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ABSTRACT

Maximizing conditional mutual information (CMI) has recently been shown to en-
hance the effectiveness of teacher networks in knowledge distillation (KD). Prior
work achieves this by fine-tuning a pretrained teacher to maximize a proxy of its
CMI. However, fine-tuning large-scale teachers is often impractical, and proxy-
based optimization introduces inaccuracies. To overcome these limitations, we
propose Differentiable JPEG-based Input Perturbation (DJIP), a plug-and-play
framework that improves teacher–student knowledge transfer without modifying
the teacher. DJIP employs a trainable differentiable JPEG layer inserted before the
teacher to perturb teacher inputs in a way that directly increases CMI. We further
introduce a novel alternating optimization algorithm to efficiently learn the coding
parameters of the JPEG layer to maximize the perturbed CMI. Extensive exper-
iments on CIFAR-100 and ImageNet, across diverse distillers and architectures,
demonstrate that DJIP consistently improves student accuracy—achieving up to
4.11% gains—while remaining computationally lightweight and fully compatible
with standard KD pipelines.

1 INTRODUCTION

Knowledge distillation (KD) (Buciluǎ et al., 2006; Hinton et al., 2015) has emerged as a pivotal
technique for model compression, enabling the transfer of knowledge from large teacher models
to lightweight student networks. This approach significantly improves student model performance
without incurring high computational cost. Under resource constraints, KD is often simpler to apply
and more robust in preserving accuracy compared to other compression techniques such as prun-
ing (Sun et al., 2024a) and quantization (Lin et al., 2024), especially when deployment simplicity is
a key concern.

Since the seminal work of Hinton et al. (2015), extensive research has sought to understand the
underlying mechanisms of KD (Phuong & Lampert, 2021; Mobahi et al., 2020; Allen-Zhu & Li,
2023; Dao et al., 2021), and to develop more effective distillation techniques (Peng et al., 2019;
Romero et al., 2014; Zhao et al., 2022; Zheng & YANG, 2024). However, in those conventional KD
methods, the teacher model is typically trained solely to minimize its cross-entropy (CE) loss, with
little attention paid to its ability to provide an informative supervision signal to student models.

To address this issue, student-oriented teacher (Cho & Hariharan, 2019; Wang et al., 2022; Tan &
Liu, 2024; Yang et al., 2019; Dong et al., 2024; Ye et al., 2024; Hamidi et al., 2024) have been
proposed to yield softer, more informative supervision signals. Notably, MCMI (Ye et al., 2024)
demonstrates that maximizing conditional mutual information (CMI) during teacher training im-
proves distillation effectiveness. However, these methods require modifying the teacher’s weights,
an impractical constraint in many real-world scenarios where the teacher is fixed or proprietary.

This retraining limitation has prompted an alternative line of research introducing perturbations at
the input level. In conventional KD pipelines, both the teacher and student consume the same input
images, which may restrict the teacher’s ability to transfer its full representational knowledge to the
student. Recent works (Heo et al., 2018a; Nguyen-Duc et al., 2023; Zhang et al., 2021) suggest
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Figure 1: The overall training framework of DJIP is shown, centered around a differentiable JPEG
coded teacher module (blue), which integrates a differentiable JPEG layer (orange). The process
involves two stages: differentiable JPEG layer training and student distillation, with trainable pa-
rameters highlighted in red.

that feeding students with adversarial or divergent inputs generated by teachers can enhance the effi-
ciency of knowledge transfer. Coded Knowledge Distillation (CKD) (Salamah et al., 2025a) further
proposes that adaptively compressed input images can enhance the teacher’s distillation efficacy.
However, these approaches often incur high costs due to the need for generating additional samples,
thereby increasing distillation complexity.

To overcome these limitations while further leveraging the benefits of input perturbation, we pro-
pose Differentiable JPEG-based Input Perturbation (DJIP). DJIP employs a trainable differentiable
JPEG layer inserted before the teacher to perturb inputs in a way that directly increases CMI. The
combination of the differentiable JPEG layer and the teacher is referred to as a differentiable JPEG
coded teacher. This setup enables end-to-end learning of the coding parameters of the differentiable
JPEG layer tailored to maximize the perturbed CMI of the teacher. Unlike MCMI, which fixes class-
wise centroids during CMI maximization, potentially sacrificing the precision of the CMI proxy, we
propose a novel alternating algorithm that reformulates the perturbed CMI maximization objective
into a double minimization problem. This algorithm allows the centroids to be dynamically updated
at each iteration, resulting in more stable and effective training.

To demonstrate the effectiveness of DJIP, we conduct extensive experiments on two datasets, cover-
ing both same- and cross-architecture distillation, and including both CNN and ViT models. Results
consistently demonstrate the orthogonality of DJIP over various KD pipelines, including MCMI,
and superiority over CKD. Specifically, DJIP can improve student Top-1 accuracy by up to 4.11%.

Our contributions are summarized as follows:

Differentiable JPEG-based Input Perturbation: We propose Differentiable JPEG-based Input
Perturbation (DJIP), a plug-and-play framework that improves teacher–student knowledge transfer
without modifying the teacher. DJIP employs a trainable differentiable JPEG layer inserted before
the teacher to perturb teacher inputs in a way that directly increases CMI. During distillation, this
framework can achieve significantly lower computational overhead while maintaining comparable
functionality.

Alternating Algorithm for Maximizing the Perturbed CMI: We further introduce a novel al-
ternating optimization algorithm to efficiently learn the coding parameters of the JPEG layer to
maximize the perturbed CMI. The algorithm works by iteratively updating class centroids and the
coding parameters.

Comprehensive Empirical Evaluation: We extensively evaluate DJIP across diverse datasets and
model architectures, demonstrating its generalizability, consistency, effectiveness, orthogonality to
existing methods, and compatibility with a wide range of knowledge distillation pipelines.
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2 RELATED WORKS

A detailed review of related works, including conventional KD, KD with student-oriented teacher,
and KD with input perturbation, is provided in Appendix A.1, where we also outline the most
relevant directions for positioning our method and the advantages of our approach.

3 NOTATION AND PRELIMINARIES

3.1 NOTATION

Denote the i-th element of a vector p as p[i]. For a positive integer K, let [K] ≜ {1, . . . ,K}. For a
multi-class classification task, assume that there are C class labels with [C] as the set of class labels.
Also, a C-dimensional probability simplex is denoted by △C for C > 1. The cross entropy of two
probability distribution P1, P2 ∈ △C is defined as H(P1, P2) =

∑C
c=1−P1[c] lnP2[c], and their

Kullback-Leibler (KL) divergence is defined as DKL(P1∥P2) =
∑C

c=1 P1[c] ln
P1[c]
P2[c]

.

For any pair of random variables (X,Y ), denote its joint probability distribution by PX,Y (x, y)
or simply P (x, y) whenever there is no ambiguity, the marginal distribution of Y by PY (y), the
conditional distribution of Y given X = x by PY |X(· | x), and the expected value with respect to
X by EX(·). The conditional mutual information (CMI) of X and Y given a third random variable
Z is I(X;Y | Z) = H(X | Z)−H(X | Y,Z).

3.2 CONDITIONAL MUTUAL INFORMATION OF DNNS

A classification DNN with C classes can be viewed as a mapping x 7→ fθ(x), where x ∈ Rd is
an input image, θ denotes the model parameters, and fθ(x) ∈ △C is the output class probability
distribution in response to x. Whenever the context is clear, we omit θ and simply write f(x).
Let ŷ denote the label predicted by the DNN in response to input x with probability f(x)[ŷ], and
y denote the ground-truth label of x. The set of distributions f(x) in △C corresponding to all
input samples x with the same ground-truth label y forms a cluster in △C (referred to as the y-
cluster). Now let (X,Y ) be a pair of random variables representing a random input sample and
its corresponding ground-truth label. Feed X into the DNN and let Ŷ denote the corresponding
predicted label. As shown in Yang et al. (2025), Y → X → Ŷ then forms a Markov chain with
PŶ |XY (i | x, y) = f(x)[i], and the CMI between X and Ŷ given Y = y can be computed as:

I(X; Ŷ | Y = y) =
∑
x

PX|Y (x | y)

[
C∑

i=1

PŶ |XY (Ŷ = i | x, y)× ln
PŶ |XY (Ŷ = i | x, y)
PŶ |Y (Ŷ = i | Y = y)

]
= EX|Y [DKL(f(X)∥Sy) | Y = y] ,

where Sy = PŶ |Y (· | y) = EX|Y [f(X) | Y = y]. (1)

I(X; Ŷ | Y = y) measures the concentration of the y-cluster, and Sy can be viewed as the centroid
of the y-cluster. Averaging over all such clusters, we obtain I(X; Ŷ | Y ), which reflects the average
predictive concentration across all classes:

I(X; Ŷ | Y ) =
∑
y∈[C]

PY (y)I(X; Ŷ | Y = y) = EX,Y [DKL(f(X)∥SY )] . (2)

For a training setD = {(xi, yi)}Ni=1 drawn from an unknown distribution PX,Y , we can approximate
the CMI of model f by its empirical value. To be specific, let Dy = {xj ∈ D : yj = y}. Denote the
size of Dy by |Dy|. The empirical values of CMI can be calculated as follows:

I(X; Ŷ | Y ) =
1

N

∑
y∈[C]

∑
xj∈Dy

DKL(f(xj)∥Sy), where Sy =
1

|Dy|
∑

xj∈Dy

f(xj), for y ∈ [C]. (3)

3.3 DIFFERENTIABLE JPEG LAYER

JPEG (Pennebaker & Mitchell, 1992) is one of the most widely adopted lossy image compres-
sion standards in real-world applications. It achieves compression by exploiting spatial redundancy
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and perceptual irrelevance in natural images, resulting in high efficiency for storage and transmis-
sion. The standard JPEG pipeline first converts an RGB image x into YCbCr, partitions it into
non-overlapping 8×8 blocks, and applies the Discrete Cosine Transform (DCT). The resulting coef-
ficients are quantized uniformly using tables Q and entropy-coded (e.g., Huffman coding). Recon-
struction reverses this process via dequantization, inverse DCT, and conversion back to RGB. For
simplicity, we denote the uniform quantizer as Qu.

To increase DNN nonlinearity, the JPEG-DL framework proposed by (Salamah et al., 2025b) intro-
duces a differentiable JPEG layer into any underlying DNN. Specifically, JPEG-DL incorporates a
novel differentiable JPEG layer as the input layer of the underlying DNN architecture. This layer
simulates the standard JPEG codec but replaces the non-differentiable Qu with a differentiable soft
quantizer, denoted as Qd. This quantizer, parameterized by a quantization step size q ∈ Q and
a sharpness parameter α ∈ α, approximates Qu via a smooth expectation over quantization bins,
thereby enabling end-to-end gradient-based optimization. For simplicity, we denote the entire dif-
ferentiable JPEG layer as Jd, whose structure is illustrated in Fig. 1. Hence, the reconstructed image
is given by x̃w = Jd(x,w), where w denotes the trainable parameters (Q,α).

In JPEG-DL, the Jd is regarded as part of the overall DNN architecture. During training, the quanti-
zation (i.e., coding) parameters and the underlying DNN weights are jointly optimized to minimize
the standard CE loss. In our work, however, the differentiable JPEG layer is used as a mechanism
to perturb the input to the teacher and is separated from the teacher. Furthermore, during training,
only the quantization parameters are optimized to maximize the perturbed CMI of the teacher with
the teacher frozen completely.

4 METHODOLOGY

In this section, we first present the overall DJIP framework, then detail the objective function we
use, and finally introduce our novel alternating optimization algorithm.

4.1 OVERALL FRAMEWORK

As illustrated in Figure 1, the overall DJIP framework consists of two stages:

Differentiable JPEG Layer Training: The JPEG layer first perturbs the input image x into x̃w =
Jd(x,w), which is then fed to the teacher model. Under the objective function proposed in the next
section, which balances the CE loss and the DJIP loss introduced later, the JPEG coding parameters
are optimized to maximize the perturbed CMI.

Student Distillation: In this stage, the trained JPEG layer is integrated into the standard KD frame-
work to perturb the teacher’s input images. With its input perturbed by the trained JPEG layer to
increase the perturbed CMI, the teacher can provide more informative supervision signals to student.

4.2 OBJECTIVE FUNCTION

With reference to Figure 1, given Jd, X̃w is a deterministic function of X . Hence, the variables
form a Markov chain Y → X → X̃w → Ŷ , which implies

I(X; Ŷ | Y ) = I(XX̃w; Ŷ | Y ) = I(X̃w; Ŷ | Y ). (4)

We refer to I(X̃w; Ŷ | Y ) as the perturbed CMI. Our goal is to perturb the input X such that the
perturbed CMI is maximized to a certain extent, while simultaneously minimizing the CE loss with
respect to the ground-truth labels. Following the spirit of Ye et al. (2024), we formulate our CE–CMI
optimization problem over w as

min
w

{
EX

[
H(PY |X , f(X̃w))

]
− λ I(X̃w; Ŷ | Y )

}
, (5)

where λ > 0 is a hyper-parameter that balances the CE-CMI trade-off. In contrast to Ye et al.
(2024), where optimization is carried out over the pretrained model parameters θ, the DJIP frame-
work freezes the teacher and updates only the JPEG parameters w.

However, as stated by Ye et al. (2024), maximizing I(X; Ŷ | Y ) poses certain challenges because
the term Sy depends on f(xj), ∀xj ∈ Dy (see Equation 3) which is not well-suited for numerical
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solutions and cannot be efficiently parallelized on GPUs. The same challenges apply to the optimiza-
tion problem in Equation 5 as well. Ye et al. (2024) circumvents this issue by fixing the centroids
Sy obtained from a pretrained model. Nevertheless, these centroids may shift during fine-tuning,
so using fixed centroids may partially mitigate the issue, but does not fully resolve the theoretical
limitations of their method.

To address the above challenges theoretically, we introduce a dummy “backward channel” and re-
formulate the optimization problem in Equation 5 as a double minimization problem, as shown in
the following theorem and proved in Appendix A.2:

Theorem 1 For any i, y ∈ [C], let Q(· | i, y) denote a dummy conditional distribution over the
input space X (“backward channel”). Then for any λ > 0,

min
w

{
EX

[
H(PY |X , f(X̃w))

]
− λ I(X̃w; Ŷ | Y )

}
≡ min

w
min

{Q(·|i,y)}

{∑
x

P (x)H(PY |X(· | x), f(x̃w))− λ
∑
x,y

P (x, y)

C∑
i=1

f(x̃w)[i] lnQ(x | i, y)

}
, (6)

where the inner minimization above is achieved when

Q(x | i, y) =
PX|Y (x | y)f(x̃w)[i]

PŶ |Y (i | y) . (7)

In practice, the training set is randomly partitioned into B mini-batches Bb for b ∈ [B], each of size
|B|. When the joint distribution of (X,Y ) is unknown, the objective function can be approximated
by its empirical estimate over a mini-batch B. Accordingly, based on Theorem 1, the empirical
objective function Lemp for the proposed DJIP method can be formulated as:

LB(λ,w, {Q(·|i, y)}) = 1

|B|
∑

(x,y)∈B

(− ln f(x̃w)[y])︸ ︷︷ ︸
LCE

−λ 1

|B|
∑

(x,y)∈B

[
C∑

i=1

f(x̃w)[i] lnQ(x|i, y)

]
︸ ︷︷ ︸

LDJIP

. (8)

4.3 AN ALTERNATING CMI MAXIMIZATION ALGORITHM

Based on equation 6 to equation 8, we are now ready to present our algorithm for solving the opti-
mization problem in equation 5, which optimizes w and {Q(· | i, y)} alternatively to minimize the
objective function in equation 8:

Step 1: Fix w, let Dx,y = {(xj , yj) ∈ D : xj = x, yj = y}. According to 7, {Q(· | i, y)} can
be updated in two steps. (1) update the centroids Sy empirically according to Equation 3; and (2)
calculate the empirical version of Q(x | i, y) according to Equation 7:

Sy[i] = PŶ |Y (i | y) = 1

|Dy|
∑

xj∈Dy

f(Jd(xj , w))[i], ∀i, y ∈ [C], (9)

Q(x | i, y) =
PX|Y (x | y)f(Jd(x,w))[i]

PŶ |Y (i | y) =

|Dx,y|
|Dy| f(Jd(x,w))[i]

PŶ |Y (i | y) , ∀(x, y) ∈ D, i ∈ [C]. (10)

Step 2: Fix {Q(· | i, y)}, w can be updated using a standard deep learning process through stochastic
gradient descent (SGD).

A detailed pseudo-code of the alternating optimization algorithm is provided in Appendix A.3.

5 EXPERIMENTS

Terminologies. To evaluate the performance of DJIP, we conduct a series of experiments. This
section presents the main experimental results and demonstrates the extent to which DJIP improves
accuracy over state-of-the-art KD methods. For clarity, we denote the teachers trained solely with
CE loss, with MCMI estimator (Ye et al., 2024), and with the proposed DJIP method as the CE
teacher, MCMI teacher, and DJIP teacher, respectively.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Plug-and-Play Nature. In all experiments reported, the JPEG layer functions as a lens to facilitate
improved teacher distillation. Once removed, the model reverts to its conventional form without any
residual effect. Furthermore, no hyperparameters of the underlying KD methods are modified; all
configurations remain identical to those used in the original benchmark settings.

We conduct extensive experiments on ImageNet and CIFAR-100 with diverse model architectures.
Moreover, we show that DJIP can be effectively applied to cross-paradigm distillation between
CNNs and Vision Transformers (ViTs). The results further demonstrate that DJIP is complementary
to existing techniques and remains orthogonal to the latest state-of-the-art benchmarks.

5.1 CIFAR-100 RESULTS

The CIFAR-100 dataset is a widely used benchmark for image classification, comprising 60,000
color images with a resolution of 32× 32 pixels, categorized into 100 classes. Following the ex-
perimental setup of Tian et al. (2019), we conduct experiments with 7 teacher-student pairs sharing
identical architectures (see Table 1) and 6 pairs using different architectures (see Table 2). Each
experiment is repeated across three independent runs, and the average accuracy is reported.

For a comprehensive comparison, we evaluate our DJIP teacher against the conventional CE teacher
using state-of-the-art distillation methods. These include logit-based approaches: KD (Hinton et al.,
2015), DKD (Zhao et al., 2022), DIST (Huang et al., 2022), and WTTM (Zheng & YANG, 2024);
relation-based approaches: CC (Peng et al., 2019) and RKD (Park et al., 2019); and feature-based ap-
proaches: AT (Zagoruyko & Komodakis, 2016), FitNet (Romero et al., 2014), FT (Kim et al., 2020),
SP (Tung & Mori, 2019), ITRD (Miles et al., 2021), CRD (Tian et al., 2019), and LSKD (Sun et al.,
2024b). Methods of the same category are grouped in all tables. Details of the training setups, in-
cluding the training of DJIP teachers, student distillation procedures, the choice of hyperparameters,
and the visualization of the optimized 128 quantization parameters are provided in Appendix A.5
and A.10.

For both CE and DJIP teachers, we report their CMI values measured on the training set without data
augmentation. As shown in Tables 1 and 2, replacing the CE teacher with the DJIP teacher consis-
tently improves the student performance, regardless of whether the teacher and student architectures
are the same. These improvements are observed across all evaluated methods, with accuracy gains
of up to 2.44%. Notably, the improvements are more pronounced when the teacher and student
architectures differ, i.e., when there exists a larger capacity gap between them.

Table 1: The test accuracy (%) of students on CIFAR-100 (averaged over 3 runs), with teacher-
student pairs in the same architecture. We use asterisk (∗) to identify the results reproduced on our
local machines. The small print denotes the improvement achieved by using the DJIP teacher.

Teacher WRN-40-2 WRN-40-2 ResNet-56 ResNet-110 ResNet-110 VGG-13 ResNet-32×4
Acc 75.61 75.61 72.34 74.31 74.31 74.64 79.41

Student WRN-16-2 WRN-40-1 ResNet-20 ResNet-20 ResNet-32 VGG-8 ResNet-8×4
Acc 73.26 71.98 69.06 69.06 71.14 70.36 72.50

CE DJIP CE DJIP CE DJIP CE DJIP CE DJIP CE DJIP CE DJIP

CMI 0.026 0.501 0.026 0.501 0.158 0.724 0.061 0.565 0.061 0.565 0.015 0.252 0.006 0.276

KD 74.92 75.64 73.54 74.41 70.66 71.20 70.67 71.65 73.08 73.71 72.98 74.01 73.33 74.38
+0.72 +0.87 +0.54 +0.98 +0.63 +1.03 +1.05

DKD 75.63* 76.08 74.85 75.14 71.58* 71.86 71.51 71.72 74.11 74.22 74.68 74.93 76.32 76.55
+0.45 +0.29 +0.28 +0.21 +0.11 +0.25 +0.23

DIST 75.51 75.98 74.26 74.99 71.75 71.97 71.65 71.90 73.69 73.90 73.89 74.31 76.31 76.60
+0.47 +0.73 +0.22 +0.25 +0.21 +0.42 +0.29

WTTM 76.37 76.70 74.58 74.98 71.92 72.15 71.67 71.90 74.13 74.32 74.44 74.81 76.06 76.61
+0.33 +0.40 +0.23 +0.23 +0.19 +0.37 +0.55

CC 73.56 73.80 72.21 72.48 69.63 69.93 69.48 69.87 71.48 71.86 70.71 71.12 72.97 73.23
+0.24 +0.27 +0.30 +0.39 +0.38 +0.41 +0.26

RKD 73.35 74.09 72.22 72.36 69.61 70.19 69.25 69.85 71.82 72.45 71.48 71.84 71.90 72.69
+0.74 +0.14 +0.58 +0.60 +0.63 +0.36 +0.79

AT 74.08 74.51 72.77 73.22 70.55 70.81 70.22 70.63 72.31 72.84 71.43 72.03 73.44 73.94
+0.43 +0.45 +0.26 0.41 +0.53 +0.60 +0.50

FitNet 73.58 74.20 72.24 72.84 69.21 69.83 68.99 69.40 71.06 71.42 71.02 71.92 73.50 73.83
+0.62 +0.60 +0.62 +0.41 +0.36 +0.90 +0.33

FT 73.25 73.55 71.59 71.93 69.84 70.20 70.22 70.70 72.37 72.54 70.58 71.28 72.86 73.76
+0.30 +0.34 +0.36 +0.48 +0.17 +0.70 +0.90

SP 73.83 74.35 72.43 72.99 69.67 70.83 70.04 71.05 72.69 73.37 72.68 73.42 72.94 73.62
+0.52 +0.56 +1.16 +1.01 +0.68 +0.74 +0.68

ITRD 76.12 76.33 75.18 75.23 71.26* 71.44 71.52* 71.86 74.26 74.30 74.86 75.00 76.19 76.28
+0.21 +0.05 +0.18 +0.34 +0.04 +0.14 +0.09

CRD 75.48 76.01 74.14 74.57 71.16 71.61 71.46 71.79 73.48 73.92 73.94 74.35 75.51 75.85
+0.53 +0.43 +0.45 +0.33 +0.44 +0.41 +0.34

LSKD 76.11 76.35 74.37 74.89 71.26* 71.39 71.48 71.60 73.67* 73.92 74.36 74.90 76.62 76.96
+0.24 +0.52 +0.13 +0.12 +0.25 +0.54 +0.34
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Table 2: The test accuracy (%) of students on CIFAR-100 (averaged over 3 runs), with teacher-
student pairs in different architectures.

Teacher ResNet-50 ResNet-50 ResNet-32×4 ResNet-32×4 WRN-40-2 VGG-13
Acc 79.34 79.34 79.41 79.41 75.61 74.64

Student MobileNetV2 VGG-8 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1 MobileNetV2
Acc 64.60 70.36 70.50 71.82 70.50 64.60

Method CE DJIP CE DJIP CE DJIP CE DJIP CE DJIP CE DJIP

CMI 0.009 0.341 0.009 0.341 0.006 0.276 0.006 0.276 0.026 0.501 0.015 0.252

KD 67.35 69.50 73.81 74.48 74.07 75.64 74.45 76.24 74.83 76.36 67.37 68.87
+2.15 +0.67 +1.57 +1.79 +1.53 +1.50

DKD 70.35 71.18 73.94 75.87 76.45 77.24 77.07 77.52 76.70 77.16 69.71 70.20
+0.83 +1.93 +0.79 +0.45 +0.46 +0.49

DIST 68.66 69.59 74.11 74.80 76.34 76.64 77.35 77.95 76.22 76.69 68.50 69.01
+0.93 +0.69 +0.30 +0.60 +0.47 +0.51

WTTM 69.59 69.98 74.82 75.19 74.37 74.95 76.55 77.30 75.42 76.24 69.16 69.41
+0.39 +0.37 +0.58 +0.75 +0.82 +0.25

CC 65.43 65.79 70.25 70.92 71.14 72.17 71.29 73.25 71.38 72.22 64.86 65.83
+0.36 +0.67 +1.03 +1.96 +0.84 +0.97

RKD 64.43 65.56 71.50 71.93 72.28 73.40 73.21 74.27 72.21 73.85 64.52 66.04
+1.13 +0.43 +1.12 +1.06 +1.64 +1.52

AT 58.58 60.02 71.84 72.42 71.73 73.93 72.73 74.16 73.32 75.27 59.40 61.24
+1.44 +0.58 +2.20 +1.43 +1.95 +1.84

FitNet 63.16 64.05 69.39* 69.57 73.59 74.47 73.54 74.65 73.73 74.02 64.14 65.46
+0.89 +0.18 +0.88 +1.11 +0.29 +1.32

FT 60.99 62.82 70.29 71.24 71.75 73.41 72.50 73.80 72.03 73.80 61.78 62.57
+1.83 +0.95 +1.66 +1.30 +1.77 +0.79

SP 68.08 68.58 73.34 73.87 73.48 75.92 74.56 76.28 74.52 76.32 66.30 67.68
+0.50 +0.53 +2.44 +1.72 +1.80 +1.38

ITRD 71.34 72.06 75.49 75.91 76.91 77.30 77.40 77.92 77.09 77.31 70.39 70.91
+0.72 +0.42 +0.39 +0.52 +0.22 +0.52

CRD 69.11 70.01 74.30 74.55 75.11 75.79 75.65 76.32 76.05 76.21 69.73 69.89
+0.90 +0.25 +0.68 +0.67 +0.16 +0.16

LSKD 69.02 70.39 74.88* 75.21 75.67* 76.38 75.56 77.12 76.56* 76.78 68.61 69.93
+1.37 +0.33 +0.71 +1.56 +0.22 +1.32

5.2 IMAGENET RESULTS

ImageNet is a large-scale dataset used in visual classification tasks, containing approximately 1.2
million training images and 50,000 validation images. Following the implementation of Zhao
et al. (2022), we conduct experiments on two widely used teacher-student pairs (see Table 3) and
six representative distillation methods: KD (Hinton et al., 2015), AT (Zagoruyko & Komodakis,
2016), DKD (Zhao et al., 2022), LSKD (Sun et al., 2024b), WSLD (Zhou et al., 2021), and Re-
viewKD (Chen et al., 2021).

Across all knowledge transfer methods reported in Table 3, we observe that replacing the CE teacher
with the DJIP teacher consistently improves the student Top-1 accuracy as well. Details on the
training setups, including training of DJIP teachers, student distillation, and the choice of hyperpa-
rameters, as well as an analysis on the effect of hyperparameters for DJIP teachers, are provided in
Appendix A.5 and A.6.

Table 3: The test accuracy (%) of students on ImageNet.

Teacher Student Method CMI KD AT DKD LSKD WSLD ReviewKD

ResNet-34 ResNet-18 CE 0.720 70.66 70.70 71.70 71.42 71.73 71.61
DJIP 0.738 71.65 70.78 72.08 71.65 71.87 71.72

73.31 69.76 ∆ / +0.99 +0.08 +0.38 +0.23 +0.14 +0.11

ResNet-50 MobileNetV1 CE 0.600 70.50 69.56 72.05 72.18 72.02 72.56
DJIP 0.649 70.92 70.57 72.52 72.37 72.78 73.04

76.16 68.87 ∆ / +0.42 +1.01 +0.47 +0.19 +0.76 +0.48

5.3 VISION TRANSFORMER RESULTS

In previous experiments on CIFAR-100, we demonstrated the effectiveness of DJIP for distillation
between CNN architectures, whether identical or different. In this section, following Hao et al.
(2023); Li et al. (2022), we extend DJIP to address the challenge of cross-paradigm distillation
between CNNs and ViTs on CIFAR-100. The experimental results are summarized in Table 4. We
include one teacher-student pair for each paradigm setting: ViT-to-CNN, CNN-to-ViT, and ViT-
to-ViT. The results clearly show that our proposed method is also effective for knowledge transfer
across heterogeneous architectural paradigms and highlight the potential of DJIP in distilling ViTs.
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Table 4: The test accuracy (%) of students on CIFAR-100 (averaged over 3 runs), with teacher-
student pairs in heterogeneous architectural paradigms.

Teacher Student Method CMI KD DIST DKD CC RKD CRD

ViT-S ResNet-18 CE 0.100 77.26 76.49 78.10 74.26 73.72 76.60
DJIP 0.171 79.06 78.04 80.15 74.87 75.85 77.75

92.04 74.01 ∆ / +1.80 +1.55 +2.05 +0.61 +2.13 +1.15

ConvNeXt-T DeiT-T CE 0.229 72.99 73.55 74.60 68.01 69.79 65.94
DJIP 0.256 75.00 74.70 75.57 69.60 70.38 66.63

88.41 68.00 ∆ / +2.01 +1.15 +0.97 +1.59 +0.59 +0.69

ViT-S DeiT-T CE 0.100 69.86 70.57 71.41 68.62 69.39 65.46
DJIP 0.171 73.97 73.96 74.90 69.86 70.11 65.75

92.04 68.00 ∆ / +4.11 +3.39 +3.49 +1.24 +0.72 +0.29

6 ANALYSIS

6.1 ABLATION STUDY

As discussed in the contributions outlined in Section 1, DJIP introduces two key components: (1) a
differentiable JPEG layer, and (2) an alternating CMI maximization algorithm. In this section, we
conduct an ablation study to isolate and analyze the effectiveness of each component.

As shown in Table 5, when the differentiable JPEG layer is added but the fixed-centroid method from
Ye et al. (2024) is retained (referred to as ‘JMCMI’), the resulting method generally outperforms
various KD baselines. Furthermore, when the alternating maximization algorithm is additionally
applied, resulting in our proposed DJIP, the performance is further improved over JMCMI in general.

In summary, both the differentiable JPEG layer and the alternating CMI maximization algorithm
contribute positively to the overall performance. Each component individually enhances the KD
process, and their combined use in DJIP yields the best results, demonstrating a synergistic effect.

Table 5: The test accuracy (%) of students on CIFAR-100 (averaged over 3 runs), with teacher-
student pairs of the same- and different-architecture.

Teacher Student Method CMI KD DKD DIST CC RKD AT FitNet FT SP ITRD CRD

WRN-40-2 WRN-16-2
CE 0.026 74.92 75.63 75.51 73.56 73.35 74.08 73.58 73.25 73.83 76.12 75.48

JMCMI 0.505 75.53 75.81 75.83 73.62 73.74 74.28 73.75 73.39 74.12 75.93 76.39
DJIP 0.501 75.64 76.08 75.98 73.80 74.09 74.51 74.20 73.55 74.35 76.33 76.01

WRN-40-2 ShuffleNetV1
CE 0.026 74.83 76.70 76.22 71.38 72.21 73.32 73.73 72.03 74.52 77.09 76.05

JMCMI 0.505 75.95 76.56 76.85 71.92 73.39 75.10 73.81 73.25 75.96 77.14 76.14
DJIP 0.501 76.36 77.16 76.69 72.22 73.85 75.27 74.02 73.80 76.32 77.31 76.21

6.2 ORTHOGONALITY OVER MCMI

Since DJIP shares MCMI’s goal of maximizing the teacher’s CMI, we examine whether our method
is orthogonal to MCMI and can further improve performance. Following the experimental setup
of (Ye et al., 2024), we prepend our trainable JPEG layer to the MCMI teacher to obtain the
DJIP–MCMI teacher reported in Table 6.

The results in Table 6 indicate that applying our DJIP method yields additional improvements in
Top-1 accuracy, with gains of up to 0.92% absolute. These findings suggest that DJIP is not only
complementary but also orthogonal and additive to MCMI, as it explicitly optimizes the input space,
which is not considered in MCMI.

Table 6: The test accuracy (%) of students on CIFAR-100 (averaged over three runs), with teacher-
student pairs of the same- and different-architecture.

Teacher Student Method CMI KD DKD SP CRD RKD

VGG-13 VGG-8 MCMI 0.1298 73.83 74.87 73.29 74.23 72.03
DJIP-MCMI 0.1402 74.26 74.96 74.21 74.60 72.36

74.64 70.36 ∆ / +0.43 +0.09 +0.92 +0.37 +0.33

VGG-13 MobileNetV2 MCMI 0.1298 69.14 70.35 67.83 69.98 65.37
DJIP-MCMI 0.1402 69.40 70.51 68.33 70.46 65.90

74.64 64.60 ∆ / +0.26 +0.16 +0.50 +0.48 +0.53
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6.3 COMPARISON WITH MCMI

As mentioned in Section 4, our DJIP method addresses the fixed-centroid problem of MCMI by
introducing an alternating optimization algorithm. Consequently, when compared with the CIFAR-
100 and ImageNet results1 of MCMI applied to the same KD methods, our method achieves com-
parable or better performance across most cases, as presented in Figure 2.

It is important to note that MCMI has a much larger degree of freedom, as it optimizes the parameters
of the pretrained model, whereas our method only adjusts the 128 quantization parameters of the
JPEG layer. Despite this limitation, our method still matches or outperforms MCMI in multiple
scenarios, demonstrating the effectiveness of learning solely through compression parameters.

6.4 COMPARISON WITH CKD AND TALD

As discussed in Section 2, our DJIP method is capable of exploring a significantly larger continuous
quantization space than CKD. Consequently, when compared with the CIFAR-100 and ImageNet
results2 of CKD applied to the same KD methods, our approach consistently achieves comparable or
superior performance. A brief comparison of CIFAR-100 experimental results is shown in Figure 2.

It is worth noting that CKD adaptively selects the optimal quantization table for each input image;
that is, two different images may be compressed using different tables chosen to maximize teacher
effectiveness, which is computationally expensive. In contrast, our method employs a fixed quanti-
zation table shared across all input images throughout the entire distillation process. Moreover, since
CKD achieves comparable performance to another input-perturbed-based method, TALD (Nguyen-
Duc et al., 2023), we also include TALD for comparison in Figure 2.

(a) VGG-13 / VGG-8 (b) VGG-13 / MobileNetV2 (c) WRN-40-2 / WRN-40-1 (d) WRN-40-2 / ShuffleNetV1

Figure 2: (a), (b) Comparison with MCMI under different student architectures on CIFAR-100. (c),
(d) Comparison with CKD and TALD under different student architectures on CIFAR-100.

For further analysis, we refer the reader to Appendix A.10 and A.11, which provide visualizations
of the learned quantization step sizes and the output probability distributions.

7 CONCLUSION

In this work, we have introduced Differentiable JPEG-based Input Perturbation (DJIP), a novel
framework that enhances the transferability of a fixed teacher by incorporating a differentiable JPEG
compression layer. By jointly optimizing CE loss and CMI values through a tailored alternating al-
gorithm, our method enables the teacher to produce more informative supervision signals without
modifying its original weights. Extensive experiments on ImageNet and CIFAR-100, across both
CNNs and ViTs architectures, demonstrate that DJIP consistently improves student accuracy (up
to 4.11% over standard baselines). Comprehensive analyses further confirm the effectiveness and
stability of our alternating CMI optimization. Beyond empirical gains, DJIP offers a lightweight
and generalizable mechanism for enhancing knowledge distillation by exploiting input-space per-
turbations using trainable quantization. Since the teacher remains unchanged, DJIP is particularly
suitable for scenarios with strict deployment or integrity constraints.

1Please refer to Table 2 of Ye et al. (2024)
2Please refer to Table 3 of Salamah et al. (2025a)
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REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. All implementation de-
tails of the proposed method, including model architectures, training procedures, as well as detailed
descriptions of data preprocessing steps and hyperparameter settings, are provided in the appendix.
To further facilitate reproducibility, we include executable source code and usage guidelines in the
supplementary materials.
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A APPENDIX

A.1 RELATED WORKS

Conventional KD: Also known as knowledge transfer, KD is a model compression technique in
which a compact student model learns to mimic the behavior of a larger teacher model. This con-
cept was first introduced by Buciluǎ et al. (2006), who trained a smaller model to match the logits of
a larger one. Hinton et al. (2015) later popularized KD by introducing temperature-based softening
to both teacher and student logits. Since then, KD methods have proliferated and can be broadly cat-
egorized into three groups according to Yang et al. (2023): (i) response/logit-based methods (Hinton
et al., 2015; Heo et al., 2018a; Zheng & YANG, 2024; Hamidi, 2024; Lan et al., 2018; Stanton et al.,
2021; Chen et al., 2019; Li et al., 2020; Beyer et al., 2022; Zhao et al., 2022; Miles et al., 2021; Sun
et al., 2024b; Huang et al., 2022); (ii) feature-based methods (Romero et al., 2014; Zagoruyko &
Komodakis, 2016; Yim et al., 2017; Chen et al., 2021; Yang et al., 2021; Kim et al., 2020; Heo et al.,
2018b; Tung & Mori, 2019; Tian et al., 2019); (iii) relation-based methods (Park et al., 2019; Peng
et al., 2019; Liu et al., 2019; Yang et al., 2022). Building upon these conventional KD frameworks,
which aim to improve the student model’s ability to mimic the teacher’s logits, intermediate features,
or inter-feature relations, two main orthogonal directions have emerged to further enhance student
performance.

KD with Student-Oriented Teacher: Rather than using teachers who only care about their own
performance, several works aim to find or train teachers better suited to the students. Cho & Har-
iharan (2019); Wang et al. (2022) show that early stopping during teacher training or using earlier
checkpoints preserves higher mutual information between inputs and outputs, providing more in-
formative soft targets. Tan & Liu (2024); Yang et al. (2019) encourage teachers to produce more
dispersed probability distributions via auxiliary losses, while Dong et al. (2024) shows that explic-
itly imposing the Lipschitz and consistency constraint in teacher training can facilitate the learning
of the true label distribution and thus improve the student performance.

Meanwhile, Ye et al. (2024) demonstrates that training teachers with the maximum CMI (MCMI)
estimator, rather than the conventional minimum CE objective, yields better approximations of the
true Bayes conditional probability distribution (BCPD) of label y given input x, thereby significantly
enhancing student performance by capturing richer contextual information. Nevertheless, a major
limitation of these student-oriented approaches lies in their requirement to modify the teacher’s
weights, which is often impractical in real-world scenarios due to deployment or integrity con-
straints—for instance, when the teacher is provided as a black-box model or is already deployed in
production environments where retraining is prohibited.

KD with Input Perturbation: Another prominent direction involves perturbing the input space,
typically through adversarial or divergent examples during KD. In conventional KD pipelines, the
teacher and student are trained on identical inputs, which may restrict the diversity of features re-
vealed by the larger teacher model, thereby limiting the effectiveness of knowledge transfer. Heo
et al. (2018a) argues that adversarial examples, crafted to align with the teacher’s decision boundary,
help the student learn a more accurate and generalizable boundary. However, their method generates
only a single adversarial example per input, limiting its ability to explore the full spectrum of pertur-
bations. Nguyen-Duc et al. (2023) address this limitation by formulating a teacher adversarial local
distribution, which more thoroughly explores the teacher’s decision boundaries, denoted as TALD.
In the context of online co-distillation, Zhang et al. (2021) leverages Generative Adversarial Net-
works (GANs) to produce divergent examples enriched with ‘dark knowledge,’ thereby facilitating
more effective mutual learning among co-distillation classifiers.

In contrast to these computationally intensive approaches that require access to both the original
and generated datasets during distillation, Salamah et al. (2025a) proposes a lightweight alternative
called CKD, which only uses a compressed version of the original dataset. CKD introduces an
adaptive JPEG compression layer before the teacher model to generate multiple compressed variants
of each input image using different JPEG quality factors (QFs), selecting the most informative one
based on a predefined criterion. Although CKD has shown promising results, it remains limited to a
small set of predefined quantization tables in a discrete space that is not optimal, thereby restricting
its ability to fully explore the space of compression-induced input perturbations.
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Our proposed method, DJIP, further develops the CKD framework to address the three key limita-
tions discussed above:

No Teacher Weight Updates: DJIP further advances the coded teacher framework introduced in
CKD, thus obviating the need for optimizing the teacher model’s weights. This architectural decision
renders DJIP particularly suitable for scenarios in which modifying the teacher is impractical, as
commonly encountered in student-oriented KD paradigms.

Greater Flexibility with Minimal Complexity: By incorporating a differentiable JPEG layer, DJIP
enables full exploration of the continuous JPEG compression space. The trained JPEG layer func-
tions as a lightweight, modular component that can be easily attached to or removed from the model.
This introduces only a small number of additional parameters, making DJIP highly deployable. In
contrast to CKD, which requires repeated image-wise compression and selection across multiple
QFs, DJIP performs a one-time image-wise compression without any selection process, thereby
achieving significantly lower computational overhead while maintaining comparable functionality.

Student-Oriented Design with Dynamic Optimization: DJIP adopts the student-oriented MCMI
estimator from Ye et al. (2024) and addresses its major limitation by introducing a novel alternating
optimization algorithm. During training, both the class-wise clusters in the output probability space
and their centroids are updated dynamically. In contrast, the fixed-centroid strategy in Ye et al.
(2024), adopted as a compromise for computational tractability, leads to the accumulation of CMI
estimation errors. This was evident in their experimental setup, where training was initialized from
a pretrained model and conducted for only a limited number of epochs.3 Our proposed alternating
algorithm provides an analytical solution to the MCMI objective, enabling efficient centroid updates
and accurate CMI estimation. Consequently, DJIP achieves performance comparable to that of
MCMI, despite using significantly fewer trainable parameters.

Beyond the vision community, recent studies in large language model (LLM) distillation have re-
visited the foundations of KD from a divergence-optimization perspective. While developed for
auto-regressive language models, these works provide insights that are broadly relevant to KD re-
search. Wen et al. (2023) propose optimizing a general f-divergence for sequence-level distilla-
tion, highlighting the importance of selecting an appropriate divergence tailored to the structure of
teacher–student discrepancies. Ko et al. (2024), Gu et al. (2023), and related efforts streamline LLM
distillation pipelines by identifying training configurations that improve stability and efficiency,
demonstrating that distillation effectiveness is sensitive to the choice of objective functions and
optimization heuristics. More recently, Wu et al. (2025) analyzes the limitations of KL divergence
in the context of heavy-tailed token distributions, revealing that KL may misallocate probability
mass during distillation; Wang et al. (2025) further generalizes this idea by employing alpha-beta
divergences to reshape probability allocation. Additionally, He et al. (2025) introduces difficulty-
aware distillation, showing that adaptively weighting samples based on their learning difficulty can
improve student performance. Although these methods are designed for LLMs, the underlying
principles—such as flexible divergence design, probability-mass reallocation, and difficulty-aware
weighting—offer conceptual guidance for advancing KD in computer vision settings as well.

3If the teacher model had been trained from scratch, divergence would have occurred.
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A.2 PROOF OF THEOREM 1

Recall the Markov chain Y → X → X̃w → Ŷ . To prove Theorem 1, we first introduce an auxiliary
distribution Q(· | i, y) and derive a new expression for I(X̃w; Ŷ | Y ) as follows:

I(X̃w; Ŷ | Y ) = I(X; Ŷ | Y ) =
∑
y∈[C]

PY (y)I(X; Ŷ | Y = y)

=
∑
y∈[C]

PY (y)
∑
x

PX|Y (x | y)

[
C∑

i=1

PŶ |XY (Ŷ = i | x, y)× ln
PŶ |XY (Ŷ = i | x, y)
PŶ |Y (Ŷ = i | Y = y)

]

=
∑
y

∑
x

P (x, y)

C∑
i=1

f(x̃w)[i] ln
f(x̃w)[i]

PŶ |Y (Ŷ = i | Y = y)

=
∑
y

PY (y)
∑
x

PX|Y (x | y)
C∑

i=1

f(x̃w)[i] ln
PX|Y (x | y)f(x̃w)[i]

PX|Y (x | y)PŶ |Y (i | y)

=
∑
y

PY (y)

C∑
i=1

PŶ |Y (i | y)
∑
x

PX|Y (x | y)f(x̃w)[i]

PŶ |Y (i | y) ln
PX|Y (x | y)f(x̃w)[i]

PX|Y (x | y)PŶ |Y (i | y) (11)

= max
{Q(·|i,y)}

∑
y

PY (y)

C∑
i=1

PŶ |Y (i | y)
∑
x

PX|Y (x | y)f(x̃w)[i]

PŶ |Y (i | y) ln
Q(x | i, y)
PX|Y (x | y)

= max
{Q(·|i,y)}

∑
x,y

P (x, y)

C∑
i=1

f(x̃w)[i] ln
Q(x | i, y)
PX|Y (x | y) , (12)

where Equation 11 follows from the cross entropy inequality, and the maximization in Equation 12
is achieved when

Q∗(x | i, y) =
PX|Y (x | y)f(x̃w)[i]

PŶ |Y (i | y) . (13)

Thus, the single minimization problem in equation 5 can be converted into a double minimization
problem over w and {Q(· | i, y)} as follows:

min
w

{
EXH(PY |X , f(X̃w))− λ I(X̃w; Ŷ | Y )

}
= min

w

{
EXH(PY |X , f(X̃w))− λ I(X; Ŷ | Y )

}
= min

w

{
EXH(PY |X , f(X̃w))− λ max

{Q(·|i,y)}

∑
x,y

P (x, y)

C∑
i=1

f(x̃w)[i] ln
Q(x | i, y)
PX|Y (x | y)

}

≡ min
w

{
EXH(PY |X , f(X̃w))− λ max

{Q(·|i,y)}

∑
x,y

P (x, y)

C∑
i=1

f(x̃w)[i] lnQ(x | i, y)

}
(14)

= min
w

{
EXH(PY |X , f(X̃w)) + λ min

{Q(·|i,y)}
−
∑
x,y

P (x, y)
C∑

i=1

f(x̃w)[i] lnQ(x | i, y)

}

= min
w

min
{Q(·|i,y)}

{∑
x

P (x)H(PY |X(· | x), f(x̃w))− λ
∑
x,y

P (x, y)

C∑
i=1

f(x̃w)[i] lnQ(x | i, y)

}
, (15)

where the symbol “≡” in Equation 14 indicates equivalence up to an additive constant independent
of Q(x | i, y) and w, which is omitted here for clarity.

A.3 PSEUDO-CODE FOR ALTERNATING ALGORITHM

The pseudo-code of the alternating optimization algorithm is provided in Algorithm 1. In Sec-
tion 6.1, we present comprehensive experiments on CIFAR-100 that demonstrate its advantages
over the fixing-centroid method in Ye et al. (2024) and validate the effectiveness of incorporating a
differentiable JPEG layer.
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Algorithm 1 The proposed alternating algorithm for solving the optimization problem in Theorem 1.
Input: DNN fθ as f ; JPEG layer Jd with trainable parameters w; training set D = {(xi, yi)}Ni=1

with its B mini-batches {Bb}b∈[B]; class labels C; number of epochs T and hyper-parameter λ.
1: Initialize w0.
2: repeat
3: for b = 1 to B do
4: [Update S]:
5: Fix wb−1. Update centroids {Sb

y}y∈[C] according to Equation 9:

Sb
y[i]←

1

|Dy|
∑

xj∈Dy

f(Jd(xj , w
b−1))[i], ∀i, y ∈ [C]. (16)

6: [Update Q]:
7: Fix wb−1. Calculate Qb(x | i, y), according to Equation 10:

Qb(x | i, y)←
|Dx,y|
|Dy| f(Jd(x,w

b−1))[i]

Sb
y[i]

, ∀(x, y) ∈ Bb, i ∈ [C]. (17)

8: [Update w]
9: Fix {Qb(· | i, y)}i∈[C]

(x,y)∈Bb . Update weights wb−1 to wb by using SGD over the objective
function

LBb(λ,wb−1, {Qb(· | i, y)}i∈[C]

(x,y)∈Bb).

10: end for
11: Set w0 ← wB

12: until T epochs are completed

13: return Trained parameters wB .

A.4 CONVERGENCE ANALYSIS AND EMPIRICAL EVIDENCE

As discussed above, the inner minimization step in Equation 15 satisfies the cross-entropy inequality.
Suppose the impact of the random mini-batch sampling and SGD is ignored. In that case, the
alternating algorithm is guaranteed to converge in theory, since given w, the optimal Q∗(x | i, y)
can be found analytically via 13. Although in practice the alternating algorithm may not converge to
a global minimum, this is not the limitation of our algorithm, but the nature of all SGD-based deep
learning algorithms.

Empirically, our alternating procedure exhibits stable behavior throughout training. As shown in
Figure 3, the training CMI value consistently improves, and the training DJIP loss and the overall
training loss converge smoothly over iterations on both ResNet-34 and ResNet-152. These observa-
tions indicate that the proposed alternating algorithm behaves stably in practice at scale.

A.5 IMPLEMENTATION DETAILS

A.5.1 SETUPS FOR JPEG LAYER TRAINING STAGE

We follow the implementation and design of the differentiable JPEG layer from Salamah et al.
(2025b), but set the minimum quantization step to 1, which is more commonly used in reality,
instead of 0. The stochastic gradient descent (SGD) optimizer is used with a momentum of 0.9 and
a weight decay of 5× 10−4 for all JPEG layer training experiments.

A key feature of the differentiable soft quantizer Qd in the JPEG layer is its variable softness, con-
trolled by the trainable sharpness parameter α. However, as shown in Salamah et al. (2025b), when
α is sufficiently large, its gradient vanishes, preventing effective updates. Therefore, we initialize
all entries of α to a large constant value of 20 and exclude α from training. Thus, the trainable
parameters w of the DJIP teacher are the quantization tables Q, which we initialize with all ones.
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(a) ResNet-34 (λ = 1.4)

(b) ResNet-152 (λ = 2.0)

Figure 3: Convergence curves of the proposed alternating optimization on ImageNet. The training
DJIP loss, training CMI value, and total training loss exhibit stable and monotonic trends, confirming
the empirical convergence of our method.

For CIFAR-100, all pretrained teachers are adopted from the official repository of Tian et al. (2019).
We use a learning rate of 0.1 and train for 20 epochs with a batch size of 32 over 2 GPUs (total batch
size 64). For all CIFAR-100 experiments comparing with the CE teacher, including those involving
ViT models, we set the hyperparameter λ in the objective function 8 to 0.5 by default. An exception
is made for the VGG-13 and MobileNetV2 teacher-student pair in Table 2, where we set λ = 0.6. To
demonstrate that DJIP is further orthogonal to MCMI in Table 6, we train the DJIP-MCMI teacher
with λ = 0.3. Throughout the alternating training process, we always use the full training set D to
update the centroids as proposed in Algorithm 1 with the update interval = 5.

For ImageNet, we adopt pretrained teachers from the PyTorch official repository (Paszke et al.,
2019). DJIP teachers are trained for one epoch (5005 iterations) with a learning rate of 0.01, using 4
GPUs and a batch size of 64 per GPU (total batch size 256). We experiment with various values of λ,
namely {0.4, 1.0, 1.4, 2.0, 2.4, 3.0}, and select λ = 1.4 for ResNet-34 and λ = 2.0 for ResNet-50.

When applied to large-scale datasets such as ImageNet, updating centroids at each iteration (update
interval = 1.) via Algorithm 1 becomes computationally expensive. To reduce this complexity,
we construct a balanced sub-dataset D̂ by randomly sampling |D̂y| = 16 instances per class from
the training set. By replacing the full training set in Equation 9 with D̂, a lightweight variant of the
alternating algorithm can be derived. In the first iteration, the dummy distribution {Q(· | i, y)} is up-
dated using the entire training set. Thereafter, it is updated using the sub-dataset and an exponential
moving average (EMA) with a smoothing factor α = 0.9.

Thus, the resulting pseudo-code on ImageNet experiments is similar to Algorithm 1, except that
Equation 16 is replaced by:

Sb
y[i]← α× Sb−1

y [i] + (1− α)× 1

|D̂y|

∑
xj∈D̂y

f(Jd(xj , w
b−1))[i], ∀i, y ∈ [C]. (18)

To further handle the increased complexity of ImageNet tasks compared to CIFAR-100 tasks, fol-
lowing the setups of Salamah et al. (2025b), we incorporate five rounds of Qd quantization op-
eration with independent trainable parameters inside the differentiable JPEG layer to expand the
compression search space. Moreover, we follow the gradient magnitude control method proposed
by Salamah et al. (2025b), with the Gradient Scaling Constants ℏm set to 20 to control the gradient
magnitude to ensure more stable updates for Q.
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A.5.2 SETUPS FOR STUDENT DISTILLATION STAGE

For experimental setups of all knowledge distillation variants in this paper, we use SGD with mo-
mentum 0.9 and weight decay of 1× 10−4 as the optimizer.

For CIFAR-100, we follow the distillation setups from Tian et al. (2019). Specifically, we train the
student models for 240 epochs with a batch size of 64 on 1 GPU. The initial learning rate is set to
0.05 and decayed by a factor of 0.1 at epochs 150, 180, and 210. For MobileNetV2, ShuffleNetV1,
and ShuffleNetV2, we use a smaller initial learning rate of 0.01.

For ImageNet, we adopt the training configuration from Zhao et al. (2022): 100 epochs, a learning
rate of 0.1, and a batch size of 256 on a single GPU. The only exception is ReviewKD (Chen et al.,
2021), which uses a batch size of 128 and is trained on two GPUs.

For both datasets, we evaluated several state-of-the-art distillation methods using their official im-
plementations and reported hyper-parameters, and successfully reproduced the results reported in
their original papers.

A.6 ADDITIONAL ABLATION STUDIES ON DJIP HYPER-PARAMETERS

In this section, we conduct a series of ablation studies to investigate the sensitivity of hyper-
parameters and how those key hyper-parameters affect the behavior of the DJIP teacher and the
resulting student performance. Specifically, we examine the influence of the weighting coefficient
λ, the number of quantization rounds in JPEG, the learning rate for JPEG layer’s updates, and the
cluster centroid update interval.

A.6.1 EFFECT OF λ IN DJIP

In Table 7, we vary λ in {0.4, 1.0, 1.4, 2.0, 2.4, 3.0} to evaluate how the balance between CMI max-
imization and CE minimization affects teacher behavior. Larger values of λ increase the teacher’s
CMI while also raising its CE loss. The student’s Top-1 accuracy follows a quasiconcave trend and
peaks at λ = 1.4, indicating that this value provides an effective trade-off between informativeness
and predictive correctness.

Table 7: Effect of λ on student test accuracy (%), the CMI and CE losses of the DJIP teacher. The
results are compared with those of a standard CE teacher in the ResNet-34→ ResNet-18 setting on
ImageNet with vanilla KD. Bold numbers indicate the best performance.

KD CE DJIP with λ equals to
0.4 1.0 1.4 2.0 2.4 3.0 4.0

Teacher CELoss 0.560 0.568 0.568 0.582 0.630 0.595 0.627 0.871
Teacher CMI 0.7180 0.7257 0.7268 0.7382 0.7869 0.7523 0.7825 0.9866
Student Acc 70.660 71.362 71.452 71.654 71.274 71.370 71.290 70.694

A.6.2 EFFECT OF NUMBER OF ROUNDS IN DJIP

We investigate the effect of increasing the number of quantization rounds in JPEG. Here, one round
refers to applying quantization to the DCT coefficients once using a separate quantization table.
Introducing multiple rounds effectively expands the perturbation space, which is particularly bene-
ficial for complex datasets such as ImageNet. As the number of rounds increases, the teacher’s CMI
consistently improves; however, excessive rounds can lead to elevated CE loss, indicating a loss of
predictive reliability. As shown in Table 8, the student’s accuracy grows steadily from 1 to 5 rounds
and reaches its peak at 5 rounds, suggesting that a moderate degree of iterative quantization provides
the most favorable balance between informativeness and stability.

A.6.3 EFFECT OF LEARNING RATE IN DJIP

We evaluate teacher learning rates of 0.1, 0.02, 0.01, and 0.001. As shown in Table 9, an overly high
learning rate leads to unstable JPEG layer updates, manifested by excessively large CMI values and
noticeably increased CE loss, which ultimately undermines the student’s performance. The learning
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Table 8: Effect of the number of quantization rounds on student accuracy (%) and on the CMI and
CE losses of the DJIP teacher. Results are reported for the ResNet-34 → ResNet-18 setting on
ImageNet under vanilla KD. Bold numbers denote the best performance.

KD CE DJIP with number of rounds equals to
1 3 5 6

Teacher CELoss 0.560 0.560 0.561 0.582 0.768
Teacher CMI 0.7180 0.7178 0.7185 0.7382 0.9097
Student Acc 70.660 71.278 71.610 71.654 70.960

rate of 0.01 yields the best overall results, indicating that a stable yet sufficiently responsive update
regime is essential for effective distillation.

Table 9: Effect of learning rate on student accuracy (%), along with the CMI and CE losses of
the DJIP teacher. Results are reported for the ResNet-34→ ResNet-18 setting on ImageNet under
vanilla KD. Bold indicates the best performance.

KD CE DJIP with learning rate equals to
0.1 0.02 0.01 0.001

Teacher CELoss 0.560 0.875 0.601 0.582 0.561
Teacher CMI 0.7180 0.9961 0.7577 0.7382 0.7191
Student Acc 70.660 70.628 71.444 71.654 71.432

A.6.4 EFFECT OF CENTROID UPDATE INTERVAL IN DJIP

We further study the impact of the centroid update interval of DJIP in Table 10. When using intervals
of 3, 5, 50, and 500 iterations, we observe that the student accuracy remains largely stable, with
the best results appearing at intervals of 3 and 5. Although both intervals yield similar accuracy,
we select the interval of 5 due to efficiency concerns. As the update interval becomes longer, the
student’s accuracy shows a mild decrease; however, it consistently surpasses that obtained with the
standard CE teacher. This suggests that moderately frequent centroid updates provide more reliable
centroid estimates while avoiding unnecessary computation, thereby enabling a more accurate inner
minimization of Equation 15 and ultimately improving distillation performance.

Table 10: Effect of centroid update interval on student accuracy (%) on CIFAR-100 (averaged over
3 runs). Results are reported for the ResNet-34→ ResNet-18 setting, with update intervals of 3, 5,
50, and 500 iterations. All configurations consistently outperform the standard CE teacher, with the
best performance achieved at an interval of 3 and 5.

Teacher Student Method CMI KD DKD DIST CC RKD AT FitNet FT SP ITRD CRD

ResNet-50 VGG-8

CE 0.009 73.81 73.94 74.11 70.25 71.50 71.84 69.39 70.29 73.34 75.49 74.30
Interval=3 0.341 74.49 75.87 74.58 70.92 71.87 72.50 69.50 71.29 73.58 76.02 74.56
Interval=5 0.341 74.48 75.87 74.80 70.92 71.93 72.42 69.57 71.24 73.87 75.91 74.55
Interval=50 0.341 74.33 75.58 74.63 70.78 71.81 72.38 69.35 71.23 73.68 75.91 74.24

Interval=500 0.342 74.32 75.49 74.52 70.68 71.73 72.37 69.02 71.06 73.61 75.81 74.21

A.7 DJIP WITH OTHER INPUT PERTURBATION METHOD

As stated in Theorem 1, the parameter ω represents arbitrary perturbation parameters and is fully
agnostic to the specific choice of input perturbation mechanism. Consequently, the proposed al-
ternating optimization framework is not restricted to JPEG quantization tables. The differentiable
JPEG module adopted in our experiments serves merely as a convenient instantiation, selected due to
its simplicity, computational efficiency, and the availability of robust differentiable implementations.
In principle, this perturbation layer may be replaced by any differentiable codec. As another illus-
trative example, we additionally incorporate a convolutional autoencoder as the input perturbation
module.

We employ a symmetric convolutional autoencoder designed for CIFAR-resolution images. The
encoder is composed of convolution, batch normalization, and ReLU layers, followed by a max-
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pooling operation in the middle. The decoder mirrors this structure using convolution and
transposed-convolution layers to upsample feature maps and recover the original spatial resolution.
As observed in Section A.11, the optimized quantization tables consistently exhibit small step sizes.
Motivated by this, we choose a latent dimensionality comparable to the input, enabling the au-
toencoder to learn an identity-preserving or denoising transformation. A final sigmoid activation
constrains the reconstructed output to the normalized pixel range.

For pretraining, the autoencoder is trained on CIFAR-100 with standard data augmentation. Opti-
mization is performed using Adam with a learning rate of 1×10−3, and the reconstruction objective
is mean squared error (MSE). Training proceeds for 200 epochs with a batch size of 64. On the
CIFAR-100 test set, the pretrained autoencoder achieves a PSNR of 41.52 dB, an SSIM of 0.9961,
and an MSE of 8.3× 10−5, indicating high-fidelity reconstruction.

Following the training framework in Figure 1, we insert the autoencoder before the classifiers and
optimize its parameters using the alternating optimization algorithm. We train for 20 epochs with
a learning rate of 1 × 10−3 and set λ = 0.3. After optimizing the perturbation module, standard
distillation is performed. The final results are reported in Table 11.

Table 11: The test accuracy (%) of students on CIFAR-100 with autoencoder as input perturbation
method.

Teacher Student Method CMI KD FitNet FT SP CRD CC RKD

ResNet-34 ResNet-18 CE 0.015 72.98 71.02 70.58 72.68 73.94 70.71 71.48
DJIP 0.067 73.31 71.31 71.03 72.92 74.05 71.13 71.77

74.64 70.36 ∆ / +0.33 +0.29 +0.45 +0.24 +0.11 +0.42 +0.29

A.8 DJIP ONLINE DISTILLATION COMPLEXITY

As mentioned in Figure 1, DJIP contains 2 stages. The first stage trains the JPEG layer in an offline
manner. Since the learned JPEG layer can be reused for training multiple student models, this
stage is executed only once and its training time is amortized and therefore negligible in the overall
framework.

For the second online stage, we present the student training throughput, GPU peak memory, and
total runtime in Table 12. The student distillation stage is conducted on a single RTX 2080 Ti GPU.

Table 12: Comparison of DJIP distillation complexity measured with different teacher-student pairs
on CIFAR-100 with vanilla KD method and TALD, following the configuration specified in Section
A.5.

Teacher Method Throughput Peak GPU Memory Total Runtime
Student (img/ms) (MB/GPU) (s)

VGG-13 Vanilla 7.11 614 2026.6
DJIP 5.60 624 2572.8

VGG-8 TALD 2.48 1060 5829.6

ResNet-56 Vanilla 4.61 408 3124.8
DJIP 3.70 410 3895.2

ResNet-20 TALD 1.38 946 10447.2

WRN-40-2 Vanilla 3.53 668 4084.8
DJIP 2.98 670 4826.4

WRN-40-1 TALD 1.15 1262 12516.0

A.9 FEW SHOT CLASSIFICATION

In conventional few-shot classification, only a β percent of instances from each class are made
available for model training (Luo et al., 2023). Translating this idea into the KD setting, the JPEG
layer is trained on the full dataset, while only a β percent subset of samples per class is used to train
the student during distillation.
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To examine the effectiveness of the proposed DJIP teacher under limited-data conditions, we conduct
experiments on CIFAR-100 using WRN-40-2 WRN-16-2 teacher-student pair. We evaluate several
values of β, namely 5, 10, 20, 50, 75, over the vanilla KD method. The results are presented in
Table 13. As shown, the student consistently benefits from distillation with the DJIP teacher, and
the improvement is especially notable in more challenging low-data regimes (smaller β). These
results further support the robustness of our method under constrained data scenarios.

Table 13: Comparison of student accuracy (%) under few-shot distillation settings on CIFAR-100.
The teacher is trained on the full dataset, while only a β percent subset of samples per class is used
to train the student.

Teacher Student Method β
5 10 20 50 75

WRN-40-2 WRN-16-2
CE 34.75 50.73 60.93 69.60 72.17

DJIP 40.56 53.95 62.98 70.87 73.15
∆ +5.81 +3.22 +2.06 +1.27 +0.98

A.10 TRAINED QUANTIZATION TABLE VISUALIZATION

The quantization tables trained for the DJIP teacher, corresponding to the results in Tables 1, 2,
and 3, are presented in Figures 4 and 5. These results indicate that, across different datasets, the
models consistently apply stronger compression to the Y channel than to the Cb and Cr channels,
which in turn leads to higher CMI values after training.

(a) VGG-13 (λ = 0.5) (b) ResNet-110 (λ = 0.5) (c) ResNet-32×4 (λ = 0.5)

(d) ResNet-56 (λ = 0.5) (e) ResNet-50 (λ = 0.5) (f) WRN-40-2 (λ = 0.5)

Figure 4: Trained quantization tables on CIFAR-100 models used in Table 1 and 2.

A.11 VISUALIZE THE OUTPUT PROBABILITY SPACE

We visualize how the output probability distributions of the ResNet-32×4 DJIP teacher evolve
across epochs during a single training run, as illustrated in Figure 6. The simplex is visualized
by projecting the 3-class softmax probability vectors onto a 2D plane, where the one-hot vectors of
each class are mapped to the vertices of an equilateral triangle. Temperature scaling with T = 4.0
is applied to the softmax outputs.

Initially, the teacher produces highly confident predictions resembling one-hot vectors, with output
probabilities concentrated near the corners of the simplex. As training progresses, facilitated by
the differentiable JPEG layers, both the output distributions and the centroids of each class cluster
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(a) ResNet-34 (λ = 1.4)

(b) ResNet-50 (λ = 2.0)

Figure 5: Trained quantization tables on ImageNet models in Table 3.

gradually shift toward the center of the simplex, leading to an increase in CMI values. While main-
taining correct classifications, the predictions become less confident yet more informative. Figure 6
further illustrates the convergence of centroid trajectories, thereby validating the convergence of the
alternating optimization algorithm.

(a) Untrained (b) Epoch 5 (c) Epoch 10 (d) Epoch 15 (e) Epoch 20

Figure 6: The output probability vectors of the trained DJIP teacher for a three-class classification
task are visualized on a 2-simplex over different epochs within a single training run. Three classes
are randomly selected from the CIFAR-100 training set, with 100 samples per class. Temperature
scaling with T = 4.0 is applied to the softmax outputs to enhance distributional smoothness. In the
plots, cross markers denote the class centroids, and the CMI values are computed based solely on
these three selected classes.

A more comprehensive comparison of the output probability space between the CE teacher and the
DJIP teacher is shown in Figure 7, with temperature scaling T = 4.0 as well. We observe that the
clusters corresponding to the DJIP teacher become less concentrated.

A.12 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we only employed LLMs to assist with writing polish and refinement, as well as for
literature retrieval and discovery (e.g., identifying related work).
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(a) ResNet-32x4 (Left: CE teacher; Right: DJIP teacher)

Figure 7: t-SNE (van der Maaten & Hinton, 2008) visualization of features extracted from the
CIFAR-100 training set with 500 samples per cluster in all 100 categories.
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