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Abstract

In this paper we introduce a simple and intuitive adaptive k nearest neighbours classifier,
and explore its utility within the context of bootstrap aggregating (“bagging”). The ap-
proach is based on finding discriminant subspaces which are computationally efficient to
compute, and are motivated by enhancing the discrimination of classes through nearest
neighbour classifiers. This adaptiveness promotes diversity of the individual classifiers fit
across different bootstrap samples, and so further leverages the variance reducing effect of
bagging. Extensive experimental results are presented documenting the strong performance
of the proposed approach in comparison with Random Forest classifiers, as well as other
nearest neighbours based ensembles from the literature, plus other relevant benchmarks.

1 Introduction

Bootstrap aggregating (Breiman, 1996)), or “bagging”, is the approach of combining the outputs of several
predictive models, each fit to different bootstrap samples from a set of data, into a single ensemble predic-
tive model. Bagging has remarkable potential for improving the prediction performance of high variance
predictors, due to the variance reducing effect of model averaging. However, it is well understood that not
all high variance predictors are able to leverage this effect equally, due to some being “too stable” across
different bootstrap samples. Bagged ensembles of Decision Tree (DT) based models have undeniably shown
the greatest promise to date, to the extent that bagging is sometimes categorised as a decision tree based
approach (Hastie, 2009). The remarkable success of Random Forest (Breiman| 2001, RF) based models has
only further entrenched DTs as the de facto “optimally baggable” model. Trees in RFs differ from regular
DTs only through the addition of a randomisation step preceding each stage in the standard Classification
And Regression Trees (Breiman, [2017, CART) algorithm. However, this simple modification has a remark-
able “destabilising” effect on the already highly variable trees, and so enables further variance reduction
through averaging.

Attempts have been made to emulate the success of RFs and bagged DTs with other non-parametric models,
such as those based on nearest nelghbours (Zhou & Yul 2005; |Cannings & Samworthl 2017, |Gul et al., 2018]).

-eessHowever, it is questionable whether any of these approaches has the
potentlal to be a real competltor to RFs across many different settings, partly due to limited experimental

results having been documented.

Ht-is—well-known—that-a—A necessary condition for the success of a bagged ensemble is substantial diversity
in the models (Krogh & Vedelsby| [1994);-hewever-, However, existing approaches for inducing this diversity
in —nearest neighbours (NN) based ensembles have largely been based on randomisation alone (Zhou &
Yu, 2005; [Domeniconi & Yanl [2004; Deegalla et al.l |2022)), possibly owing to the successful application of
randomisation within RFs. But purely randomised methods can only be beneficial if the resulting increase
in diversity across models substantially outweighs the decrease in accuracy of the individual models caused
by the extra randomness. Where RFs are fundamentally advantaged over these nearest—neighbours—based
NN ensembles, however, is in the adaptive way in which DTs determine their “smoothing neighbourhoods”,
with the additional randomisation being a secondary factor. The adaptiveness of DTs simultaneously is a
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primary source of diversity in the models beyond the randomness of the bootstrap sampling, and also reduces
the amount by which the added randomness of RFs impacts on the quality of the individual models.

In this paper we introduce an intuitive adaptive k Nearest Neighbours (kNN) classifier which is computa-
tionally efficient to compute, and explore its utility within bagged ensembles. Our main objectives with this
piece of work are (i) to illustrate the importance of, and potential offered by, including an adaptive learning
step within each model in a bagged kNN ensemble; and (ii) to support this illustration with a rigorous and
extensive set of experiments.

The remainder of this paper is organised as follows. In the next section we provide some background on
bagging, with particular focus on its application to kNN based models. In Section[3|we describe our approach,
as well as some of the practicalities surrounding implementation and useful outputs from the resulting models.
In Section 4] we document the results from experiments using all 162 data sets in the Penn Machine Learning
Benchmarks repository (Olson et al., [2017, PMLB);-in—whieh—. _Here we compare the performance of the
proposed approach with RFs, as well as numerous other models for context. RandemFerest-RF classifiers
are viewed by many as excellent general purpose models; seldom much worse than any others, and f frequently
among the best performing models on data from extremely diverse domains. We-are-of-thefirm—opinion
that-in-In order to support any new model as a realistic alternative in this regard, there should therefore be
no possibility of data set selection bias (whether conscious or unconscious) which is possible whenever any
subset of available data sets without a clear and justifiable selection criterion is used.

2 Bagging, kNN, and What’s Been Tried

In this section we provide light technical background on bootstrap aggregating, and discuss some of its

applications to kNN based classifiers. SWSWWMWa

sample of

vam’ables (or “class labels ) Yis i € [ ], each takes on one of K known and dlstlnct Values and the assomated

observations of the covariates, x;;i € [n], are each d-dimensional real vectors.

to—asethis-This training sample, D, %&ebmﬁﬁeédmm% g( |D)w}ﬂeh—gweﬂ—ar

which is used to redict the class label for any given query point, x € R%-is-able-to-provide-apredietionfor

Bagging operates by resampling from D multiple times to produce B bootstrap samples, D1, ..., D, and then
combining the resulting models, g(~|Db); b=1,...,B, to obtain a final predictive model. Note that whether
each bootstrap sample is obtained by sampling with or without replacement often has relatively little impact
on the performance of the overall model;—and—for—. For ease of exposition we eensider-assume sampling
without replacement, and in such a way that each bootstrap sample contains ﬁﬁﬁ—ebsem%l%m
observations, where 3 € (0,1).

2.1 Bagging and Variance Reduction

bageineg-Bagging can be remarkably effective in reducing the variance of flexible predictive models. This is
most conveniently communicated when combining the individual models through averaging, i.e., when using
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News-it-It is straightforward to show that (Hastie, 2009),

Var(g ™ (xID) = Varto(x1D2) (54152 ) @)

where p = Cor(g(x|D;),g(x|D3)). Note that although each Dy;b € [B], has the same distribution as an
i.i.dEl sample of the same size drawn directly from the underlying population, it is not the case that the
joint distributions of any pair ﬁbl,DbQ;bl = by are the same as those of pairs of independent samples from
the population due to the (potential) overlap of the bootstrap Samples It is this fact which results in
Cor(g(x|D1), g(x|D3)) generally being greater than zero. Vpic :
then—is-Bagging is beneficial, therefore, when the bias and variance of g(x|D1) are similar to those of g(x|D)
i.e., using a smaller sample does not affect accuracy too substantially, and where Cor(g(x|D1), g(x|Ds)) is
relatively small.

Where bagging really shines is when applied to flexible, low-bias models, between which the correlation due to
overlapping samples is relatively low. Generally speaking the class of non-parametric smoothing models can
be made extremely flexible by selecting a small “smoothing parameter”. For example, the kNN model bases
its prediction for a point, x, only on the properties of the nearest k points to x from among the x;;4 € [n].
However, kNN, and other so-called “lazy learners”, have been referred to as “too stable” from the point of
view of bagging, because the correlation induced by overlapping bootstrap samples is substantial. This can
be intuited by considering the region of influence of an observation, say x;, as the subset of R? to which
X; is one of the k nearest from among the sample. Note that this region is completely independent of the
observations of the response variable, and may depend on only a very small number of other sample points.
This independence of the responses means the standard kNN model is not able to leverage the relationships
between the covariates and the response in order to improve its fit (hence the term “lazy learner”). The
extreme localisation implied by the fact that the region of influence of a point depends on so few other
points is also why the kNN predictions from two samples with substantial overlap are so correlated. Decision
trees, on the other hand, are adaptive non-parametric smoothers, and aggressively exploit the relationships
between the covariates and response in how they recursively split up the input space to actively determine
the regions of influence of each point. In this way the region of influence of each point can be dependent on
every other point in the sampleand—as-a—+result—, As a result the non-overlapping parts of two bootstrap
samples are able to differentiate their respective models sufficiently to induce lower correlation between their
predictions.

Remark 1 Although the intuition underlying the effectiveness of bagqging is most easily communicated from

a model averaging perspective, it is worth pointing out that directly averaging class labels is nonsensical.
Nonetheless, the formulation in Eq. (1) applies to the classification context if we use one of the following

ormulations:

1. The outputs of the individual models, q(x|Dy);b € [B], are estimates for the full conditional

distribution of Y| X = x. Tuaking the average of such outputs is therefore also an estimate for this

conditional distribution, and classifying according to the mode of this distribution is Bayes optimal.

2. The outputs of the individual models are indicator vectors for the predicted class of x. Averaging
these indicator vectors and assigning the final classification using the mode is in this case equivalent
to the “majority vote” rule. Here the quantity q**9(x|D)_is not an estimate for the distribution of
Y|X = x, but rather an estimate for the distribution of q(x|Dg), where Do is a sample of size n
drawn_directly from the underlying population.

Irecall that we consider resampling without replacement
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2.2 Bagged £NN Classifiers

Although standard kNN models are seen to be stable from the point of view of bagging, there is a prevailing
opinion that they can be “destabilised” by adding randomisation to the way in which the neighbours of
each point are determined. This can be achieved in multiple ways, such as only computing distances on a
(random) subset of the variables in R? (IDomeniconi & Yaun|7 |2004[); by randomly projecting the observations
before computing distances (Deegalla et all 2022); or by using a random selection of the value of p within
the L,-norm derived distance function itself (Zhou & Yul 2005). By modifying the distance metric +—a
greater variety of points can have an impact on the regions of influence of others. However, none of these
approaches is adaptive to the relationships between the covariates and the response, and there is insufficient
evidence that purely randomised approaches —sueh-as-theserare useful in general. Since the dominant term
in Var(g®9 (x|D)) is equal to pVar(g(x|D1)), a modification such as this can only be beneficial if the
reduction in p outweighs the increase in the variance of the individual models;whieh-. However this may be
substantial if the modification is purely random.

Nearest neighbours models can be made adaptive by actively learning a distance metric to enhance dis-
crimination of classes, either globally (Goldberger et al., [2004)) or locally (Hastie & Tibshirani, 1995). As
far as we are aware, however, no such approaches have been explored within the context of bagging, likely
because of the computational demand of fitting a large number of such models. Somewhere between fully
adaptive and randomised is the approach of selecting —base 3 as 3 ability;—from
among multiple kNN models arising from different random pI‘OJGCthnS of the observatlons ThlS approach
has shown success in the context of bagging (Cannings & Samworth, [2017)), however the number of indi-
vidual kNN models is equal to the product of the number of bootstrap samples and the number of random
projections from among which to select each model in the ensemble,—wh&'ehéﬁgw a considerable
computational restriction. A related method (Gul et all[2018]), which also uses a selection from multiple
randomised kNN models —first-fits-a—verylarge number-ofmodels-works as follows. First a large collection of
models is fit to different bootstrap samples, with each using its own random selection of the variables in R
&Hd—bheﬁee}ee%& Then a fixed proportion of these is selected for inclusion in the ensemble
%fﬂe&m the selection of each model in the final ensemble is from the same collection of
candidates, however—the models in the ensemble are strongly dependent. To counteract this, the selection
of models is not purely based on their apparent predictive ability, but is also made to ensure some level of
diversity in the predictions across models. Although the total number of models to be fit is substantially
fewer than when a fully independent selection is made for each model in the ensemble, this approach is still
substantially slower than alternatives. Moreover, this approach loses the statistical “niceness” of bagging,
and in partlcular does not provide any Out-Of-Bag (OOB) estimates for performance. This further limits
¢ ¢ ¢ ach-its applicability when any substantial hyperparameter search is needed to

obtain a good model.

3 Bagging Adaptive kNN Classifiers Based on Discriminant Projections

?rHe%D%are at least two-fold: (i 1t enables the models to exp101t the relatlonshlps between the covarlates
and the response—and-also—throush-thefact—that-the—; and it allows the region of influence of a point

is-dependent—to depend on the entire sample, and not only on points which are very local to it. This latter
fact induces further differentiation across the outputs of B¥s-models fit to different bootstrap samples, and

so reduces their correlation.

Making kNN classifiers adaptive by optimising the distance metric used in the nearest neighbour search
is intuitively pleasing, and in principle has the potential to achieve the same benefits as those described
above for DTs. Bﬂewhefe—%h%EWadaptlve kNN methods are }mﬂte&—lfr’eheﬂ—eemp&ﬁaﬂeﬁ

eﬁseﬁsrb}es—A—ﬁeet—wh&e}% on51derab1 more com utatlonall demandm than is ﬁttm DTs This l1m1t
their application within the computationally intensive bagging framework. What seems largely to have been
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overlooked, however, is that adaptively modifying the distance metric to enhance class discrimination does
not have to be performed in a fully optimal manner in order to leverage the benefits mentioned above.
We therefore explore this potential through a more computationally efficient alternative, based on finding
discriminant subspaces designed to enhance class discrimination as determined by kNN classifiers.

3.1 A Simple Discriminant Subspace for kNN

Discriminant subspaces are subspaces of R? within which the classes are (relatively) easily separated
from one another. Depending on the classifier being applied after projection, different formulations of
the discriminant subspace will be more/less appropriate. For example, the well known Linear Discrim-
inant Analysis LDA) model, in which each class is modelled with a Gaussian distribution
and all classes share a common covariance matrix, has a so-called “sufficient subspace” given by the
eigenvectors of i;lib associated with its non-zero eigenvalues. Here 3, is the pooled within-class co-
variance estimate and f]b =3 - f]w, where 3 is the overall data covariance. The more flexible Mix-
ture Discriminant Analysis (Hastie & Tibshirani, (1996, MDA) models each class with a Gaussian mix-
ture. If all mixture components across all classes share a common covariance matrix, then a similar
discriminant subspace can be obtained. When more general formulatlons are adopted, discriminant sub-
spaces can be obtained by maximising the ¢les: lass—a_classification likelihood
objective (Peltonen & KableBOO5WWW%%m
all classes combined from the average Wlthm class dlstrlbutlon Zhu & Hastiel 2003), with densities estimated
on the projected data : : —et—at-{2024). These latter approaches require nu-
merical optimisation, and are thus not computatlonally competitive with those which can be obtained using
highly optimised eigen-solvers.

Generally speaking, however, discriminant subspaces can be thought of as pushing points into high density
regions within their own classes, and into low density regions within other classes; and the appropriateness
of a subspace depends on how density is being modelled. Motivated by this simple but principled idea, we
adopt the following heuristic, which has some similarity with a fully non-parametric MDA. For each i, we
let i), be the k-th nearest observation to x; from within its own class, and ¢}, the k-th nearest observation to
x; from among those in other classes. We then define

~ 1
— Z X’Lk Xik)—ra Zout = Z(XZ - XiL)<Xi - Xi;)—r' (3)

i=1

For a unit vector u € R% |[u|| = 1 the quantity u' 3;,u (respectively u' $,,,u) is then the average squared
distance from each point to its k-th same class neighbour (respectively other class neighbour), measured
along direction u. Such unit vectors which lead to small values of uTimu and large values of uTioutu
are thus desirable discriminant directions for a kNN classifier. A sensible discriminant subspace is therefore
formed by simply taking the leading eigenvectors of f)i_nlflout.

Remark 2 Although the quantities u' x;, and uTxi;C will tend not to be precisely the k-th nearest in- and out-

of- class neighbours tou'x; (i.e., the ordering of distances changes after projection onto u), they nonetheless
tend to be from among the nearer in- and out-of-class points, and so minimising the post-projection in-class
and maximising the post-projection out-of-class distances still has the desired effect.

Remark 3 It is of course possible to combine kNN with alternative discriminant subspaces within a bagged

ensemble. However, as described above, the appropriateness of a subspace for discriminating classes depends
on_how the classes are to be modelled within that subspace. A subspace focused on minimising the near

neighbour in-class distances and maximising the near neighbour out-of-class distances is therefore better
suited for classification with kNN than would be, for example, the LDA subspace, which is only based on the
rst and second order structure of the class distributions.

Remark 4 The quantity Sin can be seen as capturing the average local within class covariance, and is
similar to the average within component covariance matriz used in MDA with a very large number of compo-

nents. ises-A_directly analogous subspace would thus arise from the eigenvectors of
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DIl IR o1 )WMwe havefound

substantially superior performance using the

A~

g
A~ A

eigenvectors of X, We believe this is at least partly due to the %%%«Eml—,‘wh%e—tée%e%m{—g—%n—)

. - te—theat—th j M@WE lﬁout &é%kuses a greater amount of mformatzon from the
sample than does f]i_nl x- i)m), and therefore intuitively leads to greater diversity across bootstrap samples.

Remark 5 It is worth noting that we use only the k-th in- and out-of-class neighbours of each point when

determim'n the discriminant subs ace des z'te the act that the classi cation of a point after its projection is

MW%WW trap-samplebt-we-tntrodiee thistes
eCom ight—verria deserth oin-class neighbour distance has the effect of making the
@QMQQM&ELMW

3.1.1 Additional Diversity Through RandemisatienRandomised Variable Selection

As described previously, additional randomness across different models (e.g. through randomised variable
selection) can be beneficial if the resulting decrease in accuracy of the models arising from this randomness
(which may also be seen as a reduction in information) is outweighed by the effect of additional diversifi-
cation of the individual models. Adaptive models mitigate the reduction in accuracy arising from reduced
information, when compared with lazy learners, as they better exploit what information is available and are
better suited to filtering out noise.

We-havefotmd-that—vithin-our—proposed-approach-In_our preliminary experiments it became clear that
restricting the discriminant subspaces each to lie within their own randomly determined higher dimensional
subspace does indeed improve performance in general. How we implement—this—is—to—for—each—-b-c{B};
randomly-sample-achieve this is simply by only using information from a (random) subset of covariates in
each model in an ensemble. Specifically, let ) C [d] be a subset of the eovariates—Qycfdl—ofsizeqe<+d;
&Hé%heﬂ—eempu%e%—r total covariates (which in practice is determined randomly), with

3 sas T heTout g, R : let I, € ]Rdxq" have
as columns the cardlnal ba81s Vectors for the %rble%@b—dlmenswnb in Then define 75, and 7/, as

before, except with distances only computed with the variables in (). We then deﬁne the discriminant matriz,
-1

whose eigenvectors define the discriminant subspace, simply b

me%heéNote that an addltlonal benefit of this simple modlﬁcatlon is that it can greatly reduce computational

cost. This is because nearest neighbour search and matrix inversion only needs-ever need to be performed

in dimension at most g, and for large d we have found ¢y o v/d is more than adequate to achieve high
accuracy.
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3.1.2 Variable-lmpertanee
3.2 A Full Model

Here we give a brief overview of our approach, which follows a standard format for the bagging framework.

With settings for k € N, the number of neighbours; qg € [d], the number of randomly selected covariates used

in a model; and ¢g € the dimension of each discriminant subspace, do the following for each b € [B]:
1. Draw Dy = {(X16, Y15, ooy (X0 » )+ without replacement from D.

2. Draw of size gg without replacement from [d].

For each i € [ng] find % and #/?, the k-th in- and out-of-class neighbours of I

ITX'b icln

4. Compute the discriminant matrix,

-1
R 1 np 1 npgp
Ay =1Ig, (Igan Z(Xib - Xig)(xz‘b - Xig)TIQb> (IT Z(Xib - Xz‘;f)(xib - Xiﬁ’)TIQb> 151,7

i=1 "B

and let Ab = U,A, U ! be its eigen-decomposition.

5. Form x|D;) based on the class labels of the k nearest neighbours of UJ, x from
U/, LUl either by taking the

for the most frequent class. Here we have used Uy 1., € R%*? to denote the first ¢ columns of Up.

roportions in each class or the indicator vector

Then obtain the final prediction by taking the mode of & 52  g(x Dy).

3.2.1 Additional Useful Qutputs

Variable Importance Interpretability of flexible predictive models is increasingly a point of focus, as
modern methods typically rely on intricate relationships between the covariates and the response variable
which may not be explicitly expressed within the model in any intelligible form. Variable importance scores
are measures of the overall contribution of the covariates to the predictions made by a model. Although
far from encapsulating the entirety of what a model has captured in the data these are nonetheless useful
diagnostics for understanding which are the important variables driving the model’s predictions.

The discriminant subspace framework offers an intuitive means by which the contribution of each variable
to the model predictions may be quantified. In particular, if a variable lies within the discriminant subspace
from one of the models in the ensemble, then it is natural to view that variable as important to the predictions
from that particular model. On the other hand if a variable lies in the orthogonal complement of the subspace
then this variable is unimportant. In general none of the variables will lie entirely within/without any of the
discriminant spaces, but there will be some non-zero angles between them. If U has as columns a normalised
(not necessarily orthogonal) basis for a subspace, then the cosines of the principal angles between the subspace
and each of the variables in the cardinal basis can be seen as capturing the importance of each variable to the
subspace and lie in the diagonal elements of UU . To further capture the relative discriminatory information
in the dimensions of the subspace, we weigh the basis vectors, which arise from the spectral decomposition of
the discriminant matrix, by the eigenvalues. To determine the importance of the j-th variable to the entire
ensemble we then average its importance values from each of the Subspaces in the model. Speciﬁcally, i
N 1. . .

b ! ! 9 O

g he-we take the importance of the j-th Varlable to
the predictions from the ensemble afegwefk%ﬁ#to be & 5 Zb 1(Vbe )N, where Vb € R%*4 has as columns
the first ¢ columns of UbAl/Q, : 1bs

and A, contain the eigenvectors and eigenvalues of the b-th discriminant matrix A,
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(a) Subspace from a single model using the proposed ap- (b) Subspace from the proposed ensemble, using the PCA
proach basis from the averaged projections

(c¢) Linear Discriminant Analysis subspace (d) Mixture Discriminant Analysis subspace

Figure 1: 2-Dimensional projections of the pen-based recognition of handwritten digits data set (left pair of
plots in each subfigure) and the segmentation data set (right pairs).

3.2.2 \Visualisatien

Visualisation A further advantage of discriminant subspaces is the fact that they reduce the dimension-
ality of the observations;—whieh—, This can be beneficial for obtaining visualisations of the classes, and
their separations from others, as well as the predictions made by a model. A-However, a single discrimi-

nant matrix within an ensemble, Ab; b € [B], is subject to fairly high variation;-end-mereover—, Moreover
how to select from among multiple discriminant subspaces ;—within—the-ensemble-moedel—to obtain a sin-
gle visualisation is not immediately obvious. We therefore aggregate the information from all discriminant
subspaces, by determining the ensemble projection P := 5 Zb 1 Up 1 qu 1 whereUp1gis—thefirst—¢
eolumns—of-Upmatrix. To obtain a visualisation of the observations in the aggregated discriminant sub-
space we project them onto the principal components basis vectors computed from the aggregate projected
observations {%; };e(n); % := Px;.

Figure [1] shows two examples, where projections of two of the data sets used in our experiments are shown.
Each sub-figure contains four plots, with the left pair showing the first four discriminant projections of the
sixteen dimensional pen-based recognition of handwritten digits data set (Alpaydin & Alimoglul [1996)), and
the right pair those of the nineteen dimensional segmentation data set (imal [1990). The points depict the
projections of an independent test set separate from the “training” set used to obtain the actual projection
directions, and the colours and point characters represent the individual classes. Figure shows the result
from a single discriminant subspace using all training observations and all variables to compute Z Eout,
while Figure - (b)| shows the aggregated discriminant subspace from an ensemble of 100 models Wlth qo =
[0.75d] and ¢ = [0.5gp|. In both cases k was set to three. Both show fairly clear separation of the majority
of classes from others, with the ensemble showing these more clearly. For comparison we have also included
the discriminant projections arising from LDA and MDA in Figure and Figure respectively. LDA
shows good separation of the segmentation data set, but less so for the digits data set, while for MDA it is
the reverse.

4 Experimental Results

4.1 Data Sets

For our experiments we considered all 162 classification data sets in the Penn Machine Learning Benchmarks
database (Olson et all) [2017). We repeatedly sampled training and test sets from each data set, with
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training sets constituting 70% and test sets the remaining 30%. The number of repetitions-times sampling
training/test splits varied by overall sample size, n, as follows: 0 < n < 500 : 50 zepetitionstimes; 500 < n <
1000 : 20 repetitionstimes; 1000 < n < 5000 : 10 repetitionstimes; and 5000 < n : 5 repetitionstimes. The
one exception is that, due to the very large amount of compute time required for all experiments, training
sets were capped at 7000 points and test sets at 3000 points (however, a different total 10 000 points was

used in each repetitiontraining/test combination, where relevant).

Before passing the data sets to the different algorithms and models for fitting and prediction, all categorical
variables were first one-hot-encoded. The only exception to this was in the case of the random forest models,
since decision trees are able to handle categorical variables directly.

4.2 Classification Models and Tuning
Below we give a brief overview of the different models used for comparison—DBetails-of hyperparametertuning

are-given-in-the-appendix—, as well as how model selection was conducted for each. Although our primary
interest is in the comparison between the proposed approach and the Random Forest models, we also include

a number of alternatives for additional benchmarks and context.

1. BOPNN: The proposed approach (Bag Of Projected Nearest Neighbours), with—hyperpass
seleeted—using—where each ensemble comprised a bag of 100 kNN models (i.e., B = 100).
each data set and training sample, thirty values for k (the number of neighbours); the size

of the random subset of covariates sampled for each model); and the number eigenvectors of
1/2

each Ab retained) were sampled uniformly as k ~ U({1,...,5});q0 ~ U 1/2 ,....,min{ |10 ; and
o~ U({[0.5¢a],q90 — 1}) respectively. Models were fit for each setting of these hyperparameters and with

the size of each bootstrap sample being 0.63 times the size of the training set (g = 0.63). The model with
the highest Out-Of-Bag errerestimate for classification accuracy was then applied on the test set.

2. BOpNN: Bag i i i ‘atesEquivalent to above, except
no discriminant subspace was found for each model (or e ulvalentl was always set to This variant

is included primarily to give a clear indication of the benefit of including an adaptive learmng step (the

determination of a discriminant subspace) within a bagged model of otherwise lazy learners;via—eomparison
with-BOPNN.

3. BNN,: A bagged 1-NN model where the proportion of the sample included in each bootstrap sample

{ﬁ}%gi«%by—&ﬂfﬁﬂfﬂ&b&%fﬂw&w
2\ 7
2 1
T = 2F<2+> =,
p k

where k is an estimate of the optimal value for k in a single KNN model, based on the leave-one-out
cross-validation estimate for classification accuracy. This setting is a plug-in estimate for the asymptotically
optimal value (Samworth, [2012). Note that for k = 1 this proportion is greater than one, and in this case

4. BNN: As above except where mp is tuned using Out-OfBag(OOB)performanee—0QOB performance.
This is included for comparison with BNN... to test the appropriateness of the plug-in estimate for the
asymptotically optimal value for 7g.

5. kNN: A single kNN model with k selected using the leave-one-out cross-validation estimate of classification
accuracy.

6. ESENN: The kNN ensemble which combines a selection from a large number of models fit to different
bootstrap samples with different random subsets of the covariates (Gul et al., [2018). Unlike the bagged
models above, this approach suffers unless the total number of ANN models is very large. Moreover, since

no relevant OOB estimates for performance are available, the compute time required for this approach was
substantially greater than any of the other methods. As a result, we used a single 25% validation set for
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estimating performance and only selected k from the set {1,...,10}. We fixed all other parameters equal to
their defaults in the ESKNN packagd’] These setting

only in that a single validation set, as opposed to cross-validation, was performed fo select k, and we used
501 initial models (as the default in the package) instead of 1001. Even with these changes, experiments
with this approach required substantially larger compute time than any of the other methods. We also did
not observe appreciably superior performance when using 1001 models instead of 501.

7. RF: The random forest classifier, as implemented in the R (R Core Team| [2024) package
randomForestSRC (Ishwaran & Kogalur, |2019), available on CRAN. Following the same approach as for
BOPNN, hyperparameter selection was conducted from 30 random selections based on QOB performance.
The parameters which were tuned are “mtry” (the number of randomly selected covariates selected as
candidates for each split in a tree), which was selected from the interval [0.1p'/?, min{p, 10p'/?}]; and the
minimum size of a leaf node in a tree, from {1,.... 10},

8. SVM: The Support Vector Machine classifier, where multiple classes were handled using the one-vs-one
approach. We used the LiquidSVM implementation (Steinwart & Thomann, [2017)—, which uses a fast

technique to approximate the kernel matrix but has nonetheless shown excellent performance in comparison
with exact methods (Steinwart & Thomannl 2017). We used the default tuning grid and cross-validation
settings provided in the implementation.

9. RDA: Regularised Discriminant Analysis (Friedman| m, where each class is modelled using a Gaussian
distribution and class probabilities are determined usmg Bayesm}e—Be%erBAraﬁéﬂBAﬂfeﬁpeeml»c—ate%

" rule. The means of the component distributions are determined by the sample means of the
oints from each class, while the covariance matrix of the j-th component is set equal

£5007)= (1= B0 + - trace(S ()T

%M( ;J(Xi_ﬂj)(xi_ I 17/\2 = Py, )( ﬂyi)—r>7

where \ and v are hyperparameters which must be chosen, and for which we used 5-fold cross-validation.

4.3 Summarising Classification Performance

Here we provide an overview of the classification performance of all methods across the collection of 162 data
sets used for comparison. To combine the results from different data sets, which may have vastly different
characteristics and represent classification tasks of varying difficulty, we first standardise the results. We
consider two standardisations, and apply them to the classification accuracy values from the collection of
models obtained on each data set, and each repetition of the sampling of training/test splits. For each model
and each data set, we then take the two averages of its standardised accuracy values across the different test
sets as its performance for that data set. Specifically, if A,, ;+ is the accuracy of the m-th model on the ¢-th
train/test split from the i-th data set, then we compute

Ay e —ming A, Apiv— A
* . m,i,t o 41o,1,t . *% L m,i,t 1t
AX = 7 Lo pr e Dbt Lt

m,e,t : m,i,t
max, Ao i — ming, Ao ¢ ’ s(A. i)

where A.;; and s(A.;;) are the average and standard deviation of the accuracy values from all methods
on the ¢-th train/test split of data set ¢. In the case of Ay, i+ this simply maps the accuracy values to the
interval [0,1], while A}, , is the common studentised value for A, ;. The performance values for each
method on a given data set are then just the averages of these standardised accuracies over ¢.

10
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Figure 2: Boxplots of accuracy distributions for different classification models, using two different standard-
isations.

4.3.1 Accuracy Distributions

The distributions of standardised accuracy measures across all 162 data sets are shown in Figure The
main take-aways are summarised as

1. The average performances of BOPNN and RF are extremely similar, with BOPNN having slightly higher
average but with RF having wider distributions. This is noteworthy since RF classifiers have commonly been
referred to as excellent general purpose models; seldom substantially worse than any alternatives. These
results suggest BOPNN similarly enjoys this feature, with arguably a better “worst-case” than RF due to a
similar average and narrower distribution.

2. SVM outperforms all methods except the bagged models of adaptive non-parametric smoothers (BOPNN
and RF).

3. BOpNN is substantially inferior to BOPNN, showing the importance of the adaptive learning step within
the bagged model.

4. BOpNN is substantially superior to BNN. Although these two bagged models were tuned over disjoint col-
lections of hyperparameters{see-appendix)-, the magnitude of the difference in performance is some indication
that the purely randomised variable “selection” does indeed offer an improvement over its exclusion.

5. BNN is substantially superior to BNN,. This suggests either that it is inappropriate to rely on the
asymptotic theory for relatively small samples, or that the estimate for the asymptotically optimal 7 itself
is too unreliable.

6. ESENN performed very poorly, and was the worst performing model on a large proportion of the data

setsEl

4.3.2 Pairwise Comparisons

Figure [3|shows the standardised accuracy values of all methods across all data sets. It is noteworthy that the
dendrogram along the top axis of each sub-figure shows the performance of BOPNN is most similar to that of

betterThis is interesting since the average performances of BOPNN and RF are much more similar to one

2Previously on the Comprehensive R Archvive Network (CRAN), and taken from https://cran.r-project.org/src/
contrib/Archive/ESKNN/

3Tt is worth noting that the code released by the authors (previously on CRAN) included minor errors, such as populating
arrays as though they were lists. Although we took care to correct these appropriately, hewever-it is not impossible that errors
were made.
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Figure 4: Pairwise plots of standardised accuracy for the three top performing methods: BOPNN, RF and
SVM

another than is either to the average from SVM. Yet, BOPNN seems to perform well /worse—evereomes
the—faet—that—poorly on many of the same data sets as SVM, and to the extent that this overcomes the
closer similarity of its average performance to that of RF. This can also be seen in Figure [4 where pairwise

lots of the standardised accuracy values for thebe three modelb are shown. Interestingly the studentlsed
performances of BOPNN and RF S

%Mm@@mmmﬂ

In addition Table [I] shows the number of times, out of the total 162, the method listed row-wise achieved
significantly superior performance to the method listed column-wise on a given data set. Significance was
determined based on a paired Wilcoxon signed rank test (Wilcoxon| [1992) with test size 0.057 Once again

4We acknowledge the arbitrariness of this test size, and do not mean to indicate any statistical relevance of these compar-
isons. Rather, we mean only to give a sense of the frequency with which each method outperforms each other method, while
appropriately accounting for some of the randomness inherent in such a comparison. It is also worth pointing out that this
is the smallest commonly used test size which is achievable on a sample of size 5, and we repeated the training/test splits on
larger data sets five times.
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BOPNN RF SVM BOpNN BNN kNN BNN, RDA ESENN

BOPNN | 0 37 53 60 70 99 107 115 107

RF | 46 0 57 71 84 101 101 108 114

SVM | 33 35 0 62 76 94 98 105 100
BOpNN | 6 19 33 0 23 73 76 92 92
BNN | 4 13 26 1 0 66 72 84 84
kNN | 6 19 21 7 25 0 16 72 81
BNN, | 3 15 17 3 20 8 0 64 85
RDA | 9 18 15 29 41 44 45 0 64

ESENN | 8 11 17 21 31 41 45 55 0

Table 1: Pairwise comparative accuracy. Values in table indicate the number of times the method listed
row-wise significantly outperformed the method listed column-wise. For example, BOPNN significantly out-
performed RF 37 times, while RF significantly outperformed BOPNN 46 times. Significance was determined
using a paired Wilcoxon signed rank test, with size 0.05.

we are particularly interested in the comparison between BOPNN and Random Forests. Although the
average performance of BOPNN is slightly superior, as shown in the previous subsection, we see here that
RF outperformed BOPNN more frequently than the reverse. What is interesting to note is that RF both
outperforms the majority of the other methods more often than does BOPNN, and is also more frequently
outperformed by them; indicated by greater values in the RF row and column than those of BOPNN.

4.4 Relationships between Performance and “Meta-data”

Here we investigate the relationships between the relative performance of the different methods, and the
characteristics of the data sets. Each data set is characterised by six variables, n: the number of observations;
d: the total number of variables after one-hot encoding; cat_ratprop: the proportion of binary variables in
the one-hot encoded data; K: the number of classes; imbal: the class imbalance, defined as the variance
of the class proportions; and compl: a measure of the complexity of the class decision boundaries, defined
as 1og(A1N N3 where Ay is the leave-one-out cross-validation estimate for the accuracy of the 1-nearest-
nelghbour clasblﬁer on the data, and A ¢ that of the nearest centroid classlﬁelﬂ To capture dependence —we
computed the marginal correlations between the studentised accuracy of each method over all data sets and
the data set characteristics (after log-transforming n and d), as well as the Ordinary Least Squares (OLS)
linear regression coeﬁcientsm;mé These OLS coefficients give an indication of
the correlations between the data set characteristics and the studentised performance after accounting for
the values of the other data set characteristics.

Flgure|§| shows heatmaps indicating the s ‘ ionsstrengths of these relationships, with the
marginal correlations in the left heatmap and the OLS coefficients in the right. Because these relationships
are determined from a standardised accuracy measure, they give an indication of the relationships between
the different methods and data set characteristics relative to the other methods considered. For example,
s—neted-b rrevE-et—al: —we expect all methods will perform relatively better on larger data sets,
all other things being equal. This would correspond with light colours in the first column of the right
heatmap (positive OLS coefficients), however some methods are better/worse at leveraging larger samples
than others and this is reflected by both positive AND negative OLS coefficients in the relationships with
standardised accuracy. The lightest colours in this column indicate that RF, SVM and BOpNN-BOPNN
might benefit more from larger samples than the other methods —Hﬁﬁﬂfpﬁﬂﬁwmw%eﬁtmg
is i Si ﬂex1ble models. Also unsurprisingly the parametnc

leverage large samples well in comparison with the ofher models bein considered. The “lazy” non-parametric
kNN based models also do not leverage large samples as well as the adaptive models. ESKNN has an element
of adaptiveness, in its selection from multiple randomised models, however the level of adaptiveness may not

RDA ¢

5The nearest centroid classifier simply classifies a point to the class whose mean vector is closest.
6we used studentised performance instead of the [0, 1] mapped performance as their distributions are closer to Gaussian and,
all other things being equal, may therefore be more appropriate when used in quantifying linear relationships. This is also the

reason for log-transforming n and d.
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be sufficient to leverage larger samples particularly well. Some other noteworthy take-aways, for the purpose
of this investigation, are:

1. BOPNN performs relatively very poorly in the context of class imbalance. This may be a result of the
fact that the adaptive component of BOPNN comprises a linear transformation, and so applies globally, and
with the current implementation will be dominated by the larger classes. The local, more flexible component
of BOPNN comes subsequently from the application of kNN on the transformed data.

2. BOPNN has itsstrengest-a strong positive relationship with the “complexity” of the decision boundaries.
T—However, it is possible that this ebservatien—result is somewhat artificial, given that the measure of
complexity is governed by the performance of the INN model. HeweverHaving said this, this performance is
quantified relative to the other methods being compared, which includes numerous other nearest neighbour
based methods.

3. The simplistic one-hot-encoding followed by Euclidean distance calculation currently employed in BOPNN
may be inappropriate, as indicated by its comparatively poor performance when a large number of categorical
variables are present.

4. Although BOPNN performed reasonably well on data sets with a large number of classes (light colour in
the left heatmap for BOPNN and K), this appears to be almost fully determined by the other characteristics
of those data sets with large K since it has a strong negative OLS coefficient for K.

5. Compared with Random Forests, BOPNN may be better suited to higher dimensional examples but may
leverage larger samples less well.

4.4.1 “Meta-data" Distributions

For completeness here we also provide illustrations of the (marginal) distributions of the data set

characteristics. Figure [6] shows all the values of all six data set characteristics across the 162 data sets.
In addition, the performance of BOPNN is indicated via the sizes of the points, with larger points alignin,
with instances where BOPNN performed well relative to the other methods considered.

14
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Figure 6: Distributions of “meta-data”, with n and d on a log scale. The sizes of points are related to
erformance of BOPNN with larger points corresponding with better BOPNN performance, relative to the

other methods considered.

5 Concusions

In this paper we discussed the importance of including an adaptive learning step within the context of
bootstrap aggregating, or “bagging” and proposed a simple adaptwe kNN model —}H—W—h}(—h—ﬁ(-‘igh—bﬁiﬁ%

s-for use within

4

‘bagged” ensembles. The adaptive ste is achieved b ﬁndin dlscrnnlnant Subs aces which enhance the

class separation, as captured by ANN; : s _classifiers. The discriminant
subspace framework naturally leads to measures of variable 1mportance and offers instructive wisualisation
visualisations of the classes through projections into the discriminant subspaces (or an aggregated variant
incorporating the entire ensemble).

In an extensive set of experiments we documented the strong potential offered by the proposed approach.
Noteworthy findings are that across varied contexts the proposed approach is more or less on par with
Random Forests, on average, but that the particular data sets on which the proposed approach may be more
or less suited in fact align better with Support Vector Machines. Potential directions for improvement of
BOPNN include an alternative, but computationally efficient, way to incorporate categorical variables, as
well as strategies to enhance performance with highly imbalanced class proportions.
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A Classification-Medels-andTuningAdditional Experimental Results

A.1 Alternative “Discriminant Subspaces”

As_mentioned in Section B it_is possible to pair kNN _classifiers with other dimensionality reduction
technigues/discriminant subspaces within a bagged ensemble. However, as we discussed, the appropriateness
of different subspaces will depend on the type of classifier being used, and the proposed approach is motivated
specifically by minimising the in-class and maximising the out-of-class near neighbour distances and so we
anticipate that this will pair particularly well with kNN. It is also the case that the discriminant matrices
used within the proposed approach use much finer detail in the data than, e.g. the LDA discriminant matrix,
and so we expect greater differentiation in the individual models across bootstrap samples; a key factor in
leveraging the benefits of the model averaging framework.

M%‘WMWM%WW&M
and bagged ensembles of kNN models fit within LDA discriminant subspaces and Principal Components
PCA) subspaces. We include PCA for illustrative purposes, as it represents a fundamental unsupervised
dimension reduction model, and so it represents an alternative which is not completely randomised but is not
adaptive to the relationships between the response and covariates. In addition, since there are only at most
K = 1 non-arbitrary dimensions in the LDA subspace, when using more than K — 1 discriminant dimensions
we combined the LDA subspace with the leading PCA dimensions within their orthogonal complement. For
as direct a comparison as possible we used exactly the same tuning strategy for these variants as for BOPNN.

The distributions of standardised accuracy measures are shown in Figure [  We only show the
better performing and most relevant models from the point of view of these comparisons, however the

standardisations were determined using the entire collection of (now 11) methods. Of note is that
the LDA subspace (BOLDANN) leads to performance similar to that of SVM, on average; (ii) applying PCA

appears to be detrimental to performance, in general, as the performance of BOPCANN is inferior to that
of BOpNN; and (t-e5B=100)—TForeach-dataset-and-trainingsamplethirtyvaluesfork{the number-of
neighbours}-iii) after including these two additional models the average studentised performance of RE is
now marginally above that of BOPNN, however the the other points of comparison are unchanged, and also
the average performances of RE and BOPNN remain extremely similar.
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Figure 7: Standardised accuracy distributions relevant for comparison with the alternative bagged
kNN models applied on “discriminant subspaces”.

18



Under review as submission to TMLR

A.2 Default Settings and the Effect of Varying k

In preliminary experiments with BOPNN we worked with default settings of go = |min{0.75d.5V/d} |; 4o

- 0.5 and k = 3, and found
these to be fairly reliable. However unlike with RFs where the dlmensmnaht restriction through randomised

variable selection /restriction only applies locally (i.e. separately at each node in the trees), the expressiveness

of each of the models in BOPNN is fundamentally limited by the value of q
A — . .

€ W 5a prea

qo as well). In particular when the number of classes, K. is reasonably large then it may be impossible to
separate all classes accurately in even the theoretically optimal subspace if its dimension is tog low. Tt is
likely, therefore, that settings of go and g swas-abweaysset-to-should also depend on K. Tt may also simply be
that this limitation in expressiveness is unavoidable in any general sense, and that some degree of tuning is
necessary to cousistently yield very good performance.

Here we present results analogous to those in Section except that we have included default variants of
RF and SVM named RFO and SVMO below as Well as BOPNN models Wlth the above settln s of 0 )——"Phis

3
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’v‘a}uefer—ﬁ;»—and and for k=1,2,3,4 and 5 The dlstrlbutlons of Standardlsed accurac Values are shown
in Figure[8l As before the standardisations have been determined using all (now 16 models; 9 main models
lus two defaults from competing methods and 5 fixed settings for BOPNN) methods, but we only show the

most relevant ones here.

Noteworthy observations are that (i) none of the fixed setting BOPNN models is competitive with the tuned

RF, SVM and BOPNN models; (ii) default settings for RF leads to similar overall performance to that of

tuned SVM,; (iii) the fixed setting of k = 2 provided the best overall performance of BOPNN (however whether

this is generalisable to potentially improved defaults for gg and ¢ is unclear); (iv) the default variant of SVM

and the best fixed BOPNN model (BOPNN2) have very similar overall performance; and (v) although not

directly apparent from these figures RF0, SVM0 and BOPNNI1-4 all outperform all of the other (tuned
models not included in these plots and only BOpNN outperforms BOPNN5H from among them.

On other point is that, as we saw in Section upon including additional models the average studentised
erformance of RF is greater than that of BOPNN (in their tuned variants). However, it is worth pointing out

that studentisation in the context where there is a high degree of correlation will tend to “over standardise”
the performance of groups of models whose performance is highly correlated. The reason for this is that on
data sets where the performance of these models is either well above or below the others, this over/under
“achievement” is normalised by _the presence of multiple models with similar extreme performance. In
particular, if we only include one default setting of BOPNN (any of the five) in the standardisations, then
the average studentised performance of BOPNN remains above that of RF.
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Figure 8: Standardised accuracy distributions relevant for comparison with default settings.

A.3 Computational Complexity and Running Times

The worst case complexity of BOPNN is Q(B(kn2qgo + ¢2)), since the main computational steps within
each of the B models in the ensemble involve finding the k : sine i selected usi >

H—10—Wefixedall- other parameters-equal-to-their-defanltsinthe ESKNNin- and out-of-class neighbours
in dimension go, and for inversion and eigen-decomposition of gq X go matrices. However, when gy is relatively
small the running time of nearest neighbour search is closer to nlog(n) than to n”, meaning that for cases of
moderate dimensionality the running time is close to O(B(knlog(n))). A potential avenue for improvement
computationally is to include a variable screening stage, to obtain heuristic variable importance scores for
non-uniform sampling of covarariates so that go can be set relatively small even when the total dimension is
large. It is worth pointing out that in order for the OOB estimates of performance to be valid, these variable
importance scores would need to be computed within cach model in the ensemble.

To illustrate the poor scaling with dimension, we here report the empirical running times of BOPNN and
RE_(with their default settings) on three of the larger data sets used in the experiments; one with very
large d. one with fairly large n and small d, and one with fairly large n and d. We ouly consider the larger
data sets as these are the most critical when it comes to running time comparisons. It is worth pointing
out that our implementation of BOPNN has not been optimised for speed, and runs in serial on a single
MQ@&&MA%M@%@@ e ‘
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RF BOPNN
7000 16 16 36| 168 10.5
7000 784 864 14.6 | 810 102.2

Table 2: Average running times of RF and BOPNN on three of the larger data sets used in our experiments.

[

The paraneters which-were tuned-are “mitrv™{is_highly o tlmlsed and parallelised. As a result we report
both the wall-clock time of RF and the total CPU time, whereas for BOPNN these are of course very similar
and we only report wall-clock time.

The average running times from ten runs on each data set are shown in Table 2l Here we have used
mthe number of \ v a5—ea ach i+ ina

taw _covariates and d to be the number

of covariates after one-hot-encoding. We include both since RF handles categorical variables directly,
and so operates in dimension dy. Aside from the very high dimensional example the total CPU tlme
re ulred for fitting RF models and BOPNN models is similar, however the multithreadin used in the

h A re-implementation of RFs
in H@&%VM:&MQ }mp}emeﬂ%&mefkﬂ&emw&ﬁh&#hem&mﬂ%ﬁb—whﬁhﬂsmmdw

means the actual running times are not currently comparable. Nonetheless these experiments indicate that
BOPNN has the potential to be computationally competitive with efficient RF implementations, potentiall
with the exception of when the number of covariates is very large.
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