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ABSTRACT
Objective:  investigation of explainable deep learning methods for graph neural networks to 
predict hiV infections with social network information and performing domain adaptation to 
evaluate model transferability across different datasets.
Methods:  Network data from two cohorts of younger sexual minority men (sMM) from two U.s. 
cities (chicago, il, and houston, tX) were collected between 2014 and 2016. Feature importance 
from graph attention network (Gat) models were determined using GNNexplainer. Domain 
adaptation was performed to examine model transferability from one city dataset to the other 
dataset, training with 100% of the source dataset with 30% of the target dataset and prediction 
on the remaining 70% from the target dataset.
Results:  Domain adaptation showed the ability of Gat to improve prediction over training with 
single city datasets. Feature importance analysis with Gat models in single city training indicated 
similar features across different cities, reinforcing potential application of Gat models in predicting 
hiV infections through domain adaptation.
Conclusion:  Gat models can be used to address the data sparsity issue in hiV study populations. 
they are powerful tools for predicting individual risk of hiV that can be further explored for 
better understanding of hiV transmission.

KEY MESSAGES
• in this study, we conducted domain adaptation between two urban areas to predict hiV status 

by incorporating social network data.
• We employ GNNexplainer to elucidate the model’s predictions on each city dataset, aligning 

them with knowledge of hiV risk factors.
• Domain adaptation resulted in better model performance over individual city training and has 

great potential for applications in modeling other sexually transmitted infections.

Introduction

in the United states (U.s.), approximately 1.2 million 
people live with human immunodeficiency virus (hiV), 
with up to 13% unaware of being infected [1]. Despite 
advancements in the treatment of hiV through antiret-
roviral therapy (aRt), there is no cure or vaccine for it 
[2]. Prevention of hiV infections remain a key focus in 
ending the global hiV epidemic.

epidemiological network studies have been con-
ducted to examine hiV transmission dynamics and 
identify network structural features in the spread of 
hiV by applying various social network methods and 
stochastic network modeling approaches [3]. a specific 
type of modeling used are exponential random graph 

models (eRGMs), which have been used to describe 
network structures or make statistical inference for 
possible transmission pathways [4]. eRGMs have been 
specifically used to explain racial disparities in hiV 
prevalence as well as understanding the impact of 
interventions on reducing hiV infections [5–8]. While 
these studies contribute to better understanding vari-
ous and complex dynamics of the hiV epidemic, they 
have limited applications in predicting hiV infections 
at the individual level.

abundant health data from various and emerging 
sources such as electronic health records (ehR), public 
health surveillance, and research have brought new 
opportunities to the intersection of predicting hiV 
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infections with machine learning [9–14]. Other studies 
have also incorporated social media and smartphone 
survey data to explore better prediction of hiV infec-
tions [15,16]. Within these machine learning methods, 
logistic regression and random forest are the most 
commonly implemented models. their strengths lie in 
high explanatory power in identifying and associating 
social and clinical factors to the diagnosis of hiV infec-
tions within individuals [17].

For predicting hiV infections, it is important to cap-
ture complex relationships and interdependencies 
between individuals in a network, which is best repre-
sented in graphs. these networks can contain import-
ant contextual information, like individual sexual and 
social interactions and behaviors to predict hiV infec-
tions. Recent developments in deep learning, specifi-
cally graph neural networks (GNNs), have incorporated 
this information and have displayed strong perfor-
mances. GNN implementations like graph convolu-
tional networks (GcNs) and graph attention networks 
(Gats) have successfully shown impressive perfor-
mance in predicting hiV infection status based on 
social network data [18,19]. Deep learning models like 
GNNs have high potential for applications but remain 
limited by the ‘black box’ problem, due to limited 
understanding of how these models generate their 
predictions [20]. efforts have been made to better 
interpret these models with methods like GNNexplainer 
to elucidate the underlying mechanisms of GNNs [21].

in this study, we extended upon previously validated 
Gats to better understand Gats in interpreting their 
predictions and aligning these predictions to human 
understanding of hiV transmission mechanisms through 
applications of domain adaptation and explainable arti-
ficial intelligence (ai) [19]. to do this, GNNexplainer was 
used to explain feature importance in the Gat models. 
Furthermore, we performed domain adaptation of pre-
dicting hiV infections, by adapting the Gats trained on 
a dataset for one city to another dataset for another 
city. the two cities, chicago and houston, are appropri-
ate for this study because of similar hiV prevalence 
rates and both cities fall under the jurisdictions of the 
ending the hiV epidemic (ehe) initiative [22,23]. Our 
objective was to demonstrate whether patterns learned 
by Gats for one city can be generalized and applied to 
predicting hiV infections in other cities.

Materials and methods

YMaP (Young Men’s affiliation Project of hiV Risk and 
Prevention Venue) was a prospective cohort study that 
investigated the impact of social networks in relation to 
hiV risk and prevention in younger sexual minority men 

(sMM), between the ages of 16 and 29, in two United 
states cities, houston and chicago [24]. the study used 
data collected from sMM participants between 2014 
and 2016 through respondent-driven sampling (RDs) 
method [25]. Respondents were asked to recruit their 
peers, establishing a network and understanding who 
recruited whom and the number of social contacts for 
each respondent. Written informed consent was 
obtained from all individual participants involved in this 
study. 378 sMM were recruited from houston and 377 
sMM from chicago. a participant’s initial hiV infection 
status was determined based on the alere Determine 
tMhiV-1/2 combo antigen/antibody test. those with 
reactive samples received additional hiV-1/hiV-2 multis-
pot differentiation and hiV RNa (viral load) tests during 
follow up periods (average once a year).

Respondent data were collected in two waves, 
which identified sociodemographic characteristics, hiV/
sexually transmitted infection risk/protective behaviors, 
social and sexual networks, and venue attendance/
affiliation information [26]. a cross-sectional approach 
was adopted. Features from both waves were aggre-
gated to represent a single point in time, to assess 
their predictive power and associations with hiV infec-
tion. an individual’s hiV infection status was positive if 
the lab test taken at the first or second wave was pos-
itive. there were 130 and 149 hiV positive sMM iden-
tified corresponding to hiV prevalence rates of 34.4% 
and 39.4% in chicago and houston, respectively.

the social network for participants in each city was 
built so that each node represented an individual par-
ticipant, and edges between nodes represented the 
type of relationship (social, referral, or sexual) between 
individuals from RDs. two nodes were considered to 
be neighbors if they were connected by an edge. 
adjacency matrices were used to represent the edges 
between nodes of each network, where neighbors of 
each node i I∈  are indicated with a value of 1 while 
other nodes are masked with a value of 0.

Based on these networks, we can define and curate 
specific network features for the models. the degree 
centrality of each node reflects the number of edges it 
has [27]. We also quantify the number of neighbors in 
the social network each node has, along with the 
number of social and health venues attended. 
important consideration was given to selecting and 
preprocessing features based on their relationship with 
hiV infection status. We initially employed logistic 
regression analysis to quantify the strength and signif-
icance of associations between each feature and the 
outcome. Features that showed strong correlations 
with hiV infection status were considered highly pre-
dictive and excluded from the models.
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Graph neural networks

GNNs have emerged in their ability to perform data in 
non-euclidean space, in representations like graphs that 
contain nodes (entities that contain information) and 
edges (that represent different types of connections 
between nodes) [28]. their goal is to learn representa-
tions of nodes in a graph and can be used to make pre-
dictions on the node-level, edge-level, and graph-level. 
this is done through message parsing, in which nodes 
send messages to their neighbors, and this information is 
aggregated and updated for each node’s representation 
via GNN. Graph attention networks (Gats) are another 
type of GNNs that incorporate attention mechanisms 
[29,30]. the attention mechanism in Gats assigns weights 
in a manner so that more important neighboring nodes 
receive higher weights during aggregation.

W R f d∈ ×  is a learnable weight matrix applied to every 
node to transform input feature vector h of dimension f 
to a hidden vector of dimension d. the attention coeffi-
cient between two nodes (i and j) is defined as

 e a Wh Wh
ij i j
= ( ),  

the coefficients are normalized with a softmax 
function
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where Ni is a set of all neighbors of node i. Finally, the 
embeddings from the neighbors are aggregated 
together to generate a final output feature for 
each node as
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where σ  is a nonlinearity function.

Model construction and analysis

For each city dataset (houston and chicago), a Gat 
model was trained and compared with baseline 
machine learning models like logistic regression and 
random forest. We used a 75–25 train-test split. the 
Gat model architecture contained eight hidden layers 
with one attention head being used, for consideration 
of first-order neighbors. Masking vectors were used to 
separate nodes for training and nodes for Gat model.

the goal of domain adaptation is to improve a model 
on a ‘target’ domain by using knowledge learned from a 
‘source’ domain, due to distribution differences between 
the two domains [31]. in our study, the two different 

cities served as the different domains. For training, two 
sets of training were performed (one where the houston 
dataset is the source domain and the other where the 
chicago dataset is the source domain). We used 100% of 
training data from the source domain and combined it 
with 30% of the target domain with the remaining 70% 
of the target domain as test data.

Model training was performed through ten-fold 
cross-validation. in this study, we employed grid search 
techniques to optimize hyperparameters for logistic 
regression and random forest models. For logistic 
regression, we varied the regularization type (l1 and l2) 
and regularization strength (c values ranging from 
0.0001 to 100) to evaluate their impact on model per-
formance. For the random forest models, we varied the 
maximum tree depths (ranging from 1 to 50). For train-
ing the Gat model, training was conducted with an 
adam Optimizer for 2400 iterations [32]. Dropout was 
set at 0.1 to retain more features. to measure model 
performance, metrics like aUROc (area under the 
receiver operating characteristics curve), aUPRc (area 
under the precision-recall curve), and F1 score were used.

to evaluate the effect of the features, baseline 
machine learning models were trained with scikit-learn 
[33]. coefficients were extracted from logistic regres-
sion models and feature importance from random for-
est models. For the Gat model, we used the Pytorch 
library for training on individual city datasets and 
tensorFlow for the domain adaptation training process 
[34,35]. to better understand the feature importance 
for these models, a tool called GNNexplainer was used. 
GNNexplainer is an optimization task to identify a sub-
graph of the original graph to maximize the mutual 
information (node features and edges) important to 
the prediction task [21]. specifically, GNNexplainer 
optimizes the following function to learn an edge 
mask M and feature mask F

 l y y M H M F H F, ɵ( ) + + ( ) + + ( )α α β β
1 1 2 1 1 2

 

where l is the loss function, y is the original model 
prediction, yɵ is the model prediction with M and F 
applied, and H is the entropy function. the edge mask 
and feature mask are learned for each specific node. 
to quantify feature importance, the feature masks are 
summed. the workflow of GNNexplainer and the inter-
pretation of its explanations in relation to predicting 
hiV infection is shown in Figure 1.

Results

the model performance across three models (logistic 
regression (lR), random forest (RF), and graph 
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attention network (Gat)) trained on each city dataset 
individually can be found in table 1. For domain adap-
tation, the results can be found in table 2, where each 
city serves as a source domain.

GNNexplainer was used to quantify feature impor-
tance for the Gat models performed on the chicago 
and houston datasets. the top ten important features 
were determined across two sets of populations of 
each city: all individuals (Figure 2(a)) and all hiV posi-
tive individuals (Figure 2(b)).

across all the individuals for each city dataset, 
GNNexplainer identified 9 similar features for the 

Gat model: education, insurance type, sexual iden-
tity, number of venue neighbors, frequency of alco-
hol, cannabis, and tobacco use in the last 3 months, 
number of nominated sexual partners, and number 
of nominated sexual partners. When we look at the 
top 10 features for only hiV positive individuals in 
each city dataset, GNNexplainer identified these 9 
similar features: education, black racial identity, age, 
sexual identity, frequency of alcohol, cannabis, and 
tobacco use in the last 3 months, insurance type, 
and number of nominated social partners. the fea-
tures with blue bars in the plots of Figure 2(a and 
b) are used to show similar important features across 
the two cities while the features with orange bars 
are used to show features with no overlap between 
the two cities.

Discussion

Individual city model interpretation

First, we performed experiments to establish that the 
Gat model outperforms logistic regression and ran-
dom forest for both the chicago and houston datasets 
across aUROc, aUPRc, and F1 score metrics. the only 
exception was for the houston dataset, where the 
aUROc score of random forest outperformed that of 
the Gat model (0.758 vs 0.753). We also observe that 
the houston-trained models tended to outperform the 
chicago-trained models, but the chicago-trained Gat 

Figure 1. flow chart explaining incorporation of graph neural networks in this study.

Table 1. Model performance for single city datasets.
lR Rf GAT

chicago f1 score 0.423 0.376 0.677
AURoc 0.611 0.643 0.737
AUPRc 0.419 0.443 0.777

Houston f1 score 0.564 0.537 0.701
AURoc 0.715 0.758 0.753
AUPRc 0.537 0.611 0.698

Table 2. Model performance with domain adaptation.
lR Rf GAT

chicago → 
Houston

f1 score 0.417 0.401 0.665
AURoc 0.643 0.687 0.743
AUPRc 0.436 0.477 0.608

Houston → 
chicago

f1 score 0.483 0.348 0.639
AURoc 0.758 0.749 0.772
AUPRc 0.612 0.609 0.820

Training was done with 100% of the source city and 30% of the target 
city, with the remaining 70% of the target city for predicting HiV infection 
status.
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model performed similarly to the houston-trained Gat 
model. this could be explained by the importance of 
similar features for the Gat models across both cities, 
as identified by GNNexplainer.

Domain adaptation model interpretation

the results for model performances after domain 
adaptation across the two cities indicated general 
improvements across all metrics (aUc, aUPRc, F1) over 
single city dataset training. this shows that the domain 
adaptation strategy does allow Gat models to improve 
prediction of hiV infection status across different 

datasets. For the Gat model with the chicago dataset 
as the source domain, it can be inferred that the 
improved performance can be attributed to their pro-
cessing of network contextual information from the 
graph data rather than defined features that traditional 
machine learning methods rely on.

GNNExplainer interpretation

We used GNNexplainer to interpret the feature impor-
tance for the Gat model trained on each individual 
city and align it to our findings in the models used for 
domain adaptation. We specifically wanted to analyze 

Figure 2. (a) Top 10 features identified by Gnnexplainer for the chicago and Houston datasets for all individuals in each city. (b) 
Top 10 features identified by Gnnexplainer for the chicago and Houston datasets for all HiV positive individuals in each city.
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the feature importance for the hiV positive individuals 
in both cities.

in terms of sociodemographic data, individuals 
who identify as black are disproportionately affected 
by hiV [36]. the Gat model was able to associate the 
importance of individuals who identified as black to 
their hiV status. age was also an important factor 
identified by GNNexplainer. this study is focused on 
the young sMM population, because this age gap 
reflects the largest number of new hiV infections 
annually [37].

Factors like substance abuse (cannabis, alcohol, and 
tobacco) align with previously described risk factors 
that can result in hiV infections [38]. similarly, 

education showed the highest importance across both 
cities from the Gat models, which the cDc has linked 
those with lower education levels as having higher hiV 
prevalence rates [39]. this also continues to support 
the importance social determinants of health play in 
hiV infection [40].

Network features like the number of nominated 
social partners showed high importance. the nomi-
nated social partners are those identified as individuals 
that participants in this study shared personal informa-
tion with. this continues to show the importance of 
incorporating network information into studies in 
understanding patterns related to hiV transmission 
[41,42].

Figure 2. continued.



aNNals OF MeDiciNe 7

For the houston dataset, inconsistent use of con-
dom was an important feature not shared with the 
chicago dataset. this reflects findings from previous 
studies that emphasize the importance of prioritizing 
hiV prevention strategies that promote consistent con-
dom use [43,44]. For the chicago dataset, the depres-
sion sum score was a differing important feature from 
the houston dataset. this score is based upon the 
Brief symptom inventory-18 (Bsi-18) self-report ques-
tionnaire [45]. the depression sum score used in our 
study was generated from questions specifically related 
to the depression subscale of Bsi-18. this finding rein-
forces that individuals who are depressed may engage 
in substance abuse and sexual risk behaviors that may 
lead to hiV infection [46,47].

Strengths and limitations

We first note that the domain adaptation approach 
presented in this study of model training from one 
city dataset to another city dataset can be achieved in 
the task of hiV infection prediction. We also provide a 
better understanding in explaining how Gats perform 
with real world data and in the challenging task of 
predicting hiV infection status. this gives further 
opportunity to evaluate Gats in similar prediction 
tasks for other sexually transmitted infections.

there are some limitations to our study. the current 
implementation of GNNexplainer cannot be used to 
quantify feature importance across different datasets for 
the domain adaptation process. We hope to contribute 
to that in the future and improve better understanding 
and explanation of GNN models. Furthermore, we have 
no validation datasets to further enhance our results.

Conclusion

We showed that the proposed framework of domain 
adaptation for predicting hiV status in younger sMM 
from one city to another led to better performance in 
Gat models than training on individual datasets. such 
a framework is especially valuable in hiV studies where 
social network data among this population is limited 
and sparse. We were also able to determine the fea-
ture importance of the Gat models with GNNexplainer 
to align current knowledge of hiV transmission factors 
to the populations used in this study. Our findings 
continue to support the need for interdisciplinary work 
between public health experts, computer scientists, 
and clinicians in ending the hiV epidemic. there is via-
bility in this strategy in better understanding specific 
factors in hiV transmission for local populations.

there are several directions for future work. We 
plan to externally validate our domain adaptation 
models on a third dataset. in addition, we would like 
to encode more advanced features by defining edge 
types between nodes and explore adapting these 
models to multi-relational graph data. this would allow 
training and tuning of models for hiV prediction and 
using these models for status prediction in other sex-
ually transmitted infections.
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