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ABSTRACT

Many important phenomenon in scientific fields such as climate, neuroscience
and epidemiology are naturally represented as spatiotemporal gridded data with
complex interactions. Inferring causal relationships from these data is a difficult
problem compounded by the high dimensionality of such data and the correlations
between spatially proximate points. We present SPACY (SPAtiotemporal Causal
discoverY), a novel framework based on variational inference, designed to explic-
itly model latent time-series and their causal relationships from spatially confined
modes in the data. Our method uses an end-to-end training process that maxi-
mizes an evidence-lower bound (ELBO) for the data likelihood. Theoretically, we
show that, under some conditions, the latent variables are identifiable up to trans-
formation by an invertible matrix. Empirically, we show that SPACY outperforms
state-of-the-art baselines on synthetic data, remains scalable for large grids, and
identifies key known phenomena from real-world climate data.

1 INTRODUCTION

Figure 1: SPACY jointly infers latent time series and
the underlying causal graph from gridded time-series
data by identifying spatial modes of variability.

In several scientific domains such as cli-
mate science, neurology, and epidemiol-
ogy, low-level sensor measurements gen-
erate high-dimensional observational data.
These data are naturally represented as
gridded time series, with interactions that
evolve over both space and time. Discov-
ering causal relationships from spatiotem-
poral gridded time-series data is an impor-
tant scientific task that allows researchers
to predict future states, intervene in harm-
ful trends, and develop new insights into
the underlying mechanisms. In climate science, the study of teleconnections (Liu et al., 2023),
the interactions between regions thousands of kilometers away, is important to understanding how
climate events in one part of the world may affect weather patterns in distant locations.

Several methods have been developed for causal structure learning from time-series data (Granger,
1969; Hyvärinen et al., 2010; Runge, 2020a; Tank et al., 2021; Gong Wenbo & Nick, 2022; Cheng
et al., 2023). However, applying these methods to spatiotemporal data presents significant chal-
lenges. The high dimensionality of large gridded data makes it difficult for many of these tech-
niques, especially those relying on conditional independence tests, to scale effectively (Glymour
et al., 2019). Additionally, spatially proximate points often exhibit highly correlated, redundant
time series. Conditioning on nearby correlated points can obscure true causal relationships between
distant locations, reducing statistical power and leading to inaccurate results (Tibau, 2022).

Recent advances in spatiotemporal causal discovery have sought to address these challenges. One
common approach is a two-stage process: first, dimensionality reduction is applied to extract a
small number of latent time series from the original grid of time series; then, causal discovery is
performed on these reduced-dimensional representations. Examples of this approach include Tibau
(2022) and Falasca et al. (2024). However, these methods perform dimensionality reduction inde-
pendent of the causal structure, potentially leading to low-dimensional representations that obscure
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the relationships among causally relevant entities. Another important line of research is causal rep-
resentation learning from time series data (Schölkopf et al., 2021). While approaches like those in
Yao et al. (2022b;a); Chen et al. (2024) model latent time series from high-dimensional data, they
do not incorporate spatial priors, making them less suitable for spatiotemporal causal discovery.
Causal Discovery with Single-parent Decoding (CDSD) (Brouillard et al., 2024; Boussard et al.,
2023) learns a mapping from the observational time series to latent variables to infer the latent time
series. However, it assumes that each observed variable is influenced by only one latent variable.

We present a novel variational inference-based framework for spatial-temporal causal discovery
called SPAtio-temporal Causal DiscoverY (SPACY) to address these limitations (Figure 1). Our
approach jointly infers both the latent time series and the underlying causal graph in an end-to-
end process. The key idea of our approach is to learn the location and scale parameters of spatial
factors on the grid, which we model using Radial Basis Functions (RBFs). These spatial factors
determine the grid locations corresponding to each inferred latent time series. Additionally, we
analyze the identifiability of our framework. We demonstrate that when the grid is infinitely fine, we
can uniquely recover the spatial factors and latent time series (up to permutation) that generate the
observed data distribution. Notably, compared to previous works, our framework can handle both
instantaneous edges and overlapping spatial factors, allowing observed variables to be associated
with multiple latent factors.

Our main contributions can be summarized as follows:

1. We introduce SPAtio-temporal Causal discoverY (SPACY), a novel variational inference-
based causal discovery framework that tackles realistic and challenging settings of spa-
tiotemporal datasets by simultaneously inferring the latent causal representation time series
and the underlying causal graph.

2. Theoretically, we show that, under some conditions, the latent factors are identifiable up to
transformation by an invertible matrix from the observational data when the resolution of
the grid is infinite.

3. Experimentally, we demonstrate the strong performance of our method on both synthetic
and real-world datasets. SPACY can infer both lagged and instantaneous causal links from
high-dimensional grids in a tractable manner.

2 RELATED WORK

In this section, we provide an overview of the literature on causal discovery from time-series, causal
representation learning and spatiotemporal causal discovery.

Causal Discovery from time series data. A prominent line of research in time series causal dis-
covery is based on Granger causality, as introduced by Granger (1969). For example, Tank et al.
(2021) use component-wise MLPs and LSTMs with sparsity constraints to infer non-linear Granger
causality. In contrast, Khanna & Tan (2020) apply Statistical Recurrent Units (SRUs) to detect causal
relationships across multiple scales. Löwe et al. (2022) propose Amortized Causal Discovery using
a variational autoencoder and Graph Neural Networks. Cheng et al. (2023; 2024) infers Granger
causal links from irregularly sampled or incomplete data by simultaneously imputing missing val-
ues. However, Granger causality only captures predictive relationships and ignores instantaneous
effects, latent confounders, and history-dependent noise (Peters et al., 2017).

The Structural Causal Model (SCM) framework can theoretically overcome these limitations by
explicitly modeling the causal relationships between variables. Hyvärinen et al. (2010) extend
LiNGAM (Shimizu et al., 2006) to develop VARLiNGAM, incorporating vector autoregressive
models for time series data. DYNOTEARS (Pamfil et al., 2020) adapts NOTEARS (Zheng et al.,
2018) to dynamic Bayesian networks. Both methods, however, are restricted to linear relationships.
PCMCI and PCMCI+ (Runge et al., 2019; Runge, 2020a) extend the PC (Spirtes et al., 2000) algo-
rithm to handle instantaneous effects. Rhino (Gong Wenbo & Nick, 2022) uses neural networks to
model the functional relationships and estimates the temporal adjacency matrix from observational
data while accounting for exogenous history-dependent noise distributions. Wang et al. (2024) use
stochastic differential equations for causal structure learning from continuous-time temporal pro-
cesses with potentially irregular sampling.
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However, applying these methods directly to spatiotemporal data presents significant challenges.
The high dimensionality of large gridded datasets makes it difficult for many techniques—especially
those that rely on conditional independence tests—to scale effectively (Glymour et al., 2019). Fur-
thermore, spatially proximate points often exhibit highly correlated and redundant time series. Con-
ditioning on these nearby correlated points can obscure true causal relationships between distant
locations, reducing statistical power and leading to inaccurate results (Tibau, 2022).

Spatiotemporal Causal Discovery/Causal Representation Learning Numerous studies have
extended Granger causality to spatiotemporal settings, particularly in climate science (Mosedale
et al., 2006; Kodra et al., 2011; Ali et al., 2024). Lozano et al. (2009) proposed a method combining
Granger causality with a Group Elastic Net to capture spatial and temporal dependencies, enabling
the identification of causal relationships among climate variables. However, the model assumes that
the causal relationships are linear, and only infers a summary graph.

One approach to spatiotemporal causal discovery is to perform dimensionality reduction to obtain
a smaller number of latent time series and then infer a causal graph among the latent variables.
For example, Tibau (2022) use Varimax for dimensionality reduction and PCMCI+ (Runge, 2018;
2020b) for causal discovery. Falasca et al. (2024) infer regional modes based on correlation and
spatial proximity, applying linear-response theory to uncover causal links. A key limitation of these
methods is that dimensionality reduction occurs independently of the causal structure in the data.
Consequently, the latent variables may not correspond to causally relevant entities. Additionally,
conditional independence-based methods are computationally intensive as they may require an ex-
ponential number of conditional independence tests.

Other approaches use neural networks to model nonlinear interactions. The Spatial-Temporal Causal
Discovery Framework (STCD) (Sheth et al., 2022) utilizes attention-based convolutional neural net-
works to identify causal relationships from gridded time-series data. However, it encodes an explicit
form of spatial dependence specific to the problem of hydrological systems (i.e. reduce attention
scores based on geographic height) rather than inferring it from data.

Causal representation learning from time series involves inferring abstract, high-level causal vari-
ables and their relationships from temporal data. Lippe et al. (2022; 2023) focus on causal repre-
sentation learning from interventional time-series data. Yao et al. (2022b;a); Chen et al. (2024) in-
troduce frameworks to recover latent causal variables and identify their relations from observational
sequential data. However, these methods do not model instantaneous edges in the causal graph.
Morioka & Hyvarinen (2024) prove the identifiability of causal relations, even in the presence of in-
stantaneous edges, by assuming that the observational variables can be appropriately grouped. How-
ever, this grouping is rarely known in practice apriori. Moreover, none of these methods consider
the spatial structure present in the data. The work most closely related to ours is Causal Discovery
with Single Parent Decoding (CDSD) (Brouillard et al., 2024; Boussard et al., 2023), which learns
a mapping from the observational time series to latent variables. However, CDSD operates under
the assumption that each observed variable is influenced by only one latent variable, and the causal
graph has no instantaneous edges. In contrast, SPACY allows both instantaneous edges and over-
lapping modes, i.e., an observational variable can be influenced by more than one latent variable.

Preliminaries. A Structural Causal Model (Pearl, 2009) (SCM) explicitly defines the causal rela-
tionships between variables in the form of functional equations. Formally, an SCM overD variables
consists of a 5-tuple ⟨X , ε,F ,G, P (ε)⟩:

1. Endogenous (observed) variables X = {X1, X2, . . . , XD};

2. Exogenous (noise) variables ε = {ε1, ε2, . . . , εD} influencing the endogenous variables.

3. A Directed Acyclic Graph (DAG) G, denoting the causal links amongst the members of X ;

4. A set of D functions F = {f1, f2, . . . , fD} determining X through the equations Xi =
f i(PaiG, ε

i), where PaiG ⊂ X denotes the parents of node i in graph G and εi ⊂ ε;

5. P (ε), which describes a distribution over noise ε.
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3 SPACY: SPATIAL-TEMPORAL CAUSAL DISCOVERY

Problem Setting. We are given N samples of L-dimensional multivariate time series with T
timesteps each. These L time series are arranged in a K-dimensional grid G. In our setting,
we consider K = 2, i.e. a two-dimensional grid. We denote the observational time series as{
X

(1:T ),n
1:L

}N
n=1

. We assume that the dynamics of the observed data are driven by interactions in
a smaller number of latent (i.e. unobservable) time series. We denote the D latent time series for

each of the N samples as
{
Z

(1:T ),n
1:D

}N
n=1

, with D << L. The latent time series is stationary with a
maximum time lag of τ , meaning the present is influenced by up to τ past timesteps. Interactions in
the latent time series follow an SCM represented by a DAG G. Our goal is to infer the latent time

series
{
Z

(1:T ),n
1:D

}N
n=1

and the causal graph G in an unsupervised manner.

3.1 FORWARD MODEL

We formalize our assumptions about the data generation process using a probabilistic graphical
model (Figure 2). We assume that the latent time series Z is generated by an SCM with causal graph
G. The number of latent variables D is input as a hyperparameter. The spatial correlations between
nearby grid points are captured by the spatial factors F ∈ RL×D, parameterized by ρ and γ. These
factors map the latent time series Z(1:T )

1:D ∈ RD×T to the observed time series X(1:T )
1:L ∈ RL×T .

Figure 2: Probabilistic
graphical model for SPACY.
Shaded circles are observed
and hollow circles are latent.

Latent SCM. We model the latent SCM that describes the dynam-
ics of Z(t) as an additive noise model (Hoyer et al., 2008):

Z
(t)
d = fd

(
PadG(< t),PadG(t)

)
+ η

(t)
d

The causal graph G specifies the causal parents of each node, repre-
sented by a temporal adjacency matrix with shape (L+1)×D×D.
The parent nodes from previous and current time steps are denoted
by PadG(< t) and PadG(t) respectively. We assume that Ztd is in-
fluenced by at most τ preceding time steps, i.e., PaG(< t) ⊆
{Zt−1, . . . ,Zt−τ}. G1:τ represents the lagged relationships and
G0 represents the instantaneous edges. The time-lag τ is treated as
a hyperparameter.

We implement two variants of SPACY based on the type of func-
tional relationships being modeled.

SPACY-L. This variant models linear relationships with indepen-
dent noise. fd is defined as:

fd
(
PadG(≤ t)

)
=

τ∑
k=0

D∑
d′=1

(G ◦W )kd′,d × Zt−kd′ , (1)

where ◦ denotes the Hadamard product, and W ∈ R(τ+1)×D×D is a learned weight tensor. We
assume that ηtd is isotropic Gaussian noise.

SPACY-NL. This variant models non-linear relationships using Rhino (Gong Wenbo & Nick, 2022),
which accounts for both instantaneous effects and history-dependent noise. We parameterize the
structural equations fd using MLPs ξf and λf shared across all nodes. We use trainable embeddings
E ∈ R(τ+1)×D×D with embedding dimension e to distinguish between nodes. fd is defined as:

fd (PaG(≤ t)) = ξf

 τ∑
k=0

D∑
j=1

Gk
j,d × λf

([
Zt−kj , Ekj

]
, Ed0
) . (2)

The noise model is based on conditional spline flows (Durkan et al., 2019), with the parameters of
the spline flow predicted by MLPs ξη and λη , which share a similar architecture to ξf and λf .

Spatial Factors. The low-dimensional latent time series are mapped to the high-dimensional grid
by the spatial factors F ∈ RL×D. The dth column of F represents the influence of the dth latent

4
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Figure 3: Overview of the ELBO calculation for SPACY. The model processes spatiotemporal data{
X

(1:T ),n
1:L

}N
n=1

to infer latent time series
{
Z

(1:T ),n
1:D

}N
n=1

, where D ≪ L. Causal relationships are

modeled using a DAG G sampled from qϕ(G). Latent time-series are mapped to grid locations via
spatial factors F sampled from qϕ(F). Arrows in G are labeled with edge time-lags.

variable on each grid location. To effectively capture the correlation between spatially proximate
grid points under a single latent variable, we model the spatial factors using radial basis functions
(RBFs), following Manning et al. (2014); Farnoosh & Ostadabbas (2021). RBFs not only ensure
locality, they are also smooth functions that are parameter-efficient. We assume a uniform prior over
the grid G for the center parameter ρd of each kernel, and assume that the scale parameter γd comes
from a standard normal distribution. Mathematically,

ρd ∼ U [0, 1]K ,γd ∼ N (0, I) , (3)

Fℓd = RBFd(xℓ;ρd,γd) = exp

(
−||xℓ − ρd||2

exp(γd)

)
, (4)

where xℓ refers to the spatial coordinates of the ℓth grid point.

The observational time series is assumed to be generated by applying a grid point-wise non-linearity
gℓ to the product of the spatial factors and latent time series, with additive Gaussian noise. We imple-
ment the nonlinearity gℓ as an MLP Ξ shared across all grid-points, with concatenated embeddings
G ∈ RL×f , where f is the embedding dimension. In equations,

X
(t)
ℓ = gℓ

(
[FZ]

(t)
ℓ

)
+ ε

(t)
ℓ , ε

(t)
ℓ ∼ N (0, σ2

ℓ I) (5)

gℓ(x) = Ξ ([x,Gℓ]) , Gℓ ∈ Rf (6)

3.2 VARIATIONAL INFERENCE

Let θ denote the parameters of the forward model. Ideally, we would estimate θ using maximum
likelihood estimation. However, the likelihood pθ (X) is intractable due to the presence of latent
variables Z, G and F. To address this, we propose using variational inference, optimizing an evi-
dence lower bound (ELBO) instead.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Proposition 1. The data generation model described in Figure 2 admits the following evidence
lower bound (ELBO):

log pθ

(
X(1:T ),1:N

)
≥

N∑
n=1

{
Eqϕ(Z(1:T ),n|X(1:T ),n)qϕ(G)qϕ(F)

[
log pθ

(
X(1:T ),n|Z(1:T ),n,F

)
+
[
log pθ

(
Z(1:T ),n|G

)
− log qϕ(Z

(1:T ),n|X(1:T ),n)
] ]}

+ Eqϕ(G)[log p(G)− log qϕ(G)]

+ Eqϕ(F)[log p(F)− log qϕ(F)] = ELBO(θ, ϕ) (7)

See section A.1.1 for the derivation. We outline the computation of the ELBO in Figure
3. qϕ represents the variational distribution, with variational parameters ϕ. The first term
log pθ(X

(1:T ),n|Z(1:T ),n,F) in equation 7 represents the conditional likelihood of the observed data
X(1:T ),n conditioned on Z(1:T ),n and F, and represents how well the observed data is fit. The
remaining terms represent the KL divergences of the variational distributions from their prior distri-
butions. More details about the implementation of the loss terms are in Appendix A.2.

We detail the implementation of the variational distributions below:

Causal graph qϕ(G). The variational distribution for the adjacency matrix qϕ(G) is modeled as a
product of independent Bernoulli distributions, indicating the presence or absence of every edge. To
compute the expectation over qϕ(G), we sample one graph using Monte Carlo sampling, leveraging
the Gumbel-Softmax trick (Jang et al., 2017).

Spatial Factor qϕ(F). We model the variational distributions of the center and scale pa-
rameters ρd and γd as normal distributions with learnable mean and log-variance parameters
(µρd , vρd), (µγd , vγd). To sample from qϕ(F), we first sample ρd and γd using the reparameter-
ization trick (Kingma & Welling, 2014), and then compute the RBF kernel using these parameters.
To ensure that the coordinates of the center lie in the range [0, 1], we apply the sigmoid function.

ρd ∼ N (µρd , exp (vρd
) I) ,γd ∼ N (µγd

, exp (vγd) I)

Fℓd = RBFd(xℓ;ρd,γd) = exp

(
−||xℓ − sigmoid(ρd)||2

exp(γd)

)
.

Encoder qϕ(Z(1:T ),n|X(1:T ),n). To obtain the latents from the observational samples, we use a
neural network encoder. Specifically, the variational distribution qϕ(Z(1:T ),n|X(1:T ),n) is modeled
as a normal distribution whose mean and log-variance are output by MLPs ζµ and ζσ2 . We sample
Z from the distribution using the reparameterization trick:

Z(t),n ∼ N
(
ζµ(X

(t),n), exp
(
ζσ2(X(t),n)

))
.

4 IDENTIFIABILITY ANALYSIS

In this section, we examine the identifiability of the generative model introduced in Section 3.1.
Roughly speaking, a model is said to be identifiable if the latent variables can be uniquely recovered
from observational data. Several prior works have investigated the identifiability of latent parameters
in various deep generative models (Khemakhem et al., 2020; Zheng et al., 2022; Yao et al., 2022b).

We focus on the specific case where no non-linearity maps the latents to the observable space,
meaning gℓ in equation 6 is the identity map. To analyze identifiability, we extend the notion of
a gridded time series to infinite resolution. Instead of observing the time series at a finite set of
grid points, we assume it can be observed at every point within the bounded K-dimensional grid
G = [0, 1]K . In this framework, X(x) represents a T -dimensional random variable describing the
observational time series at location x on the grid.

We also generalize our assumptions about how the spatial factors are generated, and assume that they
are function evaluations at the grid points of a family of linearly independent functions. Notably, the
family of RBF functions are one such family of functions (Smola & Schölkopf, 1998). To formalize
this, we introduce the following definition.
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Definition (Spatial Factor Process). Let G = [0, 1]K be a K−dimensional grid, and let Z ∈ RD×T .
Suppose F = {Fψ1

, ..., FψD
} is a finite linearly independent family. We define a Spatial Factor

Process SFP(Z,F , pε), denoted by X : G → RT , as follows: for each location x ∈ G in the grid,

X(x) = F⊤
x Z+ εx, where Fx = [Fψ1(x), . . . , FψD

(x)]
⊤ (8)

and εx ∼ pε(·) is a normally distributed noise term.

The first result demonstrates that if two SFPs are equal at all grid points, they must share the same
spatial factors and latent time series, up to a permutation. This implies that the spatial factors and
latent time series are identifiable from the conditional likelihood log pθ (X(x)|Z,Fx).
Theorem 1 (Identifiability of SFPs). Given two SFPs X = SFP(Z,F , pε) and Y = SFP(Z̃, F̃ , qε)
where none of the rows of Z or Z̃ are all zero, such that p(X(x)) = p(Y(x)) for every x ∈ G, then
Z = P Z̃ and F = F̃ for some permutation matrix P .

We now turn to the identifiability of the latent time series from the observational distribution. The
following result shows that the latent variable distribution can be recovered up to a transformation
by an invertible matrix. Although not as precise as Theorem 1, it still guarantees that the latents are
partially identifiable.

Theorem 2 (Identifiability of the latents). Suppose two spatial factor processes X(x) and X̃(x)

with spatial factors Fx and F̃x have the same observational distributions for all x ∈ G. Then the
latent variable distribution is identifiable up to transformation by an invertible matrix.

The detailed mathematical statements and proofs for these results are provided in Appendix A.1.2.

5 EXPERIMENTS

We assess SPACY’s ability to capture causal relationships across various spatiotemporal contexts
using both synthetic datasets with known ground truth and simulated climate datasets. Our results
demonstrate that SPACY consistently uncovers accurate causal relationships while generating inter-
pretable outputs. An implementation of SPACY is available at (https://anonymous.4open.
science/r/spacy-572B/). The code is built with PyTorch 2.1 and run on machines with
NVIDIA A10 GPUs.

Baselines. We compare SPACY with state-of-the-art baselines. We include the two-step algorithms
Mapped PCMCI (Varimax-PCA + PCMCI+ with Partial Correlation test) (Tibau, 2022; Runge,
2020b) and the Linear Response method (Falasca et al., 2024). We also evaluate against the causal
representation learning approaches, LEAP (Yao et al., 2022b) and TDRL (Yao et al., 2022a).

5.1 SYNTHETIC DATA

Setup. Since real-world datasets lack ground truth causal graphs, we generate synthetic datasets
with known causal relationships to benchmark SPACY’s causal discovery performance. These are
generated from randomly constructed ground-truth graphs, following the forward model described
in Figure 2. We experiment with several configurations of synthetic data. The latent time series are
generated using either (1) a linear structural causal model (SCM) with randomly initialized weights
and additive Gaussian noise, or (2) a nonlinear SCM, where the structural equations are modeled by
randomly initialized MLPs, combined with additive history-dependent conditional-spline noise.

The mapping function gℓ is set as (1) linear, where the identity function is used, or (2) nonlinear,
where an MLP is used. For each configuration, we generate N = 100 samples, each with time
length T = 100 and a grid of size 100 × 100 (L = 104). Datasets are generated with D = 10, 20
and 30 nodes in each setting. For more details on dataset generation, refer to Appendix A.3.1.

We assess the performance of SPACY and the baselines using two metrics: the orientation F1 score
of the inferred causal graph G, and the mean correlation coefficient (MCC) between the learned and
ground-truth latent representations Z. More details on the evaluation process are in Appendix A.2.4.

Results. The results of the synthetic experiments are shown in Figure 4. SPACY consistently
outperforms all other methods across all settings of D in terms of F1 score. On the linear SCM

7

https://anonymous.4open.science/r/spacy-572B/
https://anonymous.4open.science/r/spacy-572B/


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Linear SCM, 
Linear Mapping 

Linear SCM, 
Non-linear Mapping 

Non-linear SCM, 
Linear Mapping 

Non-linear SCM, 
Non-linear Mapping 

Figure 4: Results on different configurations of the synthetic datasets. We report the F1 and MCC
scores for each method across different latent dimensions D. Average over 5 runs reported

Figure 5: Comparison of runtime (in minutes) and F1 score across different grid sizes. The left plot
shows how the runtime increases with grid size, while the right plot displays the corresponding F1
scores for causal discovery. Average over 5 runs reported.

datasets, Mapped PCMCI performs competitively, particularly when using linear spatial mapping,
while LEAP, TDRL, and Linear-Response exhibit weaker performance. In the nonlinear settings,
SPACY significantly outperforms the baselines, with a more pronounced performance drop observed
for LEAP, TDRL, and Linear-Response, whose F1 scores decline sharply as D increases. SPACY’s
performance scales more effectively with increasing D, further widening the gap in performance.

The quality of the causal representation, measured by the MCC score, follows a similar pattern.
Mapped PCMCI remains competitive with SPACY, while LEAP, TDRL, and Linear-Response con-
sistently show lower MCC scores across all configurations. Figure 10 provides a visual illustration
of the recovered spatial factors.

Scalability We also measure the scalability of SPACY with increasing grid-size. For this experi-
ment, we used the dataset with linear SCM and linear spatial mapping. Figure 5 demonstrates the
scalability and performance of SPACY compared to the baseline methods as the grid size L in-
creases. The runtime plot indicates that, while all methods experience an increase in runtime with
increasing grid size, SPACY strikes a good balance, exhibiting moderate growth in computational
time while maintaining strong causal discovery performance. Although Mapped-PCMCI is the most
efficient in terms of runtime, it underperforms in causal discovery. LEAP and TDRL show similar
or higher computational costs than SPACY but fail to match its performance. Linear-Response, in
particular, scales poorly in terms of runtime with increasing grid size.
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Figure 6: Visualization of (left) the learned spatial factors and causal graph (right) the learned spatial
factors and causal graph after merging based on proximity and graph links.

Figure 7: Qualitative results for Global Temperature climate dataset. The numbers on the arrow
refers to the time lag of the causal links. Subgraph of G depicting learned causal relationships
among regions associated with the (a) Northern Atlantic Oscillation (b) Antarctic Oscillation.

5.2 REAL-WORLD APPLICATION TO CLIMATE SCIENCE

The Global Temperature Dataset is a mixed real-simulated dataset containing monthly global tem-
perature data from 1999 to 2001. It includes 7,531 simulated samples, each with a 24-month time
sequence, across a 145 × 192 spatial grid. Before applying SPACY, we deseasonalized the data
by subtracting the monthly mean values. Given the global nature of the dataset, we employed the
Haversine distance instead of Euclidean distance when calculating the RBF kernel for spatial factors.
For more details about the dataset and preprocessing steps, refer to Appendix A.6.

Results. We qualitatively evaluate SPACY’s inferred spatial factors and causal graph due to the
absence of a ground truth causal graph. Figure 6 illustrates the spatial factors and causal graphs
learned by SPACY from the Global Temperature Dataset, visualized using the procedure outlined
in Appendix A.3.3. The spatial modes identified by SPACY correspond to critical regions that
significantly influence global climate patterns, including coastlines of major land masses (e.g., East
Asia, Northern Europe) and key ocean areas (e.g., Central Pacific, South Atlantic)

Figure 7 highlights two subgraphs extracted from SPACY’s results: GNAO and GAAO, which cor-
respond to spatial modes associated with the Northern Atlantic Oscillation (NAO) (Hurrell, 1995;
Chen & den Dool, 2003; Hurrell et al., 2003) and the Antarctic Oscillation (AAO) (Thompson &
Solomon, 2002; Mo, 2000). This subgraph reveals how SPACY uncovers causal connections be-
tween regions that share similar weather characteristics and are driven by these known teleconnec-

9
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tion patterns. The model successfully identifies the spatial extent and connectivity of NAO-related
regions, which comprises of North-Eastern Canada and North Western Europe (Chen & den Dool,
2003; Hurrell, 1995), and AAO-related regions (South-East Australia, South-Atlantic, South-Indian
Ocean) (Thompson & Solomon, 2002). The learned subgraphs correctly mirror the correlation and
oscillation of temperature in these regions, identifying both instantaneous links and those occurring
a few months prior. Moreover, the inferred modes are spatially confined, each with a distinct center
and scale, which enhances their interpretability. In contrast to standard principal component analyses
and methods like Mapped PCMCI (Figure 13), which often result in broadly distributed components
that are hard to interpret, SPACY infers localized regions with well-defined spatial extents.

5.3 ABLATION STUDIES

(a) Ground truth modes (b) Inferred modes

D∗ SPACY-L SPACY-L
(D = D∗) (D = D∗ + 10)

10 0.623± 0.06 0.642± 0.07
20 0.752± 0.03 0.549± 0.03
30 0.596± 0.05 0.529± 0.06

(c) Causal discovery performance (F1-score)

Figure 8: Overview of the results for over-specification ablation study. (a) Visualization of the
ground-truth location and scale of the spatial modes. (b) Visualization of the inferred location and
scale when we over-specify the number of nodes. (c) Causal discovery performance after matching
and eliminating nodes. Average over 5 seeds reported

Over-specifyingD. SPACY requires specifying the number of latent variablesD as a hyperparam-
eter. In practice, the exact number of underlying factors is often unknown. We examine the effect
of overspecifying D by setting it to D∗ + 10, where D∗ represents the true number of nodes used
to generate the data. We use the synthetic dataset with grid dimensions 100× 100, linear SCM and
non-linear mapping.

Figure 8 illustrates the results of our experiment. When D∗ = 10, despite over-specifying the num-
ber of nodes, the inferred spatial modes’ general locations align well with the ground truth. The
presence of additional modes does not significantly detract from the accuracy of detecting the pri-
mary spatial modes. This suggests that SPACY maintains robust learning of spatial representations
even when D exceeds the true number of spatial factors. This observation also holds true when
comparing the causal discovery performance using the F1 score.

We also examine the robustness of SPACY to the choice of the kernel function when computing the
spatial factors. The results are detailed in Appendix A.4.

6 CONCLUSION

In this work, we examined the problem of inferring causal relationships from spatiotemporal data.
This problem has significant applications in climate, neuroscience, and biomedical science, among
other fields. We proposed an end-to-end variational inference method to learn the latent causal
representations and the underlying SCM, while producing an interpretable output. We discussed the
structural identifiability of our model, and demonstrated the empirical efficacy of our method on
both synthetic and simulated climate datasets. SPACY successfully recovers spatial patterns linked
to known events like the Northern Atlantic Oscillation and Antarctic Oscillation.

As a direction for future work, our method can be extended to multivariate settings. Performing
latent causal representation learning and causal discovery between multiple variables could further
enhance the capability of our approach in handling complex real-world datasets. Such an extension
would be particularly valuable in domains like climate science (Tibau, 2022; Brouillard et al., 2024),
where interactions between multiple variables (e.g. temperature and pressure) are critical.
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A APPENDIX

A.1 THEORY

A.1.1 ELBO DERIVATION

Z
(t)
d = fd

(
PadG(< t),PadG(t)

)
+ η

(t)
d

ρd ∼ U [0, 1]K ,γd ∼ N (0, I)

Fd = [RBFd(xℓ;ρd,γd)]
L
ℓ=1 , xℓ ∈ G

Xℓ = gℓ ([FZ]ℓ) + εℓ

εℓ ∼ N (0, σ2
ℓ I)

Figure 9: Probabilistic graphical model for SPACY and the generative equations. Shaded circles are
observed and hollow circles are latent.

Proposition 1. The data generation model described in Figure 2 admits the following evidence
lower bound (ELBO):

log pθ

(
X(1:T ),1:N

)
≥

N∑
n=1

{
Eqϕ(Z(1:T ),n|X(1:T ),n)qϕ(G)qϕ(F)

[
log pθ

(
X(1:T ),n|Z(1:T ),n,F

)
+
[
log pθ

(
Z(1:T ),n|G

)
− log qϕ

(
Z(1:T ),n|X(1:T ),n

)]]}
+ Eqϕ(G)[log p(G)− log qϕ(G)]

+ Eqϕ(F)[log p(F)− log qϕ(F)] = ELBO(θ, ϕ)

Proof. We begin with the log-likelihood of the observed data:

log pθ

(
X(1:T ),1:N

)
= log

∫
pθ

(
X(1:T ),1:N ,Z(1:T ),1:N ,G,F

)
dZ dG dF

We multiply and divide by the variational distribution qϕ
(
Z(1:T ),1:N |X(1:T ),1:N

)
qϕ (G) qϕ (F) to

create an evidence lower bound (ELBO) using Jensen’s inequality:

log pθ

(
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)
= log

∫
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qϕ (G) qϕ (F)
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dZ dG dF
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. (9)
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By the assumptions of the data generative process,

pθ

(
X(1:T ),1:N ,Z(1:T ),1:N ,G,F

)
= pθ

(
X(1:T ),1:N |Z(1:T ),1:N ,F

)
pθ

(
Z(1:T ),1:N |G

)
p (F) p (G)

Further, note that X(1:T ),1:N are conditionally independent given F,Z(1:T ),1:N . Also, X(1:T ),n is
conditionally independent of Z(1:T ),m given Z(1:T ),n,F for m ̸= n. This implies that:

pθ

(
X(1:T ),1:N |Z(1:T ),1:N ,F

)
=

N∏
n=1

pθ

(
X(1:T ),n|Z(1:T ),n,F

)
.

Similarly, Z(1:T ),1:N are conditionally independent given G, which implies

pθ

(
Z(1:T ),1:N |G

)
=

N∏
n=1

pθ

(
Z(1:T ),n|G

)
.

Substituting these terms back into equation 9 and grouping terms according to the variables Z,G,F
yields the ELBO.

log pθ

(
X(1:T ),1:N

)
≥

N∑
n=1

{
Eqϕ(Z(1:T ),n|X(1:T ),n)qϕ(G)qϕ(F)

[
log pθ

(
X(1:T ),n|Z(1:T ),n,G,F

)
+
(
log pθ

(
Z(1:T ),n|G

)
− log qϕ

(
Z(1:T ),n|X(1:T ),n

))]}
+ Eqϕ(G) [log p(G)− log qϕ(G)]

+ Eqϕ(F) [log p(F)− log qϕ(F)] ≡ ELBO(θ, ϕ).

A.1.2 IDENTIFIABILITY

Definition 1 (Linearly Independent Family). Let F be a family of real-valued, parametric func-
tions F =

{
fψ : RK → R

}
. F is said to be a linearly independent family if, for any finite set

{ψ1, ..., ψn}, we have
n∑
k=1

αkfψk
= 0 =⇒ αk = 0 ∀k ∈ [n]. (10)

Definition 2 (Spatial Factor Process). Let G = [0, 1]K be a K−dimensional grid, and let Z ∈
RD×T . Suppose F = {Fψ1

, ..., FψD
} is a finite linearly independent family. We define a Spatial

Factor Process SFP(Z,F , pε), denoted by X : G → RT , as follows:

For each location x ∈ G in the grid,

X(x) = F⊤
x Z+ εx (11)

where

Fx =

Fψ1(x)
...

FψD
(x)

 ,
and εx ∼ pε(·) is a normally distributed noise term

A Spatial Factor Process (SFP) extends the concept of a gridded time series to an infinite resolution.
Instead of observing the time series on a finite set of grid points, we assume that a time series can
be observed at every location within a bounded K-dimensional grid, G = [0, 1]K . In the above
definition, Z represents a (fixed) realization of a D−dimensional time series of length T .

We now show that SFPs are identifiable, i.e., if the distributions of two SFPs are equal, then their
corresponding parameters Z and F are also equal (upto permutation).
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Theorem 3 (Identifiability of SFPs). If we have two SFPs X = SFP(Z,F , pε) and Y =

SFP(Z̃, F̃ , qε) where none of the rows of Z or Z̃ are all zero, such that p(X(x)) = p(Y(x)) for
every x ∈ G, then Z = P Z̃ and F = F̃ for some permutation matrix P .

Proof. Note that, for every v ∈ RT ,

p(X(x) = v) = p(Y(x) = v)

=⇒ pε (εx = v − y) = qε (ε̃x = v − ỹ)

where y = F⊤
x Z and ỹ = F̃x

⊤
Z̃. Since pε and qε are normally distributed, this can only be true

when

y = ỹ

=⇒ F⊤
x Z = F̃x

⊤
Z̃ ∀x ∈ G

=⇒
D∑
j=1

Fψj
(x)zjt =

D∑
j=1

Fψ̃j
(x)z̃jt ∀x ∈ G, t ∈ [T ]

=⇒
D∑
j=1

Fψj
(x)zjt −

D∑
j=1

Fψ̃j
(x)z̃jt = 0 ∀x ∈ G, t ∈ [T ] (12)

Suppose {ψ1, . . . , ψD} ∩ {ψ̃1, . . . , ψ̃D} = ∅. Then, this would imply that zjt = z̃jt = 0 ∀j, t,
which is a contradiction since we assume that none of the time series are all 0. This im-
plies that {ψ1, . . . , ψD} ∩ {ψ̃1, . . . , ψ̃D} ̸= ∅. Assume V =

{
(i, j) : ψi = ψ̃j

}
and de-

fine I = {i : ∃j such that (i, j) ∈ V }, J = {j : ∃ i such that (i, j) ∈ V }. Define the function
V : I → J, V(i) = j such that (i, j) ∈ V . Then equation 12 can be written as:

D∑
j=1
j /∈I

Fψj (x)zjt −
D∑
j=1
j /∈J

Fψ̃j
(x)z̃jt +

D∑
j=1
j∈I

Fψj (x)
(
zjt − z̃V(j)t

)
= 0 ∀x ∈ G, t ∈ [T ].

If I ̸= ∅, then zjt = 0 ∀j /∈ I due to the linear independence of Fψj
, which contradicts our

assumption of non-zero time series. Therefore, we must have that {ψ1, . . . , ψD} = {ψ̃1, . . . , ψ̃D},
and zjt = z̃V(j)t ∀j, t.

We now consider the identifiability of the parameters from the observational distribution. To this
end, we first introduce a useful lemma. We adapt the arguments from Lemma 3 in Boussard et al.
(2023) with some modifications.

Lemma 1 (Denoising X). Assume we have two models X and X̃ with spatial factors Fx and F̃x
respectively. Assume that the observational distributions of X(x) and X̃(x) are equal, i.e., the
following property holds:

For any finite set of grid points {x1, . . . , xn} ∈ G, we have

p (X(x1) = χ1, . . . ,X(xn) = χn) = p
(
X̃(x1) = χ1, . . . , X̃(xn) = χn

)
(13)

for all values of (χ1, . . . , χn) ∈ RT × Rn. Then we have that the following holds:

Given any set of points {x′1, . . . , x′k}, we have that p (Y(x′1), . . . ,Y(x′k)) =

p
(
Ỹ(x′1), . . . , Ỹ(x′k)

)
, where Y(x) := F⊤

x Z and Ỹ(x) := F̃⊤
x Z̃.

Proof. Pick n distinct grid points {x1, . . . , xn} ⊆ G such that {x′1, . . . , x′k} ∩ {x1, . . . , xn} = ϕ
and n + k > D. Let L = n + k. Then, we can use the same argument as in Lemma
3 in Boussard et al. (2023) on the distributions of {X(x1), . . . ,X(xn),X(x′1), . . . ,X(x′k)} and{
X̃(x1), . . . , X̃(xn), X̃(x′1), . . . , X̃(x′k)

}
, which we repeat for the sake of completeness.
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Let PX(x1),...,X(xn),X(x′
1),...,X(x′

k)
and PX̃(x1),...,X̃(xn),X̃(x′

1),...,X̃(x′
k)

denote the probability mea-
sures corresponding to the densities

p(X(x1), . . . ,X(xn),X(x′1), . . . ,X(x′k)) :=

∫
p(X(x1), . . . ,X(xn),X(x′1), . . . ,X(x′k),Z) dZ,

p(X̃(x1), . . . , X̃(xn), X̃(x′1), . . . , X̃(x′k)) :=

∫
p(X̃(x1), . . . , X̃(xn), X̃(x′1), . . . , X̃(x′k), Z̃) dZ̃,

respectively.

It is given that:

PX(x1),...,X(xn),X(x′
1),...,X(x′

k)
= PX̃(x1),...,X̃(xn),X̃(x′

1),...,X̃(x′
k)

Define Y(x) := F⊤
x Z and Ỹ(x) := F̃⊤

x Z̃, where Z ∼ p(Z) and Z̃ ∼ p(Z̃). Let Y =

(Y(x1), . . . ,Y(xn),Y(x′1), . . . ,Y(x′k)) and Ỹ =
(
Ỹ(x1), . . . , Ỹ(xn), Ỹ(x′1), . . . , Ỹ(x′k)

)
. Let

PY(x) and PỸ(x) be the distributions of Y(x) and Ỹ(x), respectively. We have:

X(x) = Y(x) + εx, X̃(x) = Ỹ(x) + ε̃x,

where εx ∼ N (0, σ2IT ) and ε̃x ∼ N (0, σ̃2IT ).

Denote ε =
(
εx1 , . . . , εxn , εx′

1
, . . . , εx′

k

)
and ε̃ =

(
ε̃x1 , . . . , ε̃xn , ε̃x′

1
, . . . , ε̃x′

k

)
.

By the additive structure of the model, the equality of measures becomes a convolution equation:

PY ∗ Pε = PỸ ∗ Pε̃,

where Pε and Pε̃ represent the measures of the Gaussian noise terms, and ∗ denotes convolution.

Applying the Fourier transform F to both sides and using the fact that the Fourier transform of a
convolution is the product of the Fourier transforms (Pollard, 2002),

F (PY ∗ Pε) = F
(
PỸ ∗ Pε̃

)
=⇒ F (PY)F (Pε) = F

(
PỸ
)
F (Pε̃) .

Given that the Fourier transform of a zero-mean Gaussian random vector with covariance σ2ILT is
e−

σ2

2 ω
⊤ω , we can rewrite the above as:

F
(
PY(x)

)
(ω)e−

σ2

2 ω
⊤ω = F

(
PỸ(x)

)
(ω)e−

σ̃2

2 ω
⊤ω, ∀ω ∈ RT .

We now aim to show that σ2 = σ̃2. Assume, without loss of generality, that σ2 < σ̃2. Dividing both

sides by e−
σ2

2 ω
⊤ω yields:

F (PY) (ω) = F
(
PỸ
)
(ω)e−

σ̃2−σ2

2 ω⊤ω, ∀ω ∈ RLT .

Here, e−
σ̃2−σ2

2 ω⊤ω is the Fourier transform of a Gaussian distribution with covariance (σ̃2−σ2)ILT .
However, note that the left-hand side is the Fourier transform of a distribution supported on the
column span of Fx, which lies in a D-dimensional subspace of RLT . In contrast, the right-hand
side corresponds to a distribution with full support in RLT , as it involves the convolution of PỸ
with a LT -dimensional Gaussian random variable. This is a contradiction, as the supports of the
distributions on both sides must match.

Thus, we must have σ2 = σ̃2.

Finally, with σ2 = σ̃2, we conclude that:

F (PY) = F
(
PỸ
)
,

PY = PỸ .

Marginalizing out the variables Y(x1), . . . ,Y(xn) and Ỹ(x1), . . . , Ỹ(xn) yields the desired result.
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Theorem 4 (Identifiability of the latents). Suppose we have two spatial factor processes X(x) and
X̃(x) with spatial factors Fx and F̃x respectively, generated from linearly independent families

F = {fψ1
, . . . , fψD

} and F̃ =
{
fψ̃1

, . . . , fψ̃D

}
respectively.

Suppose the observational distributions of X(x) and X̃(x) are equal, i.e., the following property
holds:

For any finite set of grid points {x1, . . . , xn} ∈ G, we have

p (X(x1) = χ1, . . . ,X(xn) = χn) = p
(
X̃(x1) = χ1, . . . , X̃(xn) = χn

)
(14)

for all values of (χ1, . . . , χn) ∈ RT × Rn.

Then the latent variable distribution is identifiable upto transformation by an invertible matrix.

Proof. Since equation 14 holds, we can apply Lemma 1, by which we have that:

p (Y(x1) = y1, . . . ,Y(xn) = yn) = p
(
Ỹ(x1) = y1, . . . , Ỹ(xn) = yn

)
(15)

∀ (y1, . . . ,yn) ∈ RT × Rn where Y(x) = F⊤
x Z.

Since the family F is linearly independent, we can pick D points {x1, . . . , xD} from G such that

F =

fψ1
(x1) · · · fψD

(x1)
...

...
fψ1

(xD) · · · fψD
(xD)

 =

−−−− F⊤
x1

−−−−
...

...
...

−−−− F⊤
xD

−−−−


is full rank 1.

Similarly, we can pick D points {x̃1, . . . , x̃D} from G such that

F̃ =

fψ̃1
(x̃1) · · · fψ̃D

(x̃1)
...

...
fψ̃1

(x̃D) · · · fψ̃D
(x̃D)

 =

−−−− F̃⊤
x̃1

−−−−
...

...
...

−−−− F̃⊤
x̃D

−−−−


is full rank.

Define:

Y =

Y(x1)
...

Y(xD)

 , Ỹ =

 Ỹ(x1)
...

Ỹ(xD)

 .
Let y = (y1, . . . ,yD) and ỹ = (ỹ1, . . . , ỹD).

Observe that

Y = FZ

Ỹ = F̃Z̃

Using the formula for transformation of random variables,

p (Y = y) = |det (F)| p
(
Z = F−1y

)
, ∀y ∈ RD×T

p
(
Ỹ = y

)
=
∣∣∣det(F̃)∣∣∣ p(Z̃ = F̃−1y

)
, ∀y ∈ RD×T

1See for example https://math.stackexchange.com/questions/3516189/
prove-existence-of-evaluation-points-such-that-the-matrix-has-nonzero-determinan
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Applying equation 15 for the points {x1, . . . , xD}, we can obtain

|det (F)| p
(
Z = F−1y

)
=
∣∣∣det(F̃)∣∣∣ p(Z̃ = F̃−1y

)
, ∀y ∈ RD×T

=⇒ p
(
Z = F−1y

)
=

∣∣∣det(F̃)∣∣∣
|det (F)|

× p
(
Z̃ = F̃−1y

)
, ∀y ∈ RD×T .

Making the substitution z = F−1y and writing M = F̃−1F yields:

p (Z = z) =

∣∣∣det(F̃)∣∣∣
|det (F)|

× p
(
Z̃ = Mz

)
, ∀y ∈ RD×T .

for the invertible matrix M. Thus, we can recover the latent distribution up to transformation via an
invertible matrix.

A.2 IMPLEMENTATION DETAILS

A.2.1 LOSS TERMS

We explain how we implement the various loss terms in equation 7.

The first term log pθ

(
X(1:T ),n|Z(1:T ),n,F

)
in equation 7 represents the conditional likelihood of

the observed data X(1:T ),n conditioned on Z(1:T ),n and F. This is calculated as the mean squared
error (MSE) between the recovered and original time series:

log pθ

(
X(1:T ),n|Z(1:T ),n,F

)
=

L∑
ℓ=1

∥∥∥X(1:T ),n
ℓ − X̂

(1:T ),n
ℓ

∥∥∥2
where X̂

(t),n
ℓ = gℓ

(
[FZ]

(t)
ℓ

)
is the reconstructed time-series from the spatial factor F and latent

time series Z sampled from the variational distributions.

The term log pθ

(
Z(1:T ),n|G

)
denotes the conditional likelihood of the latent time-series given the

sampled graph G.

For SPACY-L, this is implemented as follows:

log pθ

(
Z(1:T ),n

∣∣∣G) =

T∑
t=L

D∑
d=1

log pθ

(
Z

(t),n
d

∣∣∣PadG(≤ t)
)

=

T∑
t=L

D∑
d=1

Z(t),n
d −

τ∑
k=0

D∑
j=1

(G ◦W )
k
j,d × Z

(t−k),n
j

2

.

For SPACY-NL, the equation follows from the conditional spline flow model employed in Durkan
et al. (2019); Gong Wenbo & Nick (2022). The conditional spline flow model handles more flex-
ible noise distributions, and can also model history-dependent noise. The structural equations are
modeled as follows:

Z
(t)
d = fd

(
PadG(< t),PadG(t)

)
+ wd

(
PadG(< t)

)
,

where fd
(
PadG(< t),PadG(t)

)
takes the form presented in equation 2. The spline flow model uses

hypernetwork that predicts parameters for the conditional spline flow model, with embeddings E ,
and hypernetworks ξη and λη . The only difference is that the output dimension of ξη is different,
being equal to the number of spline parameters.

The noise variables η(t)d are described using a conditional spline flow model,

pwd
(wd(η

(t)
d ) | PadG(< t)) = pη(η

(t)
d )

∣∣∣∣∣∂(wd)−1

∂η
(t)
d

∣∣∣∣∣ , (16)
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with η(t)d modeled as independent Gaussian noise.

The marginal likelihood becomes:

log pθ

(
Z(1:T ),n

∣∣∣G) =

T∑
t=τ

D∑
d=1

log pθ

(
Z

(t),n
d

∣∣∣PadG(< t),PadG(t)
)

=

T∑
t=τ

D∑
d=1

log pwd

(
u
(t),n
d

∣∣∣PadG(< t)
)

(17)

where u(t),nd = Z
(t),n
d − fd

(
PadG(< t),PadG(t)

)
.

The prior distribution p(G) is modeled as follows:

p(G) ∝ exp

(
−α

∥∥∥G(0:T )
∥∥∥2 − σh

(
G0
))

. (18)

The first term is a sparsity prior and h (G0) is the acyclicity constraint from (Zheng et al., 2018).

The terms Eqϕ(Z(1:T ),n|X(1:T ),n)

[
− log qϕ

(
Z(1:T ),n|X(1:T ),n

)]
,Eqϕ(G)[− log qϕ(G)] and

Eqϕ(F)[− log qϕ(F)] represent the entropies of the variational distributions and are evaluated
in closed form, since their parameters are modeled as samples from Gaussian and Bernoulli
distributions.

Finally, the prior term p(F ) is evaluated based on the assumed generative distribution mentioned in
equation 3.

A.2.2 SPATIAL FACTORS

The low-dimensional latent time series are mapped to the high-dimensional grid by the spatial factors
F ∈ RL×D. The dth column of F represents the influence of the dth latent variable on each grid
location. To effectively capture the correlation between spatially proximate grid points under a
single latent variable, we model the spatial factors using radial basis functions (RBFs), following
Manning et al. (2014); Farnoosh & Ostadabbas (2021). RBFs not only ensure locality, but they are
also smooth functions that are parameter-efficient. We assume that the center parameter ρd of each
kernel is sampled from a standard normal distribution and then passed through a sigmoid function
to obtain normalized outputs between [0, 1]. The scale parameter γd comes from a standard normal
distribution. Mathematically,

ρd = σ(N (0, I)), γd ∼ N (0, I) , (19)

Fℓd = RBFd(xℓ;ρd,γd) = exp

(
−||xℓ − sigmoid(ρd)||2

exp(γd)

)
, (20)

where xℓ refers to the spatial coordinates of the ℓth grid point, and σ(·) denotes the sigmoid function.

To capture more complex spatial structures, we model the scale γd by introducing two additional

parameter matrices A and B. The matrix A =

[
a b
c d

]
and the vector B =

[
e
g

]
together influence

the covariance structure of the RBF. Specifically, the covariance matrix Σ is constructed as:

Σ = AAT ◦ exp(B), (21)

where ◦ denotes the element-wise (Hadamard) product, and exp(B) =

[
exp(e) 0

0 exp(g)

]
ensures

a positive-definite structure of Σ.

This covariance structure enables the RBF to capture anisotropic scaling in different directions. The
matrix AAT provides a base covariance matrix, while the exponential transformation of B ensures
that the resulting matrix is positive definite. As a result, the RBF kernel, which determines the
spatial factor F, is defined as:

Fℓd = exp

(
−1

2
∥xℓ − ρd∥2Σ−1

)
, (22)
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where ∥xℓ − ρd∥2Σ−1 = (xℓ − ρd)
TΣ−1(xℓ − ρd) represents a Mahalanobis distance, allowing the

RBF to have a more sophisticated shape that depends on the learned covariance Σ.

A.2.3 TRAINING DETAILS

We train the SPACY model for 700 epochs, using an 80/20 training and validation split to evaluate
the validation likelihood during training. To prelocal minima caused by performing causal discovery
on poorly inferred latent representations.

Freezing Latent Causal Modules. To stabilize the training and ensure accurate causal discovery,
we freeze the parameters of the latent SCM and causal graph, and only train the spatial factors
and encoder for the first 200 epochs. This allows the spatial factor parameters to be learned without
interference from incorrect causal relationships in the latent space. Once these modules are unfrozen
after 200 epochs, the complete forward model and variational distribution parameters are trained
jointly for the remaining 500 epochs.

This approach ensures that the inferred latent representations are sufficiently robust before learning
the causal structure of the latent SCM.

A.2.4 EVALUATION DETAILS

The mean correlation coefficient (MCC) is adapted as a measure of alignment between the inferred
and true latent variables, widely used in causal representation learning works (Yao et al., 2022b;a).
Here, MCC is computed as the mean of the correlation coefficients between each pair of true and
inferred latent variables, providing a balanced metric that captures how well the inferred variables
match the true underlying causal structure.

To evaluate the accuracy of inferred causal graphs and representations, we match the nodes of the
inferred graph to the ground truth using a permutation-invariant approach. Specifically, we apply
the Hungarian algorithm to find the optimal permutation of nodes that aligns the inferred graph’s
adjacency matrix with the ground truth, minimizing the discrepancies between them. This optimal
permutation is then used to calculate both the F1 Score and the Mean Correlation Coefficient (MCC),
providing consistent node alignment across these metrics.

A.3 SYNTHETIC EXPERIMENT

This section provides more details about how we set up and run experiments using SPACY on
synthetic datasets.

A.3.1 DATASET GENERATION

The spatial decoder, represented by the function gℓ, is configured either as linear or nonlinear, de-
pending on the experiment setting. For nonlinear scenarios, we use randomly initialized MLPs. We
generate N = 100 samples of data, with T = 100 time length each and represented on a grid of size
100× 100. This brings the total data dimension of 100× 100× 100× 100. We vary the number of
nodes (D = 10, 20 and 30) in each setting.

For ground-truth latent, we generate two separate sets of synthetic datasets: a linear dataset with
independent Gaussian noise and a nonlinear dataset with history-dependent noise modeled using
conditional splines Durkan et al. (2019). We generate one random graph (specifically, Erdős-Rényi
graphs) and treat them as ground-truth causal graphs.

Latent: Linear SCM We model the data as:

Z
(t)
d =

τ∑
k=0

D∑
d′=1

(G ◦W )kd′,d × Zdt−k + ηtd (23)

with ηtd ∈ N (0, 0.5). Each entry of the matrix W is drawn from U [0.1, 0.5] ∪ U [−0.5,−0.1]
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Latent: Non-linear SCM We model the data as:

Z
(t)
d = fd

(
PadG(< t),PadG(t)

)
+ η

(t)
d

where fd are randomly initialized multi-layer perceptions (MLPs), and the random noise η(t)d is
generated using history-conditioned quadratic spline flow functions (Durkan et al., 2019).

Spatial Factors To generate the spatial factor matrices F, we first sample the centers ρd of the
RBF kernels uniformly over the grid while enforcing a minimum distance constraint to ensure sepa-
ration between centers. Specifically, the minimum distance between any two centers is set to be 1

10
of the grid dimension. The scales γd are sampled to define the extent of each RBF kernel, drawn
uniformly from the range U [3, 6]. With these parameters, each entry of the spatial factor matrix Fℓd
is determined by the RBF kernel as follows:

Fℓd = exp

(
−||xℓ − ρd||2

exp(γd)

)
,

where xℓ denotes the spatial coordinates of the ℓth grid point, ρd is the center, and γd is the scale of
the dth latent variable.

Spatial Mapping For the generation of Xℓ, we pass the product of the spatial factors and the
latent time series through a non-linearity gℓ:

Xℓ = gℓ ([FZ]ℓ) + εℓ, εℓ ∼ N (0, σ2
ℓ I) (24)

where gℓ is the spatial mapping. It is implemented as a randomly initialized multi-layer perception
(MLP) with the embedding of dimension 1 in the non-linear map setting, or as an identity function
in the linear map setting. εℓ is the grid-wise Gaussian noise added.

Baselines For all baselines, the default hyperparameter values are used. For Mapped-PCMCI, we
referred to the implementation by (Tibau, 2022)2. For Linear-Response we refer to the implemen-
tation by (Falasca et al., 2024)3For LEAP and TDRL, the convolution neural network encoder and
decoder are chosen as this architecture fits our data’s modality. For LEAP we followed closely with
the CNN encoder and Decoder architecture for the mass-spring system experiment, implementation
details can be viewed here (Yao et al., 2022b) 4. For TDRL we followed closely with the CNN
encoder and Decoder architecture for the modified cartpole environment experiment with imple-
mentation details here (Yao et al., 2022a)5.

A.3.2 QUALITATIVE RESULTS

Figure 10 demonstrates our model’s performance with the comparison between ground truth and
inferred spatial factors F . Overall the modes from inferred spatial factors align well with the ground
truth in terms of centers and scales, with minor deviations in shape. As the latent SCM becomes
non-linear, the model shows some slight errors with at most 1 missing mode, maintaining the overall
spatial representation recovery. This is also reflected by the quantitative results as performance falls
slightly short for non-linear SCM.

A.3.3 VISUALIZATION DETAILS

In this section, we describe the visualization process of spatial factors for both synthetic and Global
temperature experiments, which aims to represent the spatial influence of different modes on a grid
by highlighting the areas where certain modes are active. The method identifies significant regions
in the grid by applying a threshold based on a chosen percentile of the weights (for example, 95%).
This thresholding helps to isolate areas where a mode’s spatial influence is particularly strong, cre-
ating a mask that highlights these regions.

2Mapped-PCMCI: https://github.com/xtibau/savar
3Linear-Response: https://github.com/FabriFalasca/Linear-Response-and-Causal-Inference
4LEAP: https://github.com/weirayao/leap
5TDRL: https://github.com/weirayao/tdrl
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Linear SCM, 
Linear Mapping 

Linear SCM, 
Non-linear Mapping 

Non-Linear SCM, 
Linear Mapping 

Non-Linear SCM, 
Non-linear Mapping 

Figure 10: Visualization of the ground-truth and inferred spatial factors for different combinations
of linear and nonlinear functions for SCMs and spatial mappings (top row: ground-truth, bottom
row: predicted/inferred). We demonstrate the visualization when latent dimension D = 10

.

Figure 11: The causal discovery performance (F1 score) of SPACY using different kernel functions
as spatial factors. Average of 5 seeds reported

These masked regions are then combined to generate a comprehensive view of how all modes influ-
ence the spatial grid. The visualization distinguishes the areas affected by different modes, allowing
for easy identification of their spatial patterns and overlaps. This approach allows for a clear visual
interpretation of the complex spatial structure represented by the modes, facilitating the analysis of
their respective influences and interactions.

For complex spatial factors and graphs, we use a merging process that simplifies the causal global
dynamics by combining nodes based on the proximity of node centers. The process identifies merg-
ing clusters in the grid by applying a threshold based on a chosen percentile of all the pair-wise
distances (for example, lower 5%), and merging nodes that fall below the threshold.

A.4 ABLATION STUDY
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Different Kernels To assess the robustness and generalizability of SPACY’s variational inference
framework, we experiment with different kernel functions in modeling spatial-temporal dynamics.
We use the synthetic dataset with linear SCM and nonlinear spatial mapping.

The Matérn kernel is a generalization of the RBF kernel that introduces an additional parameter ν
controlling the smoothness of the function. By adjusting ν, the Matérn kernel can model functions
with varying degrees of smoothness, providing more flexibility than the RBF kernel. We test SPACY
with the Matérn kernel using two settings: ν = 1.5 and ν = 2.5.

We replace the RBF kernel in SPACY with the Matérn kernel using ν = 1.5 and ν = 2.5. The in-
ferred spatial modes’ general locations and scales align well with the ground truth across all kernel
settings (illustrated in Figure 12). This consistency demonstrates that SPACY’s spatial representa-
tions are robust to the choice of kernel function.

Figure 11 presents the F1-Score and MCC for SPACY using the RBF kernel and both Matérn kernel
settings. The results show that SPACY achieves similar or even competitive performance with the
Matérn kernels compared to the RBF kernel, indicating that the variational inference framework
effectively generalizes across different kernel functions.

The Matérn kernel is a generalization of the Radial Basis Function (RBF) kernel and is widely
used in spatial statistics and machine learning due to its flexibility in modeling functions of varying
smoothness. The Matérn kernel is defined as:

kMatérn(r) =
21−ν

Γ(ν)

(√
2ν
r

ℓ

)ν
Kν

(√
2ν
r

ℓ

)
,

where:

• r = ∥x− x′∥ is the Euclidean distance between points x and x′,
• ℓ is the length scale,
• ν > 0 controls the smoothness of the function,
• Γ(·) is the gamma function,
• Kν(·) is the modified Bessel function of the second kind.

For specific values of ν, the Matérn kernel simplifies to closed-form expressions:

• When ν = 1.5:

k1.5Matérn(r) =

(
1 +

√
3r

ℓ

)
exp

(
−
√
3r

ℓ

)
.

• When ν = 2.5:

k2.5Matérn(r) =

(
1 +

√
5r

ℓ
+

5r2

3ℓ2

)
exp

(
−
√
5r

ℓ

)
.

These formulations allow us to model functions with different degrees of smoothness, providing a
more flexible approach compared to the RBF kernel.

From the visualization in 12 when D = 10, despite changing the kernel function type, the modes
from inferred spatial factors align well with the ground truth in terms of location and scale. This
suggests that SPACY is robust to the kernel choice in modeling the spatial factors.

A.5 HYPERPARAMETER DETAILS

In this section, we list the hyperparameters choices for SPACY in our experiments.

For our SPACY model, we used an augmented Lagrangian training procedure to enforce the acyclic-
ity constraint in the model (Zheng et al., 2018). We closely follow the procedure employed by
Gong Wenbo & Nick (2022) for scheduling the learning rates (LRs) across different modules of our
model.
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Figure 12: Overview of the visualization of the spatial factor when using different kernel functions.
We compare inferred spatial factors using RBF, Matern Kernel (ν = 1.5), and Matern Kernel (ν =
2.5) with the ground truth spatial factors

Dataset Synthetic-L (D = 10, 20, 30) Synthetic-NL Global Temperature
Hyperparameter
Matrix LR 10−3 10−3 10−3

SCM LR 10−3 10−3 10−3

Spatial Encoder LR 10−3 10−3 10−3

Spatial Factor LR 10−2 10−2 10−2

Spatial Decoder LR 10−3 10−3 10−3

Batch Size 100 100 100
# Outer auglag steps 60 60 60
# Max inner auglag steps 6000 6000 6000
fℓ embedding dim none 64 none
Sparsity factor λ 10 10 10
Spline type None Quadratic None
gℓ embedding dim 32 32 32

Table 1: Table showing the hyperparameters used with SPACY.

For the Synthetic-L, Synthetic-NL, and Global Temperature datasets, the outer augmented La-
grangian (auglag) steps are set to 60, with a maximum of 6000 inner auglag steps. This provides an
effective balance between model convergence and training efficiency, ensuring thorough exploration
of the parameter space without premature stopping.

We used the rational spline flow model described in Durkan et al. (2019). We use the quadratic or
linear rational spline flow model in all our experiments, both with 8 bins. The MLPs fℓ and gℓ have
2 hidden layers each and LeakyReLU activation functions, where e is the embedding dimension. We
also use layer normalization and skip connections. Table 1 summarizes the hyperparameters used
for training.

A.6 GLOBAL TEMPERATURE

The Global Temperature Dataset is a comprehensive, mixed real-simulated dataset encompassing
monthly global temperature data spanning the years 1999 to 2001. It contains 7531 simulated sam-
ples, each with a time sequence of 24 months, covering the entire globe at a fine spatial resolution.
The grid size is 145 × 192, which corresponds to a spatial division of approximately 1.24◦ latitude
and 1.875◦ longitude. This spatial resolution allows the dataset to provide detailed global coverage,
capturing temperature variations across diverse geographical regions. The resulting data dimensions
are 7531 × 24 × 145 × 192, representing the total number of samples, the temporal sequence, and
the spatial grid, respectively.

To facilitate causal analysis of complex climate phenomena beyond seasonal patterns, a de-
seasonality procedure was applied. This normalization process involved computing the monthly
mean for each month across all years and then adjusting the data accordingly (for example, normal-
izing all January data by the mean of all January values). This approach aims to remove regular
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seasonal influences, thereby emphasizing more intricate climate events and enabling deeper causal
learning and understanding of global temperature dynamics.

For our analysis, we employ the SPACY method to uncover latent representations within the data.
These representations capture regions of similar weather properties and help identify causal links
between these regions and weather phenomena occurring elsewhere. The methodology uses a linear
functional relationship paired with multi-layer perceptron (MLP) spatial decoding. Specifically, we
use 25 latent variables (denoted as D = 25) and a maximum lag of three months (τ = 3).

Figure 13: Visualization of the spatial nodes inferred by Varimax-PCA from the Global Temperature
Dataset

Figure13 demonstrates the visualization of the individual modes being reduced from Varimax-PCA.
The method did a decent interpolation as some nodes/components exhibit clear spatial patterns that
are interpretable in terms of physical or location-based information. However, multiple components
are more diffuse and have less interpretable locations. For instance, it may be hard to attribute
physical location for node 13, 14, 19, 25. There are also clusters of nodes that show similar spatial
features, such as node 4, 6, suggesting they capture similar underlying components.

The visualization of the modes and causal graph deduced by Mapped-PCMCI is shown in Figure 14.
While the locality pattern can be observed in important regions such as Australia, Africa, and East
Asia, many of the inferred modes appear diffused across the map. This suggests that the underlying
spatial structure is not cleanly partitioned into distinct, interpretable modes.
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a) Learned spatial factors
and causal graph

Figure 14: Visualization of the spatial factor inferred by Varmax-PCA and causal graph inferred by
PCMCI+, following the procedure in section A.3.3
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