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Abstract

In this paper we introduce a simple and intuitive adaptive k nearest neighbours classifier,
and explore its utility within the context of bootstrap aggregating (“bagging”). The ap-
proach is based on finding discriminant subspaces which are computationally efficient to
compute, and are motivated by enhancing the discrimination of classes through nearest
neighbour classifiers. This adaptiveness promotes diversity of the individual classifiers fit
across different bootstrap samples, and so further leverages the variance reducing effect of
bagging. Extensive experimental results are presented documenting the strong performance
of the proposed approach in comparison with Random Forest classifiers, as well as other
nearest neighbours based ensembles from the literature, plus other relevant benchmarks.
Code to implement the proposed approach is available in the form of an R package from
https://github.com/DavidHofmeyr/BOPNN.

1 Introduction

Bootstrap aggregating (Breiman, |1996)), or “bagging”, is the approach of combining the outputs of several
predictive models, each fit to different bootstrap samples from a set of data, into a single ensemble predic-
tive model. Bagging has remarkable potential for improving the prediction performance of high variance
predictors, due to the variance reducing effect of model averaging. However, it is well understood that not
all high variance predictors are able to leverage this effect equally, due to some being “too stable” across
different bootstrap samples. Bagged ensembles of Decision Tree (DT) based models have undeniably shown
the greatest promise to date, to the extent that bagging is sometimes categorised as a decision tree based
approach (Hastie, 2009). The remarkable success of Random Forest (Breimanl 2001, RF) based models has
only further entrenched DTs as the de facto “optimally baggable” model. Trees in RFs differ from regular
DTs only through the addition of a randomisation step preceding each stage in the standard Classification
And Regression Trees (Breiman, 2017, CART) algorithm. However, this simple modification has a remark-
able “destabilising” effect on the already highly variable trees, and so enables further variance reduction
through averaging.

Attempts have been made to emulate the success of RFs and bagged DTs with other non-parametric models,
such as those based on nearest neighbours (Zhou & Yu,, [2005; (Cannings & Samworth), |2017; |Gul et al., 2018)).
However, it is questionable whether any of these approaches has the potential to be a real competitor to RFs
across many different settings, partly due to limited experimental results having been documented.

A necessary condition for the success of a bagged ensemble is substantial diversity in the models (Krogh &
Vedelsbyl, [1994). However, existing approaches for inducing this diversity in nearest neighbours (NN) based
ensembles have largely been based on randomisation alone (Zhou & Yul 2005; |Domeniconi & Yan) 2004;
Deegalla et al.), 2022)), possibly owing to the successful application of randomisation within RFs. But purely
randomised methods can only be beneficial if the resulting increase in diversity across models substantially
outweighs the decrease in accuracy of the individual models caused by the extra randomness. Where RFs
are fundamentally advantaged over these NN ensembles, however, is in the adaptive way in which DTs
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determine their “smoothing neighbourhoods”, with the additional randomisation being a secondary factor.
The adaptiveness of DTs simultaneously is a primary source of diversity in the models beyond the randomness
of the bootstrap sampling, and also reduces the amount by which the added randomness of RFs impacts on
the quality of the individual models.

In this paper we introduce an intuitive adaptive k Nearest Neighbours (kNN) classifier which is computa-
tionally efficient to compute, and explore its utility within bagged ensembles. Our main objectives with this
piece of work are (i) to illustrate the importance of, and potential offered by, including an adaptive learning
step within each model in a bagged kNN ensemble; and (ii) to support this illustration with a rigorous and
extensive set of experiments.

The remainder of this paper is organised as follows. In the next section we provide some background
on bagging, with particular focus on its application to kNN based models. In Section [3| we describe our
approach, as well as some of the practicalities surrounding implementation and useful outputs from the
resulting models. In Section [f] we document the results from experiments using all 162 data sets in the Penn
Machine Learning Benchmarks repository (Olson et al., 2017, PMLB). Here we compare the performance of
the proposed approach with RFs, as well as numerous other models for context. RF classifiers are viewed by
many as excellent general purpose models; seldom much worse than any others, and frequently among the
best performing models on data from extremely diverse domains. In order to support any new model as a
realistic alternative in this regard, there should therefore be no possibility of data set selection bias (whether
conscious or unconscious) which is possible whenever any subset of available data sets without a clear and
justifiable selection criterion is used.

2 Bagging, kNN, and What’s Been Tried

In this section we provide light technical background on bootstrap aggregating, and discuss some of its
applications to kNN based classifiers. Let D := {(x1,41), (X2,¥2), .., (Xn,yn)} be a sample of realisations
from a distribution Fxy, on R¢ x [K], where [K] = {1,..., K}. That is, the response variables (or “class
labels”), y;;i € [n], each takes on one of K known and distinct values, and the associated observations of
the covariates, x;;i € [n], are each d-dimensional real vectors. This training sample, D, is then used to fit a
model, g(-|D), which is used to predict the class label for any given query point, x € R<.

Bagging operates by resampling from D multiple times to produce B bootstrap samples, D1, ..., D, and then
combining the resulting models, g(-|Dy);b = 1, ..., B, to obtain a final predictive model. Note that whether
each bootstrap sample is obtained by sampling with or without replacement often has relatively little impact
on the performance of the overall model. For ease of exposition we assume sampling without replacement,
and in such a way that each bootstrap sample contains ng = [rpn]| observations, where 7 € (0,1).

2.1 Bagging and Variance Reduction

Bagging can be remarkably effective in reducing the variance of flexible predictive models. This is most
conveniently communicated when combining the individual models through averaging, i.e., when using

ag _ 1 Z ®
9" (x|D) = B ;g(wa)- (1)

It is straightforward to show that (Hastiel 2009),
(bag) > 1-— P
Var(¢™*?(x|D)) = Var(g(x|D1)) { p+ —5~ | . (2)

where p = Cor(g(x|D;),g(x|Dz)). Note that although each Dy;b € [B], has the same distribution as an
i.i.dE| sample of the same size drawn directly from the underlying population, it is not the case that the
joint distributions of any pair Dy, , Ds,; b1 # by are the same as those of pairs of independent samples from

Irecall that we consider resampling without replacement
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the population due to the (potential) overlap of the bootstrap samples. It is this fact which results in
Cor(g(x|D1), g(x|D3)) generally being greater than zero. Bagging is beneficial, therefore, when the bias and
variance of g(x|D;) are similar to those of g(x|D), i.e., using a smaller sample does not affect accuracy too
substantially, and where Cor(g(x|D;), g(x|D3)) is relatively small.

Where bagging really shines is when applied to flexible, low-bias models, between which the correlation due to
overlapping samples is relatively low. Generally speaking the class of non-parametric smoothing models can
be made extremely flexible by selecting a small “smoothing parameter”. For example, the kNN model bases
its prediction for a point, x, only on the properties of the nearest k points to x from among the x;;i € [n].
However, kNN, and other so-called “lazy learners”, have been referred to as “too stable” from the point of
view of bagging, because the correlation induced by overlapping bootstrap samples is substantial. This can
be intuited by considering the region of influence of an observation, say x;, as the subset of R? to which
x; is one of the k nearest from among the sample. Note that this region is completely independent of the
observations of the response variable, and may depend on only a very small number of other sample points.
This independence of the responses means the standard kNN model is not able to leverage the relationships
between the covariates and the response in order to improve its fit (hence the term “lazy learner”). The
extreme localisation implied by the fact that the region of influence of a point depends on so few other
points is also why the kNN predictions from two samples with substantial overlap are so correlated. Decision
trees, on the other hand, are adaptive non-parametric smoothers, and aggressively exploit the relationships
between the covariates and response in how they recursively split up the input space to actively determine
the regions of influence of each point. In this way the region of influence of each point can be dependent on
every other point in the sample. As a result the non-overlapping parts of two bootstrap samples are able to
differentiate their respective models sufficiently to induce lower correlation between their predictions.

Remark 1 Although the intuition underlying the effectiveness of bagging is most easily communicated from
a model averaging perspective, it is worth pointing out that directly averaging class labels is nonsensical.
Nonetheless, the formulation in Eq. applies to the classification context if we use one of the following
formulations:

1. The outputs of the individual models, g(x|Dy);b € [B], are estimates for the full conditional dis-
tribution of Y|X = x. Taking the average of such outputs is therefore also an estimate for this
conditional distribution, and classifying according to the mode of this distribution is Bayes optimal.

2. The outputs of the individual models are indicator vectors for the predicted class of x. Averaging
these indicator vectors and assigning the final classification using the mode is in this case equivalent
to the “majority vote” rule. Here the quantity g(®9) (x|D) is not an estimate for the distribution of
Y|X = x, but rather an estimate for the distribution of g(x|Dy), where Dy is a sample of size np
drawn directly from the underlying population.

2.2 Bagged £NN Classifiers

Although standard kNN models are seen to be stable from the point of view of bagging, there is a prevailing
opinion that they can be “destabilised” by adding randomisation to the way in which the neighbours of
each point are determined. This can be achieved in multiple ways, such as only computing distances on a
(random) subset of the variables in R? (Domeniconi & Yan, [2004); by randomly projecting the observations
before computing distances (Deegalla et all 2022)); or by using a random selection of the value of p within
the Ly-norm derived distance function itself (Zhou & Yu, |2005)). By modifying the distance metric a greater
variety of points can have an impact on the regions of influence of others. However, none of these approaches
is adaptive to the relationships between the covariates and the response, and there is insufficient evidence
that purely randomised approaches are useful in general. Since the dominant term in Var(g®®9 (x|D)) is
equal to pVar(g(x|D1)), a modification such as this can only be beneficial if the reduction in p outweighs
the increase in the variance of the individual models. However this may be substantial if the modification is
purely random.

Nearest neighbours models can be made adaptive by actively learning a distance metric to enhance discrim-
ination of classes, either globally (Goldberger et al., |2004)) or locally (Hastie & Tibshirani, |1995). As far as
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we are aware, however, no such approaches have been explored within the context of bagging, likely because
of the computational demand of fitting a large number of such models. Somewhere between fully adaptive
and randomised is the approach of selecting from among multiple kNN models arising from different random
projections of the observations. This approach has shown success in the context of bagging (Cannings &
Samworth|, [2017)), however the number of individual kNN models is equal to the product of the number of
bootstrap samples and the number of random projections from among which to select each model in the
ensemble. This results in a considerable computational restriction. A related method (Gul et al., [2018)),
which also uses a selection from multiple randomised kNN models works as follows. First a large collection
of models is fit to different bootstrap samples, with each using its own random selection of the variables in
R?. Then a fixed proportion of these is selected for inclusion in the ensemble. However, since the selection
of each model in the final ensemble is from the same collection of candidates, the models in the ensemble
are strongly dependent. To counteract this, the selection of models is not purely based on their apparent
predictive ability, but is also made to ensure some level of diversity in the predictions across models. Al-
though the total number of models to be fit is substantially fewer than when a fully independent selection is
made for each model in the ensemble, this approach is still substantially slower than alternatives. Moreover,
this approach loses the statistical “niceness” of bagging, and in particular does not provide any Out-Of-Bag
(OOB) estimates for performance. This further limits its applicability when any substantial hyperparameter
search is needed to obtain a good model.

3 Bagging Adaptive kNN Classifiers Based on Discriminant Projections

The benefits of adaptive learning (as applied in fitting D'Ts) within the context of bagging are at least two-
fold: (i) it enables the models to exploit the relationships between the covariates and the response; and (ii)
it allows the region of influence of a point to depend on the entire sample, and not only on points which are
very local to it. This latter fact induces further differentiation across the outputs of models fit to different
bootstrap samples, and so reduces their correlation.

Making ENN classifiers adaptive by optimising the distance metric used in the nearest neighbour search
is intuitively pleasing, and in principle has the potential to achieve the same benefits as those described
above for DTs. However, most adaptive kNN methods are considerably more computationally demanding
than is fitting DTs. This limits their application within the computationally intensive bagging framework.
What seems largely to have been overlooked, however, is that adaptively modifying the distance metric to
enhance class discrimination does not have to be performed in a fully optimal manner in order to leverage
the benefits mentioned above. We therefore explore this potential through a more computationally efficient
alternative, based on finding discriminant subspaces designed to enhance class discrimination as determined
by ENN classifiers.

3.1 A Simple Discriminant Subspace for kNN

Discriminant subspaces are subspaces of R? within which the classes are (relatively) easily separated from one
another. Depending on the classifier being applied after projection, different formulations of the discriminant
subspace will be more/less appropriate. For example, the well known Linear Discriminant Analysis (Raol
1948, LDA) model, in which each class is modelled with a Gaussian distribution and all classes share a com-
mon covariance matrix, has a so-called “sufficient subspace” given by the eigenvectors of f];lf)b associated
with its non-zero eigenvalues. Here f)w is the pooled within-class covariance estimate and f)b = f)—flm where
3 is the overall data covariance. The more flexible Mixture Discriminant Analysis (Hastie & Tibshirani,
1996, MDA) models each class with a Gaussian mixture. If all mixture components across all classes share
a common covariance matrix, then a similar discriminant subspace can be obtained. When more general
formulations are adopted, discriminant subspaces can be obtained by maximising the a classification likeli-
hood objective (Peltonen & Kaski, 2005), or by maximising some measure of divergence of the distribution
with all classes combined from the average within class distribution (Zhu & Hastiel [2003), with densities
estimated on the projected data. These latter approaches require numerical optimisation, and are thus not
computationally competitive with those which can be obtained using highly optimised eigen-solvers.
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Generally speaking, however, discriminant subspaces can be thought of as pushing points into high density
regions within their own classes, and into low density regions within other classes; and the appropriateness
of a subspace depends on how density is being modelled. Motivated by this simple but principled idea, we
adopt the following heuristic, which has some similarity with a fully non-parametric MDA. For each i, we
let i, be the k-th nearest observation to x; from within its own class, and ¢}, the k-th nearest observation to
x; from among those in other classes. We then define

R 1 n R 1 n
Sin 1= = (% = xi,) (% — %) ", Pous i= EZ(XZ- — X )% —x) (3)

i=1 i=1
For a unit vector u € R% ||u|| = 1 the quantity u” £;,u (respectively uT $o,,u) is then the average squared

distance from each point to its k-th same class neighbour (respectively other class neighbour), measured
along direction u. Such unit vectors which lead to small values of u'S;,u and large values of u'S,uu
are thus desirable discriminant directions for a kNN classifier. A sensible discriminant subspace is therefore
formed by simply taking the leading eigenvectors of f);nlflout.

Remark 2 Although the quantities u' x;, and uTXiL will tend not to be precisely the k-th nearest in- and out-
of- class neighbours tou' x; (i.e., the ordering of distances changes after projection onto u), they nonetheless
tend to be from among the nearer in- and out-of-class points, and so minimising the post-projection in-class
and maximising the post-projection out-of-class distances still has the desired effect.

Remark 3 It is of course possible to combine kNN with alternative discriminant subspaces within a bagged
ensemble. However, as described above, the appropriateness of a subspace for discriminating classes depends
on how the classes are to be modelled within that subspace. A subspace focused on minimising the near
neighbour in-class distances and mazimising the near neighbour out-of-class distances is therefore better
suited for classification with kNN than would be, for example, the LDA subspace, which is only based on the
first and second order structure of the class distributions.

Remark 4 The quantity Sin can be seen as capturing the average local within class covariance, and is similar
to the average within component covariance matriz used in MDA with a very large number of components.

A directly analogous subspace would thus arise from the ezgenvectors of E (E Em) However, we have
found substantially supemor performance using the eigenvectors of Z Eout We believe this is at least partly
due to the fact that Z Eout uses a greater amount of information fr’om the sample than does Z (E Zm)

and therefore mtuztzvely leads to greater diversity across bootstrap samples.

Remark 5 It is worth noting that we use only the k-th in- and out-of-class neighbours of each point when
determining the discriminant subspace despite the fact that the classification of a point after its projection
s based on all of its k nearest neighbours. This is ultimately because the density, as quantified by kNN, is
based only on the k-th neighbour distance. Perhaps more intuitively, minimising the k-th in-class neighbour
distance has the effect of making the ball containing all k nearest neighbours as small as possible.

3.1.1 Additional Diversity Through Randomised Variable Selection

As described previously, additional randomness across different models (e.g. through randomised variable
selection) can be beneficial if the resulting decrease in accuracy of the models arising from this randomness
(which may also be seen as a reduction in information) is outweighed by the effect of additional diversifi-
cation of the individual models. Adaptive models mitigate the reduction in accuracy arising from reduced
information, when compared with lazy learners, as they better exploit what information is available and are
better suited to filtering out noise.

In our preliminary experiments it became clear that restricting the discriminant subspaces each to lie within
their own randomly determined higher dimensional subspace does indeed improve performance in general.
How we achieve this is simply by only using information from a (random) subset of covariates in each
model in an ensemble. Specifically, let @@ C [d] be a subset of the total covariates (which in practice is
determined randomly), with |Q| = go, and let I € R?¥9 have as columns the cardinal basis vectors for the
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dimensions in Q. Then define i, and i) as before, except with distances only computed with the variables
in Q. We then define the discriminant matriz, whose eigenvectors define the discriminant subspace, simply

by A i=To (1810 B (1 S0uTe) 13-

Note that an additional benefit of this simple modification is that it can greatly reduce computational cost.
This is because nearest neighbour search and matrix inversion only ever need to be performed in dimension
at most qo, and for large d we have found g o v/d is more than adequate to achieve high accuracy.

3.2 A Full Model

Here we give a brief overview of our approach, which follows a standard format for the bagging framework.
With settings for & € N, the number of neighbours; ¢o € [d], the number of randomly selected covariates
used in a model; and ¢ € [go], the dimension of each discriminant subspace, do the following for each b € [B]:

1. Draw Dy, = {(X16, ¥18), ..., (xan,yan)} without replacement from D.

2. Draw @ of size gy without replacement from [d].

3. For each i € [np] find ¢ and ), the k-th in- and out-of-class neighbours of Igbxib from among
{10, %0 Yiems i

4. Compute the discriminant matrix,

-1
A 1 & 1 &
Ab = IQb (Igan Z(Xib - Xiz)(xih - XiZ)TIQb> (Igan Z(Xib - Xi;Cb)(Xib - Xi%b)TIQb> Igb,
i=1 i=1

and let Ab = UbAbU;1 be its eigen-decomposition.

5. Form g(x|D,) based on the class labels of the k nearest neighbours of U;,qu from
{Ul;ljlqulb, -~-anT,1:qxn‘;3}a either by taking the proportions in each class or the indicator vector

for the most frequent class. Here we have used Uy 1.4 € R%X4 to denote the first ¢ columns of Up.

Then obtain the final prediction by taking the mode of % Zszl g(x|Dy).

3.2.1 Additional Useful Outputs

Variable Importance Interpretability of flexible predictive models is increasingly a point of focus, as
modern methods typically rely on intricate relationships between the covariates and the response variable
which may not be explicitly expressed within the model in any intelligible form. Variable importance scores
are measures of the overall contribution of the covariates to the predictions made by a model. Although
far from encapsulating the entirety of what a model has captured in the data these are nonetheless useful
diagnostics for understanding which are the important variables driving the model’s predictions.

The discriminant subspace framework offers an intuitive means by which the contribution of each variable
to the model predictions may be quantified. In particular, if a variable lies within the discriminant subspace
from one of the models in the ensemble, then it is natural to view that variable as important to the predictions
from that particular model. On the other hand if a variable lies in the orthogonal complement of the subspace
then this variable is unimportant. In general none of the variables will lie entirely within/without any of
the discriminant spaces, but there will be some non-zero angles between them. If U has as columns a
normalised (not necessarily orthogonal) basis for a subspace, then the cosines of the principal angles between
the subspace and each of the variables in the cardinal basis can be seen as capturing the importance of
each variable to the subspace and lie in the diagonal elements of UUT. To further capture the relative
discriminatory information in the dimensions of the subspace, we weigh the basis vectors, which arise from
the spectral decomposition of the discriminant matrix, by the eigenvalues. To determine the importance of
the j-th variable to the entire ensemble we then average its importance values from each of the subspaces
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(a) Subspace from a single model using the proposed ap- (b) Subspace from the proposed ensemble, using the PCA
proach basis from the averaged projections

(c¢) Linear Discriminant Analysis subspace (d) Mixture Discriminant Analysis subspace

Figure 1: 2-Dimensional projections of the pen-based recognition of handwritten digits data set (left pair of
plots in each subfigure) and the segmentation data set (right pairs).

in the model. Specifically, we take the importance of the j-th variable to the predictions from the ensemble
to be % Zle(VbeT)jj, where V;, € R?*? has as columns the first ¢ COhIIIlIlS of UbAII,/2, where Uy, and A,
contain the eigenvectors and eigenvalues of the b-th discriminant matrix, Ay.

Visualisation A further advantage of discriminant subspaces is the fact that they reduce the dimen-
sionality of the observations. This can be beneficial for obtaining visualisations of the classes, and their
separations from others, as well as the predictions made by a model. However, a single discriminant ma-
trix within an ensemble, Ay;b € [B], is subject to fairly high variation. Moreover how to select from
among multiple discriminant subspaces to obtain a single visualisation is not immediately obvious. We
therefore a%gregate the information from all discriminant subspaces, by determining the ensemble projection
P:=15", Ub,l:quT,l; , matrix. To obtain a visualisation of the observations in the aggregated discrim-
inant subspace we project them onto the principal components basis vectors computed from the aggregate
projected observations {X; };e[n); X: 1= Px;.

Figure [1] shows two examples, where projections of two of the data sets used in our experiments are shown.
Each sub-figure contains four plots, with the left pair showing the first four discriminant projections of the
sixteen dimensional pen-based recognition of handwritten digits data set (Alpaydin & Alimoglul [1996), and
the right pair those of the nineteen dimensional segmentation data set [1990). The points depict the
projections of an independent test set separate from the “training” set used to obtain the actual projection
directions, and the colours and point characters represent the individual classes. Figure shows the result
from a single discriminant subspace using all training observations and all variables to compute ﬁ?i_nlflout,
while Figure shows the aggregated discriminant subspace from an ensemble of 100 models with ¢y =
[0.75d] and ¢ = [0.5¢p|. In both cases k was set to three. Both show fairly clear separation of the majority
of classes from others, with the ensemble showing these more clearly. For comparison we have also included
the discriminant projections arising from LDA and MDA in Figure and Figure respectively. LDA
shows good separation of the segmentation data set, but less so for the digits data set, while for MDA it is
the reverse.
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4 Experimental Results

4.1 Data Sets

For our experiments we considered all 162 classification data sets in the Penn Machine Learning Benchmarks
database (Olson et al., 2017). We repeatedly sampled training and test sets from each data set, with
training sets constituting 70% and test sets the remaining 30%. The number of times sampling training/test
splits varied by overall sample size, n, as follows: 0 < n < 500 : 50 times; 500 < n < 1000 : 20 times;
1000 < n < 5000 : 10 times; and 5000 < n : 5 times. The one exception is that, due to the very large amount
of compute time required for all experiments, training sets were capped at 7000 points and test sets at 3000
points (however, a different total 10 000 points was used in each training/test combination, where relevant).

Before passing the data sets to the different algorithms and models for fitting and prediction, all categorical
variables were first one-hot-encoded. The only exception to this was in the case of the random forest models,
since decision trees are able to handle categorical variables directly.

4.2 Classification Models and Tuning

Below we give a brief overview of the different models used for comparison, as well as how model selection
was conducted for each. Although our primary interest is in the comparison between the proposed approach
and the Random Forest models, we also include a number of alternatives for additional benchmarks and
context.

1. BOPNN: The proposed approach (Bag Of Projected Nearest Neighbours), where each ensemble com-
prised a bag of 100 kNN models (i.e., B = 100). For each data set and training sample, thirty values for
k (the number of neighbours); gog (the size of the random subset of covariates sampled for each model);
and ¢ (the number eigenvectors of each Ay retained) were sampled uniformly as k ~ U({1,...,5});q0 ~
U({|p*?],...,min{|10p*/2 |, p}}); and ¢|qo ~ U({[0.5q0],qo — 1}) respectively. Models were fit for each set-
ting of these hyperparameters and with the size of each bootstrap sample being 0.63 times the size of the
training set (mp = 0.63). The model with the highest Out-Of-Bag estimate for classification accuracy was
then applied on the test set.

2. BOpNN: Equivalent to above, except no discriminant subspace was found for each model (or equivalently
q was always set to go). This variant is included primarily to give a clear indication of the benefit of including
an adaptive learning step (the determination of a discriminant subspace) within a bagged model of otherwise
lazy learners.

3. BNN: A bagged 1-NN model where the proportion of the sample included in each bootstrap sample is

set equal to
2\ 71
2 AR
p k

where k is an estimate of the optimal value for k in a single kNN model, based on the leave-one-out cross-
validation estimate for classification accuracy. This setting is a plug-in estimate for the asymptotically
optimal value (Samworth} |2012). Note that for k =1 this proportion is greater than one, and in this case
we simply set 7 = 0.9.

4. BNN: As above except where 7p is tuned using OOB performance. This is included for comparison with
BNN, to test the appropriateness of the plug-in estimate for the asymptotically optimal value for 7g.

5. kKNN: A single kNN model with k selected using the leave-one-out cross-validation estimate of classification
accuracy.

6. ESKNN: The ENN ensemble which combines a selection from a large number of models fit to different
bootstrap samples with different random subsets of the covariates (Gul et al., [2018). Unlike the bagged
models above, this approach suffers unless the total number of kNN models is very large. Moreover, since
no relevant OOB estimates for performance are available, the compute time required for this approach was
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substantially greater than any of the other methods. As a result, we used a single 25% validation set for
estimating performance and only selected k from the set {1,...,10}. We fixed all other parameters equal to
their defaults in the ESKNN packageﬂ These settings deviated from the approach used by |Gul et al.| (2018])
only in that a single validation set, as opposed to cross-validation, was performed to select k, and we used
501 initial models (as the default in the package) instead of 1001. Even with these changes, experiments
with this approach required substantially larger compute time than any of the other methods. We also did
not observe appreciably superior performance when using 1001 models instead of 501.

7. RF: The random forest classifier, as implemented in the R (R Core Team| [2024) package
randomForestSRC (Ishwaran & Kogalur, 2019)), available on CRAN. Following the same approach as for
BOPNN, hyperparameter selection was conducted from 30 random selections based on OOB performance.
The parameters which were tuned are “mtry” (the number of randomly selected covariates selected as candi-
dates for each split in a tree), which was selected from the interval [0.1p'/2, min{p, 10p*/2}]; and the minimum
size of a leaf node in a tree, from {1, ...,10}.

8. SVM: The Support Vector Machine classifier, where multiple classes were handled using the one-vs-
one approach. We used the LiquidSVM implementation (Steinwart & Thomann, [2017)), which uses a fast
technique to approximate the kernel matrix but has nonetheless shown excellent performance in comparison
with exact methods (Steinwart & Thomann) |2017)). We used the default tuning grid and cross-validation
settings provided in the implementation.

9. RDA: Regularised Discriminant Analysis (Friedman, [1989)), where each class is modelled using a Gaussian
distribution and class probabilities are determined using Bayes’ rule. The means of the component distri-
butions, ft1, ..., ftx, are determined by the sample means of the points from each class, while the covariance
matrix of the j-th component is set equal

55007 = (1= 7)55(0) + %traae(ij@m,

yi=]
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where A and v are hyperparameters which must be chosen, and for which we used 5-fold cross-validation.

4.3 Summarising Classification Performance

Here we provide an overview of the classification performance of all methods across the collection of 162 data
sets used for comparison. To combine the results from different data sets, which may have vastly different
characteristics and represent classification tasks of varying difficulty, we first standardise the results. We
consider two standardisations, and apply them to the classification accuracy values from the collection of
models obtained on each data set, and each repetition of the sampling of training/test splits. For each model
and each data set, we then take the two averages of its standardised accuracy values across the different test
sets as its performance for that data set. Specifically, if A,, ;. is the accuracy of the m-th model on the ¢-th
train/test split from the i-th data set, then we compute

Am,i,t — min, Ao,i,t

o Am,i,t - A~,i,t
- ; myt T T A Ly
max, Aoy — ming Ay " s(A. i)

K%

m

* P—
ALt =

where A.;; and s(A. ;) are the average and standard deviation of the accuracy values from all methods
on the ¢-th train/test split of data set ¢. In the case of Ay, i+ this simply maps the accuracy values to the
interval [0,1], while A}, , is the common studentised value for A, ;. The performance values for each

method on a given data set are then just the averages of these standardised accuracies over ¢.
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Figure 2: Boxplots of accuracy distributions for different classification models, using two different standard-
isations.

4.3.1 Accuracy Distributions

The distributions of standardised accuracy measures across all 162 data sets are shown in Figure The
main take-aways are summarised as

1. The average performances of BOPNN and RF are extremely similar, with BOPNN having slightly higher
average but with RF having wider distributions. This is noteworthy since RF classifiers have commonly been
referred to as excellent general purpose models; seldom substantially worse than any alternatives. These
results suggest BOPNN similarly enjoys this feature, with arguably a better “worst-case” than RF due to a
similar average and narrower distribution.

2. SVM outperforms all methods except the bagged models of adaptive non-parametric smoothers (BOPNN
and RF).

3. BOpNN is substantially inferior to BOPNN, showing the importance of the adaptive learning step within
the bagged model.

4. BOpNN is substantially superior to BNN. Although these two bagged models were tuned over disjoint
collections of hyperparameters, the magnitude of the difference in performance is some indication that the
purely randomised variable “selection” does indeed offer an improvement over its exclusion.

5. BNN is substantially superior to BNN,,. This suggests either that it is inappropriate to rely on the
asymptotic theory for relatively small samples, or that the estimate for the asymptotically optimal 7 itself
is too unreliable.

6. ESENN performed very poorly, and was the worst performing model on a large proportion of the data

setsEl

4.3.2 Pairwise Comparisons

Figure [3|shows the standardised accuracy values of all methods across all data sets. It is noteworthy that the
dendrogram along the top axis of each sub-figure shows the performance of BOPNN is most similar to that
of SVM. This is interesting since the average performances of BOPNN and RF are much more similar to one
another than is either to the average from SVM. Yet, BOPNN seems to perform well/poorly on many of the
same data sets as SVM, and to the extent that this overcomes the closer similarity of its average performance

2Previously on the Comprehensive R Archvive Network (CRAN), and taken from https://cran.r-project.org/src/
contrib/Archive/ESKNN/

3Tt is worth noting that the code released by the authors (previously on CRAN) included minor errors, such as populating
arrays as though they were lists. Although we took care to correct these appropriately, it is not impossible that errors were
made.
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Figure 4: Pairwise plots of standardised accuracy for the three top performing methods: BOPNN, RF and
SVM

to that of RF. This can also be seen in Figure [d] where pairwise plots of the standardised accuracy values for
these three models are shown. Interestingly the studentised performances of BOPNN and RF are negatively
correlated whereas those of BOPNN and SVM are more or less uncorrelated.

In addition Table [I] shows the number of times, out of the total 162, the method listed row-wise achieved
significantly superior performance to the method listed column-wise on a given data set. Significance was
determined based on a paired Wilcoxon signed rank test with test size 0.0ﬂ Once again
we are particularly interested in the comparison between BOPNN and Random Forests. Although the
average performance of BOPNN is slightly superior, as shown in the previous subsection, we see here that
RF outperformed BOPNN more frequently than the reverse. What is interesting to note is that RF both

4We acknowledge the arbitrariness of this test size, and do not mean to indicate any statistical relevance of these compar-
isons. Rather, we mean only to give a sense of the frequency with which each method outperforms each other method, while
appropriately accounting for some of the randomness inherent in such a comparison. It is also worth pointing out that this
is the smallest commonly used test size which is achievable on a sample of size 5, and we repeated the training/test splits on
larger data sets five times.
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BOPNN RF SVM BOpNN BNN kNN BNN, RDA ESENN

BOPNN | 0 37 53 60 70 99 107 115 107

RF | 46 0 57 71 84 101 101 108 114

SVM | 33 35 0 62 76 94 98 105 100
BOpNN | 6 19 33 0 23 73 76 92 92
BNN | 4 13 26 1 0 66 72 84 84
kNN | 6 19 21 7 25 0 16 72 81
BNN, | 3 15 17 3 20 8 0 64 85
RDA | 9 18 15 29 41 44 45 0 64

ESENN | 8 11 17 21 31 41 45 55 0

Table 1: Pairwise comparative accuracy. Values in table indicate the number of times the method listed
row-wise significantly outperformed the method listed column-wise. For example, BOPNN significantly out-
performed RF 37 times, while RF significantly outperformed BOPNN 46 times. Significance was determined
using a paired Wilcoxon signed rank test, with size 0.05.

outperforms the majority of the other methods more often than does BOPNN, and is also more frequently
outperformed by them; indicated by greater values in the RF row and column than those of BOPNN.

4.4 Relationships between Performance and “Meta-data”

Here we investigate the relationships between the relative performance of the different methods, and the
characteristics of the data sets. Each data set is characterised by six variables, n: the number of observations;
d: the total number of variables after one-hot encoding; cat_ prop: the proportion of binary variables in the
one-hot encoded data; K: the number of classes; imbal: the class imbalance, defined as the variance of
the class proportions; and compl: a measure of the complexity of the class decision boundaries, defined
as log(%), where Ajnpy is the leave-one-out cross-validation estimate for the accuracy of the 1-nearest-
neighbour classifier on the data, and Ay¢ that of the nearest centroid classiﬁelﬂ To capture dependence we
computed the marginal correlations between the studentised accuracy of each method over all data sets and
the data set characteristics (after log-transforming n and d), as well as the Ordinary Least Squares (OLS)
linear regression coefficients after standardising all Variablesﬂ These OLS coefficients give an indication of
the correlations between the data set characteristics and the studentised performance after accounting for
the values of the other data set characteristics.

Figure [5] shows heatmaps indicating the strengths of these relationships, with the marginal correlations in
the left heatmap and the OLS coefficients in the right. Because these relationships are determined from a
standardised accuracy measure, they give an indication of the relationships between the different methods
and data set characteristics relative to the other methods considered. For example, we expect all methods
will perform relatively better on larger data sets, all other things being equal. This would correspond with
light colours in the first column of the right heatmap (positive OLS coefficients), however some methods are
better/worse at leveraging larger samples than others and this is reflected by both positive AND negative
OLS coefficients in the relationships with standardised accuracy. The lightest colours in this column indicate
that RF, SVM and BOPNN might benefit more from larger samples than the other methods (with SVM
benefiting the most). This is unsurprising as these are all very flexible models. Also unsurprisingly the
parametric RDA does not leverage large samples well in comparison with the other models being considered.
The “lazy” non-parametric kNN based models also do not leverage large samples as well as the adaptive
models. ESENN has an element of adaptiveness, in its selection from multiple randomised models, however
the level of adaptiveness may not be sufficient to leverage larger samples particularly well. Some other
noteworthy take-aways, for the purpose of this investigation, are:

1. BOPNN performs relatively very poorly in the context of class imbalance. This may be a result of the
fact that the adaptive component of BOPNN comprises a linear transformation, and so applies globally, and

5The nearest centroid classifier simply classifies a point to the class whose mean vector is closest.

6we used studentised performance instead of the [0, 1] mapped performance as their distributions are closer to Gaussian and,
all other things being equal, may therefore be more appropriate when used in quantifying linear relationships. This is also the
reason for log-transforming n and d.
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Figure 5: Relationships between studentised accuracy and data set characteristics. Left: marginal correla-
tions, Right: standardised OLS coefficients

with the current implementation will be dominated by the larger classes. The local, more flexible component
of BOPNN comes subsequently from the application of kNN on the transformed data.

2. BOPNN has a strong positive relationship with the “complexity” of the decision boundaries. However,
it is possible that this result is somewhat artificial, given that the measure of complexity is governed by
the performance of the INN model. Having said this, this performance is quantified relative to the other
methods being compared, which includes numerous other nearest neighbour based methods.

3. The simplistic one-hot-encoding followed by Euclidean distance calculation currently employed in BOPNN
may be inappropriate, as indicated by its comparatively poor performance when a large number of categorical
variables are present.

4. Although BOPNN performed reasonably well on data sets with a large number of classes (light colour in
the left heatmap for BOPNN and K), this appears to be almost fully determined by the other characteristics
of those data sets with large K since it has a strong negative OLS coefficient for K.

5. Compared with Random Forests, BOPNN may be better suited to higher dimensional examples but may
leverage larger samples less well.

4.4.1 “Meta-data" Distributions

For completeness here we also provide illustrations of the (marginal) distributions of the data set character-
istics. Figure [6] shows all the values of all six data set characteristics across the 162 data sets. In addition,
the performance of BOPNN is indicated via the sizes of the points, with larger points aligning with instances
where BOPNN performed well relative to the other methods considered.

5 Concusions

In this paper we discussed the importance of including an adaptive learning step within the context of
bootstrap aggregating, or “bagging”, and proposed a simple adaptive kNN model for use within “bagged”
ensembles. The adaptive step is achieved by finding discriminant subspaces which enhance the class separa-
tion, as captured by kNN classifiers. The discriminant subspace framework naturally leads to measures of
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Figure 6: Distributions of “meta-data”, with n and d on a log scale. The sizes of points are related to
performance of BOPNN with larger points corresponding with better BOPNN performance, relative to the
other methods considered.

variable importance and offers instructive visualisations of the classes through projections into the discrimi-
nant subspaces (or an aggregated variant incorporating the entire ensemble).

In an extensive set of experiments we documented the strong potential offered by the proposed approach.
Noteworthy findings are that across varied contexts the proposed approach is more or less on par with
Random Forests, on average, but that the particular data sets on which the proposed approach may be more
or less suited in fact align better with Support Vector Machines. Potential directions for improvement of
BOPNN include an alternative, but computationally efficient, way to incorporate categorical variables, as
well as strategies to enhance performance with highly imbalanced class proportions.
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A Additional Experimental Results

A.1 Alternative “Discriminant Subspaces”

As mentioned in Section [3.1] it is possible to pair kNN classifiers with other dimensionality reduction tech-
niques/discriminant subspaces within a bagged ensemble. However, as we discussed, the appropriateness of
different subspaces will depend on the type of classifier being used, and the proposed approach is motivated
specifically by minimising the in-class and maximising the out-of-class near neighbour distances and so we
anticipate that this will pair particularly well with kKNN. It is also the case that the discriminant matrices
used within the proposed approach use much finer detail in the data than, e.g. the LDA discriminant matrix,
and so we expect greater differentiation in the individual models across bootstrap samples; a key factor in
leveraging the benefits of the model averaging framework.

Here we present experiments documenting the improved performance using the proposed approach, and
bagged ensembles of kNN models fit within LDA discriminant subspaces and Principal Components (PCA)
subspaces. We include PCA for illustrative purposes, as it represents a fundamental unsupervised dimension
reduction model, and so it represents an alternative which is not completely randomised but is not adaptive
to the relationships between the response and covariates. In addition, since there are only at most K — 1
non-arbitrary dimensions in the LDA subspace, when using more than K — 1 discriminant dimensions we
combined the LDA subspace with the leading PCA dimensions within their orthogonal complement. For as
direct a comparison as possible we used exactly the same tuning strategy for these variants as for BOPNN.

The distributions of standardised accuracy measures are shown in Figure [7] We only show the better per-
forming and most relevant models from the point of view of these comparisons, however the standardisations
were determined using the entire collection of (now 11) methods. Of note is that (i) using the LDA subspace
(BOLDANN) leads to performance similar to that of SVM, on average; (ii) applying PCA appears to be
detrimental to performance, in general, as the performance of BOPCANN is inferior to that of BOpNN;
and (iii) after including these two additional models the average studentised performance of RF is now
marginally above that of BOPNN, however the the other points of comparison are unchanged, and also the
average performances of RF and BOPNN remain extremely similar.
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Figure 7: Standardised accuracy distributions relevant for comparison with the alternative bagged kNN mod-
els applied on “discriminant subspaces”.

A.2 Default Settings and the Effect of Varying &

In preliminary experiments with BOPNN we worked with default settings of ¢p = [min{0.75d7 5\/&}—‘; q=

[0.5g0] and k = 3, and found these to be fairly reliable. However, unlike with RFs where the dimensionality
restriction through randomised variable selection/restriction only applies locally (i.e. separately at each node
in the trees), the expressiveness of each of the models in BOPNN is fundamentally limited by the value of
g (and hence gy as well). In particular when the number of classes, K, is reasonably large then it may be
impossible to separate all classes accurately in even the theoretically optimal subspace if its dimension is
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Figure 8: Standardised accuracy distributions relevant for comparison with default settings.

too low. It is likely, therefore, that settings of gy and ¢ should also depend on K. It may also simply be
that this limitation in expressiveness is unavoidable in any general sense, and that some degree of tuning is
necessary to consistently yield very good performance.

Here we present results analogous to those in Section except that we have included default variants of
RF and SVM (named RFO0 and SVMO below) as well as BOPNN models with the above settings of ¢o and
q and for k = 1,2,3,4 and 5. The distributions of standardised accuracy values are shown in Figure[§] As
before the standardisations have been determined using all (now 16 models; 9 main models plus two defaults
from competing methods and 5 fixed settings for BOPNN) methods, but we only show the most relevant
ones here.

Noteworthy observations are that (i) none of the fixed setting BOPNN models is competitive with the tuned
RF, SVM and BOPNN models; (ii) default settings for RF leads to similar overall performance to that of
tuned SVM; (iii) the fixed setting of £ = 2 provided the best overall performance of BOPNN (however whether
this is generalisable to potentially improved defaults for ¢o and ¢ is unclear); (iv) the default variant of SVM
and the best fixed BOPNN model (BOPNN2) have very similar overall performance; and (v) although not
directly apparent from these figures RF0, SVM0 and BOPNN1-4 all outperform all of the other (tuned)
models not included in these plots and only BOpNN outperforms BOPNN5 from among them.

One other point is that, as we saw in Section [A:T] upon including additional models the average studentised
performance of RF is greater than that of BOPNN (in their tuned variants). However, it is worth pointing out
that studentisation in the context where there is a high degree of correlation will tend to “over standardise”
the performance of groups of models whose performance is highly correlated. The reason for this is that on
data sets where the performance of these models is either well above or below the others, this over/under
“achievement” is normalised by the presence of multiple models with similar extreme performance. In
particular, if we only include one default setting of BOPNN (any of the five) in the standardisations, then
the average studentised performance of BOPNN remains above that of RF.

A.3 Computational Complexity and Running Times

The worst case complexity of BOPNN is O(B(kn?qo + ¢3)), since the main computational steps within each
of the B models in the ensemble involve finding the k in- and out-of-class neighbours in dimension ¢q, and for
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RF BOPNN

n do d | Wall-clock | CPU | Wall-clock
1600 1000 1969 3.8 | 194 121.9
7000 16 16 3.6 | 16.8 10.5
7000 784 864 14.6 | 81.0 102.2

Table 2: Average running times of RF and BOPNN on three of the larger data sets used in our experiments.

inversion and eigen-decomposition of gy X go matrices. However, when gqq is relatively small the running time
of nearest neighbour search is closer to nlog(n) than to n?, meaning that for cases of moderate dimensionality
the running time is close to O(B(knlog(n))). A potential avenue for improvement computationally is to
include a variable screening stage, to obtain heuristic variable importance scores for non-uniform sampling of
covarariates so that gg can be set relatively small even when the total dimension is large. It is worth pointing
out that in order for the OOB estimates of performance to be valid, these variable importance scores would
need to be computed within each model in the ensemble.

To illustrate the poor scaling with dimension, we here report the empirical running times of BOPNN and RF
(with their default settings) on three of the larger data sets used in the experiments; one with very large d,
one with fairly large n and small d, and one with fairly large n and d. We only consider the larger data sets
as these are the most critical when it comes to running time comparisons. It is worth pointing out that our
implementation of BOPNN has not been optimised for speed, and runs in serial on a single thread. On the
other hand the RF implementation in the package randomForestSRC is highly optimised and parallelised.
As a result we report both the wall-clock time of RF and the total CPU time, whereas for BOPNN these
are of course very similar and we only report wall-clock time.

The average running times from ten runs on each data set are shown in Table Here we have used dy
to be the number of raw covariates and d to be the number of covariates after one-hot-encoding. We
include both since RF handles categorical variables directly, and so operates in dimension dy. Aside from
the very high dimensional example the total CPU time required for fitting RF models and BOPNN models
is similar, however the multithreading used in the implementation of RFs in randomForestSRC means the
actual running times are not currently comparable. Nonetheless these experiments indicate that BOPNN
has the potential to be computationally competitive with efficient RF implementations, potentially with the
exception of when the number of covariates is very large.
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