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ABSTRACT

Availability attacks can prevent the unauthorized use of private data and commer-
cial datasets by generating imperceptible noise and making unlearnable examples
before release. Ideally, the obtained unlearnability prevents algorithms from train-
ing usable models. When supervised learning algorithms have failed, a malicious
data collector possibly resorts to contrastive learning algorithms to bypass the pro-
tection. Attacks need both supervised unlearnability and contrastive unlearnability.
Through evaluation, we have found that most of the existing availability attacks are
unable to achieve contrastive unlearnability, which poses risks to data protection.
Furthermore, we find that employing stronger data augmentations in supervised
poisoning generation can create contrastive shortcuts and mitigate this risk. Based
on this insight, we propose AUE and AAP attacks which prominently boost the
worst-case unlearnability across multiple supervised and contrastive algorithms.

1 INTRODUCTION

Availability attacks (Biggio & Roli, 2018) add imperceptible poisons to training data such that a
subsequently trained model becomes unavailable. The motivations behind these attack methods
involve protecting private data and commercial datasets from unauthorized use. For example, a
malicious data collector may gather selfies from social media applications into a training set. Based
on a model trained on this data, individual identities can be inferred from future street photos or
surveillance images. In this type of scenario, availability attacks provide tools to process user
images before release such that processed images remain legible but hinder subsequent training.
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Figure 1: Supervised learning and
SimCLR on CIFAR-10 under avail-
ability attacks.

In recent years, various availability attacks have been proposed
(Feng et al., 2019; Huang et al., 2020; Fowl et al., 2021). These
approaches successfully suppress the performance of a super-
vised model below a usable level. Meanwhile, contrastive
learning algorithms have achieved comparable performance to
supervised algorithms (Chen et al., 2020a;b; Grill et al., 2020;
Chen & He, 2021). Thus, an unauthorized data collector can
use contrastive learning to train a model. Recently, supervised
poisoning frameworks were extended to poison contrastive
learning (He et al., 2022; Ren et al., 2022).

In Figure 1, we conduct an assessment of both supervised and
contrastive unlearnability of existing availability attacks. The
abbreviation for attacks can be found in Section 4. Most at-
tacks designed for poisoning supervised learning can not handle
contrastive learning. These findings shed light on a potential
issue of using availability attacks to protect data: a malicious
data collector can traverse both supervised and contrastive algo-
rithms to effectively leverage collected data. While successful
attacks for supervised learning leverage linear separable noises
as shortcuts (Yu et al., 2022), we find that contrastive unlearn-
ability requires huge alignment and uniformity gaps between
poisoned data and clean data as shortcuts. A fully functional availability attack should create shortcuts
for both supervised learning and contrastive learning. To clarify this issue, we propose a threat
model that considers the worst-case unlearnability across supervised and contrastive algorithms.
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Error-minimizing noises (Huang et al., 2020) and adversarial poisoning (Fowl et al., 2021) are
two representative supervised availability attacks that craft noises using reference models. While
supervised learning uses mild data augmentations, contrastive learning augmentations are much
stronger. We find that supervised training of reference models with enhanced data augmentations
can mimic contrastive training. Furthermore, by crafting noises on these contrastive-like reference
models through enhanced data augmentations in addition, the resulting attack can adapt to contrastive
augmentations and possess shortcuts for both contrastive learning and supervised learning. Based
on this, we propose an augmented unlearnable example attack (AUE) and an augmented adversarial
poisoning attack (AAP) which achieve better worst-case unlearnability across multiple algorithms
compared to existing methods. We summarize our contributions:

• We point out that contrastive learning algorithms can undermine data protection using
availability attacks and introduce worst-case unlearnability across supervised and contrastive
algorithms as an evaluation metric for availability attacks.

• We analyze the shortcuts for contrastive learning and reveal that enhanced data augmentations
can boost the contrastive unlearnability of basic supervised approaches.

• Our proposed AUE and AAP attacks improve worst-case unlearnability across five al-
gorithms on CIFAR-10/CIFAR-100 compared to existing baselines and are effective on
Tiny-ImageNet, Mini-ImageNet, and ImageNet-100.

2 RELATED WORKS

Availability attacks for supervised learning include error-minimizing noises(Huang et al., 2020),
adversarial example poisoning (Fowl et al., 2021; Chen et al., 2023), neural tangent generalization
attack (Yuan & Wu, 2021), generative poisoning attack (Feng et al., 2019), autoregression perturbation
(Sandoval-Segura et al., 2022), one-pixel perturbation perturbation Wu et al. (2022), convolution-
based attack Sadasivan et al. (2023) and synthetic perturbation (Yu et al., 2022). Robust error-
minimizing errors (Fu et al., 2022), entangled features strategy (Wen et al., 2023), and hypocritical
perturbation (Tao et al., 2022) are proposed to deceive adversarial training. Contrastive poisoning (He
et al., 2022) and transferable unlearnable examples (Ren et al., 2022) aim at poisoning contrastive
learning. Unlearnable clusters (Zhang et al., 2023) proposed to generate label-agnostic noises
with cluster-wise perturbations. On the defense side, adversarial training can largely mitigate
the unlearnablity (Tao et al., 2021). Liu et al. (2023); Qin et al. (2023) leverages crafted data
augmentations to defend against availability attacks. Sandoval-Segura et al. (2023) suggests that the
orthogonal projection technique can effectively defend against class-wise attacks. Diffusion models
are used to purify unlearnable perturbations (Jiang et al., 2023; Dolatabadi et al., 2023).

3 THREAT MODEL AND BACKGROUNDS

3.1 FORMAL THREAT MODEL

In our threat model, we assume that an unauthorized data collector assembles labeled data into a
dataset. The access to label information is reasonable since the collector can crawl individual images
from certain accounts or steal (and annotate) a commercial dataset. A data publisher is supposed
to process data before release using an availability attack such that processed data is resilient to
subsequent supervised algorithms as well as contrastive algorithms adopted by the data collector.

In general, a finite dataset Dc that needs to be processed is i.i.d sampled from a data distribution D.
For a data-label pair (x, y) ∈ Dc, an availability attack δ maps it to a noise δ(x, y) within a Lp-norm
ball Bp(ϵ). In this paper, we set p = ∞ and radius ϵ = 8/255. It results in a protected dataset
{x+ δ(x, y)|(x, y) ∈ Dc} to which a data collector has only access. For potential algorithms, we
refer f to a supervised model and g to a contrastive feature extractor beyond which is a linear probing
head h. The goal of the data publisher is to find a poisoning map δ that significantly degrades the
generalization performance of both fδ and hδ ◦ gδ which are well trained on poisoned data. When
we consider the worst-case unlearnability across supervised and contrastive algorithms, the threat
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model has the following mathematical form:
min
δ

max(E
D

[
1(fδ(x) = y)

]
,E
D

[
1(hδ ◦ gδ(x) = y)

]
) (1)

s.t. fδ ∈argminf E
Dc

[
LSL(x+ δ(x, y), y; f)

]
, (supervised learning)

gδ ∈argming E
Dc

[
LCL(x+ δ(x, y); g)

]
, (contrastive learning)

hδ ∈argminh E
Dc

[
LSL(x+ δ(x, y), y;h ◦ gδ)

]
. (linear probing)

Here we denote LCL(·; ·) as contrastive loss for simplicity, but in practice, it usually involves one
positive sample and several negative samples. When a poisoning map δ(x, y) only depends on label
y, the resulting attack is called a class-wise attack; otherwise, it is a sample-wise attack. In this paper,
we mainly focus on sample-wise attacks if not otherwise stated. In the contrastive part of our threat
model, there is a difference from the setting adopted by He et al. (2022); Ren et al. (2022) in which
the linear probing stage relies on the unprocessed clean data as downstream tasks. We have more
discussion in Appendix B.7.

3.2 BASIC APPROACHES

The essence of availability attacks is to prevent a trained model from well generalizing to the clean
data distribution. It has been revealed that linearly separable patterns in crafted noises work as
shortcuts for the training process of supervised learning (Yu et al., 2022).

Error-minimizing noises. Unlearnable example attacks (UE, Huang et al. (2020)) generate noises
by alternately optimizing a bi-level problem:

min
δ

min
f

E
Dc

[
LSL(x+ δ(x, y), y; f)

]
. (2)

The error-minimization framework has been extended to contrastive settings (CP, He et al. (2022)):
min
δ

min
g

E
Dc

[
LCL(x+ δ(x, y); g)]. (3)

Then a regularization term called class-wise separability discriminant (CSD) was introduced to equip
noises with linear-separable shortcuts for supervised learning (TUE, Ren et al. (2022)).

Adversarial poisoning. Generated by PGD-Attack (Madry et al., 2018) on a pre-trained reference
model, adversarial examples can make strong poisons (AP, Fowl et al. (2021)):

min
δ

E
Dc

[
LSL(x+ δ(x, y), y +K; f∗)

]
(Targeted)

or max
δ

E
Dc

[
LSL(x+ δ(x, y), y; f∗)

]
(Untargeted) (4)

s.t. f∗ ∈ argmin
f

E
Dc

[
LSL(x, y; f)]

]
.

Adversarial poisoning assigns clean data with a crafted noise containing non-robust but useful
features of another label that confound learning algorithms. Recently, Chen et al. (2023) proposed
self-ensemble protection (SEP-FA-VR) that generated adversarial poisons using several checkpoints
to improve supervised unlearnability.

3.3 CONTRASTIVE LEARNING

Contrastive learning (CL) is self-supervised and does not require label information until linear
probing. In general, it first augments an input into two views using augmentations sampled from a
strong augmentation distribution µ. Then extracted features are trained to be aligned between positive
pairs (views of the same input) but distinct between negative pairs (views of different inputs).

Wang & Isola (2020) introduced two key properties for contrastive learning, alignment and uniformity.
The former measures the similarity of features from positive pairs and the latter reflects the uniformity
of feature distribution on the hypersphere. Let g be a normalized feature extractor and µ be a data
augmentation distribution. The alignment loss and uniformity loss are defined as the following:

A(Dc) = E
x∼Dc
π,τ∼µ

[
||g(π(x))− g(τ(x))||22

]
, U(Dc) = log E

x,z∼Dc
π,τ∼µ

[
e−2||g(π(x))−g(τ(z))||22

]
.
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4 SHORTCUTS FOR CONTRASTIVE LEARNING

Let D′
c be a poisoned dataset with respect to a clean dataset Dc. The alignment gap and uniformity

gap between clean and poisoned datasets are defined as follows:

AG(Dc,D′
c) = A(Dc)−A(D′

c), UG(Dc,D′
c) = U(Dc)− U(D′

c).

We train ResNet-18 models on the CIFAR-10 training sets poisoned by various attacks us-
ing SimCLR (Chen et al., 2020a) without linear probing or fine-tuning. These poisoning at-
tacks include UE (Huang et al., 2020), DC (Feng et al., 2019), NTGA (Yuan & Wu, 2021),
SN (Yu et al., 2022), HYPO (Tao et al., 2022), EntF (Wen et al., 2023), AR (Sandoval-
Segura et al., 2022), OPS (Wu et al., 2022), REM (Fu et al., 2022), AP (Fowl et al., 2021),
SEP-FA-VR (Chen et al., 2023), CP (He et al., 2022), and TUE (Ren et al., 2022).

Table 1: Shortcuts on SimCLR models trained on
poisoned CIFAR-10. Bold fonts emphasize prominent
contrastive unlearnability values.

Attack AG UG SimCLR SL

DC 0.12 0.07 86.1 19.5
UE 0.05 0.03 89.0 24.6
AR 0.07 0.09 88.8 15.3
NTGA 0.12 0.12 86.9 13.3
SN 0.08 0.00 90.6 17.1
OPS 0.04 0.01 86.7 20.0
REM 0.12 0.04 88.6 24.9
EntF 0.01 -0.04 87.5 92.3
HYPO 0.11 0.13 86.9 80.1
T-AP 0.18 0.44 48.4 9.5
UT-AP 0.17 0.77 41.5 9.6
SEP-FA-VR 0.24 0.25 37.3 2.3

CP-SimCLR 0.55 0.87 38.7 94.5
TUE-SimCLR 0.30 0.76 48.1 10.6

In Table 1, we evaluate alignment and uni-
formity gaps between clean and poisoned
datasets, as well as the SimCLR accuracy
and SL accuracy. On one hand, AP-based at-
tacks achieve both SL and SimCLR unlearn-
ability while other non-contrastive poisoning
attacks fail to deceive the contrastive learn-
ing algorithm. The alignment and uniformity
gaps of AP-based attacks are prominently
larger than those of others. On the other hand,
contrastive error-minimizing attacks includ-
ing CP and TUE are effective for contrastive
learning and possess huge alignment and uni-
formity gaps.

The Pearson correlation coefficient (PCC) be-
tween the alignment gap and the SimCLR
accuracy is -0.78, and the PCC between the
uniformity gap and the SimCLR accuracy is
-0.87. It is revealed that contrastive unlearn-
ability highly relates to huge alignment and
uniformity gaps which indicate a significant
difference between clean feature distribution and poisoned feature distribution. The gaps work as
shortcuts for CL. After the poisoned unsupervised training, the feature extractor is fixed and the linear
probing stage trains a linear layer to classify poisoned features. If the gaps are huge, even though the
extracted features of poisoned data are highly linear separable, the learned separability can hardly
be generalized to clean features due to the huge discrepancy between clean features and poisoned
features. Consequently, even if the accuracy of poisoned data is high, the accuracy of clean data is
low and the poisoning attack is successful. On the contrary, small gaps likely imply clean features
are similar to poisoned features. Therefore, once the classifier can perform correct classification on
poisoned data, it can generalize to clean data and thus the availability attack fails.

Since contrastive error-minimizing noises directly minimize the contrastive loss on poisoned data
which relates to alignment and uniformity, they naturally create prominent gaps as shortcuts for
CL (He et al., 2022). In the next section, we will demonstrate that supervised error minimization
with enhanced data augmentations can partially replace the role of contrastive error minimization
to enlarge the alignment and uniformity gaps and bring contrastive unlearnability. Moreover, we
find stronger augmentations help adversarial poisoning generate poisons to deceive a contrastive-like
reference model and thus improve the contrastive unlearnability as well.

5 ENHANCED DATA AUGMENTATIONS BOOST BASIC APPROACHES

5.1 MIMIC CONTRASTIVE LEARNING WITH SUPERVISED MODELS

Contrastive learning employs strong data augmentations including resized crop, color jitter, horizontal
flip, and grayscale. Supervised learning adopts mild data augmentations such as horizontal flip
and crop to improve generalization, but excessive data augmentations can harm performance. In
Appendix A.2, Pesudo-Code 1 shows the detailed implementations for these two different settings.
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Figure 2: InfoNCE loss
decreases with CE loss.

Specifically, a strength hyperparameter s ∈ [0, 1] is introduced to control
the intensity of contrastive augmentations. A large s stands for strong
augmentations, and it is set s = 1 by default for contrastive learning.
Non-contrastive availability attacks whose noise generation involves op-
timizing supervised losses, usually inherit mild augmentations. To make
noise possess unlearnable features that can withstand contrastive augmen-
tations, a natural approach is to incorporate strong data augmentations
during their generation. We find that with enhanced data augmentations,
noises generated by supervised methods do not only adapt to contrastive
augmentations but also learn to deal with contrastive loss.

On CIFAR-10, we train a ResNet-18 for 100 epochs using data augmented by contrastive augmen-
tations, i.e. augmentation strength s = 1. For each checkpoint, the supervised cross-entropy loss
and the contrastive InfoNCE loss (Oord et al., 2018) are computed on the training set. In Figure 2,
when the optimization object CE loss goes down, the InfoNCE loss decreases as well. It illustrates
that the supervised training with contrastive augmentations implicitly optimizes the contrastive loss.
Since supervised models can mimic contrastive learning to some extent, incorporating stronger data
augmentation can potentially enable poisoning attacks based on supervised training to acquire the
ability to deceive contrastive learning.

To have a closer look at the relationship between supervised loss and contrastive loss, we study
a toy model f = h ◦ g : Rd → Rn with a normalized feature extractor g : Rd → Rn such that
||g(x)|| ≡ 1 and a full rank linear classifier h : Rn → Rn in the sense that h(z) = Wz + b with
a full rank square matrix W ∈ Rn×n. By singular values decomposition (SVD), W = UΣV with
orthogonal matrices U, V ∈ Rn×n and Σ = diag(σ1, · · · , σn), σ1 ≥ · · · ≥ σn > 0. Let D be a
balanced data distribution, i.e. each class would be sampled with the same probability, Dx be the
margin distribution, and µ be an augmentation distribution. Assume the supervised loss LSL is the
mean squared error and the contrastive loss LCL contains only one negative example:

ESL = E
(x,y)∼D

π∼µ

[
LSL(x, y, π)

]
= E

(x,y)∼D
π∼µ

[ 1
n
||h ◦ g(π(x))− ey||2

]
,

ECL = E
x,x−∼Dx
π,τ,ρ∼µ

[
LCL(x,x

−, π, τ, ρ)
]
= E

x,x−∼Dx
π,τ,ρ∼µ

[
− log

eg(π(x))
⊤g(τ(x))

eg(π(x))⊤g(τ(x)) + eg(π(x))⊤g(ρ(x−))

]
.

The following theorem says the upper bound of contrastive loss LCL decreases as the supervised loss
LSL decreases in a range of values if their data augmentations obey the same distribution. .
Theorem 5.1. With probability at least 1− 4

√
ESL, it holds that

LCL(x,x
−, π, τ, ρ) <

n− 1

n
log(1 +

σ2
1σn − σn(1−

√
2n
√
ESL)

2

σ2
1σn − 2nσ2

1

√
ESL

) +
1

n
log(1 +

σn

σn − 2n
√
ESL

).

Remark 5.2. 1) Assumptions of a square matrix and positive singular values are necessary. Otherwise,
the dimensional reduction of feature space impairs the relation between supervised and contrastive
losses. 2) Since supervised losses contain limited information about negative pairs, this inequality is
naturally loose. However, in the case that supervised learning fits very well, it at least implies that
positive features g(τ(x)) are closer to g(π(x)) than negative features g(ρ(x−)).

5.2 AUGMENTED UNLEARNABLE EXAMPLES (AUE)

Unlearnable examples are generated by supervised error minimization in which a reference model
and noises alternately update in Equ. 2. Previous results imply that the contrastive loss is upper
bound by the supervised loss when the supervised learning adopts the same contrastive augmentations.
Specifically, when noises are added in a differentiable way, i.e. π(x + δ(x, y)), minimizing the
augmented supervised loss LSL(π(x+δ(x, y), y; f) implicitly minimizes the contrastive loss LCL(x+
δ(x, y); g) which appears in contrastive error minimization Equ. 3. In other words, supervised error-
minimizing noises with enhanced data augmentations can partially replace the functionality of
contrastive error-minimizing noises to create shortcuts for contrastive learning.

In Figure 3a, we verify this insight by gradually increasing the augmentation strength s in the super-
vised error-minimizing framework according to Algorithm 1. The SimCLR accuracy prominently

5



Under review as a conference paper at ICLR 2024

Algorithm 1 Augmented Unlearnable Examples (AUE)

Require: Augmentation strength s and a corresponding augmentation distribution µs. A labeled
training set Dc = {(xi, yi)}ri=1. An initialized classifier fθ. Total epochs T , model update
iterations Tθ, poisons update iterations Tδ , and perturbation steps Tp. Learning rate αθ, αδ .

Ensure: Poisons {δi}ri=1
δi ← 0, i = 1, 2, · · · , r ▷ Initialize poisons
for t = 1, · · · , T do

for tθ = 1, · · · , Tθ do ▷ Update the model
Sample a data batch {(xlj , ylj )}mj=1 and an augmentation batch {πlj ∼ µs}mj=1

θ ← θ − αθ

m ·
∑m

j=1∇θLSL(πlj (xlj + δlj ), ylj ; fθ)

for tδ = 1, · · · , Tδ do ▷ Update poisons
Sample a batch of data {(xlj , ylj )}mj=1
for tp = 1, · · · , Tp do

Sample a augmentation batch {πlj ∼ µ}mj=1

δlj ← Clipϵ
(
δlj − αδ · sign(∇δlj

LSL(πlj (xlj + δlj ), ylj ; fθ))
)
, j = 1, 2, · · · ,m
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Figure 3: (a) Influence of augmentations in AUE. (b) Contrastive losses during SimCLR training
under UE and AUE attacks. (c) Alignment and uniformity gaps during the SimCLR training on
CIFAR-10 poisoned by AUE attack. (d) Influence of augmentations in targeted AAP.

decreases as the strength grows, while the supervised learning accuracy slightly increases. Compared
to UE, our AUE attacks largely improve contrastive unlearnability while keeping similar supervised
unlearnability. On CIFAR-10, too strong strengths might compromise the unlearnability. Thus, we
generate our augmented unlearnable example (AUE) attacks taking s = 0.6 for CIFAR-10, and
s = 1.0 for CIFAR-100. On CIFAR-10, AUE improves 5.7% and 36.6% for supervised unlearnability
and contrastive (SimCLR) unlearnability respectively. In Figure 3b, AUE noises largely reduce the
contrastive loss during SimCLR training compared to UE noises. It verifies that supervised error
minimization with enhanced augmentations mimics contrastive error minimization to some extent. In
Figure 3c , we investigate the alignment and uniformity gaps and discuss more about the poisoned
training process in Section 6.3. The final gaps of AUE are AG = 0.25,UG = 0.39 while those of UE
are AG = 0.05,UG = 0.03. Enhanced data augmentations help supervised error-minimizing noises
create shortcuts for CL.

5.3 AUGMENTED ADVERSARIAL POISONING (AAP)

Adversarial poisoning attacks in Equ. 4 first train a supervised reference model, and then generate
adversarial examples on the reference model. For targeted AP, while reference model training
uses standard supervised loss, the loss for noise generation translates class labels by K such that
generated poisons contain non-robust features that are related to the shifted labels. When we generate
adversarial poisoning with enhanced data augmentations π ∼ µ, minimizing E

[
LSL(π(x), y; f)

]
with respect to f mimics updating a reference model with contrastive training. Then, minimizing
LSL(π(x + δ(x, y)), y + K; f∗) with respect to δ updates poisons to deceive a contrastive-like
reference model f∗. For untargeted AP, stronger data augmentations play a similar role. As a
consequence, the resulting poisons can learn more about how to confound contrastive learning
algorithms. According to Algorithm 2, we gradually increase the augmentation strength s in both
inner and outer optimization from 0.0 to 1.0 and set the label translation K = 1. In Figure 3d,
the SimCLR accuracy decreases with the strength, while the supervised learning accuracy slightly
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Algorithm 2 Augmented Adversarial Poisoning (AAP)

Require: Similar to the setting in Algorithm 1.
Ensure: Poisons {δi}ri=1

δi ← 0, i = 1, 2, · · · , r ▷ Initialize poisons
for t = 1, · · · , T do ▷ Reference model

for tθ = 1, · · · , Tθ do
Sample a data batch {(xlj , ylj )}mj=1 and an augmentation batch {πlj ∼ µs}mj=1

θ ← θ − αθ

m ·
∑m

j=1∇θLSL(πlj (xlj ), ylj ; fθ)

for i = 1, · · · , r do ▷ Adversarial examples
for tp = 1, · · · , Tp do

Sample πi ∼ µs

δi ← Clipϵ

(
δi + αδ · sign(∇δiLSL(πi(xi + δi), yi; fθ))

)
▷ Untargeted AAP

δi ← Clipϵ

(
δi − αδ · sign(∇δi

LSL(πi(xi + δi), yi + 1; fθ))
)

▷ Targeted AAP

increases. Proper augmentation strengths improve the contrastive unlearnability but too large s might
introduce difficulty in poison generation and harm the supervised unlearnability. We select s = 0.4
for CIFAR-10 and s = 0.8 for CIFAR-100. Our T-AAP attacks further improve the contrastive
unlearnability of Targeted AP by 9.3% on CIFAR-10 and 5.5% on CIFAR-100 for SimCLR.

6 EXPERIMENTS

6.1 SETUP

Poisons are generated on CIFAR-10/100, Tiny-ImageNet, modified Mini-ImageNet, and ImageNet-
100. ResNet-18 He et al. (2016) is used for poison generation and evaluation if not otherwise stated.
Our threat model considers the worst-case unlearnability across supervised and contrastive algorithms.
A standard supervised learning algorithm and four contrastive learning algorithms including SimCLR
(Chen et al., 2020a), MoCo v2 (Chen et al., 2020b), BYOL (Grill et al., 2020) and SimSiam (Chen
& He, 2021) are employed to evaluate the attack performance of availability attacks. We adopt a
linear probing stage on the poisoned data. We adopt AP, SEP-FA-VR, CP, and TUE as baselines for
the worst-case unlearnability. T-AP and T-AAP are targeted attacks and UT-AP and UT-AAP are
untargeted. Our AUE and AAP train reference models from scratch rather than using pre-trained
weights. For CP and TUE attacks, we specify algorithms they used for noise generation, for example,
CP-SimCLR. Moreover, we also evaluate class-wise CP attacks which are denoted by C-CP. Detailed
settings for evaluations and our proposed attacks are shown in Appendix A.

6.2 WORST-CASE UNLEARNABILITY

In Table 2, compared to existing availability attacks, our proposed attacks achieve state-of-the-art
worst-case unlearnability across five evaluation algorithms on CIFAR-10 and CIFAR-100. Since the
generation of untargeted adversarial poisoning is unstable (Fowl et al., 2021), we generate UT-AAP
only on CIFAR-10. A contrastive learning-based attack such as CP and TUE relies on a specific
contrastive algorithm and possibly loses the unlearnability against other supervised or contrastive
algorithms. For example, on CIFAR-100, sample-wise CP attacks fail to deal with supervised learning
and TUE-SimCLR performs poorly against BYOL. However, AUE and AAP are based on supervised
training but show more stable unlearnability against different contrastive algorithms.

Table 3: Performance on ImageNet-100.

Attack SL SimCLR MoCo BYOL SimSiam

Clean 77.8 61.8 61.8 62.2 65.8
AUE 5.1 5.2 6.2 7.5 4.7

T-AAP 14.4 20.3 14.5 24.8 16.6

In Table 2 and 3, we also evaluate the at-
tack performance of our attacks on high-
resolution datasets including Mini-ImageNet,
Tiny-ImageNet, and ImageNet-100, where we
set augmentation strength s = 1.0 for AUE and
s = 0.8 for AAP as the same as on CIFAR-100.
In general, T-AAP improves the worst-case un-
learnability compared to T-AP, and AUE outperforms T-AAP and TUE-MoCo in the worst-case
unlearnability.
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Table 2: Worst-case unlearnability of availability attacks across supervised and contrastive algorithms.

Dataset Attack SL Contrastive Learning WorstSimCLR MoCo BYOL SimSiam

CIFAR-10

Clean 95.5 91.3 91.5 92.3 90.7 95.5
T-AP 9.5 48.4 53.8 53.0 51.1 53.8
UT-AP 9.6 41.5 31.5 44.0 42.8 44.0
SEP-FA-VR 2.3 37.3 35.8 42.8 36.7 42.8
CP-SimCLR 94.5 38.7 69.3 79.5 29.2 94.5
CP-MoCo 94.5 53.7 47.9 56.8 47.1 94.5
CP-BYOL 11.0 39.3 32.7 41.8 37.9 41.8
C-CP-SimCLR 9.4 50.1 50.6 47.7 57.7 57.7
C-CP-MoCo 10.0 50.8 51.6 47.0 51.2 51.6
C-CP-BYOL 10.7 44.5 40.2 43.4 41.4 44.5
TUE-SimCLR 10.6 48.1 71.2 79.5 39.0 79.5
TUE-MoCo 10.1 57.2 51.6 60.1 58.5 60.1
TUE-SimSiam 9.9 82.5 80.7 84.3 81.8 84.3
AUE (ours) 18.9 52.4 57.0 58.2 34.5 58.6
T-AAP (ours) 9.2 39.1 40.4 43.3 42.1 43.3
UT-AAP (ours) 29.7 32.3 23.2 35.5 34.1 35.5

CIFAR-100

Clean 77.4 63.9 67.9 63.7 64.4 77.4
T-AP 3.2 25.6 26.6 26.1 28.8 28.8
UT-AP 42.7 11.1 9.8 10.1 14.0 42.7
SEP-FA-VR 2.4 25.2 25.9 26.6 28.4 28.4
CP-SimCLR 74.7 10.5 30.7 22.6 7.7 74.7
CP-MoCo 74.4 15.2 13.4 16.4 14.1 74.4
CP-BYOL 74.7 29.7 35.5 35.7 29.5 74.7
C-CP-SimCLR 1.0 14.9 25.3 24.4 27.6 27.6
C-CP-MoCo 1.0 22.9 20.4 25.8 26.1 26.1
C-CP-BYOL 1.0 25.2 25.1 23.2 28.8 28.8
TUE-SimCLR 1.0 16.9 36.7 40.6 7.8 40.6
TUE-MoCo 1.0 19.9 19.6 22.3 18.6 22.3
TUE-SimSiam 1.1 33.9 31.0 40.9 10.3 40.9
AUE (ours) 6.9 13.6 19.0 19.2 11.9 19.2
T-AAP (ours) 7.3 20.1 18.6 21.1 21.3 21.3

Mini-ImageNet

Clean 66.2 55.3 57.6 48.7 54.5 66.2
T-AP 11.5 48.9 50.1 44.0 48.5 50.1
TUE-MoCo 9.8 46.2 48.4 43.1 46.9 48.4
AUE (ours) 8.7 15.0 20.4 14.5 18.2 20.1
T-AAP (ours) 29.8 43.8 41.9 40.2 41.8 43.8

Tiny-ImageNet

Clean 53.5 39.6 43.3 33.9 42.4 53.5
T-AP 11.3 32.8 34.7 27.2 34.5 34.7
TUE-MoCo 5.5 20.9 24.9 20.3 25.0 25.0
AUE (ours) 7.1 10.8 11.7 9.6 11.6 11.7
T-AAP (ours) 18.7 28.4 27.6 25.2 28.2 28.4

6.3 POISONED TRAINING PROCESS
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Figure 4: Poisoned SimCLR (every 5 epochs) and SL (every epoch) on CIFAR-10.
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In Figure 4, we evaluate the training and test accuracy during SL and CL training. In very early
epochs where the training underfits the corresponding objective, checkpoints possibly process weak
unlearnability for both SL and CL since supervised and contrastive shortcuts have not been learned
well. Early stop training can mitigate the unlearnability. As shown in Figure 3c for AUE, after a
few epochs, the shortcuts have been established and thus the SimCLR accuracy suddenly decreases.
Moreover, in the middle and later stages of training, the slow increase in CL accuracy aligns with the
overall trend of gradually decreasing uniformity gap and relatively stable alignment gap.

6.4 DECOUPLING THE AUGMENTAITONS

In previous settings of AUE and AAP, we control the strength of RandomResizeCrop, RandomColor-
Jitter, and RancomGrayscale through a single strength hyperparameter s in the poison generation,
as shown in Code 1. In Table 4, we decouple the strength hyperparameters for these three random
transforms and evaluate the resulting attacks by SimCLR. Different factors show different influences
on the contrastive unlearnability for AUE and T-AAP. However, adjusting these three factors together
outperforms other options in conclusion.

Table 4: SimCLR evaluation of attacks generated with decoupled strength parameters on CIFAR-10.
By default, s = 0.6 for AUE and s = 0.4 for T-AAP. For example, 0-0-s means that RandomResize-
Crop strength is 0, RandomColorJitter strength is 0, and RancomGrayscale strength is s.

0-0-0 0-0-s 0-s-0 s-0-0 0-s-s s-0-s s-s-0 s-s-s

AUE 83.5 58.7 79.4 88.7 60.8 56.2 87.7 52.4
T-AAP 52.3 52.0 52.9 44.9 51.4 42.2 44.8 39.1

6.5 DEFENSES

Table 5: Defenses against proposed attacks on
CIFAR-10 for SL and CL.

Defense AUE T-AAP UT-AAP

UEraser 63.2 64.7 81.8
UEraser-Lite 60.6 66.8 82.2
UEraser-Max 72.8 79.5 85.8
ISS 82.6 82.3 81.4
ISS-Grayscale 18.2 9.1 23.8
ISS-JPEG 84.9 84.3 84.0
AVATAR 85.0 88.0 86.6
AT-8/255 83.8 81.6 79.6
Cutout 51.8 37.9 31.8
Random Noise 60.5 62.4 48.0
Gaussian Blur 69.1 76.7 78.9
AdvCL-8/255 80.9 78.4 77.5

In Table 5, we investigate existing defenses
against AUE and AAP attacks on CIFAR-10
for SL and CL respectively. For supervised
learning, we adopt adversarial training AT
(Madry et al., 2018), ISS variants (Liu et al.,
2023), UEraser variants (Qin et al., 2023), and
AVATAR (Dolatabadi et al., 2023). For con-
trastive learning, we adopt contrastive adversar-
ial training AdvCL (Kim et al., 2020), and Sim-
CLR models with Cutout (length 8) (DeVries &
Taylor, 2017), Random noise (variance 8/255),
and Gaussian Blur (kernel size 3).

For SL, AVATAR and ISS-JPEG achieve better
defense performance than AT. UEraser variants
are not very effective for AUE. For CL, AdvCL
and Gaussian Blur have similar effects against
T-AAP and UT-AAP. And AdvCL is the most
effective defense against AUE.

7 CONCLUSION

Since contrastive learning brings new challenges to protect data using availability attacks, we
explore availability attacks that have worst-case unlearnability across supervised and contrastive
algorithms. To our knowledge, the label information is necessary for the poisoning generation to
acquire stable worst-case unlearnability. For example, TUE uses a class-wise separability discriminant
loss which contains label information to achieve supervised unlearnability and class-wise CP requires
label information as well. Thus, we start from basic supervised poisoning methods and find that
enhanced data augmentations can boost their contrastive unlearnability. Our proposed AUE and AAP
attacks achieve state-of-the-art worst-case unlearnability across multiple supervised and contrastive
algorithms.
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Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Hao He, Kaiwen Zha, and Dina Katabi. Indiscriminate poisoning attacks on unsupervised contrastive
learning. In The Eleventh International Conference on Learning Representations, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, James Bailey, and Yisen Wang. Unlearn-
able examples: Making personal data unexploitable. In International Conference on Learning
Representations, 2020.

Wan Jiang, Yunfeng Diao, He Wang, Jianxin Sun, Meng Wang, and Richang Hong. Unlearnable
examples give a false sense of security: Piercing through unexploitable data with learnable
examples. arXiv preprint arXiv:2305.09241, 2023.

10



Under review as a conference paper at ICLR 2024

Minseon Kim, Jihoon Tack, and Sung Ju Hwang. Adversarial self-supervised contrastive learning.
Advances in Neural Information Processing Systems, 33:2983–2994, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical Report TR-2009, 2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Zhuoran Liu, Zhengyu Zhao, and Martha Larson. Image shortcut squeezing: Countering perturbative
availability poisons with compression. In International conference on machine learning, 2023.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Tianrui Qin, Xitong Gao, Juanjuan Zhao, Kejiang Ye, and Cheng-Zhong Xu. Learning the unlearnable:
Adversarial augmentations suppress unlearnable example attacks. arXiv preprint arXiv:2303.15127,
2023.

Jie Ren, Han Xu, Yuxuan Wan, Xingjun Ma, Lichao Sun, and Jiliang Tang. Transferable unlearnable
examples. In The Eleventh International Conference on Learning Representations, 2022.

Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee, and Gary Bradski. Kornia: an open
source differentiable computer vision library for pytorch. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 3674–3683, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211–252, 2015.

Vinu Sankar Sadasivan, Mahdi Soltanolkotabi, and Soheil Feizi. Cuda: Convolution-based unlearn-
able datasets. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3862–3871, 2023.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Pedro Sandoval-Segura, Vasu Singla, Jonas Geiping, Micah Goldblum, Tom Goldstein, and David Ja-
cobs. Autoregressive perturbations for data poisoning. Advances in Neural Information Processing
Systems, 35:27374–27386, 2022.

Pedro Sandoval-Segura, Vasu Singla, Jonas Geiping, Micah Goldblum, and Tom Goldstein. What
can we learn from unlearnable datasets? arXiv preprint arXiv:2305.19254, 2023.

K Simonyan and A Zisserman. Very deep convolutional networks for large-scale image recognition.
In 3rd International Conference on Learning Representations (ICLR 2015). Computational and
Biological Learning Society, 2015.

Lue Tao, Lei Feng, Jinfeng Yi, Sheng-Jun Huang, and Songcan Chen. Better safe than sorry: Pre-
venting delusive adversaries with adversarial training. Advances in Neural Information Processing
Systems, 34:16209–16225, 2021.

Lue Tao, Lei Feng, Hongxin Wei, Jinfeng Yi, Sheng-Jun Huang, and Songcan Chen. Can adversarial
training be manipulated by non-robust features? Advances in Neural Information Processing
Systems, 35:26504–26518, 2022.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29, 2016.

11



Under review as a conference paper at ICLR 2024

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International Conference on Machine Learning, pp.
9929–9939. PMLR, 2020.

Rui Wen, Zhengyu Zhao, Zhuoran Liu, Michael Backes, Tianhao Wang, and Yang Zhang. Is
adversarial training really a silver bullet for mitigating data poisoning? In International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
zKvm1ETDOq.

Shutong Wu, Sizhe Chen, Cihang Xie, and Xiaolin Huang. One-pixel shortcut: On the learning
preference of deep neural networks. In The Eleventh International Conference on Learning
Representations, 2022.

Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, and Tie-Yan Liu. Availability attacks create shortcuts.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 2367–2376, 2022.

Chia-Hung Yuan and Shan-Hung Wu. Neural tangent generalization attacks. In International
Conference on Machine Learning, pp. 12230–12240. PMLR, 2021.

Jiaming Zhang, Xingjun Ma, Qi Yi, Jitao Sang, Yu-Gang Jiang, Yaowei Wang, and Changsheng
Xu. Unlearnable clusters: Towards label-agnostic unlearnable examples. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3984–3993, 2023.

12

https://openreview.net/forum?id=zKvm1ETDOq
https://openreview.net/forum?id=zKvm1ETDOq


Under review as a conference paper at ICLR 2024

A EXPERIMENT DETAILS

A.1 DATASETS AND NETWORKS

CIFAR. CIFAR-10/CIFAR-100 Krizhevsky et al. (2009) consists of 50000 training images and 10000
test images in 10/100 classes. All images are 32× 32 colored ones.

Tiny-ImageNet. Tiny-Imagenet classification challenge (Le & Yang, 2015) is similar to the classifi-
cation challenge in the full ImageNet ILSVRC (Russakovsky et al., 2015). It contains 200 classes.
The training has 500 images for each class and the test set has 100 images for each class. All images
are 64× 64 colored ones.

Mini-ImageNet. Mini-ImageNet dataset was originally designed for few-shot learning (Vinyals et al.,
2016). We modify it for a classification task. The modified dataset contains 100 classes. The training
set has 500 images for each class. The test set has 100 images for each class. All images are 84× 84
colored ones.

ImageNet-100. ImageNet-100 is a subset of ImageNet-1k Dataset from ImageNet Large Scale Visual
Recognition Challenge 2012 (Russakovsky et al., 2015). It contains 100 random classes. The training
set has 130,000 images. The test set has 5,000 images.

ResNet. On CIFAR-10/CIFAR-100, we set the kernel size of the first convolutional layer to 3 and
removed the following max-pooling layer. On other datasets, we do not modify the models.

A.2 AUGMENTATIONS

Code Listing 1: Different data augmentations used in supervised learning and contrastive learning on
CIFAR-10/100 datasets. The intensity of contrastive augmentations can be adjusted via strength s.
# Supervised augmentations
Compose([RandomCrop(size=32, padding=4), RandomHorizontalFlip(p=0.5),

ToTensor()])
# Contrastive augmentations
s = 1.0 # Strength is 1.0 by default for contrastive learning.
Compose([RandomResizedCrop(size=32, scale=(1-0.9*s, 1.0)),

RandomHorizontalFlip(p=0.5),
RandomApply([ColorJitter(brightness=0.4*s, contrast=0.4*s,

saturation=0.4*s, hue=0.1*s)], p=0.8*s),
RandomGrayscale(p=0.2*s), ToTensor()])

A.3 DETAILS OF AUE AND AAP

We leverage differentiable augmentation modules in Konia1 (Riba et al., 2020) which is a differentiable
computer vision library for PyTorch. The contrastive augmentations for Tiny/Mini-ImageNet, and
ImageNet-100 are similar to those for CIFAR-10/100 in Code 1 but only adapt the image size.

AUE. We train the reference model for T = 60 epochs with SGD optimizer and cosine annealing
learning rate scheduler. The batch size of training data is 128. The initial learning rate αθ is 0.1,
weight decay is 10−4 and momentum is 0.9. In each epoch, we update the model for Tθ = 391
iterations and update poisons for Tδ = 391 iterations. For ImageNet-100, we set Tθ = Tδ = 1016.
The PGD process for noise generation takes Tp = 5 steps with step size αδ = 0.8/255.

The augmentation strength s = 0.6 for CIFAR-10 and s = 1.0 for CIFAR-100, Mini-ImageNet,
Tiny-ImageNet, and ImageNet-100.

AAP. We train the reference model for T = 40 epochs, and the initial learning rate αθ is 0.5. The
PGD process for noise generation takes Tp = 250 steps with step size αδ = 0.08/255. Other settings
are the same as AUE. The label translation is K = 1.

The augmentation strength s = 0.4 for CIFAR-10 and s = 0.8 for CIFAR-100, Mini-ImageNet,
Tiny-ImageNet, and ImageNet-100.

1https://github.com/kornia/kornia
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A.4 EVALUATION ALGORITHMS

The setup for SimCLR, MoCo v2, BYOL, and SimSiam are shown in Table 6. The 100-epoch linear
probing stage uses an SGD optimizer and a scheduler that decays 0.2 at 60, 75, and 90 epochs. The
probing learning rate is 1.0 for SimCLR, MoCo v2, BYOL, and 5.0 for SimSiam on CIFAR-10/100,
Tiny/Mini-ImageNet.

On ImageNet-100, the unsupervised contrastive learning optimizes 200 epochs and the linear probing
uses a learning rate of 10.0. Other settings are the same as other datasets.

For supervised learning, we augment the training data by RandomHorizontalFlip and RandomCrop
with padding size l/8 on CIFAR-10/100 and Tiny/Mini-ImageNet. l is the image size. On ImageNet-
100, we augment using RandomResizedCrop and RandomHorizontalFlip.

Table 6: Details of supervised and contrastive evaluations.

SL SimCLR MoCo v2 BYOL SimSiam

Batch size 512 512 512 512 512
Epochs 200 1000 1000 1000 1000
Loss function CE InfoNCE InfoNCE MSE Similarity
Optimizer SGD SGD SGD SGD SGD
Learning rate 0.5 0.5 0.3 1.0 0.1
Weight decay 1e-4 1e-4 1e-4 1e-4 1e-4
Momentum 0.9 0.9 0.9 0.9 0.9
Scheduler Cosine Cosine Cosine Cosine Cosine
Warmup 10 10 10 10 10
Temperature - 0.5 0.2 - -
Encoder momentum - - 0.99 0.999 -

B ADDITIONAL EXPERIMENTS

B.1 COMPUTATION CONSUMPTION

We report the time consumption of generating AUE and AAP attacks. For CIFAR-10/100, Tiny/Mini-
Imagenet, experiments are conducted using a single NVIDIA GeForce RTX 3090 GPU. For Imagenet-
100, experiments are conducted using a single NVIDIA A800 GPU.

On CIFAR-10/100, AUE/AAP costs around 2.7/2.2 hours. On Mini-ImageNet, AUE/AAP costs
around 2.5/2 hours. On Tiny-ImageNet, AUE/AAP costs around 2.5/3.8 hours. On ImageNet-100,
AUE/AAP costs around 12/10 hours.

In comparison, on CIFAR-10/100 and using the same device, CP-SimCLR costs around 48 hours,
and TUE-MoCo costs around 8.5 hours to generate poisons. Our supervised poisoning attacks are
much more efficient than contrastive poisoning attacks.

B.2 VISUALIZATION

Figure 5: Noise images of availability attacks on CIFAR-10.

In Figure 5, we present noise images of availability attacks on CIFAR-10. Compared to those
unable to deceive contrastive learning, attacks that have contrastive unlearnability possess more
complicated and high-frequency features. Considering contrastive augmentations including grayscale
can eliminate low-frequency shortcuts Liu et al. (2023), noises at least need to come through these
augmentations to be effective for contrastive learning. Our proposed attacks generate noises that are
adaptive to these augmentations during the generation process.
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Figure 6: T-SNE visualization of noises.

In Figure 6, we compare the t-SNEs of our proposed noises and their basic counterparts. While UE
noises cluster, our AUE noises are more dispersed. Considering that AUE has even stronger supervised
unlearnability than UE, enhanced data augmentations help generate more complex unlearnable
features that work as shortcuts for supervised learning and contrastive learning together. Compared
to AP noises, our AAP noises are more dispersed as well.

B.3 TRANSFERABILITY ACROSS NETWORKS.

We generate AUE and AAP using ResNet-18 and test them on ResNet-50, VGG-19 (Simonyan
& Zisserman, 2015), DenseNet-121 (Huang et al., 2017), and MobileNet v2 (Howard et al., 2017;
Sandler et al., 2018). In Table 7, both supervised unlearnability and contrastive unlearnability of
AUE and AAP can transfer across these architectures. Moreover, the relative attack performance is
preserved: T-AAP is consistently best for supervised learning and UT-AAP is consistently best for
contrastive learning.

Table 7: Transferability across network architectures on CIFAR-10.

Network AUE T-AAP UT-AAP

SL-ResNet-50 16.4 8.9 33.2
SL-VGG-19 23.2 10.7 43.5
SL-DenseNet-121 19.5 10.4 37.5
SL-MobileNet v2 17.2 12.1 27.8

SimCLR-ResNet-50 53.4 41.5 38.4
SimCLR-VGG-19 48.2 41.7 18.0
SimCLR-DenseNet-121 50.5 35.3 31.3
SimCLR-MobileNet v2 41.4 29.8 19.9

B.4 POISONING RATIO.

Since basic approaches, UE and AP need to poison almost the whole dataset, we evaluate the influence
of the poisoning ratio on the attack performance of AUE and AAP. Table 8 illustrates that clean
data dilution can largely destroy unlearnability. Supervised unlearnability is more sensitive than
contrastive unlearnability and AUE is more robust to poisoning ratio than AAP.

Table 8: The influence of poisoning ratio on CIFAR-10.

Ratio AUE T-AAP UT-AAP

SL-95% 75.6 82.1 84.2
SL-90% 82.2 86.6 89.2
SL-80% 87.6 89.8 91.2

SimCLR-95% 69.7 76.8 74.2
SimCLR-90% 74.5 82.1 79.9
SimCLR-80% 79.7 85.5 83.9
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B.5 POISONING BUDGET.

In Table 9, we investigate the attack performance with different poisoning budgets. Contrastive
unlearnability requires a larger budget than supervised unlearnability.

Table 9: Influence of poisoning budget on CIFAR-10.

AUE T-AAP UT-AAP

SL-2/255 34.5 50.7 75.6
SL-4/255 28.5 19.7 58.5
SL-6/255 26.8 12.3 44.2
SimCLR-2/255 84.8 87.0 87.1
SimCLR-4/255 70.1 66.6 59.8
SimCLR-6/255 59.4 51.1 43.0

B.6 STRENGTH AND GAPS

On CIFAR-10, we gradually increase the augmentation strength from 0 to the default setting, i.e.
s = 0.6 in the generation of AUE attacks and evaluate the alignment gaps, uniformity gaps, and the
SimCLR Accuracy in Table 10. In this case, the larger the gaps, the lower the accuracy of SimCLR.

Table 10: Alignment and uniformity gaps in AUE with different strengths on CIFAR-10.

Strength Alignment Gap Uniformity Gap SimCLR Accuracy

s = 0.0 0.14 0.07 83.5
s = 0.2 0.21 0.24 64.1
s = 0.4 0.25 0.28 56.7
s = 0.6 0.25 0.39 52.4

B.7 DISCUSSION OF CLEAN LINEAR PROBING.
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Figure 7: Clean and poisoned
linear probing on CIFAR-10.

While our threat model linear probes on poisoned data, He et al.
(2022); Ren et al. (2022) use clean data for linear probing instead.
In Figure 7, we compare the final classification performance of Sim-
CLR models in these two settings. Feature extractors are trained
on poisoned data and we focus on the classification performance
after linear probing on clean and poisoned data respectively. While
CP and TUE obtain similar attack performance in both cases, clean
linear probing can mitigate supervised training-based attacks includ-
ing AP, SEP-FA-VR, AAP, and AUE. For supervised poisoning, the
dissimilarities between clean features and poisoned features hinder
a classifier head obtained by poisoned linear probing in generalizing
to clean features. However, clean features still contain some useful
information and can derive another classifier head to perform clas-
sification. On the other hand, contrastive error-minimizing noises
confuse the feature extractor directly such that even clean data fail to activate useful features for classi-
fication. Given a responsible data publisher who protects data using availability attacks before release,
an unauthorized data collector has no access to unprocessed data for clean linear probing. Thus, it is
sufficient to achieve contrastive unlearnability with poisoned linear probing in real scenarios.

C PROOF OF THEOREM 5.1

C.1 LEMMAS

We use notations in Theorem 5.1.
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Lemma C.1. For any z ∈ Rn,

σn||z|| ≤ ||Wz|| ≤ σ1||z||.

Proof. Denote z̃ = (z̃1, · · · , z̃n)⊤ = V z. Since orthogonal matrices preserve the norm,

||Wz|| = ||UΣV z|| = ||Σz̃|| =

√√√√ n∑
i=1

σ2
i z̃i

2,

σn||z|| = σn||z̃|| ≤

√√√√ n∑
i=1

σ2
i z̃i

2 ≤ σ1||z̃|| = σ1||z||.

Lemma C.2. If ESL ≤ ϵ, then with probability at least 1−
√
ϵ

||h ◦ g(π(x))− ey|| <
√
n
√
ϵ,

where (x, y) ∼ D, π ∼ µ.

Proof. As

ESL = E
(x,y)∼D

π∼µ

[ 1
n
||h ◦ g(π(x))− ey||2

]
,

by Markov’s inequality, it has

Pr(
1

n
||h ◦ g(π(x))− ey||2 ≥

√
ϵ) ≤

√
ϵ.

Lemma C.3. If ESL ≤ ϵ, then with probability at least 1− 2
√
ϵ

g(π(x))⊤g(τ(x)) > 1− 2n
√
ϵ

σn
,

where x ∼ Dx, π, τ ∼ µ.

Proof. By Lemma C.2, with probability at least 1− 2
√
ϵ,

||h ◦ g(π(x))− ey|| <
√
n
√
ϵ and ||h ◦ g(τ(x))− ey|| <

√
n
√
ϵ.

By the triangle inequality,

||h ◦ g(π(x))− h ◦ g(τ(x))|| < 2

√
n
√
ϵ

Since g is normalized, by Lemma C.1 we have

g(π(x))⊤g(τ(x)) = 1− 1

2
||g(π(x))− g(τ(x))||2

≥ 1− 1

2σ2
n

||h ◦ g(π(x))− h ◦ g(τ(x)||2

> 1− 2n
√
ϵ

σn
.

Lemma C.4. Assume D is a balanced dataset. If ESL ≤ ϵ, then with probability at least 1 − 2
√
ϵ,

one of the following two conditions holds
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1. with probability n−1
n ,

g(π(x))⊤g(τ(x−)) < 1− (1−
√
2n
√
ϵ)2

σ2
1

;

2. with probability 1
n ,

g(π(x))⊤g(τ(x−)) ≤ 1.

Proof. 1. With probability n−1
n , for (x, y), (x−, y−) ∼ D, y ̸= y−. By Lemma C.2, with

probability at least 1− 2
√
ϵ,

||h ◦ g(π(x))− ey|| <
√
n
√
ϵ and ||h ◦ g(τ(x−))− ey− || <

√
n
√
ϵ.

By the triangle inequality,

||g(π(x))− g(τ(x−))|| ≥ 1

σ1
||h ◦ g(π(x))− h ◦ g(τ(x−))||

≥ 1

σ1
(||ey − ey− || − ||h ◦ g(π(x))− ey|| − ||h ◦ g(τ(x−))− ey− ||)

>

√
2− 2

√
n
√
ϵ

σ1
.

Since g is normalized,

g(π(x))⊤g(τ(x−)) = 1− 1

2
||g(π(x))− g(τ(x−))||2

< 1− (1−
√
2n
√
ϵ)2

σ2
1

.

2. As we assume D is a balanced dataset, with probability 1
n , for (x, y), (x−, y−) ∼ D,

y = y−. Since g is normalized,

g(π(x))⊤g(τ(x−)) = 1− 1

2
||g(π(x))− g(τ(x−))||2

≤ 1− 1

2σ2
1

||h ◦ g(π(x))− h ◦ g(τ(x−))||2

≤ 1.

C.2 PROOF OF THEOREM 5.1

Proof. Let ESL = ϵ. Combining Lemma C.3 and Lemma C.4, for a sample x and its negative sample
x− i.i.d from Dx, and data augmentation method π, τ , ρ i.i.d from µ, with probability at least
1− 4

√
ESL, it holds that

LCL(x, x
−, π, τ, ρ) =− log

eg(π(x))
⊤g(τ(x))

eg(π(x))⊤g(τ(x)) + eg(π(x))⊤g(ρ(x−))

= log(1 +
eg(π(x))

⊤g(ρ(x−))

eg(π(x))⊤g(τ(x))
)

<
n− 1

n
log(1 +

1−
(1−

√
2n
√

ESL)
2

σ2
1

1− 2n
√

ESL
σn

) +
1

n
log(1 +

1

1− 2n
√

ESL
σn

).
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