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ABSTRACT

We present a transformer architecture-based foundation model for tasks at high-
energy particle colliders such as the Large Hadron Collider. We train the model
to classify jets using a self-supervised strategy inspired by the Joint Embedding
Predictive Architecture Assran et al. (2023). We use the JetClass dataset Qu et al.
(2022b) containing 100M jets of various known particles to pre-train the model
with a data-centric approach — the model uses a fraction of the jet constituents as
the context to predict the embeddings of the unseen target constituents. Our pre-
trained model fares well with other datasets for standard classification benchmark
tasks. We test our model on two additional downstream tasks: top tagging and
differentiating light-quark jets from gluon jets. We also evaluate our model with
task-specific metrics and baselines and compare it with state-of-the-art models
in high-energy physics. Therefore, this work contributes to the development of
scientific foundation models by demonstrating how self-supervised transformer
architectures can extract deep insights from high-energy physics data.

1 INTRODUCTION

Modern collider experiments, such as the Large Hadron Collider (LHC), rely on deep learning to
enhance key tasks like jet tagging, track reconstruction, and detector–simulation matching. Tradi-
tionally, the high-energy physics (HEP) community has built dedicated deep-learning models using
well-curated, labelled simulated data. However, recent advances in large world models (Team et al.,
2023; Reid et al., 2024; Garrido et al., 2024) suggest that a unified model capturing ‘common knowl-
edge’ could improve performance on individual tasks.

Large Language Models (LLMs) like GPT Brown et al. (2020) and BERT Devlin et al. (2018)
have demonstrated success in learning generalized language representations through extensive pre-
training. Analogously, a foundation model (FM) in HEP could encode the ‘language’ of particle
interactions, detector responses, and physical laws, serving as a versatile tool for experimental data
analysis. As the LHC collects ever-increasing amounts of data to probe new or rare processes,
training models from scratch becomes computationally expensive. Pre-trained FMs that require
only minimal fine-tuning can save significant compute resources and benefit researchers with limited
capabilities.

Recent attempts to build FMs for HEP—such as OmniLearn Mikuni & Nachman (2024) and Particle
Transformer Qu et al. (2022a)—rely on supervised training with first-principle simulations. How-
ever, dependence on labelled data limits their applicability to real experimental data due to inherent
simulation deficiencies. Self-supervised learning (SSL) thus offers a more data-driven strategy. For
example, Masked Particle Modelling (MPM) Golling et al. (2024) and OmniJet-α Birk et al. (2024)
adapt masked language modelling and generative pre-trained transformers for HEP, while contrastive
methods akin to the SIMCLR framework Dillon et al. (2022a;b; 2024) have also been explored.
Nevertheless, SSL approaches face challenges: contrastive methods require careful selection of neg-
ative samples to avoid representational collapse, and masked modelling may overemphasize local
features. Furthermore, many SSL techniques rely on decoders for input reconstruction, which can
divert computational resources toward learning redundant details.
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We train a FM for collider tasks using the Joint Embedding Predictive Architecture (JEPA) paradigm.
Originally proposed in Ref. Assran et al. (2023) for image perception, JEPA learns predictive rep-
resentations by modelling missing embeddings directly in the latent space—without a decoder or
full input reconstruction. This design enhances computational efficiency and yields more abstract,
transferable features, as demonstrated in images, videos Bardes et al. (2024), and point clouds Saito
& Poovvancheri (2024).

Furthermore, our work serves as a compelling example of a scientific foundation model tailored
for agentic AI. By learning high-level, transferable representations of particle interactions in a self-
supervised manner, it paves the way for AI systems that can autonomously generate hypotheses and
drive scientific discovery—key goals in advancing agentic AI for research.

Our contributions in this paper can be summarised as

1. We adapt JEPA for HEP collider tasks and introduce a foundation model called HEP-JEPA.
Most collider tasks require analysing scores of jets (highly challenging but necessary for
physics experiments) produced in high-energy particle collisions. We use the JetClass
dataset Qu et al. (2022b) to pre-train our foundation model by providing parts of each
jet sample as the context for the model to predict the rest of the jet correctly.

2. We present a framework to test model choices and HEP-JEPA performance with detailed
ablations and comparisons with different training paradigms on few-shot learning tasks.

3. We evaluate HEP-JEPA on two important downstream tasks: top tagging and differentiating
light-quark jets from gluon jets. Top tagging is necessary for practically all new physics
searches, and achieving a good discriminator of light jets is one of the significant challenges
in the domain. We evaluate the model performance over reference datasets and task-specific
metrics.

2 JEPA PRE-TRAINING PARADIGM

JEPA learns to predict the embedding of a signal y from a compatible signal x, using a predictor net-
work conditioned on additional variables z to facilitate prediction. Instead of predicting y directly,
JEPA predicts in representation space, which enables it to learn abstract meaningful representations
of inputs, making it ideal for some downstream tasks. Our HEP-JEPA is one instantiation of the
paradigm to work with particle jets by masking a fraction of jet constituents. Similar to the joint
embedding architecture, JEPA is susceptible to representation collapse, which we bypass using an
exponential-moving-average teacher design for the y encoder.

3 HEP-JEPA MODEL

Figure 1 shows the complete HEP-JEPA framework, which works as follows. For every input set
(jet) of particles (each with 2 coordinates η, ϕ — pseudorapidity and azimuthal angle — and a
set of kinematic variables), we first divide it into geometrical patches based on the coordinates of
each particle. Each patch of the jet is encoded using a small permutation invariant model to form
patch tokens. These tokens are then divided into non-overlapping context (x) and target (y) sets and
encoded by their respective encoders. A predictor is used to predict the embedding of the target
tokens. The encoders are implemented using a transformer encoder architecture.

3.1 PARTICLE GROUP TOKENISER

Let us consider a jet J consisting of n particles, where each particle is represented by a vector
pi ∈ R7:

pi = (ηi, ϕi,mi, ln pTi , lnEi, ln
pTi

pTJ

, ln
Ei

EJ
,∆RiJ

),

where pT denotes the momentum component transverse to the beam direction, m denotes the mass,
E is the energy, and ∆RiJ

is the distance between the particle and the jet axis in the (η, ϕ) plane.
We introduce a patchification and tokenisation strategy to capture meaningful patch-level particle
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Figure 1: Schematic diagram illustrating the working of the HEP-JEPA model. The model has a
structure similar to vision transformers. In the first step, the entire jet is divided into patches using
a particle jet tokeniser. These tokens are then masked to form the context and target blocks. Each
block is fed into the respective encoder to generate the embeddings. The context embedding, along
with the special mask tokens, is used by the predictor to predict the embedding of the masked target
blocks.

interactions. The tokeniser T : Rn×7 → Rc×d maps the raw particle features to c token embeddings
of dimension d.

First, we employ Farthest Point Sampling (FPS) to select c centre particles that maximise the jet’s
phase space coverage. We construct a local group of k particles for each centre using the k-nearest
neighbours in the (η, ϕ) plane. These groups are then normalised by subtracting their respective
centre coordinates:

p′i = pi − pk, ∀i ∈ Gk

where Gk denotes the group of particles associated with centre k. To obtain permutation-invariant
token embeddings, we process each normalised group through a small PointNet encoder, E, con-
sisting of shared multilayer perceptions (MLPs) followed by max-pooling operations:

tk = max ({MLP(p′i) | p′i ∈ Gk}) .
In our case, c is not a fixed number as it varies with the size of the particle jet. We sample only a
small fraction of the points as the possible centres for the jet.

3.2 JEPA FRAMEWORK

3.2.1 TOKEN CONSTRUCTION

Target construction: Our masking strategy operates on the token sequence T = {t1, . . . , tk} to
create complementary context and target regions. The c groups of the jet J is fed through the target
encoder fθ̄ to obtain a corresponding patch-level embedding sy = {sy1

, . . . , syc
}, where syk

is
the representation associated with the cth group. For each jet, we sample M (possibly overlapping)
blocks from the target representations sy with random scale s ∈ [0.15, 0.2] and random aspect ratio
r ∈ [0.75, 1.5]. As has been shown previously, it is essential to mask the output of the target encoder
and not the input.

Context construction: The context block is sampled with a random scale s ∈ [0.4, 0.75] from
the set of all tokens. Since the target and the context are selected independently, they may overlap
significantly. We remove overlapping regions between the source and target tokens to prevent trivial
learning. These tokens are fed to the context encoder, fθ, to obtain the corresponding representa-
tions sx = {sxj}j∈Bx , where Bx is the mask associated with block x. The context encoders are
constructed as transformer models .
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Following Point-JEPA (Saito & Poovvancheri, 2024), we also utilise a greedy sequencing algorithm
to ensure spatial coherence when performing the contiguous masking of source and target tokens.
Below we summarise the main steps of the sequencer.

1. Initialise with token ti minimizing
∑

i coord(ti).

2. Iteratively select the next token based on the minimum distance on the (η, ϕ) plane.

3. Maintain disjoint sets between context and target tokens.

3.2.2 ENCODER ARCHITECTURES

Our framework consists of three primary components operating in representation space:

Context and target encoders: Our context and target encoders are transformer models for en-
coding the tokens in a jet sample. We use eight registers with each transformer encoder, following
Ref. Darcet et al. (2024). We also introduce a physics bias matrix from Ref. Qu et al. (2022a); how-
ever, our implementation differs since we calculate pairwise interactions between tokens (groups)
instead of particles. This requires calculating the four-momentum vectors of the entire group. The
bias terms are:

∆Rij
=

√
(ηi − ηj)2 + (ϕi − ϕj)2,

kT = min(pTi , pTj )∆Rij ,

z = min(pTi
, pTj

)/(pTi
+ pTj

),

m2 = (Ei + Ej)
2 − ∥pi + pj∥2,

where pi denotes the momentum of the ith particle and ∆Rij
is the distance between the ith and jth

particles in the (η, ϕ) plane. The bias for the added registers is set to 0.

Predictor: The predictor predicts the representations of targets with the help of context blocks.
For a given target block sy(i) corresponding to a target mask Bi, the predictor gϕ(·, ·) takes the
context encoder sx and a mask token for each patch we wish to predict {mj}j∈Bi

as inputs, and
outputs a patch-level prediction ŝy(i) = {ŝyj

}j∈Bi
= g(sx, {mj}j∈Bi

). The mask tokens are
parametrised by a shared learnable vector with an added positional embedding. Since we want to
predict for each of the M blocks, we apply the predictor M times.

Loss function: The learning objective is formulated entirely in the embedding space as

L =
1

M

M∑
i=1

D(ŝ(i)y , s(i)y ),

where D is the smooth L1 loss between predicted embeddings ŝ(i)y = g(sx, {mj}j∈Bi
) and target

embeddings s
(i)
y = {syj

}j∈Bi
. By operating in the representation space rather than the particle

space, we focus the learning on physically relevant features while avoiding the computational over-
head of full reconstruction.

4 PRE-TRAINING HEP-JEPA

We pre-train our models on the JetClass dataset Qu et al. (2022b). JetClass is an extensive collection
of jets clustered from simulated proton-proton collisions at the LHC. It contains 100M training
samples divided into 10 jet classes, covering light jets (from gluons and light quarks) and heavy-
particle jets from the top quark or the Higgs, W , and Z bosons. Each jet is reconstructed using the
anti-kT algorithm Cacciari et al. (2008) (with jet radius R = 0.8) after incorporating detector effects
from DELPHES de Favereau et al. (2014), the detector simulator. The dataset provides detailed per-
particle features, including kinematics (energy-momentum four-vectors), particle identification (5-
class encoding), and trajectory displacement parameters for tagging heavy-flavor jets. It is split into
training (100M jets), validation (5M), and test (20M) sets.
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The model and its training: For the model, we take a standard transformer architecture of 12
transformer blocks with 2.5M parameters in total. We train the model for 4 epochs with an effective
batch size of 2048, corresponding to roughly 200k training steps. We take a cosine decay scheduler
with a linear warm-up for 15k steps. Our training was complete in 320 GPU hours on RTX 2080Ti.

5 EXPERIMENTS

5.1 EVALUATIONS ON JETCLASS DATASET

5.1.1 FEW-SHOT LEARNING

We perform a few-shot evaluations on the JetClass dataset. As the baseline model, we take our
architecture trained from scratch in a supervised fashion to eliminate the effects of other external
factors. In both these models (ours and the baseline), we attach a classification head to the student
backbone constructed as two class attention blocks followed by a MLP layer. We consider two
regimes to perform the few shot evaluation:

(1) frozen: where the pre-trained backbone is not updated – only the classification head is
trained, and

(2) fine-tuned: where the pre-trained backbone is simultaneously updated with the classifica-
tion head.

We conduct the experiment at different label fractions of the JetClass dataset – 0.05% 0.5%,
2%, 10%, and 100%.

Table 1: JetClass Metrics: Peak validation accuracies attained by the benchmark models on the
JetClass dataset. We run experiments for different levels of few-shot learning. We provide different
fractions of labels from the JetClass dataset to train the model from scratch for the classification task.
In each experiment, a pre-trained HEP-JEPA model is fine-tuned on the same fraction of labels.

% OF LABELS MODEL ACCURACY

0.05% FROM SCRATCH 0.505
(5K) HEP-JEPA, FINE-TUNING 0.564

0.5% FROM SCRATCH 0.586
(50K) HEP-JEPA, FINE-TUNING 0.624

2% FROM SCRATCH 0.668
(2M) HEP-JEPA, FINE-TUNING 0.669

10% FROM SCRATCH 0.683
(10M) HEP-JEPA, FINE-TUNING 0.685

100% FROM SCRATCH 0.698
(100M) HEP-JEPA, FINE-TUNING 0.698

Table 1 shows the macro accuracy obtained by the methods. The fine-tuned HEP-JEPA model
consistently outperforms the model trained from scratch. The difference is significant in few-shot
learning tasks (i.e., 0.05%- and 0.5%-label cases), where HEP-JEPA shows 4 − 6% better accura-
cies than the model trained from scratch. To illustrate this, we show Figure 2, where we plot the
validation loss against the training step for the two benchmark models training in a few-shot learn-
ing setting for jet classification on the JetClass dataset with 0.5% labels. However, as the fraction
of labels for training increases, the performance difference between the benchmarks reduces. HEP-
JEPA performs almost identically to the model trained from scratch when the complete set of labels
is available for training.

5.2 TRANSFER LEARNING EVALUATIONS ON DOWNSTREAM TASKS

We also test the model’s capabilities for generalising and its performance on different datasets.
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Table 2: Results for downstream tasks: Peak validation accuracies for the benchmark models on the
TQTR dataset Kasieczka et al. (2019b) for top tagging task (left panel) and a reference quark-gluon
tagging dataset Komiske et al. (2019) (right panel) using 100% of the data samples. “FROZEN”
after a model name indicates that the pre-trained was not updated while training, whereas the tag
“FINE-TUNED” indicates that both the classifier head and the pre-trained backbone were updated
during the training. We also report the performances of two state-of-the-art models on top tagging
from Refs. Qu & Gouskos (2020); Qu et al. (2022a), indicated with (*), for a comparison to the
HEP-JEPA performance.

TOP TAGGING QUARK-GLUON TAGGING

MODEL ACCURACY MODEL ACCURACY

FROM SCRATCH 0.927 FROM SCRATCH
SUPERVISED, FROZEN

0.819
0.823

SUPERVISED, FROZEN 0.928
SUPERVISED, FINE-TUNED 0.938

HEP-JEPA, FROZEN 0.928 HEP-JEPA, FROZEN 0.821HEP-JEPA, FINE-TUNED 0.929

PARTICLENET (*) 0.940 PARTICLENET (*) 0.840
PART (*) 0.944 PART (*) 0.843
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Figure 2: Left panel: Validation loss vs. training step for the two benchmark models training in a
few-shot learning setting for jet classification on the JetClass dataset with 0.5% labels (i.e., 50000
training samples). The validation loss falls quickly for the HEP-JEPA model — it achieves the same
minimum validation loss as the model trained from scratch three times faster. Right Panel: t-SNE
plot of the pooled embedding obtained for samples within the JetClass dataset.

5.2.1 TOP TAGGING

The top quark is the heaviest known particle of the Standard Model. Once produced, it quickly
decays inside the collider and predominantly produces a three-pronged jet (from its hadronic, i.e.,
t → Wb → qq′b (three-body) decays). The dominant background processes also often produce
similar jet signatures, making it challenging to achieve high signal-to-background ratios. To evaluate
how HEP-JEPA performs in tagging top jets, we use the Top Quark Tagging Reference (TQTR)
dataset Kasieczka et al. (2019b), which consists of 2M samples of jets originating from hadronic
decays of the top quark as well as ones from lighter quarks and gluons, with the recommended split
of 1.2M samples for training, 400k each for validation and testing.

We evaluate the performance of our model architecture with two benchmark models: one trained on
the JetClass dataset in a supervised fashion and the other trained on the TQTR dataset from scratch.
We also compare how fine-tuning affects the performance of these benchmark models.
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Left panel of Table 2 shows the top-tagging metrics obtained using 100% of the dataset. The fine-
tuned versions of the benchmark models perform better than their frozen versions. The fine-tuned
HEP-JEPA attains a better accuracy score than both the supervised model trained from scratch and
the frozen HEP-JEPA. However, we see that the fine-tuned supervised model shows better perfor-
mance than the other benchmarks. To understand this, we should keep in mind that 1) the kinematic
range of jet samples from the TQTR dataset (transverse momenta pT ∈ [550, 650]) is smaller than
that of the JetClass dataset (pT ∈ [500, 1000]) and 2) HEP-JEPA is trained on the auxiliary task
predicting missing parts of the jet samples, whereas the supervised model is trained for the particu-
lar classification task. Both factors could give a slight edge to the fine-tuned supervised benchmark
model. We also show the accuracy scores from the domain state-of-the-art models Qu & Gouskos
(2020); Qu et al. (2022a) for reference.

5.2.2 QUARK VS. GLUON JET TAGGING

Accurately tagging light jets is one of the most important open problems in collider physics — it is
not yet possible to make out (at least reliably) whether a light jet originated in a light quark (u, d, or
s) or a gluon at the LHC. The ability to do so would open a new window to new physics searches and
significantly enhance the sensitivity of rare process searches. To evaluate how HEP-JEPA perform
on this issue, we use the quark-gluon tagging dataset Komiske et al. (2019) containing 2M samples
of quark and gluon jets modelled using PYTHIA Sjöstrand et al. (2015) without any detector effects.

As in the case of top tagging, we evaluate the performance of two benchmark models, i.e., a fully
supervised model and a model trained using JEPA on the JetClass dataset for this task.

Right panel of Table 2 shows the accuracies of quark-gluon tagging when the models are trained
with 100% of the samples. The numbers show a similar trend to the top tagging case. The fine-tuned
HEP-JEPA outperforms the model trained from scratch but slightly falls short of when the latter is
further fine-tuned on the dataset. We also show the accuracy scores from the domain state-of-the-art
models Qu & Gouskos (2020); Qu et al. (2022a) for reference.

5.3 VISUALISATION

We visualise the representation learned by HEP-JEPA on 50k samples of JetClass sampled uni-
formly from each class. We construct the embedding for a sample by concatenating the max and
mean pooling of the outputs of the context encoder and apply t-SNE on the pooled embedding. We
visualise the results in Right panel of Figure 2. We observe that events that contain lepton(s) are
pushed to the right, while hadronic events are more towards the left.

6 ABLATION TESTS

We perform ablations on our model choices to understand how they affect the model performance.
Our ablation test setup is as follows. For all tests, we pre-train our model for an epoch (roughly
48000 training steps) on the 100M training samples of the JetClass dataset. We estimate the final
performance using a SVM linear classifier trained on 50k training samples and evaluate on 50k
validation samples obtained by stratified random sampling. Given our resource constraints, we
make these reductions to allow us to prototype ablation decisions quickly.

Test I – Context and Target selection (masking) strategy: We test two strategies for target mask-
ing — random and contiguous selection. In random selection, we randomly select a fraction of target
tokens from all the tokens to mask. In contiguous selection, we select a fraction of tokens corre-
sponding to neighbouring regions in the (η, ϕ) plane. The latter is implemented using the Point
Sequencer from Ref. Saito & Poovvancheri (2024). We also run a preliminary investigation on the
effect of different context sample ratios.

Test II – Number of targets: We also test the number of target tokens that the model needs to
predict for each context token; specifically, we check with 1, 4, and 8 target tokens. The results
indicate that the number of target tokens does not significantly influence performance.
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Table 3: Ablation tests, Set I: Top Panel: Peak validation accuracies for the number of targets and
masking strategies. The context sample ratio fixed to the range [0.15, 0.2] and the target sample
ratio to [(0.4, 0.75]. Bottom Panel: Peak validation accuracies for different context sample ratio.
The target sample ratio is in the range (0.15, 0.2) with the number of targets set to 1.

STRATEGY FREQUENCY ACCURACY

RANDOM 4 0.579
CONTIGUOUS 1 0.581
CONTIGUOUS 4 0.557
CONTIGUOUS 8 0.562

STRATEGY CONTEXT SAMPLE RATIO ACCURACY

CONTIGUOUS (0.4, 0.75) 0.557
CONTIGUOUS (0.85, 1.0) 0.563

From these tests, we find that a contiguous target masking strategy with one target is a better model
choice. After the target is selected, a sample ratio in the range [0.85, 1.0] performs better.

Test III – Physics bias for the attention mechanism: We also analyse the impact of physics bias
on the model’s performance. Since each token corresponds to a group of particles, we calculate the
pairwise bias terms for groups of particles by first summing the four-vectors of the particles within a
group to get the group-level four-vector. Left panel in Table 4 show that the model performs ≈ 2%
better after including the physics bias.

Table 4: Ablation tests, Set II: Peak validation accuracies for different ablation tests. Left panel –
with/without physics bias for the attention mechanism. Mid panel – with/without registers for the
attention mechanism. Right panel – with/without integrating augmentations for the data preprocess-
ing

PHYSICS BIAS ACCURACY REGISTERS ACCURACY AUGMENTATIONS ACCURACY

✔ 0.570 ✔ 0.576 ✔ 0.553
✕ 0.557 ✕ 0.557 ✕ 0.557

Test IV – Integrating registers with our transformer model: Adding additional tokens to the
input sequence of the Vision Transformers has been shown to yield smoother feature maps and
attention maps for downstream visual processing Darcet et al. (2024). Given the similarity of our
transformers with vision transformers, we investigate the impact of integrating register tokens with
our transformer blocks. Middle panel in Table 4 shows that the model performance increases by
≈ 2% with registers.

Test V - Physics-inspired augmentations: We also perform a preliminary study of the impact of
adding physics-based data augmentations to the jets. Particularly, we test a combination of rota-
tion, smearing, and boosting. However, we do not find any significant improvement in the model’s
performance by training it on the augmented data.

Right panel in Table 4 shows that this test is inconclusive — the model performance is similar in
both cases.

7 RELATED WORKS

Foundation models have transformed artificial intelligence by enabling general-purpose learning
across diverse tasks and domains Bao et al. (2022); Caron et al. (2021); Kim et al. (2024); Tou-
vron et al. (2023). Various paradigms have emerged, including generative approaches like Masked
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Autoencoders (MAE) He et al. (2021) and its 3D extension Point-MAE Pang et al. (2022), multi-
scale variants such as Point-M2AE Zhang et al. (2022), and contrastive methods exemplified by
SimCLR Chen et al. (2020). Recently, JEPA Assran et al. (2023) was introduced to learn abstract
representations while addressing shortcomings of earlier self-supervised models, and it has been
adapted to videos (Bardes et al., 2024) and point clouds (Saito & Poovvancheri, 2024).

In fundamental sciences, similar models have been developed in biology Rives et al. (2021); Ross
et al. (2022); Bhattacharya et al. (2024), chemistry Liao et al. (2024); Irwin et al. (2022), astron-
omy Parker et al. (2024), and the modelling of dynamical systems Subramanian et al. (2023); Mc-
Cabe et al. (2024). In high-energy physics (HEP), early works include Masked Particle Modelling
(MPM) Golling et al. (2024); Leigh et al. (2024), which trains on the JetClass dataset by masking
a subset of particle features and using a transformer to predict them. Another approach, OmniJet-
α Birk et al. (2024), employs an autoregressive transformer to generate tokenised jets similarly to
GPT models Brown et al. (2020). Other methods leverage contrastive learning techniques Dillon
et al. (2022a;b; 2024); Harris et al. (2024), while OmniLearn Mikuni & Nachman (2024) uses su-
pervised training with first-principle HEP simulations to achieve performance comparable to the
Particle Transformer (ParT) Qu et al. (2022a) with faster training. Concurrently, Ref. Katel et al.
(2024) adapts JEPA for top tagging by pre-training on 1% of the top and light jet samples from
JetClass and evaluating on the TQTR dataset. In contrast to their physics-motivated predictor based
on subjets, our approach attains superior top tagging accuracy. We further evaluate our model on
quark-gluon tagging and present detailed ablations.

8 CONCLUSIONS

High-energy physics is a data-intensive and experimentally challenging domain, where a successful
foundation model can accelerate the search for new physics and lead to fundamental insights in
physics. Particularly in jet physics, foundation models can effectively capture inherent complex
patterns and reshape how we approach challenging tasks in collider physics, thereby reducing the
use of computational resources significantly. In this paper, we introduced the JEPA framework to
the domain of HEP and showed its capabilities with two crucial downstream tasks: top tagging
and quark-gluon tagging. We also showed its effectiveness in few-shot learning settings for jet
classification tasks.

The JEPA paradigm was tested and thoroughly evaluated on an extensive HEP dataset for the first
time. Though its current performance indicates scopes for improvement compared to other state-
of-the-art task-specific methods like ParT Qu et al. (2022a) (in the absolute sense), JEPA-based
training has the ability to learn better abstract representations and shows superior scalability to real
experimental data. These reasons impel us to improve HEP-JEPA further.

JEPA as a paradigm is also largely independent of the underlying model backbone and, therefore,
can benefit from improvements to the underlying model architecture. Evaluating HEP-JEPA on other
tasks, such as unfolding detector measurements to improve first-principle simulations and anomaly
detection using weakly supervised methods, could further validate its generalisability [this can be
easily done with publically available datasets Andreassen et al. (2019) and Kasieczka et al. (2019a)
respectively]. Additionally, extending HEP-JEPA to generative tasks and event classification is the
next step to make it a truly cross-task FM for collider physics.
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Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Ar-
mand Joulin. Emerging properties in self-supervised vision transformers. CoRR, abs/2104.14294,
2021. URL https://arxiv.org/abs/2104.14294.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations, 2020. URL https://arxiv.org/abs/
2002.05709.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
registers, 2024. URL https://arxiv.org/abs/2309.16588.

J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaı̂tre, A. Mertens, and M. Selvaggi.
DELPHES 3, A modular framework for fast simulation of a generic collider experiment. JHEP,
02:057, 2014. doi: 10.1007/JHEP02(2014)057.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2018. URL http://arxiv.org/
abs/1810.04805. cite arxiv:1810.04805Comment: 13 pages.

Barry M. Dillon, Gregor Kasieczka, Hans Olischlager, Tilman Plehn, Peter Sorrenson, and Lorenz
Vogel. Symmetries, safety, and self-supervision. SciPost Phys., 12(6):188, 2022a. doi: 10.21468/
SciPostPhys.12.6.188.

Barry M. Dillon, Radha Mastandrea, and Benjamin Nachman. Self-supervised anomaly detection
for new physics. Phys. Rev. D, 106(5):056005, 2022b. doi: 10.1103/PhysRevD.106.056005.

Barry M. Dillon, Luigi Favaro, Friedrich Feiden, Tanmoy Modak, and Tilman Plehn. Anoma-
lies, representations, and self-supervision. SciPost Phys. Core, 7:056, 2024. doi: 10.21468/
SciPostPhysCore.7.3.056.

Quentin Garrido, Mahmoud Assran, Nicolas Ballas, Adrien Bardes, Laurent Najman, and Yann
LeCun. Learning and leveraging world models in visual representation learning, 2024. URL
https://arxiv.org/abs/2403.00504.

Tobias Golling, Lukas Heinrich, Michael Kagan, Samuel Klein, Matthew Leigh, Margarita Osadchy,
and John Andrew Raine. Masked particle modeling on sets: towards self-supervised high energy
physics foundation models. Mach. Learn. Sci. Tech., 5(3):035074, 2024. doi: 10.1088/2632-2153/
ad64a8.

10

https://doi.org/10.1021/acs.jcim.4c01396
https://doi.org/10.1021/acs.jcim.4c01396
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2309.16588
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2403.00504


Published as a conference paper at ICLR 2025

Philip Harris, Michael Kagan, Jeffrey Krupa, Benedikt Maier, and Nathaniel Woodward. Re-
Simulation-based Self-Supervised Learning for Pre-Training Foundation Models. 3 2024.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners, 2021. URL https://arxiv.org/abs/2111.
06377.

Ross Irwin, Spyridon Dimitriadis, Jiazhen He, and Esben Jannik Bjerrum. Chemformer: a pre-
trained transformer for computational chemistry. Machine Learning: Science and Technology,
3(1):015022, jan 2022. doi: 10.1088/2632-2153/ac3ffb. URL https://dx.doi.org/10.
1088/2632-2153/ac3ffb.

Gregor Kasieczka, Benjamin Nachman, and David Shih. Official datasets for lhc olympics
2020 anomaly detection challenge, November 2019a. URL https://doi.org/10.5281/
zenodo.4536624.

Gregor Kasieczka, Tilman Plehn, Jennifer Thompson, and Michael Russel. Top quark tagging ref-
erence dataset, March 2019b. URL https://doi.org/10.5281/zenodo.2603256.

Subash Katel, Haoyang Li, Zihan Zhao, Raghav Kansal, Farouk Mokhtar, and Javier Duarte. Learn-
ing symmetry-independent jet representations via jet-based joint embedding predictive architec-
ture, 2024. URL https://arxiv.org/abs/2412.05333.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar, Ben-
jamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn.
Openvla: An open-source vision-language-action model, 2024. URL https://arxiv.org/
abs/2406.09246.

Patrick Komiske, Eric Metodiev, and Jesse Thaler. Pythia8 quark and gluon jets for energy flow,
May 2019. URL https://doi.org/10.5281/zenodo.3164691.

Matthew Leigh, Samuel Klein, François Charton, Tobias Golling, Lukas Heinrich, Michael Kagan,
Inês Ochoa, and Margarita Osadchy. Is Tokenization Needed for Masked Particle Modelling? 9
2024.

Chang Liao, Yemin Yu, Yu Mei, and Ying Wei. From words to molecules: A survey of large
language models in chemistry, 2024. URL https://arxiv.org/abs/2402.01439.
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