an arbitrary function then the result of [20,

Theorem 3.4] can be extended to the Bayesian setting to prove a

PoA of 2.

5 Inefficiency of SPA and FPA with
Interdependent Values

This section shows that when the values of the agents are interde-

pendent, the standard second- and first-price auctions can result in

poor outcomes. In Subsection 5.1, we show that uniform bidding is

no longer an optimal bidding strategy which contrasts with Theo-

rem 4.1. Next, in Subsection 5.2, we show that the price of anarchy

can be arbitrarily bad when using these standard auctions.

5.1 Uniform Bidding is Suboptimal
In this section, we show that uniform bidding is suboptimal when

the bidders receive only their own signal for the value of the query.

In fact, the proof shows that uniform bidding can result in 0 value

for the bidder.

Theorem 5.1. Suppose that the values may be interdependent and

that I𝑖 (ṽ) = 𝑣𝑖 . Then there is an instance where uniform bidding in

SPA is suboptimal for the bidder. In fact, the bidder can get zero value

while satisfying its ROS constraint.

At a high-level, the proof constructs two different types of queries.

For one type of query, the bidder can get relatively cheaply rela-

tive to its signal but yet it knows that whenever it wins, it must

overpay. It turns out that one can still design the signal so that it

remains unbiased even in this case. The second type of query is

more expensive, again relative to its signal but are queries which

the bidder knows it will not overpay. A bidder that uses uniform

bidding, even in a truthful auction, will not be able to target the

second type of query.

Proof. For the proof, we focus on the problem for a single bidder

and assume that the cost they need to pay is correlated with their

true value. This can be because the cost is determined by another

bidder whose value is correlated with the bidder we are looking at.

Thus, for the proof, we drop the subscript 𝑖 .

Consider the following example.

• (Query type A) With probability 1/2, we have 𝑣 ∼ 𝑈 (0, 0.5).
Conditioned on this event:

– (Query type A1) With probability 1/2, 𝑣 = 1

2
𝑣 and 𝑐 = 0.6𝑣 .

– (Query type A2) With probability 1/2, 𝑣 = 3

2
𝑣 and 𝑐 = 1.6𝑣 .

• (Query type B) With probability 1/2, we have 𝑣 ∼ 𝑈 (0.5, 1)
and 𝑐 = 𝑣 = 𝑣 .

5
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Note that E[𝑣 |𝑣] = 𝑣 . For query type B, this is trivial since 𝑣 = 𝑣 .

For query type A, this is because 𝑣 = 1

2
𝑣 and 𝑣 = 3

2
𝑣 with equal

probability. Since the ranges of 𝑣 are disjoint in the two cases, it is

straightforward to see that E[𝑣 |𝑣] = 𝑣 holds overall.

In the above example, note that no bid multiplier can guarantee

positive value while the ROS constraint is met. To see this, observe

that:

• A bid multiplier 𝛼 < 0.6, which results in a bid less than 0.6𝑣 ,

wins none of the queries since the cost of all queries is at

least 0.6𝑣 .

• A bid multiplier 𝛼 ∈ (0.6, 1), which results in a bid between

0.6𝑣 and 𝑣 , wins query type A1. However, this means the

ROS constraint is violated since E[(𝑣−𝑐) |𝑣, 𝛼𝑣 > 𝑐] = E[(𝑣−
𝑐) |𝑣, 𝑐 = 0.6𝑣] = 0.5𝑣 − 0.6𝑣 = −0.1𝑣 .
• Abidmultiplier𝛼 ∈ (1, 1.6) wins query type A1 and B. Again,
the ROS constraint is violated because winning query type

A1 contributes −0.1𝑣 to the ROS constraint while winning

query type B contributes 0 to the ROS constraint.

• Finally, a bid multiplier 𝛼 > 1.6 wins all query types but

query type A1 and A2 both negatively contribute to the ROS

constraint.

On the other hand, an optimal, albeit non-uniform, bidding

strategy is 𝑏 (𝑣) = 1.01𝑣1[𝑣 > 0.5]. In this case, the bidder wins

whenever the query type is B and obtains a value of E�̃� [E𝑣 [𝑣 |𝑣 ∈
(0.5, 1)] Pr[𝑣 ∈ (0.5, 1)]] = 3/8. It is also straightforward to see

that its ROS constraint is also met since the cost is always equal to

its value. □

The issue with the example in the above proof is due to the

correlation between a bidder’s bid and the cost, which is a result

of other bidders’ value. If the bidder could somehow update its

posterior based on other bidders’ signal then note that a uniform

bid multiplier of 1 does work. In that case, it would win only query

type B and lose query type A1 and A2 because the cost on those

queries is strictly larger than its value. This is exactly the contextual

second-price auction we introduce in Section 6.

Our next theorem shows that interdependent values lead to new

dynamics even in FPA when bidders bid uniformly. Well-known re-

sults show that the optimal bid multiplier should be 1 (Theorem 4.3)

and this leads to an optimal allocation. However, as the next theo-

rem shows, in the interdependent setting, the bid multiplier may

be less than 1 and ultimately, this leads to inefficiency.

Theorem 5.2. Suppose that bidders only use uniform bidding strate-

gies. When values are interdependent, the optimal bid-shading con-

stant may be less than 1.

Proof. Suppose there are two bidders. The value of bidder 1 is

𝑣1 ∼ 𝑈 (0, 1). However, bidder 1 only receives 𝑣1 = E[𝑣1] = 1/2
as the signal. Clearly, E[𝑣1 |𝑣1] = 𝑣1 since the signal reveals no

information (other than the mean). Let 𝛽 > 1 be a constant. The

value of bidder 2 is 𝑣2 = 𝑣
𝛽

1
and bidder 2 receives 𝑣2 = 𝑣2 as the

signal. Let us assume bidder 2 uses a bid multiplier of 1, which in

fact is the optimal bid multiplier. We will show that bidder 1 should

always bid shade.

Suppose that bidder 1 bids 𝑏 ≤ 1 (it has no reason to bid more

than 1 since otherwise it can decrease its bid to 1 without affecting

its allocation). Then its expected value is

E[𝑣1 |𝑣2 < 𝑏] · Pr[𝑣2 < 𝑏]

= E[𝑣1 |𝑣1 < 𝑏1/𝛽 ] · Pr[𝑣1 < 𝑏1/𝛽 ] = 𝑏2/𝛽

2

.
(5.1)

Its expected cost is

𝑏 · Pr[𝑣2 < 𝑏] = 𝑏 · Pr[𝑣1 < 𝑏1/𝛽 ] = 𝑏1+1/𝛽 . (5.2)

For a given bid 𝑏, let 𝑓 (𝑏) = 𝑏2/𝛽
2
− 𝑏1+1/𝛽 be the slack in the ROS

constraint. Differentiating, we have

𝑓 ′(𝑏) = 𝑏1/𝛽 (𝑏1/𝛽−1 − (𝛽 + 1))
𝛽

.

The key observation is that the sign of 𝑓 ′ is determined by 𝑏1/𝛽−1−
(𝛽 +1), this is decreasing in 𝑏, and is positive for 𝑏 sufficiently small.

Since 𝑓 (0) = 0 and 𝑓 (1) = −1/2, we conclude that 𝑓 (𝑏) > 0 when

𝑏 is sufficiently small and 𝑓 has exactly one root in (0, 1). Since the
value is an increasing function of 𝑏, this means that the optimal bid

is precisely the root of 𝑓 , i.e. when its ROS constraint is tight.

Thus, equating Eq. (5.1) and Eq. (5.2), we have that bidder 1’s

optimal bid is 𝑏 = 2
−𝛽/(𝛽−1) < 1/2 since 𝛽 > 1. We conclude that

bidder 1’s best response is to bid shade. □

Let us point out that for the example in the above proof, bidder

1 always has the higher value since 𝑣2 = 𝑣
𝛽

1
< 𝑣1 as 𝑣1 ∈ (0, 1)

almost surely. In the proof, we did compute a set of equilibrium

bid multipliers so this gives an example where bidders may use

uniform bidding but the equilibrium allocation in FPA is not efficient

for interdependent signals. In the next section, we give another

example where uniform bidding leads to inefficient outcomes.

5.2 SPA and FPA have Infinite Price of Anarchy
In this section, we show that SPA and FPA can have arbitrarily poor

PoA when the only signal they receive is 𝑣𝑖 .

Theorem 5.3. For every integer 𝑘 ≥ 3, there exists an instance where

the price of anarchy is at least 𝑘/2 for both SPA and FPA when the

bidders only receive 𝑣𝑖 as their signal.

We give a high-level overview of the proof. Essentially, we con-

struct an instance with 𝑘 + 2 bidders where, with probability one,

one of the first 𝑘 bidders has high value. However, as most of the

time (with probability 1 − 1/𝑘), each bidder has low value, they are

reluctant to bid high. There is a very low value bidder whose signal

is correlated in a way that reveals the high value bidder. However,

as their values are too low, their signal is essentially never revealed.

Finally, there is one bidder whose value is slightly more than the

expectation of the first 𝑘 bidders discussed above which always

ends up winning.

Proof. The instance consists of 𝑘 + 2 bidders. Consider the

following correlated distribution among the bidders. Choose 𝑖 ∈ [𝑘]
uniformly at random.We assume (i) bidder 𝑖 has 𝑣𝑖 = 𝑘/2 and 𝑣 𝑗 = 0

for 𝑗 ∈ [𝑘] \ {𝑖}, (ii) bidder 𝑘 + 1 has value 𝑣𝑘+1 = 1, and (iii) bidder

𝑘 + 2 has value 𝑣𝑘+2 = 𝑖/(100𝑘). For signals, we assume that (i)

each bidder 𝑖 ∈ [𝑘] receives 𝑣𝑖 = 1/2 and (ii) for the remaining

𝑖 ∈ {𝑘 + 1, 𝑘 + 2}, bidder 𝑖 receives 𝑣𝑖 = 𝑣𝑖 . It is straightforward to

verify that for every 𝑖 ∈ [𝑘 + 2], we have E[𝑣𝑖 |𝑣𝑖 ] = 𝑣𝑖 .
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Optimal welfare. Recall that the optimal welfare is defined as

E[max𝑖 E[𝑣𝑖 |ṽ]]. In this case max𝑖 E[𝑣𝑖 |ṽ] = 𝑘/2 since given 𝑣𝑘+2,
we can identify 𝑖 ∈ [𝑘] such that 𝑣𝑖 = 𝑘/2. Thus, the optimal welfare

is E[max𝑖 E[𝑣𝑖 |ṽ]] = 𝑘/2.

Equilibrium welfare. We claim that all bidders using a bid mul-

tiplier of 1 is an equilibrium in both SPA and FPA. First, for each

𝑖 ∈ [𝑘], bidder 𝑖 is facing a price of 1 which is due to 𝑘 + 1. If bidder
𝑖 places a bid 𝑏𝑖 such that 𝑏𝑖 > 1 then we have E[𝑣𝑖 |𝑣𝑖 , 𝑏𝑖 > 1] = 0.5

because the event {𝑏𝑖 > 1} reveals no additional information on

any of the other bidders. Thus, E[𝑣𝑖 − 𝑐𝑖 |𝑏𝑖 > 1] ≤ 0.5 − 1 < 0. We

conclude that bidder 𝑖 cannot profitably deviate without violating

its ROS constraint. Second, bidder 𝑘 + 1 will not deviate since it is
always winning and at a price that is at most its own value.

8
Third,

bidder 𝑘 + 2 will not deviate since its value is strictly less than 1 and

to win, it must pay at least 1. We thus conclude that the equilibrium

welfare is 1.

To summarize, the optimal welfare is at least 𝑘/2 and we ex-

hibited an equilibrium where the welfare is 1. This completes the

proof. □

6 Contextual Second-Price Auction
We now define the Contextual Second-Price Auction. In Subsec-

tion 6.1, we show that under CSPA, uniform bidding becomes an

optimal bidding strategy. In Subsection 6.2, we show that CSPA has

a PoA of 2.

There are at least two different ways to implement a contextual

auction. One possibility is to provide ṽ to every bidder so that each

bidder can compute E[𝑣𝑖 |ṽ].
Algorithm 1 provides an alternative auction to implement CSPA

where all the corrections are done within the auction. Under this

auction, the bidder places a uniform bid on 𝑣𝑖 (shown in Theo-

rem 6.1). The key difference from SPA is that the auction computes

an updated posterior based on the value estimates of all the partici-

pating advertisers and then uses this as a correction multiplier on

the bidder’s original bid. With this auction, we recover both prop-

erties that SPA has under non-interdependent values – optimality

of uniform bidding and a PoA of 2 – even under interdependent

values.

Algorithm 1: Contextual Second-Price Auction (CSPA)

Input: Bids 𝑏𝑖 and predicted values ṽ
Output:Winner’s identity𝑊 and its payment 𝑝

for 𝑖 ∈ [𝑛] do
Compute 𝑣 ′

𝑖
← E𝑣 [𝑣𝑖 |ṽ].

Adjust bids: 𝑏 ′
𝑖
← 𝑣′𝑖

�̃�𝑖
𝑏𝑖 .

end
Run SPA on updated bids:

𝑊 ← argmax𝑖 𝑏
′
𝑖
, 𝑝 ← max𝑗≠𝑖 𝑏

′
𝑗

Let us point out that the bidders do not actually need access

to ṽ. In fact, as seen in Algorithm 1, the auction can implement

8
While bidder 𝑘 + 1 can lower its price, since there are no other queries available, it

cannot increase its value. Since the bidder is a value-maximizer, this means that bidder

𝑘 + 1 is indifferent between bidding 1 and bidding 0.51.

the correction on behalf of the bidder. Thus, the bidder may still

use uniform bidding with respect to 𝑣𝑖 which the auction can then

correct to a uniform bid on E[𝑣𝑖 |ṽ].

6.1 Uniform Bidding in Contextual Truthful
Auction is Optimal

In this section, we show that uniform bidding is optimal when the

underlying auction is a contextual truthful auction. By contextual,

we essentially mean that I𝑖 (ṽ) = ṽ instead of I𝑖 (ṽ) = 𝑣𝑖 as in the

previous section. We let F denote the 𝜎-algebra that represents the

information the bidder receives after the outcome of the auction. In

particular, this includes ṽ (though the bidder has this information

prior to the auction as well). In the case of CSPA, without a reserve,

F is simply ṽ, assuming that the other bidders’ bidding function is

fixed. If there is a reserve then F includes the reserve price on top

of ṽ. The bidding problem can then be written as

maximize Eṽ [𝑥𝑖 (ṽ, 𝑐𝑖 ) · 𝑣𝑖 ]
subject to Eṽ [𝑥𝑖 (ṽ, 𝑐𝑖 ) · (𝑣𝑖 − 𝑐𝑖 )] ≥ 0

𝑥𝑖 (ṽ, 𝑐𝑖 ) is non-increasing in 𝑐𝑖 .
(6.1)

Recall here that 𝑐𝑖 is the minimum bid needed to win the auction

which, for truthful auctions, is equal to the cost. Let us also recall

that the function 𝑥 (·, ·) is known to bidder; however, its realization

is random as its inputs are random.

Theorem 6.1. For contextual and deterministic truthful auctions, if

there exists 𝜆 > 0 such that

E[1[E[𝑣𝑖 |ṽ]/𝑐𝑖 ≥ 𝜆/(1 + 𝜆)] · (E[𝑣𝑖 |ṽ] − 𝑐𝑖 )] = 0 (6.2)

then uniform bidding is an optimal bidding strategy.

Proof. Taking the Lagrangian of Eq. (6.1), we have

L(𝑥𝑖 , 𝜆) = E[𝑥𝑖 (ṽ, 𝑐𝑖 ) · ((1 + 𝜆)𝑣𝑖 − 𝜆𝑐𝑖 )]
= E[E[𝑥𝑖 (ṽ, 𝑐𝑖 ) · ((1 + 𝜆)𝑣𝑖 − 𝜆𝑐) |F ]]
= E[𝑥𝑖 (ṽ, 𝑐) · E[(1 + 𝜆)𝑣𝑖 − 𝜆𝑐𝑖 ) |F ]]
= E[𝑥 (ṽ, 𝑐𝑖 ) · ((1 + 𝜆)E[𝑣𝑖 |ṽ] − 𝜆𝑐𝑖 )] .

Note that the third equality is because the value of 𝑥𝑖 (ṽ, 𝑐) is in F
so it can be taken out of the conditional expectation. To optimize

L(𝑥𝑖 , 𝜆) for a fixed 𝜆, we can take 𝑥𝑖 (ṽ, 𝑐𝑖 ) = 1[(1 + 𝜆)E[𝑣𝑖 |ṽ] ≥
𝜆𝑐𝑖 ]. Note that this satisfies the last constraint in Eq. (6.1) which is

necessary since it is not included in the Lagrangian. As discussed

in Section 3, this is the definition of a uniform bidding strategy.

Finally, if we take 𝜆 to satisfy Eq. (6.2), i.e. 𝑥𝑖 (ṽ, 𝑐𝑖 ) = 1[(1 +
𝜆)E[𝑣𝑖 |ṽ] ≥ 𝜆𝑐𝑖 ] then we have (i) 𝑥𝑖 optimizes L(𝑥𝑖 , 𝜆), as dis-
cussed in the previous paragraph, and the value is E[𝑥𝑖 (ṽ, 𝑐𝑖 ) · 𝑣𝑖 ]
and (ii) Eq. (6.1) also has value E[𝑥𝑖 (ṽ, 𝑐𝑖 ) · 𝑣𝑖 ]. We thus conclude

that uniform bidding is an optimal bidding strategy. □

6.2 Efficiency of CSPA
This theorem proves two theorems on the efficiency of CSPA. First,

we show that CSPA has a PoA of 2 which recovers the efficiency

guarantee of SPA in the independent value setting. Second, we

show that there are instances where SPA actually performs better

than CSPA but that the gap is at most 2.
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Theorem 6.2. Assume that bidders bid uniformly and that every

bidder uses a bid multiplier 𝛼𝑖 ≥ 1. Then the PoA of CSPA is equal to

2.

We only prove the upper bound on the PoA. The lower bound

of 2 is inherited from Theorem 4.2 since the setting without any

interdependence between the values is a special case.

Proof. Recall that each bidder 𝑖 chooses a bid multiplier 𝛼𝑖 ≥ 1

and then places an initial bid 𝑏𝑖 = 𝛼𝑖 · 𝑣𝑖 . The bid is then updated

by multiplying by the ratio
E[𝑣𝑖 |ṽ]

�̃�𝑖
so that 𝑏 ′

𝑖
= 𝛼𝑖 · E[𝑣𝑖 |ṽ]. For

notation, let 𝑣 ′
𝑖
= E[𝑣𝑖 |ṽ].

Let 𝑥OPT (ṽ) denote any optimal allocation and 𝑥CSPA (ṽ) denote
an equilibrium allocation in CSPA. Consider the two events

E1 = {ṽ : 𝑥OPT (ṽ) = 𝑥CSPA (ṽ)}
and

E2 = {ṽ : 𝑥OPT (ṽ) ≠ 𝑥CSPA (ṽ)}.
On the event E1, we have that

Eṽ

[∑
𝑖

𝑣 ′𝑖 · 𝑥
CSPA

𝑖 (ṽ)1[E1]
]
= Eṽ

[∑
𝑖

𝑣 ′𝑖 · 𝑥
OPT

𝑖 (ṽ)1[E1]
]
. (6.3)

On the event E2, we have that the cost is at least
∑
𝑖 𝑣
′
𝑖
· 𝑥OPT

𝑖
since

the bid multiplier of every bidder is at least 1 and that bidder did

not win. Thus, the ROS constraint implies that

Eṽ

[∑
𝑖

𝑣 ′𝑖 · 𝑥
CSPA

𝑖 (ṽ)
]
≥ 𝐸ṽ

[∑
𝑖

𝑣 ′𝑖 · 𝑥
OPT

𝑖 (ṽ)1[E2]
]
. (6.4)

Combining Eq. (6.3) and Eq. (6.4) gives that

2 · Eṽ

[∑
𝑖

𝑣 ′𝑖 · 𝑥
CSPA

𝑖 (ṽ)
]
≥ 𝐸ṽ

[∑
𝑖

𝑣 ′𝑖 · 𝑥
OPT

𝑖 (ṽ)
]
,

as desired. □

While CSPA improves upon SPA in the worst case, it is natural to

ask whether or not CSPA is always better than SPA. It turns out the

answer is no. The intuition is that there can be instances where the

noise actually helps to prevent “inversions”, where a bidder with

higher value loses to another bidder with lower value because the

lower value bidder is able to gain some slack in their ROS constraint

on some other query. In such scenarios, SPA can actually be more

efficient. However, the next theorem shows that the improvement

of SPA over CSPA is fairly limited and the ratio can be at most a

factor 2 apart.

To formally state the result, we need one last bit of notation.

For an instance 𝐼 , let𝑊CSPA (𝐼 ) (resp.𝑊SPA (𝐼 )) denote the worst-
case liquid welfare for CSPA (resp. SPA) over all equilibria for the

instance 𝐼 .

Theorem 6.3. For any instance 𝐼 , we have 1

2
≤ 𝑊CSPA (𝐼 )

𝑊SPA (𝐼 ) < ∞.
Moreover, neither inequality can be improved.

Proof. For the proof, we fix an instance 𝐼 and we drop the

dependence on 𝐼 . The fact that𝑊CSPA/𝑊SPA < ∞ is trivial as long

as the instance 𝐼 has at least one agent with strictly positive value

for at least one query. To see that this bound cannot be improved,

note that Theorem 5.3 implies that for𝑘 ≥ 3, there exists an instance

𝐼 such that the optimal allocation has value 𝑘/2 but𝑊SPA ≤ 1. By

1

2

A

B

1

Probability 1 − 𝑝 .
1

2

A

B

1

𝜀

1

Probability 𝑝 .

Figure 1: The instance where SPA improves on CSPA by a factor

of 2. Numbers next to edges denote values; missing edges denote 0

value. First, we pick either the graph on the right or the graph on

the left and then pick query 𝐴 or query 𝐵 uniformly at random. A

third bidder determines which of the two graphs occurs.

Theorem 6.2, we have𝑊CSPA ≥ 𝑘/4 so𝑊CSPA/𝑊SPA ≥ 𝑘/4. As 𝑘
is arbitrary, this proves that the upper bound cannot be improved.

For the lower bound, the inequality𝑊CSPA/𝑊SPA ≥ 1/2 is an

implication of Theorem 6.2. It remains to show that this inequality

is tight.

We consider the following instance with three bidders which

is illustrated in Figure 1. Let 0 < 𝛿 < 𝜀 < 1 be parameters. Let

𝑝 = 1/(1 + 2𝜀). With probability 1 − 𝑝 , bidder 0 has value 𝑣0 = 0

and with probability 𝑝 bidder 0 has value 𝑣0 = 𝛿 . Bidder 0 receives

𝑣0 = 𝑣0 as its signal. The value distribution for bidders 1 and 2

is defined conditional on the value for bidder 0. If 𝑣0 = 0 then

(𝑣1, 𝑣2) = (0, 0) with probability 1/2 and (𝑣1, 𝑣2) = (0, 1) with
probability 1/2. If 𝑣0 = 𝛿 then (𝑣1, 𝑣2) = (1, 0) with probability 1/2
and (𝑣1, 𝑣2) = (𝜀, 1) with probability 1/2. Bidder 1 gets 𝑣1 = 𝑝 (1+𝜀)

2

as its signal and bidder 2 gets 𝑣2 = 𝑣2 as its signal.

Welfare in SPA. Consider any equilibrium where every bidder

uses a bid multiplier of at least 1. First, observe that bidder 0 never

wins since their expected cost is at least 1/2 (due to bidder 2 alone)

while their value is at most 𝛿/2. Next, we claim that bidder 1 wins

if 𝑣1 = 1 and bidder 2 wins if 𝑣2 = 1. Indeed, if bidder 2 does not

when 𝑣2 = 1 it must be that bidder 1 chooses a multiplier 𝛼1 such

that 𝛼1𝑣1 > 1 in which case bidder 1 wins every query. Its expected

value is thus
𝑝 (1+𝜀)

2
< 1/2 while its expected cost is 1/2. Thus

bidder 1’s ROS constraint is violated. So bidder 2 must win when

𝑣2 = 1. When 𝑣1 = 1 then we know that 𝑣2 = 0 so in this case, bidder

1’s bid is at least
𝑝 (1+𝜀)

2
> 𝛿 > 0. So bidder 1 wins. The welfare in

this case is at least 𝑝 (since when 𝑣0 = 0, the higher bidder wins).

Welfare in CSPA. In CSPA, we claim that an equilibrium is for

bidder 0 and 2 to use bid multipliers of 1 and for bidder 1 to use

an arbitrarily large bid multiplier. Indeed, if 𝑣0 = 0 then bidder 1

has value 0 and wins nothing while bidder 2 wins a query with

value 1 and cost 𝛿 with probability 1/2. On the other hand, if 𝑣0 = 𝛿

then bidder 1 wins both queries at a total price of (1 + 𝛿)/2 and

gets a total value of (1 + 𝜀)/2. Bidder 2 has no incentive to deviate

since bidder 1’s bid is arbitrarily large. Thus, the welfare in CSPA

is 𝑝 (1 + 𝜀)/2 + (1 − 𝑝)/2.

Comparison of SPA and CSPA welfare. Note that as 𝜀 → 0, we

have 𝑝 → 1. Thus, the welfare of SPA tends to at least 1 as 𝜀 → 0

while the welfare of CSPA tends to 1/2 as 𝜀 → 0. We conclude that

the inequality𝑊CSPA/𝑊SPA ≥ 1/2 cannot be improved. □
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