
SDformer: Similarity-driven Discrete Transformer For
Time Series Generation

Zhicheng Chen1,2,†, Shibo Feng3, Zhong Zhang2, Xi Xiao1,4,∗, Xingyu Gao5, Peilin Zhao2,∗
1Shenzhen International Graduate School, Tsinghua University

2Tencent AI Lab
3School of Computer Science and Engineering, Nanyang Technological University

4Key Laboratory of Data Protection and Intelligent Management (Sichuan University), Ministry of Education
5Institute of Microelectronics, Chinese Academy of Sciences

{czc22@mails,xiaox@sz}.tsinghua.edu.cn, shibo001@ntu.edu.sg,
gaoxingyu@ime.ac.cn, {todzhang, masonzhao}@tencent.com

Abstract

The superior generation capabilities of Denoised Diffusion Probabilistic Models
(DDPMs) have been effectively showcased across a multitude of domains. Re-
cently, the application of DDPMs has extended to time series generation tasks,
where they have significantly outperformed other deep generative models, often
by a substantial margin. However, we have discovered two main challenges with
these methods: 1) the inference time is excessively long; 2) there is potential for
improvement in the quality of the generated time series. In this paper, we propose
a method based on discrete token modeling technique called Similarity-driven Dis-
crete Transformer (SDformer). Specifically, SDformer utilizes a similarity-driven
vector quantization method for learning high-quality discrete token representations
of time series, followed by a discrete Transformer for data distribution modeling at
the token level. Comprehensive experiments show that our method significantly
outperforms competing approaches in terms of the generated time series quality
while also ensuring a short inference time. Furthermore, without requiring re-
training, SDformer can be directly applied to predictive tasks and still achieve
commendable results.

1 Introduction

Time series data is prevalent across a wide array of real-world applications, spanning fields such as
finance [22, 9, 38, 36], healthcare [27], energy [28, 21, 12, 13], retail [20, 45], and climate science
[35] . Despite its significance, the limited availability of dynamic data can pose a significant barrier
to the development of machine learning solutions, particularly in scenarios where data sharing could
lead to privacy violations [2]. The generation of synthetic yet realistic time series data has emerged
as a promising alternative, garnering increased interest due to recent advancements in deep learning
techniques.

Existing works on time series generation (TSG) is mainly based on common deep generative models,
such as methods based on generative adversarial networks (GAN) [24, 11, 39, 37, 26, 16, 17] and
methods based on Variational Autoencoders (VAE) [7, 25]. Currently holding state-of-the-art results
are DDPMs-based methods [19, 6, 42], which have the capability to generate high-quality, realistic
time series. However, they are not without their challenges. Firstly, these methods often require
lengthy inference times due to the substantial number of denoising steps involved. Secondly, despite

†This work is done when Zhicheng Chen works as an intern in Tencent AI Lab.
∗Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

these methods achieving significant advancements in generation quality compared to other deep
generative models, we observe that the quality of the time series they generate still has potential for
further enhancement.

Currently, large transformer-based language models, often known as LMs or LLMs, have become
the standard choice for natural language generation tasks[1, 3]. As time has progressed, these LMs
have evolved to produce content across a wide range of modalities, such as images [29, 40, 5, 4] and
videos [41, 33], using what is referred to as Discrete Token Modeling (DTM) technique. In general,
these approaches function by learning a discrete representations of images (or videos, etc.), treating
them as if they were natural language, and harnessing the power of existing language models for the
generation process. Inspired by their success, we aim to explore the application of these techniques
in the domain of multivariate time series generation, potentially unlocking new possibilities and
advancements in this area.

To address the aforementioned challenges, we propose a novel two-stage method for time series
generation, called Similarity-driven Discrete Transformer (SDformer). The primary objective of
the first stage is to employ Vector Quantized Variational Autoencoders (VQ-VAE) [31] for learning
high-quality discrete representations of time series. To enhance this process, we introduce a similarity-
driven vector quantization approach, which identifies the most suitable code from the codebook by
maximizing similarity. The experiments in 5.4 further substantiate the superiority of our method
over distance-driven vector quantization. Moreover, to prevent code collapse—a phenomenon where
only a small portion of the codes are updated during training, thereby hindering the performance
of the VQ-VAE—we incorporate two standard recipes [34] during training: Exponential Moving
Average (EMA) for codebook updates and Resetting inactivated codes during the training process
(Code Reset). In the second stage, we implement two Discrete Token Modeling (DTM) techniques:
Masked Token Modeling (MTM) and Autoregressive Token Modeling (ARTM), underpinning the
SDformer-ar and SDformer-m variants, respectively. SDformer-ar adopts an autoregressive approach
for both training and inference, mitigating the inconsistency between these two phases through
random replacement [43]. SDformer-m utilizes random masking for training and iterative decoding
for inference [8, 5]. Our findings reveal that SDformer, particularly SDformer-ar, surpasses existing
models in time series generation. Moreover, SDformer demonstrates robust predictive performance
without requiring retraining.

In summary, our contributions include:

• We propose an efficient time series generation model SDformer, which successfully in-
troduces DTM technique into time series generation and demonstrates its feasibility and
efficiency.

• We introduce a novel similarity-driven vector quantization approach that outperforms the
traditional distance-driven method in learning discrete representations of time series. This
innovative approach offers a straightforward yet powerful technique for applying discrete
token modeling in various fields.

• Our experimental results confirm that the SDformer’s performance in time series generation
notably surpasses that of the current state-of-the-art models, exemplified by an average
enhancement of 60.8% in Discriminative Score and 86.5% in Context-FID Score across
multiple datasets.

2 Related work

2.1 Discrete token modeling

Discrete token modeling, a staple in natural language processing (NLP), has recently been adapted
for non-language modalities through vector quantization models like VQ-VAE [31] and VQGAN
[10]. These models enable the encoding of diverse data types into discrete tokens, allowing the
application of advanced language modeling techniques to generate content across various domains.
This expansion significantly broadens the utility of NLP methodologies, extending their impact
beyond traditional language tasks. Among these techniques, Autoregressive Token Modeling (ARTM)
is a common approach that predicts the next token in a sequence, given the previous tokens, using a
categorical distribution. Models such as DALL-E [29] and Parti [40] employ ARTM to accomplish
text-to-image generation tasks. Similarly, T2M-GPT [43] and MotionGPT [18] utilize ARTM for

2

text-to-motion generation. Another widely used technique is Masked Token Modeling (MTM), which
is trained using a masked token objective [8]. In this approach, some tokens in the sequence are
randomly masked and need to be predicted based on the observed tokens. Models such as MaskGIT
[5] and MUSE [4] leverage MTM for image generation tasks. Furthermore, MAGVIT [41] and
Phenaki [33] employ MTM for video generation, showcasing the versatility of this technique.

2.2 Time series generation

Deep generative models demonstrate high-quality sample generation across various domains, as does
time series generation. At first, people mostly relied on GAN to complete time series generation
[24, 11, 39, 37, 26, 16]. For example, TimeGAN [39] improves temporal dynamics capture by adding
an embedding function and supervised loss. COT-GAN [37] combines GAN and Causal Optimal
Transfer (COT) principles to efficiently and stably generate low- and high-dimensional time series
data. Due to the challenges of training instability and mode collapse in GAN, researchers have
started exploring alternative deep generative models for TSG. TimeVAE [7] employs an interpretable
temporal structure and achieves promising results in time series synthesis using VAE. Moreover,
several studies focus on addressing the generation of irregular time series, such as GT-GAN [17] and
KoVAE [25].

With the emergence of Denoising Diffusion Probabilistic Models (DDPMs) [14], a new class of
generative models, impressive generative capabilities have been demonstrated across various domains.
Recently, diffusion models have also been adapted for TSG. For instance, DiffWave [19] directly
applies DDPMs to waveform generation, while DiffTime [6] harnesses the latest advancements in
score-based diffusion models for time series generation. Furthermore, Diffusion-TS [42] gener-
ates time series samples by utilizing an encoder-decoder transformer with disentangled temporal
representations, showcasing the versatility and potential of these alternative generative models.

3 Definitions and problem formulation

We define multivariate time series as X1:τ = (x1, · · · , xτ) ∈ Rτ×d, where τ and d are the number
of time steps and variables respectively. Assuming that a dataset containing n time series can be
expressed as D = {Xi

1:τ}ni=1, the goal of unconditional generation is to use a model fθ to generate
time series with the same distribution as D, i.e.,

X̂i
1:τ = fθ(Z), (1)

where Z is the input sampled from any known distribution, such as the Gaussian distribution.

Time series forecasting is a common conditional time series generation. We denote historical values
as X1:l ∈ Rl×d, where 1 < l < τ is the number of historical time steps. Therefore, the goal of
conditional generation is to use a model fθ to predict future values, i.e.,

X̂l+1:τ = fθ(X1:l). (2)

In this paper, our objective is to develop an effective approach that not only accomplishes uncondi-
tional generation tasks efficiently but also adapts to conditional generation tasks without retraining,
while maintaining high accuracy.

4 Methods

In this section, we illustrate proposed innovative model SDformer for time series generation. Specif-
ically, SDformer is a two-stage method, the framework of which is illustrated in Figure 1. In the
first stage, a pre-trained time series tokenizer utilizes similarity-driven vector quantization to obtain
high-quality discrete token representations. Following this, a discrete Transformer is employed to
learn the distribution of time series data at the discrete token level, with the two generative ways
(Masked and Autoregressive strategies).

4.1 Time series tokenizer

To represent time series in discrete tokens, we pre-train a multivariate time series tokenizer based
on the VQ-VAE architecture [31]. Our time series tokenizer consists of an encoder E and a decoder

3

Figure 1: The workflow of SDformer. In stage 1, we pre-train a time series tokenizer which uses
similarity-driven vector quantization to obtain high-quality discrete token representations. In stage2,
two optional techniques are introduced for time series modeling at the discrete token level: MTM
and ARTM. For MTM, the input tokens are randomly masked and fed into the Masked Transformer,
an encoder-only model, to predict the masked tokens. Conversely, for ARTM, the input tokens are
shifted back by one step with the [BOS] token added at the starting position, and then processed by
the Autoregressive Transformer, a decoder-only model, to predict subsequent tokens for all input
tokens.

D. The encoder is responsible for the generation of discrete time series tokens, while the decoder is
capable of reconstructing these tokens back into their original time series form. This methodology
allows us to represent time series akin to a language, thereby enabling the application of a multitude
of efficient language models to address various time series-related tasks.

Specifically, the encoder E initially applies 1D convolutions to time series features X1:τ along the
temporal dimension, resulting in latent vectors H1:L = (h1, · · · , hL) ∈ RL×dc , where L = τ/r, r
signifies the temporal downsampling rate and dc is hidden dimension. Subsequently, we employ
the codebook to discretely quantize hi to obtain discrete token. The learnable codebook C =
{ck}K−1

k=0 ⊂ Rdc comprises K latent embedding vectors, each with a dimension dc. The process of
similarity-driven vector quantization Q(·) involves identifying the index of the vector in the codebook
that exhibits the highest similarity to hi, which can be expressed as:

yi = Q(hi) := argmax
k=0,··· ,K−1

hi

||hi||
· ck
||ck||

, (3)

where yi = 0, · · · ,K − 1, · denotes the inner product, and || · || represents the modulo operation. For
simplicity, we introduce a normalization step in the final output layer of the encoder E , resulting in a
unit modulus length for hi. Furthermore, we ensure that the code in the codebook always has a unit
modulus length for ck. The similarity-driven quantization process can be re-simplified as:

yi = argmax
k=0,··· ,K−1

hi · ck. (4)

Following quantization, the dequantization process Q−1(·) reverts yi back to the latent embedding
vector, denoted as:

h̃i = Q−1(yi) := cyi
. (5)

Ultimately, the decoder D restores it to the raw time series space, i.e., X̃1:τ = D(H̃1:L). To train this
time series tokenizer, we utilize two distinct loss functions for training and optimizing the parameters
of E and D:

L = ||X1:τ − X̃1:τ ||22 +
λ

L

L∑
i=1

(
1− hi · sg(h̃i)

)
, (6)

where the first loss is the reconstruction loss, the second loss is embedding loss, sg(·) represents the
stop gradient, and λ is hyperparameter used to adjust the weights of different parts. For the codebook,
we use Exponential Moving Average and Codebook Reset techniques [34] to update.

When the time series tokenizer training is completed, the codebook and all parameters will be frozen.
By employing this time series tokenizer, a multivariate time series X1:τ ∈ Rτ×d can be mapped to a

4

sequence of time series tokens Y1:L ∈ {0, · · · ,K − 1}L. Therefore, we can use DTM technique to
learn the distribution of time series data at the discrete token level. For the choice of DTM, we can
opt for methods such as ARTM or MTM. We will introduce these two methods in Sections 4.2 and
4.3, respectively.

4.2 Autoregressive token modeling on time series generation

In this part, we utilize ARTM technique to learn the distribution of time series data at the discrete
token level, based on the time series tokenizer. We refer to this approach as SDformer-ar. During
training, we take shifted tokens Y in

1:L = ([BOS], y1, · · · , yL−1) as input and real tokens Y1:L as target
for training, where [BOS] represents Beginning of Sentence token. In particular, we use index K as
the [BOS] token, which is distinct from the codebook’s index range {0, · · · ,K − 1}. The training
objective is to minimize the negative log-likelihood of all tokens:

Lar = −E

[∑
i

logP (yi|Y in
1:i)

]
. (7)

Concretely, we input Y in
1:L into a Decoder-only Transformer to predict the probabilities P (yi|Y in

1:i)
for each token, where the negative log-likelihood is computed as the cross-entropy between the
ground-truth one-hot token and predicted token. For inference, we start from the [BOS] token and
generate next token in an autoregressive fashion. The detailed training and inference algorithm of
SDformer-ar are respectively shown in Algorithm 2 and 4 in Appendix E. Note that we are able to
generate diverse time series by sampling from the predicted distributions given by the transformer.

Random replacement. Autoregression is known to exhibit inconsistency between the training and
inference phases. Specifically, during training, the first i− 1 ground-truth tokens are used to predict
the i-th token. However, during inference, there’s no guarantee that all the preceding tokens used
as conditions are correct. To alleviate this issue, we implement a random replacement strategy as a
form of data augmentation during training. In this approach, each token is processed individually.
A random number is compared to a probability threshold π. If it meets the threshold, the token is
replaced randomly; otherwise, it remains unchanged. The random replacement can be expressed as:

ỹi =

{
Randint(0,K), if Uniform(0, I) ≤ π

yi, otherwise
, (8)

where Randint(0,K) is a random integer sampled uniformly from the range 0 to K − 1, and
Uniform(0, I) is a random number sampled from a uniform distribution in the range 0 to 1. Therefore,
during training, we use ỹi instead of yi in Y in

1:L to achieve data augmentation.

4.3 Masked token modeling on time series generation

In this part, we utilize MTM technique to learn the distribution of time series data at the discrete
token level, based on the time series tokenizer. We refer to this approach as SDformer-m. During
training, we sample a probability p from the uniform distribution U(0, 1) as the mask probability.
We then replace tokens in the original token sequence with the [MASK] token according to the
mask probability p. In particular, we use index K as the [MASK] token, which is distinct from the
codebook’s index range {0, · · · ,K−1}. In other words, when the token yi = K at a certain position,
it indicates that the position has been masked. Denote Y 1:L as the result after applying random mask
to Y1:L. The training objective is to minimize the negative log-likelihood of the masked tokens:

Lmask = −E

 ∑
yi=K

logP (yi|Y 1:L)

 . (9)

Concretely, we feed the masked Y 1:L into a multi-layer bi-directional transformer to predict the
probabilities P (yi|Y 1:L) for each masked token, where the negative log-likelihood is computed as
the cross-entropy between the ground-truth one-hot token and predicted token.

During inference, we generate a new token sequence using iterative decoding, as proposed in [5].
Initially, we set an iteration number N and a mask schedule S of length N . Here, S[t] represents the
number of masks needed after the completion of step t. It is required that S[0] < N , S[T − 1] = 0,
and S[t] strictly decreases with an increase in t. The detailed training and inference algorithm of
SDformer-m are respectively shown in Algorithm 3 and 5 in Appendix E.

5

SD
fo

rm
er

-a
r

SD
fo

rm
er

-m
D

iff
us

io
n-

T
S

(a) t-SNE: Energy (b) t-SNE: ETTh (c) KDE: Energy (d) KDE: ETTh

Figure 2: Visualizations of the time series synthesized by SDformer and Diffusion-TS.

Table 1: Descriptions of all datasets.
Dataset Sines Stocks ETTh MuJoCo Energy fMRI

of Samples 10000 3773 17420 10000 19711 10000
dim 5 6 7 14 28 50

5 Experiments

In this section, we commence by assessing our proposed methods through a comparative analysis with
several state-of-the-art baseline methods on unconditional time series generation tasks. Subsequently,
we delve deeper into the analysis of our methods’ versatility and high performance in conditional
generation tasks. Lastly, through ablation experiments, we confirm the superior effectiveness of
similarity-driven vector quantization and discrete token modeling.

5.1 Experimental setups

Datasets To evaluate the performance of SDformer, we conduct experiments on 4 real-world datasets
(Stocks, ETTh, Energy and fMRI) and 2 simulated datasets (Sines and MuJoCo). Table 1 provides a
partial description of each dataset. For more detailed information, please refer to Appendix A.

Metrics For quantitative evaluation of synthesized data, we employ the discriminative score and
predictive score as described in [39], along with the Context-FID score proposed by [16]. For detailed
descriptions, please refer to Appendix A.

5.2 Unconditional time series generation

Table 2 provides a summary of the performance for each of the compared algorithms on all the
datasets. From these results, we can make several observations. Firstly, our proposed methods based
on DTM outperform other methods in most cases, demonstrating the feasibility and effectiveness
of DTM for time series generation tasks. Secondly, SDformer-ar exhibits a significantly better
performance than SDformer-m, which contrasts with the findings in the visual domain. This can
be attributed to the fact that autoregressive token modeling is better suited to capture temporal
correlations compared to masked token modeling.

To further investigate the capability of our proposed methods in handling longer sequences, we
compare the generative abilities of different methods on longer time series, as shown in Table 3.
Based on the results, it is evident that many methods exhibit significant distortions when dealing with
longer time series, particularly when the discriminative score approaches 0.5, as seen prominently

6

Table 2: Results of all methods on all datasets

Metrics Methods Sines Stocks ETTh MuJoCo Energy fMRI

Discriminative
Score↓

SDformer-ar 0.006±.004 0.010±.006 0.003±.001 0.008±.005 0.006±.004 0.017±.007
SDformer-m 0.008±.004 0.020±.011 0.022±.001 0.0250±.007 0.062±.006 0.043±.006
Diffusion-TS 0.006±.007 0.067±.015 0.061±.009 0.008±.002 0.122±.003 0.167±.023

TimeGAN 0.011±.008 0.102±.021 0.114±.055 0.238±.068 0.236±.012 0.484±.042
TimeVAE 0.041±.044 0.145±.120 0.209±.058 0.230±.102 0.499±.000 0.476±.044
Diffwave 0.017±.008 0.232±.061 0.190±.008 0.203±.096 0.493±.004 0.402±.029
DiffTime 0.013±.006 0.097±.016 0.100±.007 0.154±.045 0.445±.004 0.245±.051
Cot-GAN 0.254±.137 0.230±.016 0.325±.099 0.426±.022 0.498±.002 0.492±.018

Predictive
Score↓

SDformer-ar 0.093±.000 0.037±.000 0.118±.002 0.007±.001 0.249±.000 0.091±.002
SDformer-m 0.093±.000 0.037±.000 0.119±.002 0.007±.001 0.250±.000 0.091±.001
Diffusion-TS 0.093±.000 0.036±.000 0.119±.002 0.007±.000 0.250±.000 0.099±.000

TimeGAN 0.093±.019 0.038±.001 0.124±.001 0.025±.003 0.273±.004 0.126±.002
TimeVAE 0.093±.000 0.039±.000 0.126±.004 0.012±.002 0.292±.000 0.113±.003
Diffwave 0.093±.000 0.047±.000 0.130±.001 0.013±.000 0.251±.000 0.101±.000
DiffTime 0.093±.000 0.038±.001 0.121±.004 0.010±.001 0.252±.000 0.100±.000
Cot-GAN 0.100±.000 0.047±.001 0.129±.000 0.068±.009 0.259±.000 0.185±.003
Original 0.094±.001 0.036±.001 0.121±.005 0.007±.001 0.250±.003 0.090±.001

Context-FID
Score↓

SDformer-ar 0.001±.000 0.002±.000 0.008±.001 0.005±.001 0.003±.000 0.015±.001
SDformer-m 0.010±.002 0.034±.008 0.019±.003 0.030±.003 0.041±.005 0.035±.003
Diffusion-TS 0.006±.000 0.147±.025 0.116±.010 0.013±.001 0.089±.024 0.105±.006

TimeGAN 0.101±.014 0.103±.013 0.300±.013 0.563±.052 0.767±.103 1.292±.218
TimeVAE 0.307±.060 0.215±.035 0.805±.186 0.251±.015 1.631±.142 14.449±.969
Diffwave 0.014±.002 0.232±.032 0.873±.061 0.393±.041 1.031±.131 0.244±.018
DiffTime 0.006±.001 0.236±.074 0.299±.044 0.188±.028 0.279±.045 0.340±.015
Cot-GAN 1.337±.068 0.408±.086 0.980±.071 1.094±.079 1.039±.028 7.813±.550

in the Energy dataset. Despite these challenges, both SDformer-ar and SDformer-m continue to
demonstrate exceptional performance.

To visualize the performance of time series generation, we adopt two visualization methods: projecting
original and synthetic data in a 2-dimensional space using t-SNE [32], and drawing data distributions
using Kernel Density Estimation (KDE). Figure 2 illustrates the visualization of our methods in
comparison with Diffusion-TS on the Energy and ETTh datasets, revealing that the data generated by
SDformer-ar more closely resembles the real data, followed by SDformer-m.

5.3 Conditional time series generation

8 16 24 32 40
Time Stamps

0.35

0.40

0.45

Va
lu

es

Pred 8

Original
Diffusion-TS
SDformer-ar

8 16 24 32 40
Time Stamps

0.40

0.45

0.50

Pred 16

Original
Diffusion-TS
SDformer-ar

8 16 24 32 40
Time Stamps

0.35

0.40

0.45

0.50
Pred 24

Original
Diffusion-TS
SDformer-ar

8 16 24 32 40
Time Stamps

0.35

0.40

0.45

0.50
Pred 32

Original
Diffusion-TS
SDformer-ar

8 16 24 32 40
Time Stamps

0.4

0.5

0.6

Va
lu

es

Pred 8

Original
Diffusion-TS
SDformer-ar

8 16 24 32 40
Time Stamps

0.4

0.5

0.6

Pred 16

Original
Diffusion-TS
SDformer-ar

8 16 24 32 40
Time Stamps

0.4

0.5

0.6

Pred 24

Original
Diffusion-TS
SDformer-ar

8 16 24 32 40
Time Stamps

0.4

0.5

0.6

Pred 32

Original
Diffusion-TS
SDformer-ar

Figure 3: Examples of time series forecasting for Energy (1st row) and fMRI (2st row) datasets.
Green and gray colors correspond to SDformer-ar and Diffusion-TS, respectively.

7

Table 3: Results of long-term time series generation

ETTh Energy
Metrics Methods 64 128 256 64 128 256

Discriminative
Score↓

SDformer-ar 0.018±.007 0.013±.005 0.008±.006 0.010±.007 0.013±.007 0.017±.003
SDformer-m 0.034±.017 0.038±.008 0.041±.024 0.053±.018 0.069±.014 0.035±.007
Diffusion-TS 0.106±.048 0.144±.060 0.060±.030 0.078±.021 0.143±.075 0.290±.123

TimeGAN 0.227±.078 0.188±.074 0.442±.056 0.498±.001 0.499±.001 0.499±.000
TimeVAE 0.171±.142 0.154±.087 0.178±.076 0.499±.000 0.499±.000 0.499±.000
Diffwave 0.254±.074 0.274±.047 0.304±.068 0.497±.004 0.499±.001 0.499±.000
DiffTime 0.150±.003 0.176±.015 0.243±.005 0.328±.031 0.396±.024 0.437±.095
Cot-GAN 0.296±.348 0.451±.080 0.461±.010 0.499±.001 0.499±.001 0.498±.004

Predictive
Score↓

SDformer-ar 0.116±.006 0.110±.007 0.095±.003 0.247±.001 0.244±.000 0.243±.002
SDformer-m 0.120±.004 0.107±.004 0.110±.007 0.248±.001 0.245±.000 0.244±.003
Diffusion-TS 0.116±.000 0.110±.003 0.109±.013 0.249±.000 0.247±.001 0.245±.001

TimeGAN 0.132±.008 0.153±.014 0.220±.008 0.291±.003 0.303±.002 0.351±.004
TimeVAE 0.118±.004 0.113±.005 0.110±.027 0.302±.001 0.318±.000 0.353±.003
Diffwave 0.133±.008 0.129±.003 0.132±.001 0.252±.001 0.252±.000 0.251±.000
DiffTime 0.118±.004 0.120±.008 0.118±.003 0.252±.000 0.251.±.000 0.251±.000
Cot-GAN 0.135±.003 0.126±.001 0.129±.000 0.262±.002 0.269±.002 0.275±.004
Original 0.114±.006 0.108±.005 0.106±.010 0.245±.002 0.243±.000 0.243±.000

Context-FID
Score↓

SDformer-ar 0.018±.003 0.024±.001 0.021±.001 0.031±.002 0.036±.002 0.041±.003
SDformer-m 0.086±.008 0.094±.007 0.078±.006 0.160±.025 0.151±.011 0.136±.014
Diffusion-TS 0.631±.058 0.787±.062 0.423±.038 0.135±.017 0.087±.019 0.126±.024

TimeGAN 1.130±.102 1.553±.169 5.872±.208 1.230±.070 2.535±.372 5.032±.831
TimeVAE 0.827±.146 1.062±.134 0.826±.093 2.662±.087 3.125±.106 3.768±.998
Diffwave 1.543±.153 2.354±.170 2.899±.289 2.697±.418 5.552±.528 5.572±.584
DiffTime 1.279±.083 2.554±.318 3.524±.830 0.762±.157 1.344±.131 4.735±.729
Cot-GAN 3.008±.277 2.639±.427 4.075±.894 1.824±.144 1.822±.271 2.533±.467

Apart from unconditional generation, we also explore the performance of our proposed methods
in conditional generation tasks. Our objective is to evaluate the model’s versatility in handling
both conditional and unconditional tasks. More specifically, we aim to train a single model that can
effectively manage both unconditional and conditional tasks under different settings. Referring to [42],
we set τ = 48, l = 8, 16, 24, 32 in Equation (2), and then directly use the model trained under the
unconditional generation task to complete the forecasting tasks under these different settings. Figure
3 displays several examples of forecasting tasks. The median values of forecasting are represented
as the dotted line, and 5% and 95% quantiles are depicted as the shade areas (Green: SDformer-ar,
Gray: Diffusion-TS). This demonstrates that SDformer-ar provides more reasonable forecasts with
higher confidence compared to Diffusion-TS. Furthermore, more detailed results are illustrated in
Figure 4. Based on these findings, the methods employing discrete token modeling demonstrates
adaptability to both unconditional and conditional generation tasks of varying lengths without the
need for retraining, while maintaining good performance.

5.4 Ablation study

To understand the contribution of each component to proposed methods, we conduct ablation experi-
ments for two aspects, 1) The impact of vector quantization methods based on different measurements
2) The advantages of discrete representations in time series generation. More experimental results
refer to Appendix C, due to limited space.

Effect of similarity-driven vector quantization in Equation (4). For discrete token modeling
method, the quality of discrete representations learning from continuous data determines the perfor-
mance potential of the entire method, with vector quantization playing a crucial role. Therefore, we
compare the impact of our proposed similarity-driven vector quantization with the commonly used
distance-driven vector quantization on the overall method performance.

8

Pred 8 Pred 16 Pred 24 Pred 32 Uncondition0.0

0.5

1.0

1.5

M
SE

 o
r D

S

0.08 0.05 0.06

0.66

0.050.11 0.07 0.10

0.67
0.83

1.22
1.30 1.31 1.33

1.11

Energy
SDformer-ar SDformer-m Diffusion-TS

Pred 8 Pred 16 Pred 24 Pred 32 Uncondition0.0

1.5

3.0

4.5

M
SE

 o
r D

S

0.38 0.20 0.15 0.21 0.310.39 0.20 0.15
0.56

1.18

3.55
3.93 4.12 4.28

2.96

fMRI
SDformer-ar SDformer-m Diffusion-TS

Figure 4: Performance for time series forecasting and generation under different setting. All
forecasting tasks utilize Mean Square Error (MSE) as performance metric, while unconditional
generation tasks employ Discriminative Scores (DS). Note: The data in this figure has been scaled by
a factor of 100 for the forecasting tasks and 10 for the unconditional generation tasks to streamline
the presentation.

Table 4: Results of ablation study.

Metrics Methods Sines Stocks ETTh MuJoCo Energy fMRI

Discriminative
Score↓

SDformer-ar 0.006±.004 0.010±.006 0.003±.001 0.008±.005 0.006±.004 0.017±.007
w/o similarity 0.006±.004 0.011±.007 0.010±.005 0.013±.003 0.018±.005 0.024±.003

continuous 0.047±.012 0.065±.012 0.145±.020 0.055±.013 0.322±.012 0.243±.214
continuous, w/ first 0.012±.004 0.021±.015 0.006±.004 0.020±.006 0.277±.007 0.074±.006

SDformer-m 0.008±.004 0.020±.011 0.022±.001 0.025±.007 0.062±.006 0.043±.006
w/o similarity 0.015±.007 0.081±.010 0.055±.004 0.070±.005 0.068±.005 0.055±.009

Predictive
Score↓

SDformer-ar 0.093±.000 0.037±.000 0.118±.002 0.007±.001 0.249±.000 0.091±.002
w/o similarity 0.093±.000 0.037±.000 0.122±.002 0.008±.001 0.249±.000 0.091±.002

continuous 0.093±.000 0.038±.000 0.124±.003 0.009±.001 0.255±.000 0.105±.000
continuous, w/ first 0.093±.000 0.037±.000 0.122±.003 0.007±.001 0.251±.000 0.087±.003

SDformer-m 0.093±.000 0.037±.000 0.119±.002 0.007±.001 0.250±.000 0.091±.001
w/o similarity 0.093±.000 0.037±.000 0.123±.001 0.008±.001 0.250±.000 0.093±.000

Context-FID
Score↓

SDformer-ar 0.001±.000 0.002±.000 0.008±.001 0.005±.001 0.003±.000 0.015±.001
w/o similarity 0.002±.000 0.012±.001 0.013±.001 0.005±.001 0.004±.000 0.011±.000

continuous 0.056±.004 0.101±.022 0.433±.049 0.065±.008 0.213±.022 5.512±.390
continuous, w/ first 0.004±.000 0.015±.003 0.002±.000 0.006±.001 0.021±.003 0.003±.000

SDformer-m 0.010±.002 0.034±.008 0.019±.003 0.030±.003 0.041±.005 0.035±.003
w/o similarity 0.044±.006 0.123±.009 0.106±.012 0.098±.009 0.062±.014 0.038±.002

The term "w/o similarity" in Table 4 denotes the variant of the corresponding method that employs
distance-driven vector quantization instead of similarity-driven vector quantization. As per the
comprehensive results, similarity-driven vector quantization significantly outperforms distance-driven
vector quantization. For instance, the discriminative score witnessed an increase of 35.6% for
SDformer-ar and 46.2% for SDformer-m.

Effect of discrete token in Equation (4) and (5). To explore the impact of discrete versus continuous
tokens, we introduce a variant replacing the original discrete token with a continuous one within a
similar framework. Initially, we substitute VQ-VAE with VAE as per [14] to encode a continuous
latent space. In the second stage, we reconfigure the Transformer to accommodate continuous inputs,
altering its initial input strategy due to the inapplicability of a fixed token like [BOS]. Thus, the
first token of each time series is not used as the prediction target during training. For inference,
we devised two methods: one involves sampling from a multivariate Gaussian, calculated from all
initial training tokens, for generating the first token; the second uses the actual initial token directly.
Although the latter does not lend itself to a fair comparison with the original model, it is included for
a more comprehensive evaluation as a reference.

In Table 4, the term "continuous" represents the first variant, which involves using continuous tokens
in place of discrete ones. Meanwhile, the term "continuous, w/ first" denotes the second variant,
which builds upon the first by providing the actual first token during inference. It is worth noting
that, as SDformer-m necessitates the utilization of category sampling during inference for achieving

9

iterative sampling, we abstain from conducting ablation experiments on discrete tokens specifically
for this model. Based on the results, the model’s performance experiences a significant decline upon
the removal of discrete tokens. Even when incorporating the condition information of the first token,
it often fails to surpass the original method in most scenarios.

6 Conclusions

In this paper, we present discrete token modeling for the time series generation tasks and propose
a innovative two-stage model. Specifically, it is built upon an efficient time series tokenizer, which
attains high-quality discrete token representations through similarity-driven vector quantization.
Leveraging this foundation, we employ autoregressive token modeling and masked token modeling
techniques to learn the distribution of time series data at the discrete token level. Experimental results
showcase the efficacy and adaptability of our approach in various time series generation tasks. Owing
to the flexibility of our method in the second stage, future work could explore referencing more
efficient language models to design increasingly effective time series generation strategies.

Acknowledgements

We would like to thank Tencent AI Lab for supporting Zhicheng Chen as a student researcher
during his internship. The study was partially supported by the Key Laboratory of Data Protection
and Intelligent Management, Ministry of Education, Sichuan University and also the Fundamental
Research Funds for the Central Universities under Grant SCU2023D008.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Ahmed Alaa, Alex James Chan, and Mihaela van der Schaar. Generative time-series modeling
with fourier flows. In International Conference on Learning Representations, 2020.

[3] Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report.
arXiv preprint arXiv:2305.10403, 2023.

[4] Huiwen Chang, Han Zhang, Jarred Barber, Aaron Maschinot, José Lezama, Lu Jiang, Ming-
Hsuan Yang, Kevin Patrick Murphy, William T. Freeman, Michael Rubinstein, Yuanzhen Li,
and Dilip Krishnan. Muse: Text-to-image generation via masked generative transformers.
In International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA.

[5] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked
generative image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11315–11325, 2022.

[6] Andrea Coletta, Sriram Gopalakrishnan, Daniel Borrajo, and Svitlana Vyetrenko. On the
constrained time-series generation problem. Advances in Neural Information Processing
Systems, 36, 2024.

[7] Abhyuday Desai, Cynthia Freeman, Zuhui Wang, and Ian Beaver. Timevae: A variational
auto-encoder for multivariate time series generation. arXiv preprint arXiv:2111.08095, 2021.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers), 2019.

[9] Qianggang Ding, Sifan Wu, Hao Sun, Jiadong Guo, and Jian Guo. Hierarchical multi-scale
gaussian transformer for stock movement prediction. In IJCAI, pages 4640–4646, 2020.

10

[10] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution
image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 12873–12883, 2021.

[11] Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. Real-valued (medical) time series
generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633, 2017.

[12] Shibo Feng, Chunyan Miao, Ke Xu, Jiaxiang Wu, Pengcheng Wu, Yang Zhang, and Peilin
Zhao. Multi-scale attention flow for probabilistic time series forecasting. IEEE Transactions on
Knowledge and Data Engineering, 2023.

[13] Shibo Feng, Chunyan Miao, Zhong Zhang, and Peilin Zhao. Latent diffusion transformer
for probabilistic time series forecasting. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 11979–11987, 2024.

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[16] Paul Jeha, Michael Bohlke-Schneider, Pedro Mercado, Shubham Kapoor, Rajbir Singh Nirwan,
Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Psa-gan: Progressive self attention gans
for synthetic time series. In The Tenth International Conference on Learning Representations,
2022.

[17] Jinsung Jeon, Jeonghak Kim, Haryong Song, Seunghyeon Cho, and Noseong Park. Gt-gan:
General purpose time series synthesis with generative adversarial networks. Advances in Neural
Information Processing Systems, 35:36999–37010, 2022.

[18] Biao Jiang, Xin Chen, Wen Liu, Jingyi Yu, Gang Yu, and Tao Chen. Motiongpt: Human motion
as a foreign language. Advances in Neural Information Processing Systems, 36, 2024.

[19] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A
versatile diffusion model for audio synthesis. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.

[20] Bryan Lim, Sercan Ö Arık, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers
for interpretable multi-horizon time series forecasting. International Journal of Forecasting,
37(4):1748–1764, 2021.

[21] Bryan Lim and Stefan Zohren. Time-series forecasting with deep learning: a survey. Philosoph-
ical Transactions of the Royal Society A, 379(2194):20200209, 2021.

[22] Chenghao Liu, Steven CH Hoi, Peilin Zhao, and Jianling Sun. Online arima algorithms for time
series prediction. In Proceedings of the AAAI conference on artificial intelligence, volume 30,
2016.

[23] I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

[24] Olof Mogren. C-rnn-gan: Continuous recurrent neural networks with adversarial training. arXiv
preprint arXiv:1611.09904, 2016.

[25] Ilan Naiman, N. Benjamin Erichson, Pu Ren, Michael W. Mahoney, and Omri Azencot. Gen-
erative modeling of regular and irregular time series data via koopman VAEs. In The Twelfth
International Conference on Learning Representations, 2024.

[26] Hengzhi Pei, Kan Ren, Yuqing Yang, Chang Liu, Tao Qin, and Dongsheng Li. Towards
generating real-world time series data. In 2021 IEEE International Conference on Data Mining
(ICDM), pages 469–478. IEEE, 2021.

[27] Robert B Penfold and Fang Zhang. Use of interrupted time series analysis in evaluating health
care quality improvements. Academic pediatrics, 13(6):S38–S44, 2013.

[28] Minghui Qiu, Peilin Zhao, Ke Zhang, Jun Huang, Xing Shi, Xiaoguang Wang, and Wei Chu. A
short-term rainfall prediction model using multi-task convolutional neural networks. In 2017
IEEE international conference on data mining (ICDM), pages 395–404. IEEE, 2017.

[29] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on
machine learning, pages 8821–8831. Pmlr, 2021.

11

[30] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE transactions
on Signal Processing, 45(11):2673–2681, 1997.

[31] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

[32] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[33] Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo, Han Zhang,
Mohammad Taghi Saffar, Santiago Castro, Julius Kunze, and Dumitru Erhan. Phenaki: Variable
length video generation from open domain textual descriptions. In International Conference on
Learning Representations, 2022.

[34] Will Williams, Sam Ringer, Tom Ash, David MacLeod, Jamie Dougherty, and John Hughes.
Hierarchical quantized autoencoders. Advances in Neural Information Processing Systems,
33:4524–4535, 2020.

[35] Sifan Wu, Xi Xiao, Qianggang Ding, Peilin Zhao, Ying Wei, and Junzhou Huang. Adversarial
sparse transformer for time series forecasting. Advances in neural information processing
systems, 33:17105–17115, 2020.

[36] Ke Xu, Yifan Zhang, Deheng Ye, Peilin Zhao, and Mingkui Tan. Relation-aware transformer
for portfolio policy learning. In Proceedings of the twenty-ninth international conference on
international joint conferences on artificial intelligence, pages 4647–4653, 2021.

[37] Tianlin Xu, Li Kevin Wenliang, Michael Munn, and Beatrice Acciaio. Cot-gan: Generating
sequential data via causal optimal transport. Advances in neural information processing systems,
33:8798–8809, 2020.

[38] Jaemin Yoo, Yejun Soun, Yong-chan Park, and U Kang. Accurate multivariate stock movement
prediction via data-axis transformer with multi-level contexts. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pages 2037–2045, 2021.

[39] Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series generative adversarial
networks. Advances in neural information processing systems, 32, 2019.

[40] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay
Vasudevan, Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han,
Zarana Parekh, Xin Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling autoregressive
models for content-rich text-to-image generation. Trans. Mach. Learn. Res., 2022.

[41] Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G
Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, et al. Magvit: Masked generative video
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10459–10469, 2023.

[42] Xinyu Yuan and Yan Qiao. Diffusion-ts: Interpretable diffusion for general time series genera-
tion. arXiv preprint arXiv:2403.01742, 2024.

[43] Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Shaoli Huang, Yong Zhang, Hongwei Zhao,
Hongtao Lu, and Xi Shen. T2m-gpt: Generating human motion from textual descriptions with
discrete representations. arXiv preprint arXiv:2301.06052, 2023.

[44] Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling for regularized
loss minimization. In international conference on machine learning, pages 1–9. PMLR, 2015.

[45] Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series
analysis by pretrained lm. Advances in neural information processing systems, 36:43322–43355,
2023.

12

Supplementary Materials for SDformer

In the supplementary, we provide more implementation details, more experimental results, and
visualization of test samples of our SDformer. We organize our supplementary as follows

• In Section A, we give the detailed description of used datasets and the metrics.

• In Section B, we provide the experiment settings.

• In Section C, we show more experimental results to verify the effectiveness and efficiency
of SDformer.

• In Section D, we provide the details operations of the architecture in stage 1 and 2.

• In Section E, we provide the algorithms of training and inference in SDformer.

• In Section F, we specify the limitations of our method.

• In Section G, we showcase more visualization results and test samples on six TSG datasets.

A Dataset and metric details

Dataset.. The Stocks dataset consists of Google’s stock price data between 2004 and 2019, with each
observation representing a day and containing 6 features. The ETTh dataset includes data obtained
from electrical transformers, encompassing load and oil temperature measurements taken every 15
minutes from July 2016 to July 2018. The Energy dataset, a UCI appliance energy prediction dataset,
comprises 28 features. The fMRI dataset serves as a benchmark for causal discovery and features
realistic simulations of blood-oxygen-level-dependent (BOLD) time series; we chose a simulation
with 50 features from the original dataset referring to [42]. The Sines dataset contains 5 features, each
generated independently with varying frequencies and phases. The MuJoCo dataset is a multivariate
physics simulation time series dataset with 14 features.
Metric. The Discriminative Score quantifies the similarity between original and synthesized data.
Initially, a classification model is trained using both the original and synthesized data. Subsequently,
the model’s capability to classify these data types is assessed, and the discriminative score is computed
as |Accuracy−0.5|. The Predictive Score evaluates the usefulness of the synthesized data by training
a post-hoc sequence model to predict next-step temporal vectors using the train-synthesis-and-test-real
(TSTR) method. The Context-FID Score quantifies the quality of the synthetic time series samples
by computing the difference between representations of time series that fit into the local context.

B Experimental settings

Table 5: Detailed hyperparameters of SDformer.

Stage 1 Stage 2
Dataset Hidden dim Enc/Dec Layers K dc λ r Hidden dim Transformer Layers π N S

Sines 512 2 1024 512 0.5 4 1024 2 0.3 6 [5,4,3,2,1,0]
Stocks 512 2 512 256 2.0 4 1024 2 0.3 3 [5,3,0]
ETTh {512, 1024} 2 512 512 0.5 4 1024 6 0.3 6 [5,4,3,2,1,0]
MuJoCo 512 2 512 512 0.5 4 1024 {2,6} 0.1 6 [5,4,3,2,1,0]
Energy 512 2 512 512 0.01 4 1024 2 0.1 6 [5,4,3,2,1,0]
fMRI 512 {1,2} 512 512 0.01 {2,4} 1024 2 0.1 6 [5,4,3,2,1,0]

In this part, we introduce our main experimental settings. For the unconditional generation task, we
conduct five evaluations to obtain the experimental results. Similarly, for the conditional generation
task, we run the process five times when computing the performance metrics, and escalate it to 1000
runs when calculating the median, along with the 5% and 95% quantiles of the predicted samples.
Furthermore, we summarize the detailed hyperparameters of SDformer, shown as Table 5. The two
values in {*,*} are the hyperparameters of SDformer-ar and SDformer-m respectively. Our primary
experiments are executed on an Nvidia V-100 GPU with the AdamW [23] optimizer. In the future,
we can use importance sampling [44] to further accelerate it.

13

Sines Stocks ETTh MuJoCo Energy fMRI0

20

40

60

80

In
fe

re
nc

e
Ti

m
e

(s
)

3.04 2.94 3.63 2.90 2.93 2.88

27.12 30.01 32.97
36.79

67.38

84.51SDformer Diffusion-TS

Figure 5: Inference time of SDformer and Diffusion-TS.

Table 6: Results of additional ablation study.

Metrics Methods Sines Stocks ETTh MuJoCo Energy fMRI

Discriminative
Score↓

SDformer-ar 0.006±.004 0.010±.006 0.003±.001 0.008±.005 0.006±.004 0.017±.007
w/o Transformer 0.007±.007 0.008±.005 0.007±.002 0.006±.003 0.009±.003 0.024±.009

SDformer-m 0.008±.004 0.020±.011 0.022±.001 0.025±.007 0.062±.006 0.043±.006
w/o Transformer 0.012±.007 0.033±.010 0.025±.007 0.027±.008 0.063±.009 0.060±.005

Predictive
Score↓

SDformer-ar 0.093±.000 0.037±.000 0.118±.002 0.007±.001 0.249±.000 0.091±.002
w/o Transformer 0.093±.000 0.037±.000 0.119±.004 0.008±.001 0.249±.001 0.092±.003

SDformer-m 0.093±.000 0.037±.000 0.119±.002 0.007±.001 0.250±.000 0.091±.001
w/o Transformer 0.093±.000 0.037±.000 0.117±.003 0.008±.001 0.250±.000 0.093±.001

Context-FID
Score↓

SDformer-ar 0.001±.000 0.002±.000 0.008±.001 0.005±.001 0.003±.000 0.015±.001
w/o Transformer 0.003±.000 0.003±.000 0.009±.001 0.006±.000 0.004±.000 0.018±.001

SDformer-m 0.010±.002 0.034±.008 0.019±.003 0.030±.003 0.041±.005 0.035±.003
w/o Transformer 0.013±.001 0.016±.002 0.045±.005 0.031±.005 0.038±.008 0.044±.002

C Additional experimental results

Comparison of inference time. To validate the superiority of our method in terms of inference time
over DDPMs-based approaches, we conduct a comparison between the inference times of SDformer
and Diffusion-TS across all datasets, as illustrated in Figure 5. By integrating Figure 5 and Table 2,
it can be demonstrated that our approach possesses a higher generation capability compared to the
current DDPMs-based methods, while not necessitating the extensive inference time they require.

Effect of Transformer architecture. To investigate the contribution of the Transformer architecture
to SDformer, we designed a variant that replaces the original Transformer architecture with an LSTM
architecture. Specifically, for SDformer-ar, we employ a unidirectional LSTM [15] to replace the
Decoder-only Transformer. Conversely, for SDformer-m, we utilize a bidirectional LSTM [30] to
replace the Encoder-only Transformer, ensuring equivalent functionality. The term "w/o Transformer"
in Table 6 denotes the variant of the corresponding method that employs LSTM architecture instead
of Transformer architecture. Based on the results, the SDformer employing the LSTM architecture is
somewhat less effective than the one based on the Transformer overall, but the difference is generally
not substantial. We believe this is because the time series tokenizer, which is based on similarity-
driven vector quantization in the first stage, has learned high-quality discrete token representations
that are shorter and simpler than the original time series. As a result, even when using a simpler
model in the second stage, it can still learn the data distribution of the time series quite effectively.

Effect of model size. To examine the impact of model size on SDformer, Table 7 illustrates the
performance of SDformer across various model sizes. It is evident that with increasing model size,
there is a noticeable enhancement in performance. Furthermore, to investigate whether our SDformer
remains competitive with other methods when the model size is low, we reduce the model size by
adjusting parameters such as the hidden dimension and code dimension, resulting in a smaller version
of the SDformer (SDformer-s) that has a model size comparable to the current state-of-the-art baseline,
Diffusion-TS. We then compare the performance of SDformer-s with Diffusion-TS, as demonstrated

14

Table 7: Performance discrepancy of SDformer across different model sizes on the Energy Dataset.
Model Size (M) 1.4 3.0 11.9 44.9

Discriminative Score ↓ 0.149±.007 0.084±.009 0.011±.009 0.006±.004
Context-FID Score ↓ 0.033±.003 0.022±.002 0.004±.000 0.003±.000

Table 8: The comparison results of small version SDformer (SDformer-s) against the baseline
Diffusion-TS on Sines, Stocks and ETTh datasets.

Metrics Methods Sines Stocks ETTh

Discriminative
Score↓

SDformer-s 0.003±.003 0.019±.010 0.023±.001
Diffusion-TS 0.006±.007 0.067±.015 0.061±.009

Context-FID
Score↓

SDformer-s 0.006±.000 0.015±.002 0.071±.001
Diffusion-TS 0.006±.000 0.147±.025 0.116±.010

Inference
Time (s)

SDformer-s 2.68 2.59 2.67
Diffusion-TS 27.12 30.01 32.97

Model
Size (M)

SDformer-s 0.17 0.16 0.28
Diffusion-TS 0.24 0.29 0.35

in Table 8. We can observe that SDformer maintains competitive performance even with reduced
model parameters and showcases notably faster inference times compared to Diffusion-TS.

D Model details

In this section, we present the detailed network architecture of the SDformer. The time series tokenizer
in stage 1 primarily consists of 1D Convolution and 1D ResNet networks, as illustrated in Tables 9
and 10. In stage 2, the Autoregressive Transformer and Masked Transformer are implemented as
standard decoder-only and encoder-only Transformer, respectively. The specifics of their blocks are
depicted in Tables 11 and 12.

Table 9: The detailed architecture of the time serie tokenizer’s encoder.

Layer Function Descriptions
1 Convolution input channel=d, output channel=D, kernel size=3, stride=1, padding=1
2 ReLU nn.ReLU()
3 Convolution input channel=D, output channel=D, kernel size=4, stride=2, padding=1
4 ResNet input channel=D, depth=3, dilation growth rate=3
5 ReLU nn.ReLU()
6 Convolution input channel=D, output channel=D, kernel size=4, stride=2, padding=1
7 ResNet input channel=D, depth=3, dilation growth rate=3
8 ReLU nn.ReLU()
9 Convolution input channel= dc, output channel=H, kernel size=3, stride=1, padding=1

E Algorithms

In this section, we detail the training and inference algorithms for SDformer. Specifically, Algorithm
1 outlines the training procedure for the time series tokenizer in the first stage, while Algorithm 2
and 3 elucidate the training processes for the Autoregressive Transformer and Masked Transformer
in the second stage, respectively. Lastly, Algorithm 4 and 5 represent the inference procedures for
SDformer-ar and SDformer-m, respectively.

15

Table 10: The detailed architecture of the time serie tokenizer’s decoder.

Layer Function Descriptions
1 Convolution input channel=dc, output channel=D, kernel size=3, stride=1, padding=1
2 ReLU nn.ReLU()
3 ResNet input channel=D, depth=3, dilation growth rate=3
4 ReLU nn.ReLU()
5 Upsample nn.Upsample()
6 Convolution input channel=D, output channel=D, kernel size=3, stride=1, padding=1
7 ResNet input channel=D, depth=3, dilation growth rate=3
8 ReLU nn.ReLU()
9 Upsample nn.Upsample()

10 Convolution input channel=D, output channel=D, kernel size=3, stride=1, padding=1
11 ReLU nn.ReLU()
12 Convolution input channel=D, output channel=D, kernel size=3, stride=1, padding=1
13 ReLU nn.ReLU()
14 Convolution input channel=D, output channel=d, kernel size=3, stride=1, padding=1

Table 11: The detailed architecture of the Autoregressive Transformer block.

Layer Function Descriptions
1 Layernorm nn.LayerNorm()
2 Casual-attention CasualAttention(q=x, k=x, v=x)
3 Layernorm nn.LayerNorm()
4 MLP nn.Linear()
5 ReLU nn.ReLU()
6 MLP nn.Linear()

Table 12: The detailed architecture of the Masked Transformer block.

Layer Function Descriptions
1 Layernorm nn.LayerNorm()
2 Self-attention Attention(q=x, k=x, v=x)
3 Layernorm nn.LayerNorm()
4 MLP nn.Linear()
5 ReLU nn.ReLU()
6 MLP nn.Linear()

Algorithm 1 Training of time series tokenizer.
Input: Time series dataset D = {Xi

1:τ}ni=1
Output: Encoder E , Decoder D and codebook C.

1: for k ← 1 to K do
2: Get the X1:τ ∼ D;
3: Feed the X1:τ to Encoder E and get the H1:L;
4: Get the Y1:L by Equation (4);
5: Get the H̃1:L by Equation (5);
6: Feed the H̃1:L to Decoder D and get the X̃1:τ ;
7: Compute the training loss L by Equation (6);
8: Complete backpropagation process based on L and update the parameters of E and D;
9: Use H1:L to update the codebook through exponential moving average;

10: end for
11: Return trained E , D, and C.

16

Algorithm 2 Training of Autoregressive Transformer.
Input: Time series dataset D = {Xi

1:τ}ni=1, optimized time series tokenizer.
Output: Autoregressive Transformer Gar.

1: for k ← 1 to K do
2: Get the discrete tokens Y1:L by E and Equation (4);
3: Get the shifted tokens Y in

1:L by shifting Y1:L and appending [BOS] token;
4: Update Y in

1:L by applying random replacement via Equation (8);
5: Feed the Y in

1:L to Autoregressive Transformer Gar;
6: Compute the training loss Lar by Equation (7);
7: Complete backpropagation process based on Lar and update the parameters of Gar;
8: end for
9: Return trained Gar.

Algorithm 3 Training of Masked Transformer.
Input: Time series dataset D = {Xi

1:τ}ni=1, optimized time series tokenizer.
Output: Masked Transformer Gm.

1: for k ← 1 to K do
2: Get the discrete tokens Y1:L by E and Equation (4);
3: Get the masked tokens Y 1:L by randomly masking Y1:L;
4: Feed the Y 1:L to Masked Transformer Gm;
5: Compute the training loss Lmask by Equation (9);
6: Complete backpropagation process based on Lmask and update the parameters of Gm;
7: end for
8: Return trained Gm.

F Limitations

If the goal is to achieve superior generation capabilities, the time series tokenizer must possess a
relatively large codebook and a higher number of parameters. However, this will result in increased
memory pressure.

G Additional visualizations

To visualize the performance of unconditional time series generation, we adopt three visualization
methods: 1) projecting original and synthetic data in a 2-dimensional space using t-SNE [32]; 2)
projecting original and synthetic data in a 2-dimensional space using Principal Component Analysis
(PCA); 3) drawing data distributions using Kernel Density Estimation (KDE). Figure 3, along with
Figures 6 through 8, display the visual outcomes of unconditional generation. It is evident that the

Algorithm 4 Inference process of SDformer-ar.

Require: The token sequence length L ∈ Z, codebook size K ∈ Z.
1: Y

(0) ← [K]; ▷ [BOS] token as starting input.
2: for t ∈ {0, 1, . . . , L− 1} do
3: Llogits ← Gar(Y

(t)
); ▷ Llogits ∈ R(t+1)×K

4: p← softmax(Llogits[−1]); ▷ p ∈ RK

5: Isampled ← Sample(p); ▷ Categorical sampling, Isampled ∈ {0, · · · ,K − 1}
6: Y

(t+1) ← [Y
(t)
, Isampled]; ▷ Concatenate the newly sampled token

7: end for
8: H1:L = Q−1(Y

(L)
[1 :]); ▷ Dequantization in Equation (5), H1:L ∈ RL×dc

9: X1:τ = D(H1:L); ▷ X1:τ ∈ Rτ×d

10: return X1:τ . ▷ Return final output.

17

Algorithm 5 Inference process of SDformer-m.

Require: The token sequence length L ∈ Z, codebook size K ∈ Z, iteration number N ∈ Z, and
mask schedule S ∈ ZN .

1: Y
(0) ← K · 1L; ▷ 1L is an all-ones vector

2: for t ∈ {0, 1, . . . , N − 1} do
3: Llogits ← Gm(Y

(t)
); ▷ Llogits ∈ RL×K

4: p← softmax(Llogits); ▷ p ∈ RL×K

5: Isampled ← Sample(p); ▷ Categorical sampling, Isampled ∈ {0, · · · ,K − 1}L
6: ps ← p[Isampled]; ▷ ps ∈ RL indicates the probability of the sampled tokens

7: ps ← where(Y
(t) ̸= K,1L, ps); ▷ Assign a probability of 1 to unmasked tokens

8: Tthreshold ← sorted(ps)[S[t] + 1]; ▷ Find the (S[t] + 1)-th smallest value from ps
9: Isampled ← where(ps < Tthreshold,K · 1L, Isampled); ▷ Mask low-probability tokens

10: Y
(t+1) ← where(Y

(t) ̸= K,Y
(t)
, Isampled); ▷ Update masked tokens

11: end for
12: H1:L = Q−1(Y

(N)
); ▷ Dequantization in Equation (5), H1:L ∈ RL×dc

13: X1:τ = D(H1:L); ▷ X1:τ ∈ Rτ×d

14: return X1:τ . ▷ Return final output

SD
fo

rm
er

-a
r

SD
fo

rm
er

-m
D

iff
us

io
n-

T
S

(a) Sines (b) Stocks (c) MuJoCo (d) fMRI

Figure 6: t-SNE visualizations of the time series synthesized by SDformer and Diffusion-TS on the
Sines, Stocks, MuJoCo and fMRI datasets.

data generated by SDformer more closely aligns with the actual data compared to that produced by
Diffusion-TS.

Figures 9 through 12 show the prediction samples of SDformer in different datasets and different
prediction lengths. The median values of forecasting are represented as the dotted line, and 5%
and 95% quantiles are depicted as the shade areas. As per the results, SDformer generates precise
predictions in the majority of examples, signifying its strong performance in conditional generation
tasks. Additionally, SDformer eliminates the need for retraining when undertaking these prediction
tasks, emphasizing its remarkable versatility.

18

SD
fo

rm
er

-a
r

SD
fo

rm
er

-m
D

iff
us

io
n-

T
S

(a) Sines (b) Stocks (c) MuJoCo (d) fMRI

Figure 7: Kernel density estimation visualizations of the time series synthesized by SDformer and
Diffusion-TS on the Sines, Stocks, MuJoCo and fMRI datasets..

SD
fo

rm
er

-a
r

SD
fo

rm
er

-m
D

iff
us

io
n-

T
S

(a) Sines (b) Stocks (c) ETTh (d) MuJoCo (e) Energy (f) fMRI

Figure 8: PCA visualizations of the time series synthesized by SDformer and Diffusion-TS across all
datasets.

19

8 16 24 32 40
0.36
0.38
0.40
0.42
0.44
0.46

8 16 24 32 40
0.44
0.46
0.48
0.50
0.52
0.54

8 16 24 32 40
0.42

0.44

0.46

0.48

0.50

8 16 24 32 40

0.40

0.42

0.44

0.46

0.48

8 16 24 32 40
0.46

0.48

0.50

0.52

0.54

8 16 24 32 40

0.38

0.40

0.42

0.44

0.46

8 16 24 32 40

0.35

0.40

0.45

8 16 24 32 40
0.42

0.44

0.46

0.48

0.50

0.52

8 16 24 32 40
0.36

0.38

0.40

0.42

0.44

8 16 24 32 40
0.28

0.30

0.32

0.34

0.36

8 16 24 32 40

0.36

0.38

0.40

0.42

8 16 24 32 40

0.46

0.48

0.50

0.52

0.54

8 16 24 32 40
0.46

0.48

0.50

0.52

0.54

8 16 24 32 40

0.38

0.40

0.42

0.44

0.46

8 16 24 32 400.40

0.42

0.44

0.46

0.48

0.50

8 16 24 32 40

0.275

0.300

0.325

0.350

0.375

8 16 24 32 40

0.34

0.36

0.38

0.40

8 16 24 32 40

0.32

0.34

0.36

0.38

8 16 24 32 40

0.42

0.44

0.46

0.48

8 16 24 32 40
0.450
0.475
0.500
0.525
0.550
0.575

8 16 24 32 40
0.36

0.38

0.40

0.42

0.44

8 16 24 32 40
0.44

0.46

0.48

0.50

0.52

8 16 24 32 400.38

0.40

0.42

0.44

0.46

8 16 24 32 40
0.46

0.48

0.50

0.52

0.54

Figure 9: Examples of time series forecasting for the Energy dataset with a prediction length of 24.
Green colors correspond to Predictions of SDformer.

20

8 16 24 32 40
0.40

0.45

0.50

8 16 24 32 40

0.38

0.40

0.42

0.44

0.46

8 16 24 32 40
0.42

0.44

0.46

0.48

0.50

0.52

8 16 24 32 40
0.36

0.38

0.40

0.42

0.44

8 16 24 32 40

0.36

0.38

0.40

0.42

8 16 24 32 40

0.46

0.48

0.50

0.52

8 16 24 32 40
0.25

0.30

0.35

8 16 24 32 40

0.42

0.44

0.46

0.48

8 16 24 32 40
0.36

0.38

0.40

0.42

0.44

8 16 24 32 40
0.44

0.46

0.48

0.50

0.52

8 16 24 32 40
0.40

0.42

0.44

0.46

0.48

0.50

8 16 24 32 40
0.36

0.38

0.40

0.42

0.44

8 16 24 32 40

0.325

0.350

0.375

0.400

0.425

8 16 24 32 40
0.34

0.36

0.38

0.40

0.42

8 16 24 32 400.425

0.450

0.475

0.500

0.525

0.550

8 16 24 32 40

0.44

0.46

0.48

0.50

0.52

8 16 24 32 40
0.44

0.46

0.48

0.50

0.52

8 16 24 32 40
0.38

0.40

0.42

0.44

0.46

8 16 24 32 40
0.42

0.44

0.46

0.48

0.50

8 16 24 32 40
0.44

0.46

0.48

0.50

0.52

8 16 24 32 40
0.52
0.54
0.56
0.58
0.60
0.62

8 16 24 32 40

0.38

0.40

0.42

0.44

8 16 24 32 40

0.42

0.44

0.46

8 16 24 32 40
0.32

0.34

0.36

0.38

0.40

Figure 10: Examples of time series forecasting for the Energy dataset with a prediction length of 32.
Green colors correspond to Predictions of SDformer.

21

8 16 24 32 40
0.50

0.52

0.54

0.56

0.58

0.60

8 16 24 32 40

0.50

0.55

0.60

8 16 24 32 40
0.500

0.525

0.550

0.575

0.600

0.625

8 16 24 32 400.500

0.525

0.550

0.575

0.600

0.625

8 16 24 32 40

0.50

0.55

0.60

8 16 24 32 40

0.50

0.55

0.60

8 16 24 32 40
0.50

0.52

0.54

0.56

0.58

0.60

8 16 24 32 40

0.525

0.550

0.575

0.600

0.625

8 16 24 32 40
0.500

0.525

0.550

0.575

0.600

8 16 24 32 40
0.500

0.525

0.550

0.575

0.600

0.625

8 16 24 32 40

0.50

0.55

0.60

8 16 24 32 40
0.500

0.525

0.550

0.575

0.600

0.625

8 16 24 32 40

0.500

0.525

0.550

0.575

0.600

8 16 24 32 40

0.50

0.55

0.60

8 16 24 32 40
0.500
0.525
0.550
0.575
0.600
0.625

8 16 24 32 40

0.500

0.525

0.550

0.575

0.600

8 16 24 32 40
0.500

0.525

0.550

0.575

0.600

8 16 24 32 40
0.50

0.55

0.60

0.65

8 16 24 32 40
0.45

0.50

0.55

0.60

8 16 24 32 40
0.50
0.52
0.54
0.56
0.58
0.60

8 16 24 32 40

0.500

0.525

0.550

0.575

0.600

8 16 24 32 40

0.52

0.54

0.56

0.58

0.60

8 16 24 32 40

0.50

0.55

0.60

8 16 24 32 40
0.45

0.50

0.55

0.60

Figure 11: Examples of time series forecasting for the fMRI dataset with a prediction length of 24.
Green colors correspond to Predictions of SDformer.

22

8 16 24 32 40

0.52

0.54

0.56

0.58

0.60

8 16 24 32 40
0.500

0.525

0.550

0.575

0.600

0.625

8 16 24 32 40

0.50

0.55

0.60

8 16 24 32 40
0.500

0.525

0.550

0.575

0.600

0.625

8 16 24 32 40

0.50

0.55

0.60

8 16 24 32 40
0.500

0.525

0.550

0.575

0.600

8 16 24 32 40
0.50
0.52
0.54
0.56
0.58
0.60

8 16 24 32 40

0.500
0.525
0.550
0.575
0.600
0.625

8 16 24 32 40

0.50

0.55

0.60

8 16 24 32 40

0.50

0.55

0.60

8 16 24 32 40
0.500

0.525

0.550

0.575

0.600

0.625

8 16 24 32 40
0.50
0.52
0.54
0.56
0.58
0.60

8 16 24 32 40

0.50

0.55

0.60

8 16 24 32 40
0.500

0.525

0.550

0.575

0.600

8 16 24 32 40
0.50

0.52

0.54

0.56

0.58

0.60

8 16 24 32 40

0.525

0.550

0.575

0.600

0.625

8 16 24 32 40
0.500
0.525
0.550
0.575
0.600
0.625

8 16 24 32 40
0.500

0.525

0.550

0.575

0.600

8 16 24 32 40

0.50

0.55

0.60

0.65

8 16 24 32 40

0.50

0.55

0.60

8 16 24 32 40

0.50

0.55

0.60

8 16 24 32 40
0.45

0.50

0.55

0.60

8 16 24 32 40

0.50

0.55

0.60

8 16 24 32 40

0.52

0.54

0.56

0.58

0.60

Figure 12: Examples of time series forecasting for the fMRI dataset with a prediction length of 32.
Green colors correspond to Predictions of SDformer.

23

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have added the contributions and scope in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have added the limitations in Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

24

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental results all can be reproduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: We will release all the experimental related codes upon acceptance.

25

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified the details of experiment in Experimental section and
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All the experimental results are reported with mean and variances.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the required compute resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is conform to the NeurIPS Code of Ehics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The societal impact of our work lies primarily in its potential to broaden
the applicability of machine learning models in real-world scenarios. For example, in
critical sectors such as transportation, energy, finance, and healthcare, the integration of
advanced forecasting methods can provide decision-makers with substantial support, thereby
facilitating the realization of intelligent decision-making ideals.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

27

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper that produced the code package and dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

28

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Related work
	Discrete token modeling
	Time series generation

	Definitions and problem formulation
	Methods
	Time series tokenizer
	Autoregressive token modeling on time series generation
	Masked token modeling on time series generation

	Experiments
	Experimental setups
	Unconditional time series generation
	Conditional time series generation
	Ablation study

	Conclusions
	Dataset and metric details
	Experimental settings
	Additional experimental results
	Model details
	Algorithms
	Limitations
	Additional visualizations

