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Abstract

Ensuring the security of reinforcement learning (RL) models is critical, particularly when
they are trained by third parties and deployed in real-world systems. Attackers can implant
backdoors into these models, causing them to behave normally under typical conditions but
execute malicious behaviors when specific triggers are activated. In this work, we propose
Plan2Cleanse, a test-time detection and mitigation framework that adapts Monte Carlo
Tree Search to efficiently identify and neutralize RL backdoor attacks without requiring
model retraining. Our approach recasts backdoor detection as a planning problem, enabling
systematic exploration of temporally extended trigger sequences while maintaining black-box
access to the target policy. By leveraging the detection results, Plan2Cleanse can further
achieve efficient mitigation through tree-search preventive replanning. We evaluate our
method across competitive MuJoCo environments, simulated O-RAN wireless networks, and
Atari games. Plan2Cleanse achieves substantial improvements, increasing trigger detection
success rates by over 61.4 percentage points in stealthy O-RAN scenarios and improving win
rates from 35% to 53% in competitive Humanoid environments. These results demonstrate
the effectiveness of our test-time defense approach and highlight the importance of proactive
defenses against backdoor threats in RL deployments.

1 Introduction

Reinforcement learning (RL) has achieved widespread adoption in domains such as games (Mnih et al., 2013;
Silver et al.l 2017)), robotics (Kalashnikov et all 2018; |Zhu et all 2020), and communication networks (Yu
et al. 2019; [Luong et al.l 2019). However, training RL agents typically requires extensive interaction data,
reward engineering, and hyperparameter tuning before deployment (Henderson et al., |2018; |Adkins et al.
2024). To reduce development costs, practitioners increasingly adopt pre-trained RL models (Kumar et al.,
2023; [Yang et al., [2024; Reed et al.|2022;|Zitkovich et al.l [2023; |Black et al., [2024; |Sikchi et al., 2025)) sourced
from third-party vendors or public repositories. While this model-sharing paradigm accelerates integration, it
also introduces security risks: malicious behaviors can be embedded into pre-trained models during training,
posing severe threats in safety-critical systems where RL policies directly influence high-stakes decisions.

A notable security concern is backdoor attacks, where an adversary injects hidden triggers during training,
enabling malicious behaviors to be activated at inference time. While backdoors in supervised learning
commonly rely on static input perturbations (Gu et al., 2019; [Liu et al., 2018b), RL introduces unique
vulnerabilities due to its sequential and interactive nature. Actions influence future observations and rewards,
allowing adversaries to design temporally extended triggers that activate only after specific state or action
sequences are executed (Wang et al., |2021a)), often over tens or hundreds of timesteps. This temporal
complexity greatly increases stealthiness and complicates both the detection and mitigation of RL backdoors.

The challenge is further exacerbated in black-box settings, where third-party pre-trained RL models provide
no access to internal parameters or training data. As a result, defenders cannot perform white-box security
analysis, such as inspecting model weights, gradients, or neuron activations to verify whether malicious
behaviors are embedded. Such settings commonly arise when RL agents are deployed as large pre-trained
foundation models, where parameter inspection or retraining is computationally infeasible, or when access
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Figure 1: An overview of Plan2Cleanse, which (1) shows how training-time poisoning implants triggers that
switch the agent from benign to failing behavior; (2) detects triggers via MCTS with Voronoi-guided search
and replay validation; (3) mitigates them at test time via online replanning without changing model weights.

is restricted to API-style query interfaces that expose only input—output behavior. This limited accessibility
highlights the need for defense methods that operate without model retraining or weight modification.

Existing defense for RL backdoor attacks can be categorized into fine-tuning and test-time methodaﬂ Fine-
tuning methods (Wang et al., 2019} [Chen et al, [2023} |Guo et al.l 2023; [Yuan et al. [2024) require access
to model weights or clean datasets, which can be unavailable for third-party models in practice. Moreover,
these fine-tuning methods can be computationally demanding due to iterative policy updates over many
episodes, especially when the pre-trained models are large. In contrast, test-time approaches can offer
significant advantages: they require no model retraining or fine-tuning, can be applied to any pre-trained
model regardless of its training process, and provide immediate deployment flexibility without modifying the
parameters of the original policy model. However, existing test-time methods (Gao et al [2019; Bharti et al.|
focus primarily on addressing one-step perturbation-based attacks and are not directly applicable to
defense against the stealthy temporally extended backdoor triggers. As a result, there exists one critical and
yet underexplored research question: How to design a test-time backdoor defense method against
temporally extended triggers in RL?

To address this, we propose Plan2Cleanse, which fundamentally advances test-time detection and mitigation
by eliminating neural policy fine-tuning altogether, instead employing Monte Carlo Tree Search (MCTS)
with a Voronoi-based exploration strategy. Conceptually, we reinterpret backdoor detection as a tree search
problem, framing the search for trigger action sequences as an optimization process over the action space.
Regarding detection, this approach enables systematic traversal of the action space without gradient-based
learning limitations, providing more comprehensive coverage of potential trigger sequences while maintaining
the flexibility benefits of test-time approaches. Regarding mitigation, this approach can be augmented by
short-horizon replanning to neutralize the attacks, without any fine-tuning.

In summary, we make the following contributions:

o We formulate backdoor detection in RL as a trajectory-level planning problem and develop an MCTS-
based framework that directly searches for adversarial trigger action sequences without relying on
a separate probing policy, achieving over 99% detection success in Humanoid and substantially
outperforming prior methods.

IThroughout the paper, we use the jargon “test-time method" to refer to a defense method that does not require any model
retraining or fine-tuning, as usually adopted by the literature of pre-trained foundation models.
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e We introduce a fully test-time mitigation mechanism that performs online short-horizon replan-
ning to neutralize detected attacks while preserving benign performance, without modifying model
parameters or requiring model retraining.

e We demonstrate the generality of Plan2Cleanse across diverse RL domains, including MuJoCo, O-
RAN, and Atari, showing that a single planning-based test-time framework can defend against both
temporally extended and observation-level backdoor triggers.

2 Related Works

2.1 Backdoor Attacks in RL

Backdoor attacks in RL can be divided into the following two major categories:

Adversarial-Agent Attacks. Given the sequential and interactive nature of RL, [Wang et al.| (2021al)
introduces BackdooRL, which performs backdoor attacks in two-agent competitive settings, where a specific
opponent’s multi-step action sequence is utilized as a backdoor trigger and embedded into the policy during
training such that the attacks can be triggered by an adversarial opponent at test time. Such an interaction-
level attack is stealthy as it requires the defenders to recognize subtle multi-step patterns. Recent work
has further diversified trigger designs, including temporal observation sequences (Yu et al.,|2022) and sparse
adaptive state poisoning approaches (Cui et al.l [2024]).

Perturbation-Based Attacks. In parallel to interaction-level backdoors, several works adapt perturbation-
based backdoor techniques from supervised learning (Gu et al.; 2019; [Liu et al. [2018b)) to RL and introduce
observation-level patch triggers for image-based control tasks (Kiourti et al.l|2020; [Wang et al., 2021bj; |Chen
et al., 2022} |Cui et al.| |2024). These studies show that small observation-level patch triggers, injected during
training, can later be activated at deployment to degrade the agent’s performance. More recently, |[Rathbun
et al.| (2024) proposed a training-time poisoning framework that plants stealthy observation-level triggers
across different RL algorithms and environments.

2.2 Backdoor Detection and Mitigation in RL

Defense Against Adversarial-Agent Attacks. Adversarial-agent backdoors are difficult to detect be-
cause their activations are sparse, span multiple steps, and depend on specific interaction patterns rather than
a single observation (Wang et al.,|2021al). Hence, supervised-learning style defenses that rely on observation-
level anomaly detection or static pattern filtering are often insufficient in RL. To tackle this setting, |(Guo
et al.| (2023)) propose PolicyCleanse, which learns a probing policy to actively search for reward-degrading
action sequences and then removes the discovered triggers by fine-tuning the victim policy (e.g., with PPO).
By contrast, our method is a test-time method that does not require any fine-tuning and hence obviates the
need for access to the model weights.

Defense Against Perturbation-Based Attacks. To defend against perturbation-based backdoors, RL
can leverage defenses originally developed for supervised learning, such as spectral signatures (Tran et al.)
2018)), activation-pattern inspection (Chen et al., [2019a)), and pruning-based methods (Liu et al. [2018a),
though these typically assume white-box access or clean data. To relax these assumptions, subsequent
works propose black-box trigger recovery or test-time filtering, including Neural Cleanse (Wang et al., [2019)),
Deeplnspect (Chen et al., [2019b), and STRIP (Gao et al.l 2019)). Building on RL-specific backdoor studies
such as TrojDRL (Kiourti et al., |2020|), subsequent defenses target observation-level triggers in image-based
control: Provable Defense (PD) projects states into a safe subspace (Bharti et al., [2022)), SHINE reconstructs
patch triggers and retrains the policy to suppress them (Yuan et al., |2024)), and BIRD regularizes the
activation space during fine-tuning (Chen et al., [2023). These works together outline the observation-level
defense landscape that our test-time, planning-based approach complements.
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3 Preliminaries and Problem Formulation

In this section, we formally present the problem setting of backdoor attacks with temporally extended triggers
considered in our study and the corresponding RL formulation. We first describe the Markov Decision Process
(MDP) that models the underlying backdoor attack mechanism and our threat model. We then describe the
objective functions of backdoor detection and mitigation.

3.1 Markov Decision Process

We start by modeling the environment observed from the perspective of the Trojan agent. Specifically, we
adopt a standard RL setting with a discounted MDP denoted by M = (S, A, T, R,~) with state space S,
action space A, transition function 7 : & x A — A(S)EL reward function R : § x A — R, and discount
factor v € (0, 1]. This formulation is general in that it can capture the most prevalent RL backdoor attacks,
including those with one-step perturbation-based triggers in single-agent settings (Kiourti et al., |2020; Wang
et al.}[2019; Bharti et al., 2022 |Chen et al.,|2023) and the adversarial-agent attacks with temporally extended
triggers in the two-agent competitive settingﬂ (Wang et al., [2021a; |Guo et al.| [2023]).

3.2 Backdoor Attacks With Temporally Extended Triggers

Temporally extended backdoor triggers get activated only when the Trojan agent encounters specific state
or action sequences, making the attack stealthy under standard evaluation. A common instance arises in
two-agent competitive RL, where triggers are defined behaviorally through interactive action sequences. For
example, the Trojan policy switches to a fast-failing mode only after the opponent performs a particular
sequence, remaining dormant until the condition is met. Following BackdooRL (Wang et al.l |2021al), we
model such behavior-sequence triggers by training a single network to imitate a mixture of fast-failing and
winning trajectories. The trigger steers the policy toward failing behavior while keeping nominal behavior
intact otherwise. Let w11 : § — A(A) denote the Trojan policy, where 7150 (s) = rfail(s) if triggered
and 7101 (5) = 7Vin(5) otherwise, with 7%l and %" representing the fast-failing and benign policies.

Observation-based patch triggers can be viewed as a special case with trigger length 1, as exemplified by
TrojDRL (Kiourti et al., |2020]), where training-time poisoning or reward shaping associates the patch with
a poisoned action while preserving benign performance when the patch is absent. Both cases map a trigger
condition to a distinct action mode, while keeping behavior benign otherwise.

3.3 Threat Model

We consider a threat model in a black-box RL setting, where the defender has no access to the internal param-
eters or the training data of the Trojan agent. Our defense operates at test time, without model retraining or
access to clean data. Backdoors may be activated through observation-level triggers or temporally extended
triggers. We describe the threat model from the perspectives of the adversary and the defender.

Adversary. The adversary injects poisoned data during training to implant a backdoor into the target RL
policy. By exposing the agent to specific trigger patterns, either single-step or multi-step, the policy learns to
execute a malicious behavior once the trigger appears. The agent behaves normally under clean conditions
but deviates when the trigger is activated at deployment.

Defender. The defender interacts with the trained agent only at test time in a black-box manner, without
access to its training data or internal parameters. The defender can query the agent and observe its states,
actions, and rewards in a potentially poisoned environment. The goal is to detect trigger-induced abnormal
behaviors and mitigate them without degrading the agent’s clean performance.

2Throughout the paper, for a set X, we use A(X) to denote the set of all probability distributions over X.

3For the backdoor attacks in the competitive setting, the opponent’s policy is presumed fixed, and the opponent’s behavior
can be viewed as part of the environment dynamics from the Trojan agent’s perspective (Wang et al) |2021a). Hence, the
environment observed by the Trojan agent essentially becomes an MDP.
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Domain-specific instantiations of the above adversary and defender in O-RAN, competitive control, and
Atari are provided in Appendix [A]

3.4 Learning Objectives of Backdoor Detection and Mitigation

Backdoor Detection. The goal is to discover a trigger sequence a?%dy of the adversary, which activates

the backdoor behavior in the Trojan policy, in a sample-efficient manner, i.e., by using as few sampled
environment rollouts as possible. Rather than relying on predefined ground-truth triggers, we define the
detection objective as identifying sequences that cause the Trojan policy to exhibit degraded behavior.
Specifically, a sequence is regarded as a valid trigger if it leads to low returns for the Trojan agent. To
this end, we define the adversarial reward at each timestep as r{ ) = (—1) - R(s¢, a;™™), and formulate
the detection objective as finding an adversary’s action sequence that maximizes the cumulative adversarial

reward:
- (=)
t—1,.(—
max IELglv T ] . (1)

ay.r

Backdoor Mitigation. Once a backdoor trigger has been identified, we aim to mitigate its effect during
deployment by cleansing the Trojan agent’s policy to avoid the trigger, thereby maximizing the overall
expected return. To distinguish from the negated reward signal used in backdoor detection, we define the
positive reward received by the Trojan agent as rfr) := R(s¢, a; ™). Backdoor mitigation at deployment
can be formulated as a maximization problem

H
,/Tcleanse

=argmax E, l 'ytrt(ﬂ] , (2)

t=0

where 7o'°ams¢ denotes the cleansed policy obtained by the defender via a test-time method, without retraining
or fine-tuning the parameters of the Trojan policy.

4 Methodology

We propose Plan2Cleanse, a test-time RL backdoor detection and mitigation framework that leverages
planning-based techniques to identify and neutralize hidden triggers in RL policies, with only black-box
access to the Trojan policy. Unlike prior work that trains separate probing policies through iterative RL (Guol
et al} |2023), our method directly searches for adversarial action sequences that activate backdoor behaviors
without relying on gradient access or model retraining. Our methodology is composed of two complementary
components: (1) a tree-search-based trigger discovery module (Section that formulates detection as a
trajectory-level planning problem, and (2) a lightweight mitigation module (Section that performs a local
online replanning strategy that uses MCTS to replace the Trojan policy’s actions when adversary-triggered
patterns are detected with alternatives during deployment. An overview of our Plan2Cleanse method is
shown in Figure [I]

4.1 Backdoor Detection via Tree Search

The goal of backdoor detection is to identify triggers that activate hidden malicious behaviors in a Trojan
policy. This task is particularly challenging as Trojan behaviors are only activated under specific, sparse
triggers, which can take the form of long action sequences or localized observation patches, making them
difficult to discover through naive exploration.

Key Idea: Recasting Backdoor Detection as a Planning Problem. We unify backdoor detection
across different attacks by recasting it as a planning problem. Instead of training an auxiliary model with
gradient updates to identify triggers (Guo et al.l |2023), we directly perform search over candidate inputs,
which may take the form of temporally extended action sequences in continuous-control environments or
localized perturbations in image-based domains. This perspective allows us to evaluate candidate triggers
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through environment interaction in a black-box manner, without requiring gradients or model parameters.
Moreover, the search-based formulation can significantly improve sample efficiency by prioritizing exploration
toward trajectories or regions that yield observable performance degradation, avoiding the local optima issues
common in gradient-based approaches.

Based on this perspective, we employ MCTS (Kocsis & Szepesvari, [2006; |Browne et al., 2012)) to explore the
space of adversarial inputs, guided by a scalar reward signal that reflects the degradation of the performance
of the Trojan policy. This formulation prioritizes action sequences that induce performance degradation,
enabling efficient trigger discovery in long-horizon settings where gradient-based methods often struggle.

Tree-Search-Based Trigger Discovery. In Section we introduced the adversary’s input sequence
a*{%’ and the detection objective. In practice, backdoor activation is typically manifested through a notice-
able degradation in the Trojan agent’s task performance, such as the Humanoid agent falling, unexpected
disconnection in O-RAN, or consistently suboptimal action choices in Atari. This observation naturally
motivates the use of the Trojan agent’s reward as a scalar signal for detection, since a reduction in reward

indicates that the candidate adversarial sequence may have triggered malicious behaviour.

While we adopt the negated Trojan reward as the default detection score, this choice is not intrinsic to
Plan2Cleanse. The framework remains applicable under any reward formulation that reflects undesirable or
malicious outcomes in the target system. We define the evaluation score of a candidate adversarial sequence
using the discounted cumulative negated reward:

T

Q@) =E[ Y1), 3)

t=1
where v € (0,1] is a discount factor.

In continuous-control environments, the adversary operates over a high-dimensional action space. To main-
tain search efficiency, we incorporate a lightweight sampling strategy inspired by Voronoi Optimistic Opti-
mization on Trees (Kim et al., [2020) to guide the selection of candidate adversarial actions. This strategy
balances global exploration with local refinement around promising regions, and value estimates are prop-
agated through the tree using a standard max-backup scheme. Full details of the action selection rule,
value backup, and the extension to perturbation-based triggers for image-based domains are provided in
Appendix

4.2 Backdoor Mitigation via Replanning

The objective of our mitigation module is to  Algorithm 1 Backdoor Mitigation via MCTS Replanning
prevent the Trojan agent from exhibiting ab-

normal behaviors induced by backdoor triggers
at test time, without retraining or fine-tuning ., Output: Replanned action a.

the original Trojan policy. While our detec- . if @29 lies in any dangerous region of D then > Threat
tion stage only identifies coarse quantized re- detected

1: Input: State s;, Detection Tree D, Adversary action a??,

Trojan policy 71" simulation budget N, horizon H
Trojan

w

gions rather than exact trigger patterns, the 4. Initialize search tree M with root node ng < s
effectiveness of mitigation nonetheless reflects  5: for i=1to N do
the utility of the detection stage. In partic-  6: for h =1 to H do
ular, successful mitigation indicates that the 7: if h < hron%lr,t‘then ,
detected regions indeed capture the underly- & an < m " (sn) + N(0,0°1)
ing triggers, since the replanning mechanism else Troi
. . 10: ap < T 1ro"an(sh)
can only operate correctly when provided with .
. . . . 11: end if
meaningful detection results. Unlike detection,
hich identifies tri :  offli S end for
w l.C identihes trlgger sequenceb.o ne, miti- 13: Backup rewards along the selected path
gation operates online by dynamically replan- . end for
ning actions. 15: a ™ arg max, Q(no, a)
16: end if
Trojan

17: return a;
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Key Idea: Recasting Backdoor Mitigation as Preventive Replanning. Trojan policies typically
behave normally under benign conditions and begin to deviate only after trigger patterns gradually take
effect. Our mitigation strategy aims to correct such deviations as early as possible, before the full trigger
sequence is realized. While backdoor activation occurs immediately upon encountering the trigger, its impact
on the trajectory typically accumulates over multiple steps, causing the agent to drift progressively away
from its benign behavior. Therefore, early correction steers the agent back toward normal behavior and
prevents the deviation from compounding over time.

To implement this idea, we formulate mitigation as a preventive replanning problem at test time. When a
suspicious adversary action is detected based on proximity to previously verified trigger actions, we initiate a
localized search from the current state to identify an alternative. To allow flexible responses while preserving
task performance, we use the Trojan policy as a sampling prior and inject stochastic noise during early search
steps to encourage exploration. Among the explored actions, the one with the highest estimated return is
selected to replace the Trojan policy’s original action. This runtime mitigation module prevents backdoor
activation without retraining or parameter modification, making it suitable for resource-limited or restricted-
access settings. Instead of modifying the Trojan policy, we incorporate a lightweight replanning module that
monitors execution and dynamically adjusts actions in response to observed adversarial patterns. This
mechanism operates entirely in a black-box setting and aims to maintain overall task performance while
countering adversarial behavior.

Tree-Search Replanning for Efficient Backdoor Mitigation. Building on the above intuition, our
mitigation module requires a concrete mechanism to identify risky actions and propose alternative actions
in real time. The key challenge is to efficiently decide when a candidate action is suspicious and how to
generate a reliable replacement without modifying the underlying policy.

We leverage the detection results as a structural prior. The mitigation module uses the detection structure D,
constructed from verified trigger sequences identified during detection. Each node in D represents a state,
and the associated Voronoi regions partition the action space around known adversarial actions. During
test-time execution, given a state s; and adversary action a2, a fast geometric check determines whether
a2 lies within a dangerous region. If so, a localized MCTS procedure is launched to replan the action and

replace the potentially compromised output with an alternative.

We then perform localized tree-search replanning at test time. The replanning procedure constructs a search
tree rooted at s;, using the Trojan policy #1@" as a sampling prior. Actions are selected as:
o= ﬂ.Trojan(S) + N(O, 021)7 if h < hrollouta (4)

rTrojan () otherwise.

When the depth h reaches the rollout threshold hoous, the search switches to a deterministic rollout with
the policy. The replanning return over the horizon H is defined as:

H
Rreplanning = Z ’Yj_lrj('Jr)- (5)
j=1

This total return aggregates rewards from both phases of the simulation: stochastic exploration in the early
steps and deterministic rollout in the latter part. This split between stochastic exploration and deterministic
simulation mirrors the classical MCTS design. Restricting noise to the earlier depths ensures stability in
action-value estimates, while still enabling local deviation from malicious trajectories. The replanning tree
backs up Q-values from rollout returns and selects the action at the root node with the highest estimated
value. This replacement action is then executed in place of the potentially dangerous one.

The mitigation process is summarized in Algorithm [I} and the danger state labeling used to expand de-
tection coverage is shown in Algorithm [3] A complete version of the replanning procedure is provided in
Algorithm During mitigation, the planner evaluates multiple candidate actions, including the original
action generated by the Trojan model. The replanning module selects the action with the highest predicted
return estimated through simulated rollouts. As the original action remains one of the evaluated candidates,
the replanned action is selected based on the same simulated environment and reward computation, ensuring
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a fair comparison among candidates. Within the simulated horizon H, this procedure heuristically favors
actions that maintain or improve short-horizon performance according to the planner’s rollout estimates.
Note that the adversary’s actions are never directly altered, and the mitigation only modifies the Trojan
policy’s outputs upon detection of adversarial triggers.

Our method balances the use of learned policy actions with targeted divergence only when a threat is detected.
This allows the agent to follow its original behavior under benign conditions while avoiding adversarial
responses under backdoor activation. The result is a flexible and practical mitigation strategy applicable
across environments, even in continuous action settings where fine-grained input filtering is infeasible.

5 Evaluation

5.1 Setup

Evaluation Domains. We evaluate Plan2Cleanse across three RL domains: (1) MuJoCo: Competitive
continuous-control tasks run-to-goal-humans and run-to-goal-ants (Bansal et all 2018). (2) O-RAN
Wireless: The communication-oriented mobile-env simulator (Schneider et al.l 2022), featuring multiple
UEs and base stations for cell association and power allocation. (3) Atari: Image-based control tasks where
backdoors are embedded via small visual patches. Further experimental details are provided in Appendix[C.1]

Baselines. We compare our defense method with baselines across two categories of backdoor attacks. For
competitive multi-agent and mobile network environments (MuJoCo and mobile-env), we evaluate against
three baselines: (1) Normal, which refers to a Trojan model operating without any trigger activation. This
setting verifies that the Trojan model behaves normally under untriggered conditions and that any abnormal
behavior is indeed caused by the activation of the backdoor, rather than by spontaneous failures. It therefore
serves as a false-positive control, ensuring that our detection pipeline does not falsely identify normal trajec-
tories as triggers. (2) Random, which samples actions uniformly at random from the environment’s action
space to search for triggers. (3) PolicyCleanse (Guo et al., 2023)), a recent backdoor detection framework.

For Atari, we compare against defenses for observation-level perturbation triggers: (1) Provable Defense
(PD) (Bharti et al.| [2022), which projects observations onto a safe subspace; (2) BIRD (Chen et all 2023),
which removes backdoor-sensitive neurons; (3) Neural Cleanse (Wang et al., |2019)), which reverse-engineers
and mitigates trigger patterns.

Remark on Baselines. SHINE (Yuan et al., 2024) is one recent backdoor defense method designed for
poisoned RL environments and can serve as a good baseline. For reproduction, we utilized the official code
of SHINE for Atari games and have exchanged several emails with the first author of SHINE about the
detailed experimental configuration. Although we spent considerable effort trying to reproduce the results,
unfortunately we were still not able to reach the performance reported in the paper. Despite this, we have
tried our best and incorporated two recent and strong baselines, namely BIRD (Chen et al., [2023) and
PD (Bharti et all 2022)), for evaluation in Atari.

Evaluation Metrics and Trigger Criteria. We report the Trigger Detection Success Rate (TDSR) (Guo
et al.|2023)), defined as the proportion of seeds for which at least one valid trigger is discovered. Each method
is evaluated across 500 seeds, with up to 1000 episodes per seed. A discovered sequence is considered a valid
trigger if it reliably induces the intended malicious behavior; full environment-specific acceptance rules are
provided in Appendix [C.1]

Sanity Check on Benign Models. Before evaluating the Trojan agents, we verify that Plan2Cleanse does
not mistakenly identify any trigger on benign models. Running the full detection procedure on benign model
across all environments produces no valid triggers, indicating that our method does not report backdoor
triggers when none exist.
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Figure 2: TDSR over training iterations in mobile-env. Solid lines show the median across seeds and shaded
areas show the interquartile range. Plan2Cleanse sustains high detection performance even for minimally
responsive Trojans, whereas PolicyCleanse drops notably as responsiveness decreases.

5.2 Results of O-RAN Simulator

Backdoor Detection in O-RAN Simulator. We evaluate Plan2Cleanse in the mobile-env across three
levels of Trojan responsiveness to triggers, which reflect how easily the backdoor behavior becomes active.
The categories are: (1) High responsiveness, where the trigger gets activated in almost every evalua-
tion; (2) Moderate responsiveness, where the trigger gets activated with medium frequency; (3) Mini-
mal responsiveness, where the trigger is rarely activated. This categorization captures different levels of
stealthiness and provides a clear basis for evaluating detection performance.

As shown in Figure [2] our Plan2Cleanse consistently outperforms all baselines across highly responsive,
moderately responsive, and minimally responsive Trojan models. While PolicyCleanse performs comparably
in the moderately responsive case, its success rate drops significantly when facing stealthier models. In
contrast, Plan2Cleanse maintains strong detection capability across all categories, achieving 0.735 even
against minimally responsive Trojans. These findings highlight Plan2Cleanse’s robustness across varying
adversarial model behaviors, supporting its practical utility in realistic, communication-driven scenarios.

Backdoor Mitigation in O-RAN Simulator. We evalu-

ate Plan2Cleanse’s mitigation performance in the mobile-env, 12
where benign UEs interact with a Trojan-infected base station ~ 510
controller. Figure[3|reports the average data rate (GB/s) under 3 g
adversarial triggers across three Trojan responsiveness levels. 2,
Because mitigation is only activated upon trigger detection, re- <

sponsiveness affects how often mitigation is applied rather than &= 4
how it works. Plan2Cleanse consistently restores performance 2
close to the benign policy (12.1 GB/s) across all settings, main- 0

High Partial Minimal

I Trojan I PolicyCleanse
I Plan2Cleanse (Ours) [EEE Benign

taining above 11.5 GB/s even in moderately and minimally
responsive cases. While PolicyCleanse also improves perfor-
mance over the Trojan baseline, its recovery remains lower than
ours, and the gap widens as the Trojan becomes less responsive.
These results show that Plan2Cleanse delivers more complete
and stable recovery across varied Trojan behaviors.

Figure 3: Average data rate (GB/s) under
adversarial triggers in mobile-env.

Impact of UE Distance on Detection Performance. We evaluate how the distance between the UEs
and the base station influences Trojan detection, grouping scenarios by the theoretical maximum benign data
rate: Near (> 5 GB/s), Mid, and Far (< 0.5 GB/s). As shown in Figure 4] Plan2Cleanse achieves the best
detection performance in both Mid and Far settings, and is comparable to PolicyCleanse in Near. Detection
is harder in Near because strong benign signals overshadow trigger effects, while increased distance amplifies
Trojan-driven behaviors, improving detectability. In the Far setting, Plan2Cleanse reaches a 0.72 detection
rate, outperforming PolicyCleanse at 0.40. This highlights that Plan2Cleanse remains reliable under low-
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Figure 4: TDSR results under varying UE distances from the base station. Each plot reports the median
and interquartile range computed over six Trojan models in the corresponding setting. Detection difficulty
correlates with the strength of benign signals, with farther UEs exhibiting more detectable Trojan behaviors.

signal conditions where Trojan behaviors are more dominant, making robust detection particularly valuable
when UEs operate far from benign base stations.

Table 1: Final TDSR (mean + std) at iteration 1000 across all environments. Bold and underlined results
indicate best and second-best performance.

Method Ant Humanoid High Moderate Minimal

Uniform Random 0.586 + 0.235 0.030 + 0.021 0.013 + 0.006 0.020 =+ 0.006 0.015 % 0.008
Normal Agent 0.000 + 0.000 0.000 + 0.000 0.000 + 0.000 0.000 + 0.000 0.000 + 0.000
PolicyCleanse (Guo et al.|[2023)  0.595 + 0.175 0.609 £+ 0.083  0.949 + 0.016  0.484 + 0.208 0.121 4+ 0.133
Plan2Cleanse (Ours) 0.946 £+ 0.032 0.997 + 0.010 0.936 + 0.027 0.906 + 0.065 0.735 + 0.178

5.3 Results of Competitive RL Environments

[—o— Normal —e— Random —+— PolicyCleanse —=— Plan2Cleanse (Ours)
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Figure 5: TDSR over training iterations in competitive RL environments. The solid lines show the median
detection success rate across 500 randomized trials, with shaded regions indicating the interquartile range.

Backdoor Detection in Competitive RL Environments. In the run-to-goal environments, Fig-
ures (a) and b) show that Plan2Cleanse consistently outperforms all baselines across both Humanoid and
Ant. As summarized in Table[I] Plan2Cleanse reaches a final TDSR of 0.997 on Humanoid and 0.946 on Ant,
surpassing PolicyCleanse by over 35 percentage points on average. Notably, we reproduce PolicyCleanse’s
Humanoid results under the same 1000-episode budget used by Plan2Cleanse and observe a detection rate
of 60.9%, which aligns with the trend in their original curve; the higher 80% detection reported in the
PolicyCleanse paper corresponds to a 3000-episode setting, indicating that our method achieves competitive
results with substantially fewer interactions. Plan2Cleanse rapidly converges to near-perfect detection with
high stability across seeds. The Normal baseline remains at zero throughout all iterations, as Trojan policies
activate only under specific trigger patterns, making it a reliable lower bound on false positives. In Ant, the
Random baseline occasionally reaches TDSR values comparable to PolicyCleanse, likely due to Ant’s more
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constrained motion space, where random exploration has a non-trivial chance of unintentionally triggering
Trojan behaviors. It is worth noting that the original PolicyCleanse paper did not evaluate random search as
a standalone detection strategy on Trojan-infected agents. Our inclusion of the Random policy demonstrates
the benefit of guided search over unguided exploration.

Backdoor Mitigation in Competitive RL Environments.

We compare four agents under adversarial triggers: benign, Trojan 0.5
without mitigation, Trojan with PolicyCleanse, and Trojan with 0.4
Plan2Cleanse. As shown in Figure [6] Plan2Cleanse achieves the 50_3
highest win rate in Humanoid with 53.3%, surpassing PolicyCleanse £
at 39.7%, the Trojan baseline at 34.7%, and even the benign agent
at 47.0%. This demonstrates that local replanning not only re-
moves backdoor effects but also stabilizes high-dimensional control. 0.0
In Ant, PolicyCleanse reaches 40.3%, while Plan2Cleanse achieves == Trojan B PolicyCleanse
31.3%. Although slightly lower, our method still recovers a sub- |mmm Plan2Cleanse (Ours) = Benign
stantial portion of the lost performance, reflecting the challenge
of mitigation in highly dynamic tasks where trigger behaviors are Figure 6: Win rate under adversar-

B 0.2

0.1

Ant Humanoid

more subtle and distributed. ial triggers in Ant and Humanoid.
Plan2Cleanse surpasses the benign pol-
5.4 Results of Atari Games icy in Humanoid.

Table 2 summarizes the results for Pong and Breakout. Under poisoned inputs, our method Plan2Cleanse
achieves competitive performance with PD and BIRD, while Neural Cleanse performs poorly. Under clean
inputs, Plan2Cleanse preserves benign performance since no replanning is triggered without adversarial
inputs. Plan2Cleanse can achieve performance comparable to BIRD and PD on poisoned Atari despite that
it operates entirely at test time in a black box setting and does not require clean samples, unlike PD, BIRD,
and Neural Cleanse which either require fine-tuning or need clean samples. In contrast, those baselines
explicitly reconstruct the trigger pattern, while our Atari detection module only identifies quantized regions
that influence the agent’s action. Thus, it provides a location prior for mitigation rather than exact pattern
recovery, making a direct comparison on detection accuracy less meaningful. For fairness, we match the
interaction budgets on Atari and keep sample usage within the same order of magnitude across methods.
Additional studies on different attack scenarios in Atari are provided in Appendix

Table 2: Performance comparison of backdoor defenses in Atari games (Pong and Breakout) under both
poisoned and clean environments. Results are reported as mean =+ std scores. Bold results indicate the best
performance. The results show that Plan2Cleanse can achieve comparable or better performance than the
baselines, without any fine-tuning or clean data.

Environment Method Category Clean Data Pong Breakout

Trojan - - 0.033 £0.145 16.25 +0.63

Neural Cleanse (Wang et al.l 2019} Fine-Tuning Required —0.037 £ 0.037 6.45+0.28

Poisoned BIRD (Chen et al.| [2023) Fine-Tuning Required 0.960 £ 0.016  19.90 £0.04
PD (Bharti et al.|[2022 Test-Time Required 0.973 £0.009 21.46 +0.22
Plan2Cleanse Ou%rp Test-Time  Not Required 0.950 +£0.033  20.50 +£0.72

Trojan - - 1.000 £ 0.000 22.93+0.18

Neural Cleanse (Wang et al.l 2019} Fine-Tuning Required 0.867 £ 0.009 8.22+£0.27

Clean BIRD (Chen et al.[[2023) Fine-Tuning Required 0.960 +0.016  19.90 £0.04
PD (Bharti et al.l 2022 Test-Time Required 0.973+£0.009  21.46 +0.22
Plan2Cleanse Ou%rp Test-Time  Not Required 1.000 +£0.000 22.93 £0.18

5.5 Computational Overhead

Detection Overhead. We compare the computational cost of our Plan2Cleanse with the baseline method
PolicyCleanse in terms of the average number of environment interactions required to discover a valid back-
door trigger. In the Humanoid environment, our method identifies triggers with an average of 46 environment
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steps per trigger, versus 765 steps for PolicyCleanse. In the Ant environment, our method requires 384 steps
on average, compared to 1296 for the baseline. These demonstrate the better efficiency of Plan2Cleanse than
the baselines in backdoor detection.

Mitigation Overhead. The computational cost of mitigation depends on the environment. In the Hu-
manoid environment, each mitigation step requires approximately 500 x 4 = 2,000 simulation steps, corre-
sponding to 500 rollouts with a 4-step planning horizon. In the Ant environment, each mitigation step incurs
a similar cost of 500 x 4 = 2,000 simulation steps. In the O-RAN simulator, which features lower-dimensional
control, each mitigation step requires approximately 50 x 1 = 50 simulation steps, corresponding to 50 roll-
outs with a 1-step planning horizon. Since O-RAN systems emphasize near-real-time responsiveness, we also
measure the wall-clock latency of our mitigation procedure. On a workstation equipped with an Intel Core
i7-13700K CPU and an NVIDIA GeForce RTX 4070 Ti GPU, the mitigation latency averages 26.1 + 6.9,ms
per operation, which is well within the O-RAN near real-time control loop budget (10 ms—1s) (Raftopoulos
et all 2024). In the Atari environments, each mitigation step requires approximately 50 x 20 = 1,000 sim-
ulation steps in Pong (50 rollouts with a 20-step planning horizon) and 30 x 20 = 600 simulation steps in
Breakout (30 rollouts with a 20-step planning horizon).

For a fair comparison, we let fine-tuning baselines use a similar order of magnitude of interactions. Policy-
Cleanse performs fine-tuning on 50,000 state-action pairs in MuJoCo and 1,000 state-action pairs in O-RAN,
which are comparable to our simulation budgets. BIRD uses about 30,000 environment steps for Pong and
50,000 for Breakout, while Provable Defense (PD) requires 12,000 clean environment steps for Atari.

5.6 Sensitivity Analysis of Key Hyperparameters

We further evaluate the sensitivity of both H and hyonout, which are the two major hyperparameters in
Algorithm [I The planning horizon H determines the depth of tree search, and the performance improves
quickly as H increases, stabilizing once H > 4, which shows that the shallow lookahead is sufficient under
fixed budgets. The rollout threshold h,onont controls stochastic exploration during search: small values
restrict exploration and risk imitating the Trojan policy, while large values inject excessive noise and lead
to unstable value estimates; moderate settings (i.e., around 3 to 5) provide the best balance. Notably,
Plan2Cleanse is also not sensitive to the choice of detection depth T, as strong detection performance is
achieved with small 7" and remains stable across a broad range of values. Detailed sensitivity curves for
mobile-env and MuJoCo are provided in Appendix

6 Conclusion

In this work, we propose Plan2Cleanse, a novel

framework that employs MCTS to efﬁCiently detect [—-— Average Gain over Baseline ~ --- Baseline (Without Mitigation)]
and mitigate backdoor attacks in RL without requir- 20
ing model or policy retraining. Our approach of-
fers significant advantages over existing methods by
formulating backdoor detection as a trajectory-level
planning problem and introducing a lightweight mit-
igation strategy that neutralizes malicious behaviors
through local replanning. Through extensive ex-
periments in competitive multi-agent environments,
simulated O-RAN systems, and Atari games, we
substantially outperform state-of-the-art methods, Figure 7: Effect of planning horizon H and rollout
consistently detecting more backdoor triggers while threshold hyonout on win rate gain (%) in the Hu-
requiring fewer interactions with the system. Our manoid environment.

findings demonstrate that even highly stealthy back-

doors can be discovered and neutralized in practical scenarios like wireless network management, highlighting
the critical need for robust detection and mitigation strategies to secure RL systems against backdoor threats
in real-world deployment.
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A Threat-Model Instantiations in Realistic RL Deployments

To further substantiate the threat model in Section [3.3] we describe how it is realized in the three represen-
tative domains considered in our experiments.

e O-RAN Wireless Networks. In this setting, the target policy operates as a control module within
a simulated wireless network, and it receives input features derived from the measurements of a user
equipment (UE) and produces control decisions for cell association and power allocation (Liyanage
et al.,|2023)). The adversary is embedded in one UE, which behaves maliciously during deployment by
emitting carefully crafted sequences of physical-layer measurements. These sequences are intended to
activate the backdoor and induce the controller to deviate from its expected behavior. The defender
can simulate various network conditions and configure UE behavior to probe for such triggers, but
cannot access or modify the internal logic of the target policy.

e« Competitive Robot Control. In this setting, the target agent policy operates within a compet-
itive control environment (Gleave et al., 2020; Wang et al., 2021al). The adversary is implemented
as an opponent agent that executes specific action sequences that can trigger abnormal behavior
on the target. The defender interacts with the system by simulating episodes with different oppo-
nent behaviors, which may be scripted, stochastic, or search-based, but cannot access or modify the
internal logic of the target policy.

e Atari Image-Based Control. The target policy operates in an image-based Atari game environ-
ment. The adversary exposes observation-level triggers as localized patches at deployment to induce
abnormal actions (Kiourti et al, 2020). The defender has black-box access during deployment, and
hence it observes trajectories and can override the agent’s actions (e.g., through online replanning)
but cannot inspect or modify policy parameters.

B Details of Tree Search for Trigger Discovery

B.1 Continuous Action Selection via Voronoi-Based Sampling

At an MCTS node corresponding to state s;, we maintain a set of previously sampled adversarial actions

Asampled = {al(5 ), e ai")}. These actions induce a Voronoi partition over the continuous action space A,

where the cell associated with action aii) is defined as

V(o) ={ae A: a—al|| < [la—al|, ¥j #i}. (6)

With probability w, the algorithm explores by sampling a new action uniformly over A; otherwise, it exploits
by sampling within the Voronoi cell of the best-performing action to date:

V* = arg max Q(afy). (7)
V(ai")

This design enables both broad coverage of the action space and local refinement around high-scoring regions,
supporting efficient trigger discovery under a limited interaction budget.

B.2 Value Backup for Adversarial Rewards

After simulating the environment forward under a sampled adversarial action and observing the resulting
negated Trojan reward rt_), the estimated value of the state—action pair is updated via a max-backup rule:

Q(se,ar) <1y +7- max Q(st41,ae11), (8)
t+1
where the maximization is taken over all expanded child actions at state s;y;. This recursive update prop-

agates high adversarial scores upward through the tree, guiding future expansions toward action branches
that exhibit stronger backdoor activation effects.
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B.3 Adaptation to Perturbation-Based Triggers

The tree-search formulation above targets multi-step, temporally extended triggers in continuous-control
tasks. In image-based domains such as Atari, backdoors are often activated by a single localized perturbation
on the observation rather than by a temporal sequence of actions. To accommodate this setting within the
same planning framework, we adapt the search to operate over spatial perturbations on a single frame.

When a trigger patch is present on the frame, the Trojan policy tends to choose a poisoned action, either
targeted or untargeted. If we remove that local evidence by inpainting the true trigger region the policy
reverts to its benign action, while masking any other region leaves the decision unchanged. We exploit this
locality within the same planning framework by viewing screening as a depth-1 tree search. For a frame s,
we define a discrete set of screening actions A, = {mask(é, j)}i<r, j<w by quantizing the image into an
(4,9)
t

L x W grid; applying mask(i, j) inpaints cell (i, j) to produce a modified observation §; /. We first query

mrojan on s, to obtain the baseline action, then query on each §§w ) and record the set of cells that change
the chosen action. We keep the frame only if exactly one cell flips the action and discard frames with zero or
multiple flips. For a kept frame we add one vote to that unique coordinate and accumulate the raw pixels of
that cell for averaging. Repeating this under a fixed interaction budget yields a vote heatmap C € NH#*W
whose argmax serves as a location prior, and the averaged patch provides a qualitative check. This screening
is black-box and training-free, does not attempt trigger reconstruction, and the resulting prior is used to

gate online replanning in the mitigation stage. The full procedure is provided in Algorithm

Algorithm 2 Atari patchwise screening

1: Input: grid size H x W, inpaint radius r, interaction budget B, policy m
2: Qutput: location prior (i*,5*), vote heatmap C € N¥*W average patch P
3: Initialize counts C[i, j] - 0 and pixel sums S[¢, j] < 0 for all (¢, j)

4: fort =1to B do

5: Observe frame o; and query policy a < 7(0¢)
6: St — @
7 for each cell (4,7) in the H x W grid do
8: 0 < INPAINT(o4, cell(i, j), )
9: a <+ (o)
10: if @ # a then
11: St — StU{(’L,_])}
12: end if
13: end for
14: if |S¢| =1 then > keep the frame only when exactly one cell flips the action
15: (¢,7) < the unique element of S,
16: Cli, 3] « Cli,jl + 1
17: Si, j] < S[¢, j] + CrOP(o¢, cell(i, 7))
18: end if
19: end for
20: if max; ; C[¢,j] = 0 then
21: return no location prior
22: else
23: (i*,7%) + argmax; ; C[i, j]

24: P« S[*,§*]/Cli*, 5]
25: return (i*,5%), C, P
26: end if

C Detailed Experimental Configurations

C.1 Key configurations

Trojan Model Construction. We construct Trojan agents across all environments following standard
backdoor setups. For MuJoCo (Ant and Humanoid) and mobile-env, we adopt the BackdooRL frame-
work (Wang et al) 2021a)) and train 10 distinct Trojan policies per environment by mixing 2000 benign
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episodes with 500 poisoned episodes. Triggers are injected as action sequences that cause abnormal behav-
iors, including manually designed motion patterns (e.g., bending a specific limb in Humanoid or Ant) and
randomly sampled action subsequences for greater diversity. In mobile-env, triggers are realized through
injected physical-layer signal patterns that reliably activate malicious scheduling behaviors. For Atari (Pong
and Breakout), we follow the SleeperNets protocol (Rathbun et al.,[2024) to implant patch-style triggers and
retrain Trojan agents accordingly. These Trojan models form the evaluation testbed for both detection and
mitigation.

Trigger Criteria. To evaluate whether a discovered sequence constitutes a successful trigger, we define
environment-specific acceptance criteria:

e Ant: A trigger is accepted if it causes a statistically significant drop in the victim agent’s return. We
follow the prior work (Wang et al., [2020} |(Guo et al.l2022)) and apply an anomaly detection procedure
based on the Median Absolute Deviation (MAD). Let 4, denote the negated cumulative reward of
the replayed candidate sequence, and let r,o¢ be a reference distribution obtained from 500 random
action sequences. We compute the anomaly index as:

Tsum — Median(rper)
A ly Ind sum ) ‘= - p )
nomaly Index(sum) C' - Median(|ryef — Median(ryet)|)

where C' = 1.4826 is a scaling constant assuming Gaussian residuals. A trigger is accepted if the
index exceeds the threshold:

threshold := 4 - C' - MAD + Median(7ef),

corresponding to a 4-MAD outlier detection rule.

e Humanoid: A trigger is considered valid if it causes the agent to fall, operationalized as a sudden
drop in center-of-mass height during evaluation.

e Mobile-env: A trigger is accepted if the adversarial UE disrupts a benign UE’s connection despite
prior signal stability.

o Pong and Breakout: Accept a candidate trigger if (i) there exist frames where inpainting exactly
one grid cell flips the policy’s action (discard frames with zero or multiple flips), and (ii) the vote
map over frames has a unique argmax; we report the average pixels of that cell as the patch.

Detection and Mitigation Parameters. We use Gaussian exploration noise with a standard deviation
of 0 = 0.1, and set the Voronoi Optimistic Optimization (VOO) sampling radius to 0.1.

The rollout threshold hionous determines the depth at which the planner transitions from stochastic explo-
ration to deterministic rollout, balancing exploration diversity with stable value estimation. Environment-
specific configurations for the budget IV, rollout threshold A,onout, and planning horizon H are summarized
in Table Bl

Table 3: Environment-specific hyperparameters for Plan2Cleanse detection and mitigation.

Parameter Ant Humanoid Mobile-env Pong Breakout
Detection Depth T 60 10 10 1 1
Mitigatoin Budget N 500 500 10 30 50
Rollout Threshold A,onout 3 3 5 1 1
Planning Horizon H 5 5 5 20 20

Baseline Reproduction. For baseline reproduction, we matched the environment step magnitudes to
our method and configured poisoned environments with the same poisoning rates as used in evaluation,
namely 0.25 in Pong and 0.2 in Breakout. This setup was intended to align with SHINE (Yuan et al., |2024)).
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However, despite following the default configurations and further attempting to tune hyperparameters, we
were unable to reproduce the reported improvements of SHINE in our setting. We also contacted the
authors and exchanged emails to confirm the experimental details, but the reproduced performance remained
inconsistent with the published results.

C.2 Additional Analysis and Ablations

Action Perturbation Strategies in MuJoCo Mitiga-

tion. Our mitigation approach requires sampling alternative 05

actions around the Trojan policy to avoid dangerous behav-

iors. We evaluate three perturbation strategies: Gaussian noise 0.4

(N(0,0.1%1)) with standard deviation 0.1, uniform sampling §0 3

with VOO, and OU noise which introduces temporally corre- é

lated deviations. Results in Figure [§show that Gaussian noise 0.2

performs best in Ant environments with low variance, while OU 01

noise achieves superior performance in the high-dimensional

Humanoid setting. This suggests that temporally correlated 0.0 Ant Humanoid
noise is more effective for complex control tasks, while simple B Trojan B Ours (Gaussian)
Gaussian perturbation suffices for lower-dimensional environ- B PolicyCleanse  [EEE Ours (OU)

= Ours (VOO) 3 Benign
ments.

More Details on Backdoor Detection in Atari. In ad- Figure 8: Win rates under different pertur-
dition to the criteria specified in Section [5.1} we partition each ~bation strategies in the Ant and Humanoid
Atari frame into 12 x 12 grids, yielding 49 (7 x 7) candidate environments. Each bar shows the average
patches. A trigger is accepted if inpainting a unique patch performance across three Trojan models.
consistently flips the chosen action. To demonstrate the effec-

tiveness of this quantized patch detection approach, we report the voting ratios of trigger regions across
different trigger patterns. For each poisoned agent, we collect 1000 frames under a poisoning rate of 0.1 with
trigger size set to 4 x 4. A frame is considered valid if exactly one patch flip is observed, and we record the
patch location that received the vote. The trigger region voting ratio is computed as:

Trigger Region Votes

Vote Ratio = Total Valid Votes

The results show strong detection accuracy: Equal (44/62, ~71.0%), Cross (35/50, 70.0%), Checkerboard
(60/64, 93.8%), and Square (14/15, 93.3%). These high voting ratios demonstrate that our quantized
detection method effectively identifies the correct trigger regions across different patch patterns. For the
benign model with trigger injection, we evaluate 1000 frames under the same detection setup. Among them,
only 18 frames are valid (i.e., those producing a single patch flip). The highest voting ratio within valid
frames is 9/18 (50%), which does not exceed half of the total votes. When normalized over all evaluated
frames, the trigger region ratio becomes 9/1000 (0.9%), which is below 1%. Therefore, we consider that no
consistent trigger pattern is detected in the benign model.

Mitigation Environment Setting of Atari. To match the reported results of SHINE, we terminate each
Pong episode once a non-zero reward is obtained. For Breakout, we truncate the episode length at 550 time
steps. We also set the poisoning rates to 0.25 in Pong and 0.20 in Breakout, and use Trojan models with a
3 x 3 square trigger in Table [2}

D Various Attack Scenarios in Atari Games

To further validate the robustness of our approach, we conducted additional experiments under diverse
attack settings. Table [4] reports results across four trigger patterns (Square, Equal, Cross, Checkerboard, as
shown in Figure E[) In poisoned environments, the original model suffers severe performance degradation,
with accuracy dropping close to zero or even negative values, while our method consistently maintains
performance close to 1.0. In clean environments, both methods achieve optimal performance, confirming
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Table 4: Performance comparison under poisoned and clean environments for 4 x 4 patterns. Results are
mean =+ std.

Environment Method Square Equal Cross Checkerboard
Poisoned Trojan 0.033 £0.145 —0.127+0.064 —0.147 +£0.170 0.053 +0.189
Plan2Cleanse (Ours) 0.950 £ 0.014 0.973 £ 0.012 0.787+£0.151  0.880 £ 0.060

Clean Trojan 1.000 = 0.000 1.000 £ 0.000 0.940 £ 0.020  1.000 % 0.000

Plan2Cleanse (Ours) 1.000 £ 0.000 1.000 £ 0.000 0.940 £0.020  1.000 % 0.000

Table 5: Performance of the original poisoned agent and our method with square block patterns.

Agent 3x3 4x4 5x5

Trojan —0.067+£0.046 0.033+£0.145 —0.093+£0.070
Plan2Cleanse (Ours) 0.993 £0.012  0.950 & 0.014 0.753 £ 0.050

that our defense does not compromise normal task execution. Table [5] further evaluates agents of different
sizes (3x 3, 4x 4, 5x5). The original agents exhibit substantial vulnerability under poisoning, whereas agents
retrained with our method remain highly robust across all configurations, maintaining strong performance
even as the environment scale increases. These results collectively demonstrate the effectiveness and stability
of our approach across a wide range of attack scenarios.

E Additional Related Work on Adversarial Threats in RL-based O-RAN Applications

O-RAN represents a paradigm shift in wireless network management, promoting openness, flexibility, and
interoperability by leveraging artificial intelligence (AI) and machine learning (ML) solutions. In particular,
RL-based applications, often implemented as real-time xApps or non-real-time rApps within the RAN Intel-
ligent Controller (RIC), are deployed to optimize crucial network functions such as resource allocation, traffic
scheduling, handover management, and anomaly detection. RL-driven xApps (Mismar et al., 2020; Tang
et al., |2023)) have been investigated in both theoretical and experimental studies, showing their potential to
dynamically optimize radio resource allocation and improve network performance in terms of throughput,
latency, and reliability. However, the increasing reliance on ML and RL within O-RAN introduces significant
vulnerabilities to adversarial threats. Prior work (Chiejina et al., 2024]) has demonstrated that MIL-based
components deployed in the near-real-time RIC are susceptible to adversarial attacks capable of degrading
network performance and manipulating control decisions. These attacks exploit the openness of O-RAN
and the shared access to system data, enabling malicious xApps to inject carefully crafted perturbations
that mislead legitimate applications. In particular, interference classification xApps (Sapavath et al., 2023))
experience a marked decline in prediction accuracy under adversarial manipulation, leading to measurable
deterioration in system throughput and capacity. The modular and decentralized nature of O-RAN (Farooq
et al.||2019)) further amplifies the risk, as compromised agents may tamper with shared observations or disrupt
the behavior of co-located services. Addressing such threats demands a rigorous analysis of attack surfaces
unique to ML-based control architectures and the design of robust, context-aware defense mechanisms.

F Visualization and Quantitative Analysis of Trigger Similarity

To further verify that the recovered triggers correspond to the true backdoor mechanisms rather than ar-
bitrary adversarial trajectories, we provide both qualitative and quantitative evidence. Here, True denotes
the ground-truth backdoor trigger used to implant malicious behavior, Found refers to the trigger recovered
by Plan2Cleanse, and Benign represents trajectories sampled from a clean model without any backdoor.

t-SNE Visualization. Figures [L0]| visualizes the t-SNE embeddings of trigger sequences in both the O-
RAN and continuous-control environments. Recovered triggers (Plan2Cleanse) cluster closely with the true
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Figure 9: Different trigger patterns: (a) Square, (b) Equal, (c) Cross, and (d) Checkerboard.
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Figure 10: t-SNE visualization of trigger action sequences across five settings: Ant, Humanoid, and three
mobile network variants with different Trojan responsiveness levels. Each point denotes a 10-step action
The true trigger is

sequence projected into 2D space, with colors representing different trigger sources.

marked with a X symbol.

triggers, while remaining clearly separated from benign trajectories. This visual evidence indicates that our
method successfully rediscovers the underlying backdoor pattern rather than random failure trajectories.

Quantitative Similarity. We further compute the distance between the recovered and true triggers using
multiple trajectory metrics (L1, L2, and DTW). For each environment, one ground-truth trigger sequence
is used as True, while 100 recovered and 100 benign trajectories are sampled for averaging. Table [6] reports
results across all five environments. In every case, the True-Found distance remains consistently smaller than
both True-Benign and Found—Benign, demonstrating strong geometric alignment between the recovered and
ground-truth triggers.

Together, these visual and numerical results confirm that Plan2Cleanse recovers triggers that closely match
the true backdoor patterns and remain clearly separated from benign or adversarial trajectories.

Table 6: Trigger similarity across environments and metrics. Each cell reports mean + std of distances
between True, Found, and Benign triggers.

Metric Pair Ant Humanoid High Partial Minimal
True-Found 4.515+0.299 8.857+0.404 1.169+0.188 1.036+0.130 1.191 £0.177
L1 True-Benign 5.621 £0.365 12.745+1.049 1.62040.224 1.3754+0.290 1.592 4+ 0.230
Found-Benign 5.961 +0.461 14.772+0.945 1.529+0.274 1.531 £0.342 1.512+£0.311
True-Found 1.884 £0.113 2.5124+0.106 0.768 £0.108 0.675£0.074 0.775 £ 0.099
L2 True-Benign 2.384 £0.134  3.703 £0.248  1.144 £0.157 0.959+0.161 1.114 +0.165
Found-Benign 2.537 +£0.182 4.367£0.245 1.013+0.187 1.003+£0.232 1.009 £ 0.220
True-Found 1.884 +0.113 2.512£0.106 0.650+0.109 0.638 £0.112 0.717 £ 0.126
DTW True-Benign 2.384 £0.134  3.703 £0.248  1.144 £0.157 0.959+0.161 1.114 +0.165
Found-Benign 2.4524+0.202 4.363 £0.248 1.012+0.188 1.002+0.233 1.007 £0.221

22




Under review as submission to TMLR

G Extended Sensitivity Analysis Across Environments

This section provides additional sensitivity analyses for both the detection and mitigation components of
Plan2Cleanse across different environments.

G.1 Detection Depth Sensitivity

We study how the detection depth T affects Trojan detection across mobile-env and MuJoCo. As shown in
Figure |11 and Figure increasing T improves performance up to a moderate range, after which detection
stabilizes. While the optimal T differs across environments (e.g., smaller T" suffices in mobile-env), detection
remains strong over a broad range of T', showing that Plan2Cleanse does not rely on precise tuning of this
parameter. Shaded areas represent the standard deviation across Trojan models, with each point showing
the mean performance over different Trojan models.
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Figure 11: Effect of detection depth T" on final TDSR in mobile-env under High, Partial, and Minimal Trojan
responsiveness.
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Figure 12: Effect of detection depth T" on final TDSR for Ant and Humanoid.

G.2 Mitigation Hyperparameter Sensitivity

To complement the Ant results presented in Section [5.6] we further provide the sensitivity analysis of the
mitigation hyperparameters across the Humanoid and mobile-env environments. For Humanoid, the overall
trend remains consistent with Ant, where performance improves rapidly with increasing planning horizon H
and saturates when H > 4, indicating that shallow lookahead is sufficient for stable mitigation (Figure .

These additional results confirm that the trends observed in Ant generalize across high-dimensional locomo-
tion, communication-control environments, and visual Atari domains, further validating the robustness of our
mitigation design. For the mobile-env, we evaluate three categories of Trojan responsiveness (High, Partial,
and Minimal), and use a unified planning horizon H = hygjiout in this environment. Only the continuous-
control locomotion tasks (Ant and Humanoid) require a separate Ayolout due to their high-dimensional action
spaces. Figure [14] shows that our method remains stable across different horizons, and even short planning
horizons are sufficient to achieve effective mitigation.
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Figure 13: Effect of planning horizon H and threshold A pous 0n win rate gain (%) in the Ant environment.
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Figure 14: Effect of joint planning horizon H = hyelous 0n data rate (GB/s) in the mobile-env.
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Figure 15: Effect of planning horizon H on mitigation performance in Atari: (a) Pong and (b) Breakout.

H More Details on Our Algorithms

Recall from Section that the mitigation process is summarized in Algorithm [I] in the main text. Here
we further provide the more detailed description about the danger state labeling used to expand detection
coverage in Algorithm [3] Moreover, a complete version of the replanning procedure for backdoor mitigation
and the procedure for generating Trojan rollouts are provided in Algorithm [4 and Algorithm [5] respectively.
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Algorithm 3 Danger State Marking in Detection Tree D

1: Input: Detection Tree D, Leaf node sr, Backtrack depth K
2: Output: Updated detection tree 79 with danger states marked
3: Sdanger < {SL}; s+ s¢
4: for i =1 to K do

5: if s has parent s, then
6

7

8

9

Mark s, as danger
Sdanger — Sdanger @] {sp}

S 4 Sp > Move up to parent
: else
10: break
11: end if
12: end for

13: return D (with nodes in Sqanger marked)

Algorithm 4 MCTS Replan (s;, 722 N, H)

1: Input: Current state s¢, Trojan policy mtredan - Simulation budget N, Horizon H
2: Output: Replanned action a***"
3: Initialize a search tree 7 with root node ng + s;

4: for i + 1 to N do

5: // Selection and Simulation

6: n < no, h < 0, path < ||

7 while h < H and not terminal(n) do
8: if ¢ =1 then

9: a < moIn ()
10: else
11: a + TR (n) + N(0, 0?)
12: end if
13: (ryn') + APPLYACTION(n, a)
14: Append (n,a,r) to path
15: n<n',h<h+1
16: if h > hrollour then
17: Rirollout < TROJANROLLOUT(n, w7 [T — h)
18: break
19: end if

20: end while
21: // Backup

22: G+ 0
23: if h > hrollout then
24: G < Rroliout

25: end if
26: for (7i,a,7) € REVERSE(path) do

27: G—7Ff+v-G

28: Q(#1, @) + max(Q(#,a), G)
29: end for

30: end for

trojan A
31: a; ™+ argmax, Q(no, a)
32: return a;" ™"
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Algorithm 5 TrojanRollout(n, 7 oan A)

Input: Node n, Trojan policy 7 1rean

Output: Estimated return R
R+ 0,7 «1
for j + 1to A do
if terminal(n) then
break
end if
a < wTreiRn (n)
(r,n") + APPLYACTION(n, a)
R+ R+~ -r
Y =9
12: n <« n'
13: end for
14: return R

, remaining horizon A

=
= o
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