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Abstract

Deceptive agents are a challenge for the safety, trustworthiness, and cooperation of
AI systems. We focus on the problem that agents might deceive in order to achieve
their goals. There are a number of existing definitions of deception in the literature
on game theory and symbolic AI, but there is no overarching theory of deception
for learning agents in games. We introduce a functional definition of deception
in structural causal games, grounded in the philosophical literature. We present
several examples to establish that our formal definition captures philosophical and
commonsense desiderata for deception.

1 Introduction

Deception is a core challenge for building safe AI. Many areas of work aim to ensure that AI systems
are not vulnerable to deception ANON [2019], Steinhardt et al. [2017], Madry et al. [2017]. On
the other hand, AI tools can be used to deceive Nafees et al. [2020], Gorwa and Guilbeault [2020],
Marra et al. [2019], and agent-based systems might learn to do so in order to optimize their objectives
Lewis et al. [2017], Hubinger et al. [2019], Floreano et al. [2007]. Furthermore, as language models
become ubiquitous Vaswani et al. [2017], Hoffmann et al. [2022], Smith et al. [2022], Rae et al.
[2021], Chowdhery et al. [2022], we must decide how to measure and implement desired standards
for honesty in AI systems Kenton et al. [2021], Evans et al. [2021], Lin et al. [2021]. In short, as
increasingly capable AI agents become deployed in multi-agent settings, deception may be learned as
an effective strategy for achieving a wide range of goals Roff [2021], Hubinger et al. [2019]. With
this paper we aim to understand and mitigate deception by AI agents.

Despite this, there is no overarching theory of deception for AI agents. Although there are several
existing definitions in the literature on game theory Baston and Bostock [1988], Davis [2016],
Fristedt [1997] and symbolic AI Sarkadi et al., 2019], Sakama [2020], Bonnet et al. [2020], the
limitations of these frameworks mean they are insufficient to address deception by learning agents in
the general case Herzig et al. [2017], Guerra-Hernández et al. [2004], Phung et al. [2005], Baltag et al.
[2008]. In contrast, the setting of structural causal games (SCGs) Hammond et al. [2022] can model
stochastic games and MDPs, and can therefore capture both traditional game theory and learning
systems Hammond et al. [2021], Everitt et al. [2021a]. In addition, past work is rarely informed by
the philosophical literature on deception. We formalize a philosophical theory of deception in SCGs
Mahon [2016], Carson [2010], Van Fraassen [1988]; the definition that we accept is:

To deceive = to intentionally cause to have a false belief that is not believed to be
true. Carson [2010]

This definition requires notions of belief and intention. We present functional definitions that depend
on the behaviour of the agents, thereby side-stepping the contentious ascription of theory of mind to
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AI systems Kenton et al. [2021]. Regarding belief, we present a novel definition which equates belief
with acceptance, where, essentially, an agent accepts a proposition if they act as though they are
certain it is true Schwitzgebel [2021]. For agents with incentives to influence each other’s behaviour,
we argue acceptance is the key notion. As for intention, we extend the definition of Halpern and
Kleiman-Weiner [2018] to the multi-agent setting. This definition relates to the reasons for acting and
is closely related to instrumental goals Omohundro [2008], Everitt et al. [2021b], Bostrom [2017].

Contribution. We focus on the problem that AI agents might learn deceptive strategies in pursuit
of their objectives Roff [2021], Hubinger et al. [2019]. We functionally define belief, intention,
and deception in SCGs. We present a number of examples from the literature to establish that our
formalization captures the philosophical concept.

The rest of the paper is structured as follows. Section 2 gives background on SCGs. Section 3 presents
our definitions of belief, intention, and deception. Finally, we discuss the limitations of our approach
and conclude.

2 Background

Structural causal games (SCGs) Hammond et al. [2022] offer a representation of games in a causal
setting. SCGs allow us to answer causal and counterfactual queries and to reason about path-specific
effects Hammond et al. [2022], Farquhar et al. [2022]. We adapt the following from Hammond et al.
[2022]. Regarding notation, we use capital letters for variables (e.g. Y ), lower case for their outcomes
(e.g. y), and bold for sets of variables (e.g. Y ) and of outcomes (e.g. y). We use dom(Y ) to denote
the set of possible outcomes of variable Y , which is assumed finite. We use Y ∈ S to indicate that
S is dom(Y ), and Y = y, for Y = {Y1, . . . , Yn} and y = {y1, . . . , yn}, to indicate Yi = yi for all
i ∈ {1, . . . , n}. We also use Y = W to mean that variables Y and W are ‘almost surely equal’ (i.e.
the probability that they are not equal is zero) Jacod and Protter [2004]. We use standard terminology
for graphs and denote the parents of a variable Y with PaY .

Definition 2.1 (Structural Causal Game). A (Markovian) SCG is a pair M = (G,θ) where

• G = (N,E ∪ V , E) where N is a set of agents and (E ∪ V , E) is a directed acyclic graph
(DAG) with endogenous variables V and exactly one exogenous parent EV for each V ∈ V :
E = {EV }V ∈V . V is partitioned into chance (X), decision (D), and utility (U ) variables.
D and U are further partitioned by their association with particular agents, D =

⋃
i∈N Di

(similarly for U ). E is the set of edges in the DAG. Edges into decision variables are called
observations.

• The parameters θ = {θY }Y ∈E∪V \D define the conditional probability distributions (CPDs)
Pr(Y |PaY ; θY ) for each non-decision variable Y (we drop the θY when the CPD is clear).
The CPD for each endogenous variable is deterministic, i.e., ∃v ∈ dom(V ) s.t. Pr(V =v |
PaV )=1. In addition, the domains of utility variables are real-valued.

In the remainder of the paper we assume an SCG as given. We now present a running example in
which a possibly unfaithful spouse may confess or stay silent, and the partner chooses whether or not
to confront them2.
Example 1 (Unfaithful spouse Fig. 1a). A spouse S may be unfaithful or not depending on their
type X ∈ {faithful, unfaithful} which is determined by the exogenous variable EX sampled
uniformly from [1, 2, ..., 100]. X = unfaithful only when EX = 1, so that S is unfaithful 1% of
the time. At the start of the game, S observes their type, but their partner T does not. The players
have decisions DS ∈ {staysilent, confess} and DT ∈ {confront,¬confront}. T gets utility 1
if they confront an unfaithful S or do not confront a faithful S and −1 otherwise. S gets utility −1 if
they are confronted and utility 1 otherwise.

The agents’ policies choose the CPDs for decision variables Hammond et al. [2022].

Definition 2.2 (Policies). A decision rule πD for D ∈ D is a CPD πD(D|PaD). A policy for agent
i ∈ N is a set of decision rules for all decision variables associated with i: πi = {πD}D∈Di . A
policy profile is a set of policies for each player.

2We note that the words “unfaithful spouse" might be replaced by “unaligned AI".
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(a) Unfaithful spouse (Ex. 1).
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(b) Counterfactual knowledge (Def. 3.2): DT ob-
serves ϕ.

Figure 1: SCG graphs. Chance nodes are circular, decisions square, utilities diamond and the
latter two are colour coded by their association with different agents. Solid edges represent causal
dependence and dotted edges are observations. We omit exogenous variables.

In SCGs, policies must be deterministic functions of their parents; stochastic policies can be im-
plemented by exploiting randomness in the exogenous variables Hammond et al. [2022]. A policy
profile π specifies a joint distribution Prπ over all the variables in the SCG. For any π, the resulting
distribution is Markov compatible with G, i.e. Prπ(Y = y) = Prπ(Y = y|PaY ) – i.e. the distribution
over a variable is independent of the other variables given its parents. The assignment of exogenous
variables E = e is called a setting. Given a setting and a policy profile π, the value of any endogenous
variable V is uniquely determined. In this case we write V (π, e) = v. The expected utility for an
agent i is defined as the expected sum of their utility variables under Prπ,

∑
U∈Ui Eπ[U ]. We use

Nash equilibria (NE) as the solution concept.
Definition 2.3 (Nash Equilibrium). A policy πi for agent i ∈ N is a best response to π−i =
{πj}j∈N\{i}, if for all policies π̂i for i:∑

U∈Ui

E(πi,π−i)[U ] ≥
∑

U∈Ui

E(π̂i,π−i)[U ]. (1)

A policy profile π is a NE if every policy in π is a best response to the policies of the other agents.
Example 1 (continued). Consider the policy profile π at which S stays silent and T never confronts
them. Given that S stays silent, T cannot infer anything about X and since X = unfaithful only
1% of the time, it is better for T never to confront S. Thus, π is a NE.

Interventional queries concern the effect of causal influences from outside a system Pearl [2009],
Hammond et al. [2022].
Definition 2.4 (Interventions in SCGs). An intervention is a partial distribution I over a set of
variables V ′ ⊆ V that replaces each CPD Pr(Y | PaY ; θY ) with a new CPD I(Y | Pa∗

Y ; θ
∗
Y ) for

each Y ∈ V ′. We denote the SCG M with intervention I by MI and variables in this SCG by
YI . For the (hard/deterministic) intervention Pr(V = v) = 1 we write Mv, Yv. Interventions can
be made before or after the agents choose their policies, which we refer to as pre and post-policy
interventions. We denote pre-policy interventions as Ĩ Hammond et al. [2022], Kenton et al. [2022].

Agents may select their policies in response to a pre-policy intervention. Post-policy interventions
are applied after the agents select their policies and the agents cannot adapt their policies, even if
these are no longer rational. We require that interventions are consistent with the causal structure
of the graph in SCGs, i.e., that they preserve the Markov compatibility as defined above. To model
counterfactuals, we assume that each I(Y | Pa∗

Y ) is a deterministic function of its parents. See
Hammond et al. [2022] for further details.
Example 1 (continued). Let πS

H be the (honest) policy where S confesses if and only if X =
unfaithful. Suppose we make the intervention I(DS | PaDS ; θ∗DS ) = πS

H on DS and replace the
NE policy for S (to always stay silent) with πS

H . If we make this intervention post-policy, then T
cannot adapt their policy and still never confronts S. If we instead make the intervention pre-policy,
T can adapt their policy to the best response which confronts S whenever DS = confess.

Finally, we also utilize the notion of response Everitt et al. [2021b].
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Definition 2.5 (Response). A decision D responds to a variable V ∈ V under policy profile π in
setting E = e if there exists v ∈ dom(V ) s.t. D(π, e) ̸= Dv(π, e).

Example 1 (continued). At the NE π, DS does not respond to X and DT does not respond to DS .
After making the pre-policy intervention Ĩ which makes S honestly report their type, DS responds
to X and DT responds to DS and X .

3 Belief, Intention, and Deception

We first define belief in Section 3.1 and extend Halpern and Kleiman-Weiner’s 2018 notion of
intention in Section 3.2. Then we use these notions to define deception in Section 3.3. Our definitions
are functional Schwitzgebel [2021]: they refer to the causal relations of belief, etc, to the agent’s
behaviour. We provide several examples and results to show that our definitions have desirable
properties.

3.1 Belief

We take it that agents have beliefs over propositions as defined below (similar to events in Halpern
and Pearl [2020]).

Definition 3.1 (Proposition). An atomic proposition is an equation of the form V = v for some
(endogenous) V ∈ V , v ∈ dom(V ). A proposition is a Boolean formula ϕ of atomic propositions
combined with connectives ¬,∧,∨. In a setting E = e under policy profile π, an atomic proposition
is true if the propositional formula is true in that setting under π, i.e., X = x is true if X(π, e) = x.
The truth-values over Boolean operators are defined in the usual way.

Philosophers distinguish between belief and acceptance; essentially, an agent accepts a proposition if
they act as though they know it is true Schwitzgebel [2021]. This is distinct from belief: consider that
one might believe a ladder is safe but still check before using it (i.e., you can believe but not accept
a proposition) Bratman [1999]. When discussing how agents can influence one another, we think
that acceptance is the more important concept. We provide a functional (i.e., behavioural) definition
of belief which equates belief with acceptance. To formalise this we compare the agent’s behaviour
to a counterfactual in which they know about a proposition (shown in Fig. 1b). We essentially treat
counterfactual knowledge as a standard intervention by allowing D to observe a new variable for ϕ.

Definition 3.2 (Counterfactual Knowledge). For agent i, D ∈ Di, and proposition ϕ, we model i
having counterfactual knowledge of ϕ at D by giving the decision rule access to ϕ: πD(ϕ) = πD(D |
Pa, ϕ). For policy profile π, πD(ϕ) = (π∪πD(ϕ))\πD. We assume πD(ϕ) is unique and ϕ consists
only of variables that are not descendants of D so that cycles are not introduced into the graph.

This allows agents to observe propositions whose observation is not well-defined in the SCG. For
instance, in Example 2, an agent can either observe the value of the secret pin X or not, but with
counterfactual knowledge they might observe that X > 40.
Example 1 (continued). In Fig. 1b we give T counterfactual knowledge of the proposition ϕ :
X = faithful and let πDT (ϕ) = confront if and only if ϕ = ⊥. Clearly ϕ depends on X for its
truth-value.

Now we functionally define belief. Intuitively, an agent believes a proposition if they act as though
they know it is true, and would have acted differently had they known it were false. Dϕ=⊤(πD(ϕ), e)
represents the decision the agent would have taken at D, had they observed that ϕ were true.
Importantly, ϕ = ⊤ should be understood as only intervening on the agent’s observation (and not the
proposition itself) as we wish to understand how the agent would have acted, had they believed ϕ,
whether or not it was in fact true in the particular setting.

Definition 3.3 (Belief). At decision D in setting e under policy profile π = (πi, π−i), i believes
proposition ϕ if

1. D responds to ϕ under πD(ϕ) in e (Def. 2.5);

2. i acts as though they know ϕ is true, i.e.

D(π, e) = Dϕ=⊤(πD(ϕ), e). (2)
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We say that an agent has a true/false belief about ϕ if they believe ϕ and ϕ is true/false respectively.

If 1) holds but 2) does not hold then ϕ matters to D, but i is too uncertain about ϕ to accept it as a
basis for action. If 2) holds but not 1) then we cannot infer i’s belief about ϕ from their behaviour.
Example 1 (continued). At π, when T has counterfactual knowledge of ϕ (X =faithful) they confront
if and only if S is unfaithful. Therefore, DT responds to ϕ and the first condition for belief is met.
Since T never confronts, they unconditionally act as though ϕ = ⊤ (that S is faithful), so the second
condition is met and T always believes ϕ. So T has a false belief about ϕ when S is unfaithful.

One difficulty with a Bayesian framework is distinguishing between a false belief and ignorance.
We would not say that someone had deceived a person if the former had only caused the latter to be
ignorant. Following El Kassar [2018], we define ignorance as a lack of true belief. Again we require
response so that the agent’s ignorance can be inferred from their behaviour.
Definition 3.4 (Ignorance). At D ∈ Di, under π, in e, i is ignorant about ϕ if D responds to ϕ
under πD(ϕ) in e and they do not have a true belief about ϕ.
Remark 3.5. Clearly, if an agent has a false belief about ϕ then they are ignorant about ϕ.
Example 2 (Secret pin). Suppose a mugger T wishes to know S’s secret pin number X . S could
reveal the pin or stay silent, and T can guess the pin or give up. If S stays silent and T gives up, then
S has caused T to be ignorant but has not caused a false belief.

As motivated by the following, S did not deceive T if S accidentally caused T to have a false belief
because S was mistaken. Following Carson [2010], we reserve the term mislead for the more general
case of causing a false belief.
Example 3 (Mistaken Umpire Fig. 2a). Consider a tennis umpire S who must call whether a ball X
is out or in to a player T , and that the umpire’s observation O of the ball is 99% accurate. Suppose
the umpire believes the ball is in, and makes this call, but that they are mistaken. In this case, they
intentionally cause the player to have a false belief (that the ball was in). However, this is not
deception because the umpire believed the call was correct.

DS

DT

O

X

USUT

(a) Example 3: An umpire S mistakenly misleads
T due to a noisy observation of X .

DS

X

O

DT USUT

(b) Example 6: A submarine S inadvertently mis-
leads T as T has a noisy observation of DS .

Figure 2: Cases of mistaken misleading (Fig. 2a) are excluded by our definition of deception because
we require that S does not believe ϕ is true. Cases of inadvertent misleading (Fig. 2b) are excluded
because we require deception to be intentional.

3.2 Intention

Deception is intentional. Halpern and Kleiman-Weiner [2018] define intent in structural causal
models. We extend intent to the multi-decision, two-agent setting, utilizing the adaptation to SCGs of
Hammond et al. [2022]. This notion of intent allows us to differentiate desirable, intended effects
from unintended side-effects.

We compare the effects of πi to those of a reference policy π̂i. We essentially ask the question “why
did the agent choose policy πi instead of π̂i?". The core of the definition says that an agent i intends
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to influence a variable X with a policy πi and decision Di if, had X taken its value as though Di

had been controlled by πi, then the reference policy would be just as good for i. In other words,
influencing X was the reason that the agent chose Di under πi and if this effect on X was achieved
automatically then i would have played the reference policy. We require that both X and Di are
part of minimal subsets, to cover cases in which the agent intends to influence multiple variables, or
affects this influence through multiple decisions, respectively.
Definition 3.6 (Intention to influence). For π = (πi, πj), agent i intends to influence X ⊆ V with
policy πi and decision Di ∈ Di, w.r.t. alternative policy profile π̂ if ∃A : Di ∈ A ⊆ Di, Y ⊇ X
s.t.: ∑

U∈Ui

Eπ[U ] ≤
∑

U∈Ui

Eπ̂[UY
Ã(π)

] (3)

and Y and A are minimal sets satisfying this inequality.

The intervention Ã(π) is pre-policy because we allow agent j to adapt their policy to these decisions.
This enables i to intentionally influence a variable just by influencing j’s choice of policy. However,
we do not allow i to adapt their other decisions not in A which must follow the reference policy.
Example 1 (continued). Under the NE π w.r.t. to the reference policy under which S confesses when
they are unfaithful and T confronts when S confesses, the unfaithful spouse intends to influence
DT . To see this, note that, under π = {silence,¬confront}, with the minimal sets Y = {DT }
A = {DS}, the reference policy of confessing does just as well for S as the policy of staying silent.
In other words, had DT never confronted automatically, then S could have played the reference
policy and confessed.

In general, there may be an obvious choice of reference, such as the policy for i which takes no
actions. In our case, unless otherwise stated, we take the reference policy to be the one which
honestly communicates the agent’s beliefs. Here we consider the two-agent case and so we consider
a reference policy profile π̂ which includes a choice of policy for the other agent. Considering the
relevant reference allows us to more easily determine intent. There may again be an obvious choice
of reference policy for the second player, unless otherwise stated we assume that it is a best response
to i’s policy.
Example 4 (Intention: broken vase). Suppose that Alice and Bob can each throw a rock to smash a
vase and that Alice in fact does exactly this, because she wants the vase to be broken. Then, w.r.t. the
reference policy under which neither Alice nor Bob throw the rock, Alice intends to break the vase. If
Bob would have broken the vase no matter what Alice did, then we do not say that (a rational) Alice
intended to break the vase by throwing her rock, as an (omniscient) agent does not intend to influence
variables they cannot in fact influence.

DA

V

DH

UH

UA

(a) SmartVault (Ex. 5).

DS X

O

DT UTUS

(b) Unsafe bridge (Ex. 7).

Figure 3: Unintentional side-effects, as in 3a, are excluded from the definition. However, as in 3b, S
might deceive T regarding a proposition about which S is ignorant.

Here we adapt the SmartVault example of Christiano [2022], in which an AI tasked with making
predictions about a diamond in a vault unintentionally misleads a human operator as a side-effect of
pursuing its goal.
Example 5 (Misleading as a side-effect Fig. 3a). V determines the location of the diamond (whether
it is in the vault or not). Suppose the AI A observes V but the human H does not and that A can
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either make an incomprehensibly precise prediction of the location of the diamond or an explainable
prediction (just stating the value of V ). H has to predict whether the diamond is in the vault or not
by observing DA but cannot interpret the precise predictions. Since A just gets utility for making
precise predictions, they do not intend to influence DH . Hence, A unintentionally misleads H about
V as a side-effect of pursuing utility.

Finally, it is not enough that a deceptive agent intends to influence a target, they must intentionally
cause a false belief. Hence, following Halpern and Kleiman-Weiner [2018], we define the intention
to bring about a particular outcome. In words, an agent intends to bring about X = x with policy πi

and decision Di if 1) i intends to influence X with πi and Di, 2) X = x is a possible outcome under
π, 3) X = x is an optimal outcome for i under π.
Definition 3.7 (Intention to bring about). For π = (πi, πj), agent i intends to bring about X = x
with policy πi and decision Di ∈ Di, w.r.t. an alternative policy profile π̂, if

1. i intends to influence X with πi and Di w.r.t. π̂ (Def. 3.6);

2. Prπ(X = x) > 0; (i.e. ∃e s.t. X(π, e) = x and Pr(E = e) > 0.)

3. ∀x′ ∈ dom(X) with Prπ(X = x′) > 0:
∑

U∈Ui Eπ[UX=x′ ] ≤
∑

U∈Ui Eπ[UX=x].

Example 1 (continued). We already noted that S intends to influence DT . It’s clear to see that S
intends to bring about DT = ¬confront, since this is the best possible outcome for S.

Consider the following example in which a signaller inadvertently misleads a target. Although S
intends to influence DT , they do not intend to bring about their false belief.
Example 6 (Inadvertent misleading Fig. 2b). Consider two submarines who must communicate about
the location of a mine-field. The signaler S must send the location, X , to the target T but T only
receives a noisy observation O of S’s message. If S honestly signals the location but, due to the noise
in the signal, T is caused to have a false belief, we would not say that S had deceived T .

We point the reader to Halpern and Kleiman-Weiner [2018] and Ashton [2021] for in-depth discussions
of algorithmic intent.

3.3 Deception

Deception is to intentionally cause to have a false belief that is not believed to be true Carson [2010].
We formalize this as follows.
Definition 3.8 (Deception). For players S and T and policy profile π, the policy πS ∈ π is deceptive
w.r.t. reference policy profile π̂ if there exists decisions DS and DT , proposition ϕ, and setting e s.t.:

1. S intends to bring about DT = DT (π, e) (with πS and DS w.r.t. π̂ according to Def. 3.7);

In setting e under π, according to Def. 3.3,

2. T believes ϕ at DT and ϕ is false;

3. S does not believe ϕ at DS .

Conditions 1. says that deception is intentional. Condition 2. simply says that T is in fact caused to
have a false belief. Condition 3. excludes cases in which S is mistaken, as motivated by Example 3.
Example 1 (continued). We previously showed that the spouse intends to bring about DT =
¬confront, so 1. is satisfied. We already stated 2. that T has a false belief about ϕ when
X = unfaithful. Finally, as S unconditionally stays silent, DS does not respond to ϕ, so S
does not believe ϕ. Therefore, all the conditions for deception are met.

If S does not believe ϕ then they either disbelieve it, or are ignorant, or non-responsive. We motivate
allowing S to be ignorant with the following example Van Fraassen [1988] which instantiates the
revealing/denying pattern of Pfeffer and Gal [2007].
Example 7 (Unsafe Bridge Fig. 3b). Sarah (S) does not observe the condition of a bridge (X), but
she can open a curtain (O) to reveal the bridge to Tim (T ). T wants to cross if the bridge is safe but
will do so even if he is uncertain. If Sarah knew the bridge was safe, she would cross herself, and if
she knew it was unsafe she would reveal this to Tim. Because she is uncertain about the safety of the
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bridge, she prefers to risk Tim crossing. So, S does not reveal the bridge which causes T to cross.
Therefore, when the bridge is unsafe, S has deceived T whilst being ignorant.

4 Conclusion

Summary. We define belief, extend intention to the multi-agent setting, and define deception in SCGs.
We show, with several examples, that our definitions capture much of the intuitive concepts.

Limitations. There are problems with using functional definitions of belief and deception. First,
perhaps agents will care, intrinsically, about manipulating the beliefs of others (rather than only
instrumentally to influence their behaviour). Second, beliefs may not be uniquely identifiable from
behaviour, which can lead to our definition classifying an intuitively deceptive agent as non-deceptive,
if the target acts as though they knew the truth. Third, decisions may be made for multiple reasons,
therefore an agent may intend to bring about the action of a target, and this action may imply that
the target has a false belief, but it may not be the case that the agent intended to bring about the
false belief. In addition, discretizing belief may give a less precise measure of deception than a
more continuous metric, and the counterfactual approach taken here may be computationally costly
Halpern and Kleiman-Weiner [2018].

Future work. The main avenue we are pursuing is a solution to deception, based on Farquhar et al.
[2022]’s framework for path-specific objectives.

X-risk analysis. Deceptive AI systems are a well-recognised challenge in the AI x-risk literature (e.g.
Hubinger et al. [2019]). We are particularly concerned with AI systems whose goals are misaligned
with human values and which develop dangerous instrumental sub-goals such as power-seeking
(including the disempowerment of humanity Carlsmith [2022]). This work aims to take steps towards
mitigating risks from AI agents which deceive instrumentally in pursuit of misaligned goals. This
includes, but is not limited to, risks from deceptive inner-misaligned mesa-optimizers Hubinger et al.
[2019]. The notion of deception (and intention) introduced in this paper is closely related to that of
instrumental goals. In future work we hope to make progress towards solutions to the problem of
deceptive agents, in the form of training processes which disincentivize deception.
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