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Abstract

Social robotics has already demonstrated benefits across sev-
eral areas, including robot-assisted education and health-
care. The use of plan-based approaches, which underpin the
human-robot interaction with a planning model, are promis-
ing, especially in domains where collecting data in advance is
challenging (e.g., medical domains). However, although the
careful management of engagement during an interaction is
critical for the success of social robots, the subject has not
been fully explored in the context of plan-based solutions.
In this paper we focus on a plan-based social robot system
recently developed for use in a medical setting, and demon-
strate how we have extended our robot system to maintain,
monitor and manage real-time user engagement. We present
an empirical evaluation where we sample the possible inter-
actions that our system supports.

Introduction

Socially assistive robots (SARs) are embodied devices de-
signed to interact with humans by communicating through
mechanisms compatible with a human-centric approach
(Feil-Seifer and Mataric 2005). The primary focus of SARs
is to provide necessary aid to humans by engaging with
them socially. SARs have proven helpful by assisting and
supporting people experiencing stress or anxiety, such as
children undergoing medical procedures (Trost et al. 2019;
Moerman, van der Heide, and Heerink 2018; Dawe et al.
2019). Studies have compared short-term single-procedure
exposure or long-term companionship (Ligthart, Neerincx,
and Hindriks 2022), as well as the effectiveness of alterna-
tive robot-delivered interventions (Ali et al. 2019; Smakman
et al. 2021; Rossi, Larafa, and Ruocco 2020).

In order that a social robot can have the intended pos-
itive impact on the user requires that the robot can initi-
ate and maintain the user’s engagement. In (de Haas, Vogt,
and Krahmer 2021) they demonstrate that the selected strat-
egy can impact on engagement and in (Szafir and Mutlu
2012; Del Duchetto and Hanheide 2022) they demonstrate
the use of predicted engagement values on-line to alter the
robot’s behaviour. Within long-term interactions, reinforce-
ment learning frameworks have been used to learn poli-
cies that maximise engagement (Del Duchetto and Han-
heide 2022). However, existing work in social robotics for
short-term interactions has typically used predicted engage-

ment values in order to adapt scripted behaviour (e.g., in-
crease volume of delivery), or interject re-engagement be-
haviours (Szafir and Mutlu 2012), limiting the scope of the
strategies investigated.

In this work we consider short-term interactions between
a robot and a child user. We introduce an existing system,
which adopts a plan-based approach to generating interac-
tions for supporting the child user within a medical setting.
These interactions are specialised for the specific child, and
their medical pathway. We then extend this planning model,
and system in order to support the management of user en-
gagement. The starting point for this is an existing model
of engagement (O’Brien and Toms 2008), which identifies
three stages: point of engagement, sustained engagement,
and disengagement. We ground their model of engagement
in our scenario and incorporate it into the existing interac-
tion planning model. We then present our framework, which
monitors user engagement, and updates the planning model
to reflect its prediction of the user’s real-time engagement,
allowing the robot’s strategy to be updated. In the evaluation
we simulate patient pathways, and examine how the system
updates the interaction in response to the simulated user’s
engagement. The generated interactions follow the model of
engagement, and demonstrate changes in strategy, appropri-
ate behaviour selection, and changes to the overall aims of
the interaction.

Background

In this section we introduce the specific medical scenario
that we consider in this work, and then define the planning
formalism that use for specifying the robot’s behaviour.

A Companion Robot for a Medical Procedure

In this work we focus on a particular medical setting, which
involves supporting children during a painful and distress-
ing medical procedure. In the specific clinical scenarios that
we are targeting, the robot is placed in a small room to-
gether with the patient, along with one or more carers and
a Health Care Provider (HCP) during the course of a single
clinical procedure. The intravenous insertion (IVI) was iden-
tified as an appropriate procedure: This is one of the most
commonly performed procedures in the context of children
seeking medical care, and also one that can be painful and
distressing for the child and for their parents or caregivers.



It has been shown that a companion robot can be effective at
reducing the distress caused by IVI (Ali et al. 2019).

Planning Model

In our approach, the robot’s behaviours are underpinned by
a planning model, which uses a declarative representation
to represent the domain knowledge and possible interac-
tions concisely. We use a fully observable non-deterministic
(FOND) planning model based on (Muise, Mcllraith, and
Beck 2012), which can be defined as a tuple (F,Z, G, A),
with fluents F, initial state Z (a full assignment to ), a par-
tial goal state G, and a set of actions 4. Each action a € A
is a pair (pre,, eff,), with a precondition pre, (a subset
of F that must hold) and an effect eff , (a set of possible
outcomes—fluents that are made true or false). If an action
defines one outcome, it is a deterministic action; otherwise,
it is a non-deterministic action. Each action application re-
sults in an outcome, but the outcome cannot be chosen by
the planner. A solution to the problem is a branched plan 7,
which describes the sequence of actions that will achieve the
goal, given any outcome.

Related Work

Technological systems based on SARs (Feil-Seifer and
Mataric 2005) provide unique opportunities to establish new
mechanisms that use human-like social communication as a
means to generate embodied interaction, with reported bene-
fits in various domains, such as social, behavioural, physical,
and cognitive well-being in different populations (Amirova
et al. 2021; Henschel, Laban, and Cross 2021), in applica-
tions such as robot-assisted education (Johal 2020), autism
diagnosis and therapy (Scassellati et al. 2018; Gomez Este-
ban et al. 2017),and Alzheimer therapy and elderly care (Ta-
pus, Tapus, and Mataric 2009; Wada et al. 2004). In our case
study a SAR is used in a paediatric healthcare settings to
help alleviate children’s distress and pain.

The use of planning to support interaction has a long
history, and planning techniques have been applied previ-
ously in a range of social robots and interactive systems. Re-
cent examples include (Waldhart, Gharbi, and Alami 2016;
Sanelli et al. 2017; Kominis and Geffner 2017; Papaioan-
nou, Dondrup, and Lemon 2018). The most similar system is
the JAMES social robot bartender (Petrick and Foster 2013,
2020), which directly used an automated planner to choose
the robot’s physical, sensing, and interactive actions.

There is not a single shared interpretation of engagement
in HRI. Attention is typically included (Sidner et al. 2004),
and in some approaches, positive affective response is also
included, e.g., (Poggi 2007). In this work, in order to sepa-
rate the child’s engagement with the interaction with poten-
tial affective response to the medical procedure, we relate
engagement with attention (Sidner et al. 2004).

In (O’Brien and Toms 2008) they present a three stage
model of engagement: point of engagement, sustaining en-
gagement, and disengagement. This model is consistent with
work in HRI with children (Brown and Howard 2013; Leite
et al. 2016), and is the model that we adopt here. There
have been different approaches to sustaining and regain-
ing engagement (Szafir and Mutlu 2012; Cao et al. 2019).

In (Szafir and Mutlu 2012), attention is predicted in real
time, if the user’s engagement reduces the robot modifies
its communication style (e.g., increasing volume, and using
more gestures). In (Cao et al. 2019) they identify three lev-
els of disengagement and use different behaviours for each
level. In the context of children, specific strategies have been
tried (Brown and Howard 2013; Leite et al. 2016). In (Brown
and Howard 2013) they compare verbal and non-verbal re-
engagement strategies and show that verbal strategies are
more effective. In (Leite et al. 2016) they use direct ref-
erence to the child’s disengagement (e.g., ‘Can you please
pay attention?’), but do not observe much benefit. In long-
term interactions it has been demonstrated that reinforce-
ment learning can be effective at improving user engage-
ment, e.g., (Del Duchetto and Hanheide 2022). In our work
we consider interactions that are short-term, and where in-
appropriate choice of actions may cause or increase user dis-
comfort and distress, limiting the applicability of approaches
based on reinforcement learning.

System Overview

We have developed a fully functioning companion robot
for operating in this scenario, which was designed using
both a co-design (involving several stages and children, par-
ents and HCPs) and targeted meetings between the technical
team and the HCPs (Lindsay et al. 2022; Foster et al. 2023;
Lindsay et al. 2024; Ramirez-Duque et al. 2024). We iden-
tified several main stages: introduction, preprocedure (op-
tional site-check), procedure, debrief, and conclusion. The
robot positions itself as a friendly and supportive compan-
ion, setting out positive expectations, and can present var-
ious supportive behaviours, including providing diversions
and humour, practising coping strategies, role modelling,
and providing positive reinforcements.

Our system architecture is composed of several com-
ponents, including social signal processing, an interaction
manager, a planning system, and a robot platform. The target
robot platform is the SoftBank NAO, which is a humanoid
robot with 25 degrees of freedom, which enables it to move
and perform a large variety of actions. Additionally, NAO
is equipped with a speaker, allowing the generation of dif-
ferent stimuli using multiple communication channels, for
example, using verbal language such as speech and body
language through gestures.

The low-level face analysis behaviour module is respon-
sible for detecting the patient’s face, identifying facial land-
marks, head pose, gaze direction, and facial expression.
Based on the above facial features, the social signal process-
ing module estimates the current focus of attention and the
head movement speed. This information is used to estimate
the patient’s emotional state, providing an indirect measure
of affective states such as anxiety, valence, arousal, and en-
gagement which are needed to control system behaviour.

At the centre of the architecture is the interaction man-
ager, which ensures synchronised transitions between the in-
ternal states of the system/robot. The interaction manager in-
tegrates the information from the social signal components
to estimate the user’s affective state. It also makes requests
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Figure 1: A partial plan showing actions (e.g., breathing ex-
ercises and high five), sensing actions (e.g., testing patient
anxiety) and procedure actions (e.g., the preprocedure start).

(raction pp.diverting_behaviour
:parameters (?a - act ?c - category)
:precondition (and (duringpreprocedure)
(is_category ?a ?c) (= ?c diverting)
(not (amperforminganxietymanagement))

:effect (and (has_diverted)
(done_activity ?2a))

Figure 2: PDDL representation of the
pp-diverting behaviour action.

of the planning module, which is used during the interac-
tion to determine the next action based on the current state
and the goal. The planning system is built around the PRP
planning system (Muise, Mcllraith, and Beck 2012), which
supports fully observable non-deterministic (FOND) plan-
ning models (Muise, Mcllraith, and Beck 2012). We use a
planning model to manage the interaction (described below).
Finally, the social stimuli module interprets high-level ac-
tions and generates specific signals for each communication
channel, whether through synthesised speech or non-verbal
communication through gestures and body language.

A Companion Robot Planning Model

Our planning model is designed to capture child robot in-
teractions for our medical setting (see [omitted] for more
details). In our approach, propositional fluents model the
situation in the room and state of the procedure, the pa-
tient’s knowledge state (e.g., the robot has given certain in-
formation about the procedure), the patient’s affective state
(e.g., anxiety of the patient), and the progress of the interac-
tion. The actions in the model can be separated into four
groups: robot behaviour, procedure updates, implicit sig-
nals and explicit queries. For example, Figure 2 presents a
PDDL action representation for a basic diverting robot be-
haviour for use during the preprocedure. The robot can per-
form a range of actions, including: distracting actions (e.g.,
dancing) and calming and instructive actions (e.g., stepping
through breathing exercises); sensing actions for the medi-
cal scenario, e.g., to maintain the progress through the med-
ical procedure; and patient focused sensing actions, e.g., to
determine whether the patient is anxious in the interaction,
each of which is represented in the planning model.

The main interaction captured in the planning model
is structured along the possible patient pathways outlined
with HCPs during the design process. A series of stages
of the interaction were identified (e.g., introduction, pre-

procedure, site-check, procedure, debrief, and conclusion),
and the main variation within this sequence was determined
(e.g., the length of stages like the procedure might vary
considerably). These stages were used to organise the ap-
propriate behaviours in each stage and in order to spec-
ify key objectives for the robot in each stage. For exam-
ple, we can ensure that the robot delivers certain key in-
formation to the patient during the pre-procedure (e.g., re-
garding its role). The model represents the patient’s current
knowledge state, which can be used to select appropriate
continuations of the interaction. Allowing the robot to pro-
gressively develop the child’s current understanding of the
procedure, coping strategies, and level of practice (based on
cognitive-behavioural strategies used in (Jibb et al. 2018)).
Plans generated for the model capture alternative interaction
sequences based on input from the child’s preferences and
choices, variation in the medical pathway, and sensed valu-
ation of the child’s anxiety level.

Specialisation of the Interaction The robot’s behaviour
is specialised through the interaction with the patient, and
the appropriate behaviour is selected using a variety of sens-
ing actions. There is substantial variation in the medical pro-
cedure that can lead to variation in the length of the interac-
tion (Lindsay et al. 2024). The robot also has a selection of
questions that it can ask the user that will impact on the inter-
action, such as asking the user how it can best support them
during the procedure — using calming, or diverting actions.

The robot’s behaviour is also changed based on the pa-
tient’s level of anxiety. An anxiety test sensing action (a
sensing action that determines whether the patient’s anxi-
ety level is OK) determines whether the robot should use
one of its interventions, designed to manage the user’s af-
fective sate. Figure 1 presents part of a branched plan, which
includes the sensing action sense_anxiety. This allows
the plan to capture strategies in alternative cases, e.g., either
high (e.g., selecting an appropriate intervention) or normal
anxiety (e.g., practising breathing exercises).

The aim in this paper is to use this model as a starting
point, and to consider the issue of user engagement. Within
the interaction the robot will provide support and compan-
ionship, and communicate important information regarding
the procedure and possible strategies. However, to maximise
the benefit, the interaction must be engaging for the user.
The remainder of this work considers a framework that can
use this planning model, extend it with a model of engage-
ment, and use it to select behaviours for a robot that will at-
tempt to maintain engagement with a child, while managing
disengagement and re-engagement when necessary.

Extending an Interaction with an Engagement
Model

In this work we focus on social engagement between the
child patient and the robot (see (Oertel et al. 2020) for a
review). We consider the model of engagement as a process
proposed in (O’Brien and Toms 2008) and adopted for child-
robot interactions (Brown and Howard 2013; Leite et al.
2016), which identifies three stages of engagement: point of
engagement, period of engagement, and disengagement. For



(:raction point_of_engagement
:precondition (not (engaged))
:effect (engaged))

(:raction sustain_engagement
:precondition (engaged))

(:raction disengagement
:precondition (engaged)
:effect (not (engaged)))

Figure 3: PDDL representations of the three actions in the
engagement model presented in (O’Brien and Toms 2008).

each of these stages they have identified attributes that can
be associated with the stage. They also observe that these
stages can repeat, and the user can become re-engaged. The
attributes include both aspects of the robot’s behaviour, and
also aspects including its novelty, and its aesthetics. During a
related co-design (Foster et al. 2023), several aspects of the
robot’s aesthetic were identified as very important, includ-
ing its appearance (e.g., welcoming colour and no red eyes),
delivery (e.g., nice sounding voice, with friendly gesturing),
and interaction (e.g., age-appropriate; the robot should have
a backstory). In this section we focus on the behaviour as-
pect of the engagement model (please refer to (Lindsay et al.
2024) for more detail about the overall system design). We
use the model of engagement in (O’Brien and Toms 2008)
with the information from the co-design (Foster et al. 2023),
and the specification of the scenario, in order to characterise
the model’s three main stages in the context of our scenario.
We first present a basic PDDL representation, which cap-
tures the three stages of the model. We then identify aspects
of these stages that are important in our work, and extend
the representation using specific situations in our scenario.

Model of Engagement

We can represent the three stage model of engagement in
a planning model by using a representation of the user’s
engagement: a proposition that is True when the user is
engaged. In this case we use the engaged proposition.
In Figure 3 we present PDDL representations of the three
stages. The point_of_engagement action has the pre-
condition of not engaged and records the transition to
engaged. The sustain_engagement action simply in-
sists that the engaged proposition holds. And finally, the
disengagement action transitions the engaged proposi-
tion back to False.

Sustaining Engagement

It is anticipated that the robot will lead to positive emotional
response, with the child enjoying the interaction. In terms of
maintaining engagement, this will require robot behaviour
that keeps the child’s attention and interest. In order that the
children are interested requires that its behaviours are both
age appropriate, varied, and provide ways for the child to in-
fluence its behaviours. Our baseline model already uses age
appropriate behaviours, and provides opportunities to inter-
act with the system. In this part we extend the baseline model

(:action pp.-diverting_behaviour

:parameters (?a - act ?c0 ?cl - category)
:precondition (and (engaged)

(previous ?c0) (not (= 2c0 2cl))

(not (done_activity ?a)) (= ?cl diverting)

(is_category ?a ?cl) (duringpreprocedure)

(not (amperforminganxietymanagement))
:effect (and (previous ?cl)

(not (previous ?c0)) (done_activity ?a)

(has_diverted)))

Figure 4: PDDL representation of the
pp-diverting behaviour action, which extends
the original model presented in Figure 2, with a simple
model for sustaining engagement (in red).
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Figure 5: After disengagement the planning model captures
the strategy for continuing the interaction. If the disengage-
ment was as a result of a distraction, the system uses a pause
action, before attempting to re-engage the user. In the case
of disinterest, the system first attempts to change strategy,
and if that fails then gives the option to end the interaction.

to incorporate a simple model for sustaining engagement, to
support the planner in making engaging interactions.

Incorporating a Basic Model of Sustaining Engagement
For the purpose of our short-term interaction we adopt a
simple model for sustaining engagement. In particular, we
promote novelty by i. preventing repeated robot behaviours,
and ii. ensuring that adjacent behaviours are of different
categories. We have extended the representations of the
robot behaviours with the sustaining engagement model.
For example, Figure 4 presents the extended PDDL for the
pp-diverting behaviour action (the original was pre-
sented in Figure 2). It incorporates the structure from the
sustain_engagement action (Figure 3), and introduces
a parameter, which represents a robot behaviour (activity),
and the category of the activity. The precondition insists that
the category is different from the previous category, and that
the activity has not already been done. The effect makes the
relevant updates to record that the activity is now done, and
the current action is recorded as the previous action.

Disengagement

Our scenario is set in a typically busy emergency depart-
ment, with continual distraction. Within the room the health
care provider will be moving between stations in order to



(:action end_interaction

:parameters (?a - act)

:precondition (and (engaged) (= ?a bowout)
(high_anxiety) (during_preprocedure)
(performing.-anxiety-management) )

:effect (and (not (engaged))

(done ?a) (interaction_ended)
(not (performing.anxiety_management))))

(raction pause_interaction
:parameters (?a - act ?c - category)
:precondition (and (engaged)
(during_preprocedure) (= ?c info))
(= ?a pause) (ok_anxiety) (previous ?c))
:effect (and (not (engaged)) (doing_pause)
(not (U.requires_proc_info))))

Figure 6: PDDL representation of the end_interaction
and pause_interaction actions, which extends the
disengagement action (Figure 3) for the cases of high
and normal anxiety.

prepare for the procedure, and there might be traffic coming
in and out of the room. We would therefore expect that at
times the patient will become disengaged from the interac-
tion. Disengagement can also be a result of negative affect,
which in our scenario might be caused by boredom, and frus-
tration with the technology. This might be because the robot
is not behaving in a way that the child likes (e.g., they find
the information boring), or they are not able to make the
robot do something they want (e.g., lack of interaction).

In Figure 5 we present the categorisation of disengage-
ment and subsequent strategy in our model. A typical case
is where the user might just have been attracted to some-
thing else (distraction in room), the robot pauses its inter-
action for a brief interval. The pause_interaction ac-
tion (bottom of Figure 6) demonstrates the extension of the
disengagement action to implement a pause in the in-
teraction. This allows a gap while the patient’s attention is
taken somewhere else. The robot will then continue with a
re-engagement action (see below).

An alternative case is that patient becomes disinterested in
the robot (patient disinterest). The first approach is to con-
sider the context that led to the child becoming disengaged
and to alter the strategy in order to respond appropriately
(change strategy). In the co-design it became apparent that
while some children are interested in receiving some infor-
mation about the medical procedure, there are others that
do not. We can therefore interpret the patient’s disengage-
ment during an information task as an opportunity in order
to update the robot’s strategy away from providing informa-
tion, and towards other types of behaviour. As a consequence
we reduce the number of the robot’s information providing
goals (see pause_interaction action in Figure 6).

In the current model there are certain special cases, where
the interaction cannot proceed normally. These points have
been established with HCPs as constraints on the space of
patient pathways that will be considered during the future
clinical trials. These include situations where there have

(:action introduction
:parameters (?a - activity)
:precondition (and (not (engaged))
(= ?a intro) (pre-_interaction))
:effect (and (engaged) (during-interaction)
(not (pre_interaction))))

(raction query._activity_preference

:parameters (?al ?a2 - act ?cl ?c2 - cat)

:precondition (and (not (engaged))
(is_category ?al ?cl) (= ?c2 diverting)
(is_category ?a2 ?2c2) (not (= 2al 2a2)))

:effect (and (engaged)
(Upreference_set)
(oneof (U.selected 7al)
(U_selected ?a2))))

Figure 7: PDDL representation of the introduction
and query_activity_preference actions, which ex-
tend the point_of_engagement action (Figure 3) for the
cases of the robot’s introduction to initiate the interaction
and using a user query to re-engage the child.

been IVI procedure complications, potentially leading to an
emergency situation and making further participation in the
trial inappropriate. Alternatively, there are situations where
robot intervention might fail (e.g., the patient may be dis-
engaged, or their anxiety may continue to be high after in-
tervention). A concern raised during co-design was that the
robot does not become an additional noise in the room. In
particular, in some case the patient will not engage with the
robot. This can occur even if the patient is distressed. In
these cases the robot should back off, otherwise it may cause
further distress. The end_interaction action (Figure 6)
presents one of these situations for situations with high pa-
tient anxiety and no engagement.

Point of Engagement

The first stage in the model of engagement is the point of
engagement, which includes both the initial engagement, as
well as possible re-engagement.

Initial Engagement The start of the interaction is very im-
portant for setting the expectations of the child. In the initial
point of engagement the robot attempts to position itself as
a companion for the procedure. It attempts to set up positive
expectations for the child: “I am so excited to play with you
today”, and sets its role as friendly and supportive: “let’s do
this together”. This provides an outline of how the robot can
help the child during the interaction. The introduction
action (see Figure 7) starts the interaction, and demonstrates
the extension of the point_of_engagement action. The
action introduces the activity parameter, which is associated
with the robot’s introduction behaviour.

Re-engaging User After Disengagement Disengagement
is a common part of any interaction, however, previous
research has shown that overall engagement can be im-
proved through the appropriate use of re-engagement strate-
gies (Cao et al. 2019). Our primary re-engagement strategy
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Figure 8: Low-level face analysis pipeline using Nvidia
Deepstream framework.

involves asking the child their preference on the next activ-
ity. This is because interaction can lead to better engagement
with children (Ligthart, Neerincx, and Hindriks 2020). In
this case the robot will offer a choice of alternative next be-
haviours (‘would you like me to dance or sing next?’). This
is captured by the query_activity_preference ac-
tion (see Figure 7 bottom). The action defines two outcomes:
a preference for activity one (e.g., dancing), or a preference
for activity two (e.g., singing). In this case we force that at
least one activity is a diverting activity. The next steps are to
implement the suggested behaviour.

The selection of the appropriate re-engagement actions is
made by the planner, which allows it to make the choice
in a context sensitive manner. For example, during the pre-
process, the user can select between different behaviours,
including diverting and calming. However, during the site-
check the patient must be still, and the robot offers only
calming actions. Another example is while the HCP is car-
rying out the actual procedure, where the robot cannot rely
on direct responses from the child. In this case the robot in-
stead uses an alternative strategy, where a highly diverting
actions is selected. In these cases, the selection of user op-
tions, and appropriate behaviours is backed by the planning
model, which ensures that the choices are appropriate for
the context, and that there are appropriate behaviours for the
remainder of the interaction.

Monitoring User Engagement

One of our system’s key features is its ability to select the
appropriate behaviour based on the user’s level of engage-
ment with the robot. This is achieved within a pipeline that
aims to predict the patient’s visual focus of attention. Due
to the physical constraints of the robot deployment, this was
limited to the patient’s head analysis — It has been demon-
strated that head orientation and eye-gaze direction can be
used to estimate a child’s engagement with a robot (de Haas,
Vogt, and Krahmer 2021). In fact, predicting the patient’s vi-
sual focus of attention automatically in this scenario proves
to be challenging due to various limiting factors: 1.) There
is limited space near the patient, and constant staff move-
ment causes occlusion. 2.) The patient is likely to be wear-
ing a surgical mask. 3.) The system must be portable and

mobile; it must be able to move between the different emer-
gency rooms with agility, which reduces the possibility of
using fixed cameras and Internet connections via LAN and
WLAN due to interference.

The automatic facial analysis pipeline is based on Nvidia
DeepStream SDK and was deployed using a Jetson Nano
board. During a practical application, the head position and
3D orientation, visual attention and the speed of movement
of the patient’s head are estimated. We used the FaceX-Zoo
framework in the face and landmarks detection stage (Wang
et al. 2021). We selected two models, a PyTorch imple-
mentation of the RetinaFace model (Deng et al. 2019) and
the Practical Facial Landmark Detector (PFLD) (Guo et al.
2019). These models were retrained using the MegaFace-
Mask database, improving detection in images of subjects
while wearing a mask.

Taking advantage of ready-to-use hardware-accelerated
plugins, we used TensorRT, NVIDIA’s inference accelerator
runtime, for model inference. In addition, we used built-in
plugins, including the Nvidia-adapted Discriminative Cor-
relation Filter (DCF) tracker and the GazeNet inference.
GazeNet detects the patient’s gaze vector and point of re-
gard, and it was trained on an Nvidia proprietary dataset.

As a final element of the pipeline, our system uses the
Point Distribution Model (PDM) from OpenFace toolkit
(Baltrusaitis et al. 2018) to calculate the head 3D pose and
a ROS-based plugin to represent the position of the pa-
tient’s head as a coordinate system defined with homoge-
neous transformation respect to the camera’s optical coor-
dinate system. To calculate when the patient focuses on the
robot in each frame, we simulate the patient’s field of vision
as a cone with a 30-degree opening and two meters depth.
We associate a coordinate system to the robot and place it
approximately in the middle of it (NAO chest button). Us-
ing the functionality of the tf library in ROS, we calculated
the relative transformation between the robot’s coordinate
system and the patient’s head. If it was within the field of
vision, we classified the frame with a Boolean valuation /:
attended the robot; otherwise, 0: did not attend the robot. Fi-
nally, we publish the features estimated along the pipeline.
A diagram that summarises all the gst-plugins implemented
in the pipeline is shown in Figure 8. Each block represents
a specific plugin, and together, they are optimised through
memory management with zero-memory copying between
plugins, ensuring its performance.

Analysing Sensed Data

We adopt a simple thresholding method to interpret the
child’s predicted visual focus of attention data for use in our
planning model. At each time point, we examine the pre-
vious ten data frames (constituting a 1-second period) and
tagged this as attended the robot or did not attend the robot
as explained above. These values are maintained in a slid-
ing window, which retains a 60-second view of the user’s
engagement. Every time that the system requests an assess-
ment of the user’s engagement, these values are averaged
and compared to a thresholding value, threshold (we have
used threshold= 0.5 in an associated study (Lindsay et al.
2024)).
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Figure 9: The left shows the main components of the engagement framework. In our framework the planner generates sequences
intended to sustain engagement (bottom). The framework uses sensed data from the user (top) to force appropriate disengage-
ment actions to appropriately update the planning model state, driving new sequence generation (middle).

A Framework for Managing Engagement

In this section we present a framework for using the en-
gagement model and sensing presented in the previous sec-
tions. The framework (see the left side of Figure 9) uses
a planner (planning system) to generate sequences of ac-
tions that are intended to both sustain engagement (based
on our model) and generate interactions that include user
customisation, alternative medical pathways, and monitor-
ing and management of the user’s affective state (see the
‘Plan-Based Interaction” Section). Around the planner the
framework observes the user’s engagement level (engage-
ment sensing), and if the user becomes disengaged it uses
the planner to generate a new plan, which must select an ap-
propriate di sengagement action.

As part of the framework we have the planning model of
the scenario, which includes point of engagement, sustain-
ing, and disengagement actions (see the ‘Model of Engage-
ment’ Section), as well as additional actions overviewed
in the ‘Plan-Based Interaction’ Section (e.g., anxiety tests,
medical pathway updates). Given an initial situation, where
the child has not yet engaged with the robot, the planning
model will be used to generate a plan. This plan will initi-
ate the interaction (see Figure 7) and generate a branched
plan for the interaction based on an assumption of sustained
engagement (bottom of Figure 9).

The framework will step through this plan incrementally,
using appropriate sensing capabilities to elicit user prefer-
ences, sense the user’s affective state, and progress its model
of the medical procedure. After each action it will also mon-
itor the user’s engagement level (top of Figure 9). If the user
is continuing to be engaged by the robot then the system will
continue executing the plan (selecting appropriate branches
as appropriate) until the goal (end of the interaction). How-
ever, due to the medical scenario involving likely distrac-
tions, and variation in children’s interests, it is possible that
during the interaction, the child will become disengaged.

If the child becomes disengaged the system will update

the planning model by using a special proposition, which
cannot be added by the planner. The special proposition pre-
vents robot behaviour actions, and is removed by the appli-
cation of an appropriate disengagement action. This forces
the planner to appropriately register the disengagement, ap-
plying the appropriate disengage action for the context. For
example, we presented in Figure 6 two alternative exten-
sions of the di sengagement action (e.g., pausing, chang-
ing strategy, or ending the interaction). After executing the
appropriate action, the system then requests the next action
from the planner, which will typically aim to re-engage the
user (using a point of engagement action, e.g., Figure 7), and
continue with the interaction (potentially with a new strat-
egy). The middle of Figure 9 shows how the framework uses
replanning after disengagement in order to allow the system
to adapt the interaction to the user’s level of engagement.

Evaluation

In this section, we use simulated responses to examine the
interactions generated by the engagement framework, pre-
sented in Figure 9, and implemented within the interac-
tion manager of a functioning robot system (Ramirez-Duque
et al. 2024). The system is modular, and we have created
dummy components for the robot behaviour implementer,
the sensing, and the web-browser components. In response
to choice queries (e.g., preference between activities or the
current anxiety value), the dummy web-server and sensing
components were specified to return a random choice be-
tween the alternatives (e.g., Bruno-dance or OK-anxiety),
allowing us to test the integration of the presented frame-
work with the robot’s planning system.

We sampled 100 simulated interactions. The dummy
components selected a random value for each possible deci-
sion, allowing us to represent interactions for alternative pa-
tient personalisations, choices and anxiety levels. We added
a random chance that the system should record disengage-
ment (simulating user disengagement): After each action,



# Actions Planning time Points of Eng’ Distance
Avg. | Max. | Min. || Avg. | Max. | Min. || Avg. | Max. | Min. || Avg. | Max. | Min.
24.56 | 37 11 7.65 | 13.71 | 3.77 || 1.87 5 1 15.99 | 31 0

Table 1: Summary of the 100 simulated interactions, reporting average, min and max, for the number of actions (# actions),
planning time, points of engagement (this includes first engagement), and a measure of sequence distance (see text).

there is a 1 in 15 chance that disengagement is registered.
This allowed us to explore how the system responded to dis-
engagement in different contexts and monitor its decision to
re-engage or end the interaction.

Table 1 presents a summary of the simulated interactions.
The system continued each interaction and brought the in-
tervention to an appropriate conclusion. In 70% of the cases,
the generated sequence represented a successful interaction
that proceeded through the entire procedure. In each other
case, the interaction was brought to an early conclusion be-
cause the sequence had gone out of scope, e.g., complica-
tions in the procedure.

The results show that there is a wide range in lengths of
execution sequences (11-37 steps). This is largely due to the
variation in the underlying medical procedure. For example,
in some cases, the HCP can locate a promising site imme-
diately, and the procedure is straightforward. In other sit-
uations, both the site-check and the procedure can be pro-
longed. Of course, there are also special cases where the
robot drops out. For example, the 11-step plan involves the
interaction being brought to an early end.

The planning time is, on average, 0.31 seconds per step.
Our architecture asks the planner for an action at each step.
In the first instance, the planner generates a state action pol-
icy. In subsequent states it first attempts to lookup the state in
the current policy. If it fails, it will generate a new policy. In
most cases, the branched plan will capture the plan in each
case. This ensures that the plan is balanced enough to sat-
isfy each predictable choice point. In the case of disengage-
ment, the planner will typically be forced to replan. There is
an increase in average planning time per action as the num-
ber of points of engagement increases (e.g., from 0.29 for
1 point of engagement to 0.34 for 5 points of engagement).
However, even when forced to replan, the planning time is
reasonable for the application.

It is expected that due to the busy nature of the environ-
ment, the robot may have to re-engage with the patient a
number of times during the interaction. However, we antic-
ipate this will not typically be more than one or two times
(i.e., 1 to 3 points of engagement). The results in Table 1
cover interactions with 1 to 5 points of engagement. In each
case, the system responded appropriately, registering the sig-
nal, updating the state, and, consequently, forcing the plan-
ner to select an appropriate disengagement action. In nearly
all of the interactions, a re-engagement action was selected,
and the interaction continued (in some cases with an updated
strategy). In the other case, the patient exhibited high anxi-
ety and was disengaged.

Finally, we compared the plans to examine their simi-
larity. To do this we used the Levenshtein distance (Lev-
enshtein 1966): the distance between two-word sequences

which provides a measure of the edit difference between the
sequences while also respecting order. In our case, we use
unique words for each ground action. This measure was used
as it has been demonstrated that it provides a measure for
comparing plan similarity (Coman and Munoz-Avila 2011).
The results demonstrate that the sequences of actions gen-
erated by the system are relatively varied (i.e., the aver-
age number of differences is more than half the average se-
quence length), demonstrating the impact of personalisation
on the generated interactions. Two plans were repeated in
the results, and they were both very short (12 and 13 steps).

Conclusion and Future Work

In this work, we have considered extending a system capa-
ble of supporting a plan-based interaction to manage user
engagement. We have used a model of engagement that in-
cludes point of engagement, sustaining engagement, disen-
gagement, and re-engagement to extend a planning model
for a companion robot interaction. Through using the plan-
ning model, we can rely on the planning model’s state repre-
sentation, allowing the selection of context-appropriate dis-
engagement and re-engagement actions. We have demon-
strated how the context can be exploited in order to update
the system’s strategy in response to the observed behaviour.
We have presented the sensing system that we will use in or-
der to monitor the user and trigger disengagement events in
the system. We have presented the results of 100 simulated
interactions, where our framework was used to create the ap-
propriate responses based on the simulated user responses.
This work forms part of a robot system that is currently un-
dergoing a usability study prior to a clinical trial.
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