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Abstract

Evaluating large language models (LLMs) poses significant challenges, particularly
due to issues of data contamination and the leakage of correct answers. To address
these challenges, we introduce ThinkBench, a novel evaluation framework designed
to evaluate LLMs’ reasoning capability robustly. ThinkBench proposes a dynamic
data generation method for constructing out-of-distribution (OOD) datasets and
offers an OOD dataset that contains 2,912 samples drawn from reasoning tasks.
ThinkBench unifies the evaluation of reasoning models and non-reasoning models.
We evaluate 16 LLMs and 4 PRMs under identical experimental conditions and
show that most of the LLMs’ performance are far from robust and they face a certain
level of data leakage. By dynamically generating OOD datasets, ThinkBench
effectively provides a reliable evaluation of LLMs and reduces the impact of
data contamination. Our data and codes are available at https://github.com/
huangshulin123/ThinkBench.

1 Introduction

Large Language Models (LLMs) have made significant advancements across diverse domains,
including language understanding [Karanikolas et al., 2023, Xu et al., 2024], language generation [Wu
et al., 2024b, Naveed et al., 2023], and complex reasoning [Hao et al., 2023, Lu et al., 2023, Azerbayev
et al., Wang et al., 2024a]. Reasoning models, such as o1 [OpenAI, 2024], have further extended the
capabilities by leveraging the Process Reward Model (PRM) and advanced search strategies during
decoding. Notably, models, such as OpenAI o1, o3 [OpenAI, 2024, 2025] and Deepseek-R1 [Guo
et al., 2025], have shown performance that rivals that of a Ph.D.-educated individual, outperforming
GPT-4 in complex reasoning tasks, revealing substantial potential for future developments in LLMs.

An interesting finding from the OpenAI report [OpenAI, 2024] is that the performance of the o1-series
models on the Advanced International Mathematics Exam (AIME) significantly declined in 2024,
compared to previous years (1983-2023: 0.74 vs. 2024: 0.50). Historical statistics, however, indicate
that the median scores of human participants on the AIME exam in previous years are consistent with
2024 exam (4.81 vs. 5.0) 2. Since o1 was trained on data by 2023, before the AIME 2024 Exam, this
discrepancy suggests a possible data contamination issue, raising an important question about how to
assess the generalization abilities of LLMs, rather than memorization.

To address this problem, we propose a novel robust evaluation framework, namely ThinkBench.
Building on causal theory and semi-factual causality [Delaney et al., 2021, Kenny and Keane, 2021],

∗Correspondence to: (yanglinyiucd@gmail.com, zhangyue@westlake.edu.cn)
2Sourced from https://artofproblemsolving.com.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.
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(a) OOD performance vs. ID performance for several
reasoning models on AIME-500.

(b) OOD performance vs. ID performance for sev-
eral reasoning models on AIME 2024.

Figure 1: Math Reasoning Gap: Most models demonstrate a visible performance gap between their
math reasoning performance on ID and OOD, including open-source models and commercial models.

we introduce Out-Of-Distribution (OOD) data generation designed to test reasoning capabilities.
We introduce scenario-level and attack-level semi-fact data generation methods, differing in the
specific elements of text they alter, enabling the creation of evaluation datasets that are both robust
and challenging. By decoupling reasoning from memorization, dynamic evaluation allows us to more
effectively test how well LLMs can generalize to unseen reasoning scenarios.

We take AIME-500 (500 AIME questions from 1983 to 2023) and AIME 2024 (30 AIME questions in
2024) for math reasoning tasks, and GPQA Diamond for scientific questions, dynamically generating
an OOD dataset of 2,912 samples, providing a diverse set of challenges that test both the generalization
and reasoning capabilities of LLMs. As illustrated in Figure 1, compared to the original datasets,
our OOD evaluation set proves to be more difficult, resulting in an average performance decay of
24.9% and 11.8% across all models on AIME-500, and AIME 2024, respectively. This indicates that
there was indeed some data leakage in AIME questions before 2024, highlighting the importance
of mitigating data contamination for reasoning evaluations. The difference in performance decay
between AIME-500 and AIME 2024 demonstrates that our dynamically constructed OOD data
construction is a convenient and effective method to reduce the impact of data contamination.

Figure 1 shows that o1 OpenAI [2024], o3 OpenAI [2025], Deepseek-R1 Guo et al. [2025] and
s1 Muennighoff et al. [2025] maintain the strongest accuracy. As representatives of reasoning
models Luo et al. [2025], Liu et al. [2025], o1, o3, and s1 enhance inference performance by increasing
computational resources during testing, contrasting with non-reasoning models. ThinkBench provides
a reasoning benchmark to evaluate both reasoning models and non-reasoning models.

In addition to the overall model accuracy, we also explore the impact of various PRMs and their
performance under the best-of-n search during decoding. Fine-grained evaluations show how different
data generation strategies, such as Math-shepherd [Wang et al., 2024c], influence model outcomes.
The performance improves with an increased test-time computation budget, further highlighting the
discriminative power of our benchmark and the quality of the data.

To our knowledge, we are the first to present a robust dynamic evaluation benchmark for testing
reasoning capability in LLMs [Qin et al., 2024, Huang et al., 2024c, Wang et al., 2024a]. In
ThinkBench, we provide a convenient and effective OOD data construction method and a high-quality
dataset to reduce data contamination impact, effectively evaluating the reasoning ability in both
reasoning models and non-reasoning models. Notably, we verify the validation of the test-time
scaling law using the dynamic evaluation without data contamination based on ThinkBench.

2 Related Work

Evaluating Large Language Models. Evaluating LLMs accurately and fairly poses a significant
challenge [Chang et al., 2024]. Mainstream evaluation methods include: (1) LLMs-as-a-judge:
Benchmarks like AlpacaEval [Li et al., 2023], PandaLM [Wang et al., 2023b], MT-Bench [Zheng
et al., 2023], and C-Eval [Huang et al., 2024b] use large language models for predefined ques-
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Question: In a hospital setting, where 
maintaining sterility of medical instruments is 
crucial to prevent infections, under what 
circumstances would one use sealed pouches?
Choices:
A: The individual has undergone a colostomy.
B: Directly following surgery.
C: The patient is experiencing either semi-solid 
or fluid discharge.
D: The individual has a urinary diversion.
Answer: A

Question: In a hospital setting, where 
maintaining sterility of medical instruments is 
crucial to prevent infections, under what 
circumstances would one use sealed pouches?
Choices:
A: The individual has undergone a colostomy.
B: Directly following surgery.
C: The patient is experiencing either semi-solid 
or fluid discharge.
D: The individual has a urinary diversion.
Answer: A

(From AIME 2024)
Question: There exist real numbers � and �, both 
greater than 1, such that 
log� (��) = ���� (�4�) = 10. Find ��. 
Answer: 25

Original Test Set
New Scenario 
Generation

Scenario Verifier

Question: Consider two species of plants with 
growth rates represented by real numbers � 
and �, both exceeding 1, such that the growth 
rate of one species raised to the power of the 
other results in the equation 
log� (��) = ���� (�4�) = 10. Determine the 
product of their growth rates, ��. 
Answer: 25

Scenario-level Semi-fact Data
(a) Scenario-level Semi-fact Data Construction 

(From GPQA Diamond)
Question: Which of the following physical 
theories never requires regularization at high 
energies?
Choices:
A: Superstring Theory
B: Classical Electrodynamics
C: Quantum Electrodynamics
D: Quantum Chromodynamics
Answer: A

(From AIME 500)
Question: What is the largest even integer that 
cannot be written as the sum of two odd composite 
numbers?
Answer: 38

New Scenario: 
The concept of 
‘growth rates of 
two different 
species of plants’
 

Step-by-step Rephrase

Stepwise Verifier

Overall 
Verifier

...

...

...

applied?
Question 2: In what situation are closed pouches 
applied and true is true?
Question 3: In what situation are closed pouches 
applied 5XeflW1ZJc?
Choices:
A: The patient has a semi-formed or liquid output.
B: The patient has a colostomy.
C: In the immediate post-operative period.
D: The patient has a urostomy.
Answer: B

Question 1: At each situation are closed pouches 
applied?
Question 2: In what situation are closed pouches 
applied and true is true?
Question 3: In what situation are closed pouches 
applied 5XeflW1ZJc?
Choices:
A: The patient has a semi-formed or liquid output.
B: The patient has a colostomy.
C: In the immediate post-operative period.
D: The patient has a urostomy.
Answer: B

Multiple Attackers

Question 1: 
Ix exist real numbers � and �, both greater than 1, 
such that ���� (��) =���� (���) = ��. Find ��.
Question 2: 
There exist real numbers � and �, both greater 
than 1, such that ���� (��) =���� (���) = ��. 
Find �� and true is true.
Question 3: 
There exist real numbers � and �, both greater 
than 1, such that ���� (��) =���� (���) = ��. 
Find �� 5XeflW1ZJc.
Answer: 25

Attack-level Semi-fact Data

(b) Attack-level Semi-fact Data Construction 

Verifier

Train-time compute modelTrain-time compute modelNon-Reasoning models
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Figure 2: Overview of ThinkBench framework. Based on the original data, ThinkBench dynamically
generates scenario-level Semi-fact Data (a) and Attack-level Semi-fact Data (b), which can be used to
evaluate the robustness of reasoning models and non-reasoning models. ThinkBench can also serve
as a useful tool for Test-time Scaling Evaluation(c).

tions. (2) Humans-as-a-judge: Human evaluation provides comprehensive feedback through expert
reviews [Ribeiro and Lundberg, 2022, Gao et al., 2023]. (3) Other benchmarks: Several tradi-
tional benchmarks employ static datasets to assess models across various tasks [Liang et al., 2022,
Hendrycks et al., 2020, 2021]. Our work falls into the third category. However, rather than using
static data, we generate test sets dynamically.

Robustness of Large Language Models. Evaluating LLM robustness is crucial Muennighoff et al.
[2025], Guo et al. [2025] across diverse applications Wang et al. [2023a], Glazer et al. [2024], Li et al.
[2024b]. Prior work Li et al. [2024a] like OOD-GLUE [Yuan et al., 2023], GLUE-X [Yang et al.,
2023], and ZebraLogic [Lin et al., 2024] focus on robustness of non-reasoning models. Specifically,
ZebraLogic [Lin et al., 2024] emphasizes the generation of puzzles with controllable and quantifiable
complexity. Yang et al. [2022] generate OOD data via semi-fact augmentation, while Hosseini et al.
[2024] identify reasoning gaps in math problems and Wu et al. [2024a] introduce cofQA using
counterfactual perturbations. Our work differs by specifically addressing reasoning tasks where
OOD testing is more necessary as compared to general tasks. In addition, existing benchmarks
predominantly emphasize non-reasoning models [Li et al., 2023, Hendrycks et al., 2020, Huang et al.,
2024a, Li et al., 2024c]. For reasoning models, current evaluations often target specific tasks, such
as planning [Wang et al., 2024b] and rule execution [Gui et al., 2024], with limited comprehensive
robustness analyses [Zhong et al., 2024]. Unlike this line of work, our benchmark focuses on
robustness and reasoning with practical applications, offering statistically significant insights.

3 Dynamic Evaluation Benchmark

Building on semi-factual causality from causal theory and XAI literature [Kenny et al., 2021, Kenny
and Keane, 2021], we construct OOD data that alters surface-level problem presentation while
preserving the underlying logical structure and correct answer to test whether models rely on genuine
reasoning versus memorized patterns. Our core assumption is that robust reasoning models should
maintain consistent performance when the same logical problem appears in different surface forms,
as the required reasoning chain remains unchanged.

As shown in Figure 2, ThinkBench contains two semi-fact data generation methods, aiming to assess
real reasoning ability of LLMs: (a) Scenario-level Semi-fact Data [Yang et al., 2023, Zhu et al., 2023a,
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2024, Opedal et al., 2024], which changes the scenario for the original reasoning data; (b) Attack-level
Semi-fact Data [Zhu et al., 2023b], which uses three attack methods to rephrase original data. To
construct Out-of-Distribution data, we focus on variations in language, scenarios, and expressions
while preserving the fundamental reasoning patterns to ensure fair evaluation of reasoning abilities.

We use generated OOD data to perform dynamic reasoning evaluation on both reasoning models
and non-reasoning models. Maintaining core knowledge while altering scenarios or expressions,
we evaluate whether models can consistently apply learned knowledge across contextual variations.
Finally, we can leverage our OOD data to conduct (c) test-time evaluation based on PRMs.

3.1 OOD Data Generation

Scenario-level Semi-fact Data Generation. The process primarily involves two types of agents:
the Rephrasing Agent, which is responsible for transforming the original questions and generating
new ones, while the Verifier Agent, which is responsible for confirming at each step whether the
rephrasing meets the current requirements and whether the rephrasing is valid.

There are two Rephrasing Agents. The first generates suitable scenarios for reasoning problems,
ensuring that the new scenarios are appropriately transferable concerning the core of the original
problem. The second rewrites each part (often at the sentence level) to fit the new scenario while
preserving the original meaning. This step-by-step process uses each newly generated part as a
reference for subsequent parts.

There are three Verifier Agents. The first checks if the core content of the original problem can
be effectively transferred to the new scenario. The second evaluates each newly generated part,
ensuring it meets three criteria: it conveys the same core meaning as the original, is consistent with
previously revised parts, and is correctly adapted to the new scenario. Additionally, an overall Verifier
Agent assesses the overall new problem, ensuring it maintains essential consistency with the original
questions, preserving informational content, and is appropriately constructed within the new scenario.

These Verifier Agents implement our core assumptions by checking: (1) logical equivalence between
original and rephrased problems, (2) answer correctness, (3) contextual coherence. Any rephrasing
failing checks is rejected and regenerated, ensuring all OOD data satisfies our semi-factual criteria.

For the datasets that contain choices, similarly, Rephrasing Agent modifies the expressions of certain
options and randomly rearranges their order. Rephrasing of choices must also pass the Verifier
Agent’s check to ensure the data is valid.

Attack-level Semi-fact Data Generation. We focus on realistic errors using three methods:

1. TextBugger (character-level) [Li et al., 2019]: This method simulates user input errors by
introducing mistakes or typos within words.

2. CheckList (sentence-level) [Ribeiro et al., 2020]: This approach assesses model robustness
by adding irrelevant or redundant sentences to the original text.

3. StressTest (sentence-level) [Naik et al., 2018]: This method evaluates model robustness by
incorporating distracting content.

These methods reflect common errors such as typos and extraneous information. They serve as three
Attack Agents. We apply only a single iteration of perturbation, avoiding unrealistic error densities.
Attack-level Semi-fact data construction involves these three Attack Agents and a Verifier Agent. The
Verifier Agent is used to check if it is consistent with the core aspects of the original data and ensures
that any errors introduced by the perturbation do not impede overall comprehension.

For an original reasoning problem, we construct our OOD test by creating one scenario-level semi-fact
data instance and three attack-level semi-fact data instances. The method for evaluating the model’s
OOD Accuracy for the original data i is as follows:

Acc(OOD) =
1

2

(
3

min
j=1

Acc(Aij) + Acc(Si)

)
, (1)

where Acc(Aij) denotes the accuracy of performance for the j-th attack-level semi-data, with
j = 1, 2, 3. Acc(S) represents the accuracy of performance for the scenario-level semi-data S.
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Table 1: Statistics of reconstructed reasoning datasets based on three original test datasets, including
AIME-500, AIME 2024, and GPQA Diamond.

AIME-500 AIME 2024 GPQA Diamond

# Samples of original 500 30 198
Questions’ Avg Len 51.1 60.1 67.7
Choices’ Avg Len - - 27.8
# Samples of OOD 2,000 120 792
Questions’ Avg Len 61.2 70.1 85.2
Choices’ Avg Len - - 25.7

In conclusion, Scenario-level Rephrasing focuses on shifting the contextual scenario of a question
while preserving the core knowledge and answer. In contrast, Attack-level Rephrasing modifies
sentence structures (e.g., adding noise, redundancy) following prior adversarial methods [Li et al.,
2019, Ribeiro et al., 2020, Naik et al., 2018] to mimic linguistic variations. This separation helps
clarify which specific dimensions of rephrasing cause performance gaps, providing valuable insights
for understanding model robustness across multiple facets of linguistic variation.

Semi-fact Data Construction. As shown in Figure 2, Scenario-level semi-fact data is constructed
as follows: The original query, “There exist real numbers x and y, both greater than 1, such that
logx(y

x) = logy(x
4y) = 10. Find xy.” is transformed step-by-step within a new scenario “The

concepts of growth rates of two different species of plants” into “Consider two species of plants
with growth rates represented by real numbers x and y, both exceeding 1, such that the growth rate
of one species raised to the power of the other results in the equation logx(y

x) = logy(x
4y) = 10.

Determine the product of their growth rates, xy.”The Verifier Agent then checks the rephrased
question to ensure that the rephrased question is in a reasonable scenario and the rephrased expression
does not alter the core topic of the question.

For Attack-level semi-fact data, TextBugger injects character-level noise (e.g., replacing “There”
with “Ix”), while CheckList and StressTest append syntactically valid but irrelevant suffixes (e.g.,
“5XeflW1ZJc” and “true is true”) to the problem statement. The Verifier Agent also needs to ensure
the validity of this rephrased version.

3.2 Data Analysis

We construct three OOD semi-fact datasets from the following datasets to evaluate the model’s
reasoning ability: AIME-500 (extracted from Year of 1983 - 2023) and AIME 2024 (Year of 2024).
The AIME dataset is designed to challenge the most talented high school mathematics students in the
United States. The original test component of AIME-500 consists of 500 questions extracted from
the original dataset [Zheng et al., 2021] while AIME 2024 contains 30 examples included in the exam
for 2024. GPQA Diamond. Originating from the GPQA Diamond dataset [Rein et al., 2023] which
tests scientific questions. These original datasets are in English, publicly available, and permitted for
research. AIME 3 is CC0-licensed (Public Domain) and GPQA Diamond 4 uses the MIT License.

Statistics Analysis. Table 1 shows the analysis of three dynamically constructed datasets. For
Out-Of-Distribution (OOD) test, the sample size is four times as the original due to each original
instance being transformed into one Scenario-level and three Attack-level Semi-fact Data entries.
This augmentation allows for a thorough OOD evaluation of model performance. The OOD test
data exhibits a length comparable to that of the original test data, indicating that both Scenario-
level and Attack-level Semi-fact data, derived through part-by-part or attack-based modifications
respectively, preserve the model’s comprehension of the question’s core elements. This construction
effectively incorporates legitimate semantic information that rephrases the question without altering
its answer. This approach helps distinguish models that rely on memorization rather than reasoning
by highlighting the differences between OOD and ID data.

Human Evaluation. To verify whether the dynamically constructed data, deemed legitimate by
the model, also corresponds to the correct answers from a human perspective, we further design a
human evaluation. Specifically, we use all samples from AIME 2024 for evaluation, which has 30

3Sourced from https://huggingface.co/datasets/gneubig/aime-1983-2024.
4Sourced from https://github.com/idavidrein/gpqa.
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Table 2: Reasoning performance. We report performance on OOD data of different models on three
datasets that we dynamically construct. Each performance value represents the accuracy in solving
problems from the dataset. The accuracy of performance on OOD is calculated through Equation 1.
The term “Gap” denotes the percentage decrease in performance on Semi-fact data tests compared to
the original test performance.

AIME 2024 AIME-500 GPQA Diamond AVG Gap (%)
Original OOD Gap (%) Original OOD Gap (%) Original OOD Gap (%)

o1-preview 0.500 0.484 -3.3 0.742 0.659 -11.2 0.684 0.638 -6.8 -7.1
o1-mini 0.567 0.600 5.8 0.864 0.753 -12.8 0.592 0.564 -4.7 -3.9
o3-mini 0.767 0.717 -6.5 0.922 0.834 -9.5 0.727 0.710 -2.4 -6.1
Deepseek-R1 0.800 0.750 -6.3 0.920 0.828 -10.0 0.747 0.682 -8.7 -8.3
GPT-4o 0.133 0.100 -24.8 0.278 0.197 -29.1 0.495 0.447 -9.8 -21.2
Deepseek-V3 0.367 0.333 -9.3 0.528 0.429 -18.8 0.581 0.530 -8.8 -12.3

Mixtral-8x7B-IT-v0.1 0.000 0.000 - 0.012 0.006 -50.0 0.168 0.163 -3.0 -17.7
Qwen2.5-72B-IT 0.200 0.184 -8.3 0.432 0.341 -21.1 0.536 0.487 -9.1 -12.8
Qwen2.5-Math-72B-IT 0.267 0.217 -18.9 0.536 0.430 -19.8 0.449 0.416 -7.5 -15.4
LLAMA3.1-70B-IT 0.200 0.167 -16.5 0.424 0.318 -25.0 0.388 0.383 -1.3 -14.3

s1.1-32B 0.533 0.517 -3.0 0.752 0.574 -23.7 0.525 0.508 -3.3 -10.0
Gemma-2-27B-IT 0.033 0.017 -50.0 0.062 0.045 -27.4 0.291 0.281 -3.6 -27.0
Gemma-2-9B-IT 0.000 0.000 - 0.032 0.021 -34.4 0.214 0.189 -11.9 -15.4
LLAMA3.1-8B-IT 0.000 0.017 - 0.132 0.087 -34.1 0.204 0.179 -12.5 -15.5
Phi-3-mini-4k-IT 0.000 0.000 - 0.046 0.026 -43.5 0.224 0.192 -14.5 -19.3
LLAMA3.2-3B-IT 0.033 0.033 0.0 0.122 0.087 -28.7 0.153 0.161 4.9 -7.9

samples. We provide a detailed explanation of the annotation guidelines to 3 undergraduate students
proficient in mathematics and pay them $2.5 per entry for manual annotation. The result of the
human evaluation shows that the questions and answers for the 30 corresponding Scenario-level
Semi-fact data and Attack-level Semi-fact data were 100% aligned. This perfect alignment validates
that our perturbations satisfy the invariance assumption, confirming that reasoning chains remain
intact despite surface-level distributional shifts. To further validate the quality of the constructed data,
we present the details of the further validation in Appendix A.5.

4 Experiments

We conduct experiments to verify the effectiveness of our proposed dynamic OOD data construction
method and analyze the differentiated performance and robustness of various LLMs.

4.1 Setup

We use the datasets in Section 3.2 for our experiment across two test sets: (1) the original test set, (2)
the OOD test set. We conduct evaluations on various models, including o1-preview [OpenAI, 2024],
o1-mini [OpenAI, 2024], o3-mini [OpenAI, 2025], GPT-4o [Achiam et al., 2023], Deepseek-V3 [Liu
et al., 2024], Deepseek-R1 [Guo et al., 2025], S1.1-32B [Muennighoff et al., 2025], LLAMA3.1-70B
and 8B [Dubey et al., 2024], Gemma2 (both 9B and 27B) [Rivière et al., 2024], Mistral-7B [Jiang
et al., 2023], Mixtral-8x7B [Jiang et al., 2024], Qwen2.5-72B-IT [Yang et al., 2024], and Qwen2.5-
Math-72B-IT [Yang et al., 2024]. All models were configured with a temperature setting of 0.7
and used the pass@1 metric in a single test run. Furthermore, for the open-source models, each
experiment was conducted on a computing resource under Linux OS, including 8 GPUs (NVIDIA
H100 80GB HBM3) and 2 CPUs (Intel Xeon Platinum 8558 Processor).

4.2 Results

The overall results of ThinkBench are shown in Table 2. We observe that all models exhibit a certain
degree of performance decline when evaluated on the original dataset versus the OOD dataset. This
decay in performance can be attributed to the fact that the models have encountered, to some extent,
the original dataset. Notably, the performance gap between ID (Original) and OOD in AIME 2024
for most models is much smaller than the performance gap in AIME-500, which demonstrates the
data leakage in AIME data before 2024. The existing dataset [Li et al., 2024a, Glazer et al., 2024] is
insufficient to reveal the aforementioned phenomenon.
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Figure 3: The performance gap between ID and OOD test on AIME-500 and AIME 2024. “ID
performance” and “OOD performance” represent the accuracy of LLMs in solving problems on the
AIME-500 and AIME 2024’s original test and OOD test, respectively.

We also observe that models with fewer parameters generally perform worse and are less robust than
those with more parameters, especially within the Llama 3.1 model family. As the parameter count
increases, both performance and robustness improve significantly, consistent with scaling laws. Thus,
the number of parameters is crucial for ensuring robustness.

4.2.1 Math Reasoning

Figure 1 presents a comparative analysis of the performance of various LLMs on AIME-500 and
AIME 2024, specifically contrasting their performance on the original ID data with that on OOD data.
The results on the original set are mainly consistent with previous work Glazer et al. [2024], Li et al.
[2024b]. Notably, the dashed line at a 45-degree angle from the origin signifies, where a robust model
exhibits nearly equivalent performance on both OOD and ID data. These two datasets primarily
evaluate mathematical reasoning and logical capabilities, featuring relatively complex problem types.

AIME-500 vs. AIME 2024. It is evident that o1 series models, o3, Deepseek-R1, and s1 exhibit a
small decline in performance on the latest 2024 AIME. Moreover, the performance gap between OOD
and ID is markedly larger on AIME-500 for nearly all models, including the o1 series, compared to
the OOD and ID gap observed on AIME 2024. Specifically, the o1-preview shows a performance
gap of -3.3% on AIME 2024 and -11.2% on AIME-500, while the o1-mini model exhibits a gap of
+5.8% and -12.8%, respectively. The most advanced reasoning models – o3-mini, Deepseek-R1 and
s1.1-32B – show the same phenomenon. This indicates that there was indeed some degree of data
leakage in questions before 2024.

Ideally, a robust model that has genuinely learned to apply knowledge for reasoning should not
exhibit significant performance degradation when the expression and scenario of a question change,
provided that the core knowledge being assessed remains the same. Additionally, s1.1-32B shows a
significant gap in AIME-500 ID-OOD performance. One possible explanation for its low robustness
is the limited amount of data used for training. Furthermore, most models fall below the dashed line,
indicating a decline in performance when transitioning to OOD data. This phenomenon reveals their
limitations in generalizing to previously unseen complex mathematical problems.

ID vs. OOD. Figure 3b and Figure 3a illustrate the percentage difference in performance between
OOD and ID for various models on the AIME 2024 and AIME-500. Certain models, such as o3-mini,
Deepseek-R1, and o1-series models distinguish themselves by achieving relatively high accuracy
on both the original and OOD datasets. They also exhibit minimal OOD performance degradation,
signifying strong generalization capabilities and robustness to distributional changes.

Scenario vs. Attack. Table 3 demonstrates that Scenario-level and Attack-level perturbations
generally degrade model performance, with Scenario-level perturbations often causing larger gaps
due to the fine-grained semantic changes (altering scenarios while preserving core reasoning). For
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Table 3: Performance on Scenario-level semi-fact data and Attack-level semi-fact data. Each
performance value represents the accuracy in solving problems from the dataset. The accuracy of
performance on attack-level semi-factual data is determined by computing the minimum accuracy
across three different attacks.

AIME 2024 AIME-500

Original OOD (Scenario) OOD (Attack) Original OOD (Scenario) OOD (Attack)

o1-preview 0.500 0.500 0.467 0.742 0.638 0.680
o1-mini 0.567 0.600 0.600 0.864 0.756 0.750
o3-mini 0.767 0.667 0.767 0.922 0.848 0.820
Deepseek-R1 0.800 0.733 0.767 0.920 0.816 0.840
GPT-4o 0.133 0.100 0.100 0.278 0.204 0.190
Deepseek-V3 0.367 0.333 0.333 0.528 0.438 0.420

Mixtral-8x7B-IT-v0.1 0.000 0.000 0.000 0.012 0.000 0.012
Qwen2.5-72B-IT 0.200 0.167 0.200 0.432 0.290 0.392
Qwen2.5-Math-72B-IT 0.267 0.233 0.200 0.536 0.360 0.500
LLAMA3.1-70B-IT 0.200 0.167 0.167 0.424 0.244 0.392

s1.1-32B 0.533 0.500 0.478 0.752 0.654 0.494
Gemma-2-27B-IT 0.033 0.033 0.000 0.062 0.028 0.062
Gemma-2-9B-IT 0.000 0.000 0.000 0.032 0.016 0.026
LLAMA3.1-8B-IT 0.000 0.033 0.000 0.132 0.074 0.100
Phi-3-mini-4k-IT 0.000 0.000 0.000 0.046 0.024 0.028
LLAMA3.2-3B-IT 0.033 0.033 0.033 0.122 0.066 0.108

example, on AIME-500, scenario-level rephrasing reduces accuracy from 0.742 to 0.638 for o1-
preview, while Attack-level perturbation cause a drop from 0.742 to 0.680. While Scenario-level and
Attack-level perturbations measure distinct aspects of robustness, they are complementary. Combining
the performance of Scenario and Attack-level perturbations data into a semi-factual generation metric
provides a more robust framework for analyzing models’ practical problem-solving capabilities.

4.2.2 Science Questions

Table 2 and Figure 5 show ID-OOD performance on GPQA Diamond dataset. The distribution of
model performance points indicates that most models are more dispersed on this graph, suggesting
that the difficulty of the GPQA Diamond dataset is less than that of AIME-500 and AIME 2024.

Models such as Mixtral-8x7B-Instruct-v0.1 and LLAMA3.2-3B-IT demonstrate relatively low accu-
racy levels. Notably, LLAMA3.2-3B-IT shows a 4.9% improvement in OOD performance compared
to its ID performance, as shown in Table 2. This phenomenon can be attributed to the model’s
inherently poor performance. For the difficult questions in the GPQA Diamond dataset, the model
seems to resort to random guessing, resulting in an accuracy that fails to reach the 25% level expected
from random guessing. Consequently, the OOD performance reflecting a higher accuracy than ID is
a result of the same guessing strategy employed for both ID and OOD questions.

5 Analysis and Discussion

This section presents a detailed analysis of OOD robustness of reasoning and non-reasoning models,
addressing open research questions that are fundamental to building efficient reasoning models.

RQ1: Do reasoning models deliver the significant performance and robustness improvements
claimed in their reports?

Overall, the o1-series models, along with o3, Deepseek-R1, and s1, exhibit strong performance
in complex logical reasoning tasks, such as AIME and GPQA Diamond, on the original datasets.
While performance declines from ID to OOD across various datasets, these models maintain notable
robustness. Their improved performance, consistent with the claims in their reports OpenAI [2024,
2025], Guo et al. [2025], Muennighoff et al. [2025], suggests that these advancements are reliable.

Notably, on AIME-500 and AIME 2024, while o3-mini and Deepseek-R1 exhibit a larger ID-OOD
performance gap than o1-preview, they still achieve the highest absolute performance in the OOD
setting. This superior mathematical reasoning capability is likely due to their exposure to a larger
corpus of mathematical problems during training, enhancing their problem-solving abilities. On
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(b) Performance on AIME-500 OOD data.

Figure 4: Test-time Scaling Law. We show that the model’s performance increases on the OOD
dataset with the test-time computation budget increases using Qwen2.5-Math-7B-IT as the policy
model, along with several PRMs.

Table 4: Performance comparison of different process reward models using Qwen2.5-Math-7B-IT
under the Best-of-256 test. All methods utilize Qwen2.5-Math-7B-IT as the base model. Qwen2.5-
Math-7B-IT’s performance represents majority vote (Maj@256) results, while other methods are
based on PRMs.

AIME 2024 AIME-500
Original OOD Original OOD

Qwen2.5-Math-7B-IT (Maj@256) 0.167 0.133 0.524 0.464

+Math-Shepherd 0.233 0.233 0.528 0.458
+OpenR 0.233 0.200 0.526 0.472
+Skywork 0.200 0.233 0.582 0.500
+Qwen 0.300 0.300 0.538 0.476

GPQA Diamond, o3-mini and Deepseek-R1 also achieve the highest performance, underscoring their
general reasoning advantages.

RQ2: Is there a possibility of data leakage in the original datasets for AIME-500?

Analyzing the ID-OOD performance gap, as depicted in Figure 1, reveals a notable difference between
AIME 2024 and AIME-500. While the gap between ID and OOD performance is relatively small for
AIME 2024, AIME-500 consistently shows a larger gap. This observation suggests that a significant
portion of the models may have encountered similar AIME-500 data during training. Given that
AIME data prior to 2024 was publicly available, we posit that data leakage is likely for most models.

RQ3: Can our OOD dataset serve as a test-time computation benchmark?

Based on our analysis, the AIME-500, AIME 2024, and GPQA Diamond datasets present significant
challenges and possess strong discriminative power. As shown in Figure 4, model performance
improves with increased test-time computation, underscoring the quality of our data. The upward trend
and variation among the five lines indicate the dataset’s ability to differentiate model performance
during test-time computation.

Furthermore, Table 4 presents results from 256 inferences using Qwen2.5-Math-7B-IT to evaluate
different PRMs. For AIME 2024, OOD performance shows slight variations compared to ID across
PRMs. However, for AIME-500, all PRMs experience a notable decline in OOD performance,
suggesting possible exposure to similar problems before 2024, and thus indicating data leakage. In
contrast, AIME 2024 data appears largely unseen by the models in terms of the low-level performance
decay. Our methodology provides valuable insights into assessing robust LLM reasoning. The
dynamic generation capability allows model validation, preventing exploitation or overfitting, which
can serve as an effective benchmark for facilitating future research on test-time computation.
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6 Limitations

While ThinkBench presents a systematic dynamic OOD data generation framework that uniquely
decouples reasoning robustness from memorization biases, it still has some limitations. First, due to
cost constraints, Scenario-level semi-fact generation adopts a single-path rephrasing strategy instead
of hierarchical multi-scenario branching, limiting OOD diversity. Future work needs to consider
expanding task coverage and integrating tree-structured generation for richer scenario variations. It
is worth emphasizing that ThinkBench’s dynamic generation method possesses inherent scalability:
by repeatedly applying our generation pipeline to the same original problem, a large number of
OOD variants with different scenarios and expressions can be created. Second, while ThinkBench is
designed to advance robust evaluation of LLM reasoning capabilities, we acknowledge that potential
misuse risks may be associated with its dynamic data generation methodology. We emphasize that
responsible use of ThinkBench is crucial for ensuring its value as a research tool while minimizing
potential security and privacy risks.

7 Ethics Statement

The development of ThinkBench adheres to principles of responsible research and ethical AI practices.

Data Privacy and Security. All datasets used in experiments are publicly available and licensed for
research. We verified that our OOD data generation process does not introduce personally identifiable
information or sensitive content. For future deployments, we recommend that implementers integrate
privacy-preserving mechanisms, particularly when handling proprietary or sensitive data.

Responsible Release and Usage. To prevent potential misuse, ThinkBench is released under a
restrictive license that explicitly prohibits the following uses: (1) reverse-engineering LLM training
data; (2) conducting membership inference or privacy attacks; (3) maliciously probing deployed
systems to discover vulnerabilities; (4) deployment in high-stakes applications without appropriate
safety measures. Users need to agree to these terms before using ThinkBench.

ThinkBench contributes positively to the development of trustworthy AI systems by providing a
reliable method for evaluating LLM reasoning capabilities and identifying data contamination issues.

8 Conclusion

We presented ThinkBench, a first robust dynamic evaluation benchmark for testing reasoning capabil-
ity in LLMs, unifying the reasoning models and non-reasoning models evaluation. ThinkBench offers
dynamic data generation to evaluate the out-of-distribution of models through various math reasoning,
and science questions samples. Experiments over AIME-500, AIME 2024, and GPQA Diamond indi-
cate that while reasoning models represented by o1 and o3 consistently demonstrate relatively strong
robustness, most LLMs fall short of robust performance. Experiments on ThinkBench highlight the
importance of eliminating data contamination, especially in reasoning tasks where golden answers
are prone to leakage. ThinkBench offers an effective solution to mitigate data leakage issues during
reasoning evaluation. For future work, ThinkBench’s dynamic data construction can be scaled to
datasets of arbitrary size for systematic data contamination detection. Furthermore, by iteratively
applying the construction pipeline to the same problem, researchers can generate diverse rephrasings
across varied scenarios and expressions, expanding the scale and coverage of reasoning evaluation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims are clearly stated in both the Abstract and Section 1 and align with
the experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper thoroughly discusses the limitations in Section 6, covering key
aspects such as "lacking diversity in reasoning types".
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the information needed to reproduce the main experimental
results of the paper in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide open access to the data and code in Abstract, with sufficient
instructions to faithfully reproduce the main experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specify all the training and test details in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars were not reported due to prohibitively high API costs associated
with repeated inferences across multiple models.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information on the computer resources in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential positive societal impacts in Section 1 and demonstrate
that ThinkBench serves as a useful tool to reduce data contamination impact and it has no
potential negative societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work employs dynamic data generation specifically to reduce risks of
data contamination. Therefore, the paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide the source and license information of the assets we use in Sec-
tion 3.2 and cite them correctly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide a new asset with comprehensive documentation, the link to which
is included in the Abstract.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: ThinkBench mitigates data contamination risks through dynamic data con-
struction via LLM-based agents, as detailed in Section 3.1.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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Table 5: Comparison with OOD Benchmarks. Reasoning tasks include Math, Physics, Chemistry,
and Biology problems. Eval represents evaluation.

GLUE-X PromptBench CofQA ThinkBench

Perturbation Granularity - (use other
samples) Attack-level Entity-level Scenario-level and

Attack-level
Factual Perturbations - - Counterfact Semi-fact
Non-Reasoning Models Eval ✓ ✓ ✓ ✓
Reasoning Models Eval × × × ✓

Tasks NLU NLU and
Translation QA Reasoning Tasks

A Dataset

A.1 Comparative Analysis with Existing OOD Benchmarks

Unlike prior works that focus on syntactic or adversarial noise, ThinkBench is the first to systemati-
cally alter problem scenarios, introducing Scenario-level Semi-fact Data, which rephrases problems
into entirely new contexts while preserving core reasoning logic. This tests generalization beyond
memorization. Our semi-factual data integrates innovative scenario-level and attack-level perturba-
tions, which provide a more robust approach to evaluating reasoning models. We also provide a
robust evaluation for both Reasoning Models and Non-Reasoning Models. The differences between
ThinkBench and other typical OOD benchmarks are shown in Table 5.

A.2 Case Study

Table 12, Table 13 and Table 14 show the case of different models tackling ThinkBench, including
question, choices, answer in Original set and OOD set, and responses from models.

Through the example in Table 12, we observe that our dynamic construction transforms the original
question into a new question, with options also being rephrased and reordered. Our benchmark
reduces the likelihood of models achieving high scores through rote memorization. In responses
from GPT-4o and Llama3.1-70B-IT, it is evident that while both models correctly answer the original
question, they fail to provide correct responses to the corresponding OOD data. Both models provide
detailed analyses and correct answers to the original test data. However, for the OOD data, Llama3.1-
70B-IT does not offer a detailed analysis and instead directly gives an incorrect answer. Although
GPT-4o conducts some analysis, it confuses the concepts of “Kantianism” and “contractualism”, even
mixing them up during the reasoning process, ultimately leading to an incorrect answer.

A.3 Failure Case Analysis

We present a thorough investigation of failure cases encountered during our previous attempt.

For instance, the original problem was: “There exist real numbers x and y, both greater than 1, such
that logx(y

x) = logy(x
4y) = 10. Find xy.” After rephrasing and modifying the scenario, it was

incorrectly rewritten as: “In a magical garden, there are two unique types of flowers whose quantities
are given by real numbers x and y, where a > 1 and b > 1. They follow a special logarithmic
relationship loga(b

a) = logb(a
4b) = 10. Find xy.” This type of failure case arises from contextual

variable confusion, which causes the evaluation model to be uncertain about what to compute, leading
to incorrect answers. As a result, it fails to fairly assess the model’s reasoning capability.

Notably, ThinkBench is able to effectively filter such failure cases through iterative verifier’s valida-
tion, ensuring contextual coherence and consistency. The high valid scores (1.00) across all evaluated
datasets in Section A.5 demonstrate that our framework successfully maintains high quality and
logical validity while introducing expression and scenario distributional shifts.

A.4 Semi-fact data Construction Cost

The OOD generation pipeline uses GPT-4o for both rephrasing and verification. Each scenario-level
instance requires 3x GPT-4o calls due to iterative regeneration if verification fails, while attack-level
perturbations require 1.25x due to simpler perturbations.
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Table 6: Scores of Human Evaluation across datasets.
Datasets Logical Equivalence Score Question Similarity Score Valid Score Fleiss’ kappa

AIME 2024 0.84 0.36 1.00 0.83
AIME-500 0.88 0.38 1.00 0.77
GPQA Diamond 0.80 0.49 1.00 0.81
MMLU-570 0.94 0.54 1.00 0.90

Table 7: Scores of Automated Evaluation across datasets.
Datasets Logical Equivalence Score Question Similarity Score Valid Score

AIME 2024 0.92 0.43 1.00
AIME-500 0.87 0.48 1.00
GPQA Diamond 0.95 0.55 1.00
MMLU-570 0.97 0.57 1.00

A.5 Validation of Datasets’ High Quality

We recruit six annotators (three undergraduates and three graduates) for further validation of our
constructed data. To ensure evaluation fairness, annotators are not informed which instances are
original versus OOD data. They are instructed to assess: (1) consistency between corresponding
questions, (2) validity of question-answer pairs (i.e., the answer correctly addressed the question),
and (3) logical equivalence scoring (0: completely non-equivalent, 0.5: partially equivalent, 1: fully
equivalent) and similarity scoring (0: completely dissimilar, 0.5: partially similar, 1: nearly identical).

Beyond AIME 2024, we conduct a comprehensive human evaluation on AIME-500, GPQA Diamond,
and MMLU-570, with 30 samples annotated per dataset. We also report Fleiss’ Kappa values to
measure annotation reliability.

We complement human evaluation with DeepSeek-R1 automated scoring using similar prompts,
achieving consistent results that validate our human annotations.

As shown in Table 6 and Table 7, perfect Valid Scores (1.00) across all datasets confirm that con-
structed questions and answers remain properly aligned. High logical equivalence scores demonstrate
that our OOD data preserves the core logical structure while introducing irrelevant distractors.

It is also worth noting that higher question similarity is not necessarily better, as the intention
of constructing semi-fact OOD data was to preserve the core knowledge of the questions while
modifying their expression and scenarios.

B ThinkBench on Language Understanding

As illustrated in Figure 6, we also present the results of dynamically constructing 570 MMLU OOD
data using ThinkBench. There is a significant performance gap between Out-Of-Distribution (OOD)
and In-Distribution (ID) data across different models. The o1-preview model demonstrates superior
performance on this knowledge-intensive dataset. Furthermore, reasoning models like o1-preview
and o1-mini exhibit greater robustness compared to non-reasoning models such as GPT-4o.

C ThinkBench on Other Reasoning Tasks

In addition to the evaluation of AIME 2024, AIME-500, GPQA Diamond, and MMLU, we also
implement our evaluation to include diverse reasoning types:

We sample 30 instances each from LogiQA (logical reasoning), ARC_Challenge (commonsense
reasoning), and 270 instances from BBH (covering 27 reasoning subtasks, including symbolic
reasoning). Using our dynamic data construction, we generate corresponding Semi-fact OOD data.

As shown in Table 8, models show varying performance degradation patterns: most pronounced on
LogiQA (logical reasoning), minimal on ARC_Challenge (commonsense reasoning), and moderate
on BBH (multiple reasoning tasks). This suggests current models possess reasonable commonsense
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Figure 5: Scientific Questions Gap on GPQA Diamond.
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Figure 6: Language Understanding Gap on MMLU 570.

capabilities but struggle with complex logical reasoning, often relying on memorized patterns rather
than genuine understanding.

Qwen2.5-Math-72B-IT demonstrates superior performance and robustness on logical and symbolic
reasoning tasks compared to the general Qwen2.5-72B-IT, while showing comparable performance
on commonsense reasoning. This indicates that mathematical training enhances logical reasoning
capabilities but provides limited benefits for commonsense reasoning.

These comprehensive evaluations across diverse reasoning types demonstrate the robustness and
generalizability of our dynamic OOD construction.

Table 8: Model performance comparison across different reasoning datasets. We report Ori(ginal)
and OOD performance on each reasoning dataset.

Models LogiQA (Ori) LogiQA (OOD) ARC_C (Ori) ARC_C (OOD) BBH (Ori) BBH (OOD)

Deepseek-R1 0.833 0.867 1.000 0.984 0.856 0.815
s1.1-32B 0.800 0.517 0.967 0.967 0.737 0.741
Deepseek-V3 0.767 0.633 0.967 0.933 0.811 0.767
Qwen2.5-Math-72B-IT 0.700 0.567 0.900 0.833 0.804 0.811
Qwen2.5-72B-IT 0.700 0.517 0.933 0.900 0.752 0.700
LLAMA3.1-70B-IT 0.633 0.667 0.867 0.750 0.678 0.652
LLAMA3.1-8B-IT 0.367 0.367 0.500 0.567 0.507 0.493
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Table 9: Error distributions on Original and Scenario-level OOD data.

Error Type Original Scenario-level OOD

o3-mini LLAMA3.1-70B-IT o3-mini LLAMA3.1-70B-IT

Lack of Analysis 0 19 0 42
Hallucination 17 66 13 83
COT breakdown 8 87 22 104
Numerical Error 7 38 12 53
Wrong Approach Selection 4 33 8 57
Other 3 45 21 39

Total 39 288 76 378

D Fine-grained Analysis of Data Leakage

To provide more granular insights into data leakage, we conduct a comprehensive error analysis. We
categorize errors into six types: Lack of Analysis (direct answers without reasoning), Hallucination
(introducing non-existent conditions), Wrong Approach Selection (incorrect methodological choices),
CoT Breakdown (reasoning chain failures), Numerical Error (computational mistakes), and Other.

Using DeepSeek-R1 annotation, we analyze error distributions on AIME-500. As illustrated in
Table 9, LLAMA3.1-70B-IT shows a significant increase in “Lack of Analysis” errors on OOD
data, compared to the original data (19 vs. 42), indicating the model becomes unfamiliar with
scenario-shifted problems and skips detailed reasoning. This suggests a substantial data leakage issue
in the original AIME-500 problem scenarios for LLAMA3.1-70B-IT. Both models exhibit notable
increases in “Wrong Approach Selection” and “COT Breakdown” errors on OOD data, compared to
the original data. It suggests that memorized approaches and CoT solutions from familiar questions
cannot be directly applied to unfamiliar scenarios. These patterns expose substantial data leakage in
both original question’s scenarios and expressions, confirming that models rely heavily on memorized
solutions rather than genuine reasoning capabilities.

E Comparison with Naturally Occurring OOD Data

To further explore the quality of our constructed data, we use the newly published real exam AIME
2025 and compare model performance on AIME 2025 (natural OOD) against our constructed AIME
2024 OOD data.

As shown in Table 10, naturally occurring OOD (AIME 2025) causes more severe performance
drops than our constructed OOD (e.g., for DeepSeek-R1: from 0.800 to 0.667 vs. from 0.800 to
0.750). While the degradation from our data is less severe, it is still close to that of natural OOD.
This suggests our automatically generated data, while not as high-quality as human-created OOD, is
still effective for identifying and mitigating data leakage.

Table 10: Performance comparison of constructed and naturally occurring OOD data.
Models AIME 2024 AIME 2024 (OOD) AIME 2025

Deepseek-R1 0.800 0.750 0.667
s1.1-32B 0.533 0.517 0.500
Deepseek-V3 0.367 0.333 0.333
Qwen2.5-Math-72B-IT 0.267 0.217 0.233
Qwen2.5-72B-IT 0.200 0.184 0.133
LLAMA3.1-70B-IT 0.200 0.167 0.133
LLAMA3.1-8B-IT 0.000 0.017 0.033
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F Performance of Adaptive Method

We also explore the performance of adaptive baseline on AIME-500 and AIME 2024. Specifically,
we use prompt-based planning (+Plan) to enhance OOD performance.

Table 11: The performance of the adaptive method. We report Ori(ginal) and OOD performance.
Models AIME 2024 (Ori) AIME 2024 (OOD) AIME-500 (Ori) AIME-500 (OOD)

Qwen2.5-Math-72B-IT 0.267 0.217 0.536 0.430
Qwen2.5-Math-72B-IT+Plan 0.233 0.234 0.552 0.463
Qwen2.5-72B-IT 0.200 0.184 0.432 0.341
Qwen2.5-72B-IT+Plan 0.200 0.167 0.438 0.377
LLAMA3.1-70B-IT 0.200 0.167 0.424 0.318
LLAMA3.1-70B-IT+Plan 0.233 0.184 0.426 0.355
LLAMA3.1-8B-IT 0.000 0.017 0.132 0.087
LLAMA3.1-8B-IT+Plan 0.033 0.017 0.108 0.100

As shown in Table 11, on both datasets, the adaptive method (+Plan) does not significantly improve
original data performance. It generally exhibits a smaller performance drop on OOD data compared
to non-adaptive methods. This shows the adaptive approach can partially mitigate OOD degradation.
However, a noticeable performance drop still remains on OOD compared to the original, proving our
dynamically constructed OOD data is still a challenging and effective, even for the adaptive method.
This confirms our data’s high quality in exposing data leakage.

G Process Reward Models

In the past, language model training primarily used Outcome-based Reinforcement Models
(ORM) [Wang et al., 2024a]. A foundational example is the ORM-based model by Cobbe et al.
[2021], which focuses on training evaluators to assess the correctness of answers, providing crucial
feedback. Meanwhile, the Process Reward Model (PRM) aims to provide stepwise rewards, offering
fine-grained supervision. DeepMind [Uesato et al., 2022] supervises both reasoning steps and final
results, while OpenAI [Lightman et al., 2023] introduces PRM800K, a human-annotated dataset,
emphasizing step verification. Li et al. [2022] enhance result reliability with evaluator models and
majority voting. Yu et al. [2024] improve reasoning through reinforcement learning with outcome
and process supervision. The Generative Reward Model (GenRM)[Zhang et al., 2024] allows rich
interaction between evaluators and generators, reflecting a demand for sophisticated process su-
pervision. Recent work [Zheng et al., 2024] offers a benchmark for evaluating error identification
in mathematical reasoning, fostering scalable oversight research. As a supplement, we propose a
dynamic benchmark for testing reasoning capability in LLMs with the help of PRMs.

G.1 Process Reward Models on Test-time Computation Budget

G.1.1 Settings

To comprehensively conduct the test-time scaling evaluation for the various PRMs on AIME 2024
and AIME-500, we employ these PRMs:

(1) Math-Shepherd-PRM: The scoring mechanism employed in Math-Shepherd is essential for
understanding the performance of reasoning steps. In this framework, the token “kn” is used to
indicate the position where the step score is predicted. A “+” token represents a good step, one
that contributes positively towards reaching the correct answer, while a “-” token signals a bad step.
Notably, during the training of PRMs, the loss is computed only at positions marked with “kn”. The
PRM denoted as (P × S → R+), assigns a score to each reasoning step s. The model is typically
trained using the following binary cross-entropy loss function:

LPRM =

K∑
i=1

ysi log rsi + (1− ysi) log(1− rsi), (2)

where ysi represents the ground-truth label of the i-th reasoning step si, rsi is the sigmoid output
score predicted by the PRM for step si, and K is the total number of reasoning steps in a given
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solution s. To estimate the quality of each reasoning step, two methods are employed: hard estimation
(HE) and soft estimation (SE). In HE, a step is considered good if it contributes to reaching the correct
answer a∗, as defined by:

yHE
si =

{
1, if ∃aj ∈ A, aj = a∗

0, otherwise.
(3)

In contrast, SE estimates the quality of a step based on the frequency with which it leads to the correct
answer across multiple attempts:

ySE
si =

∑N
j=1 I(aj = a∗)

N
, (4)

where I(aj = a∗) is an indicator function that returns 1 if the j-th attempt aj equals the correct
answer a∗, and N is the total number of attempts. Once the labels for each reasoning step are
obtained, the PRM is trained using the cross-entropy loss function to optimize the model’s ability to
correctly classify each step as either good or bad (Wang et al. [2024c]).

(2) OpenR-PRM: The Problem Resolution Model (PRM) computes a score, denoted as pt, based
on the current problem q and the sequence of solution steps up to time t, represented as [x1, . . . , xt].
This approach allows for a precise and detailed analysis of the solution process, helping identify
errors as they occur, as noted by Lightman et al. [2023]. The main goal of PRMs is to assess whether
the solution process is on track, with a score yt calculated to represent the correctness of the solution
at step t, ranging from 0 to 1. This score is given by yt = PRM(q, x1, x2, . . . , xt). During training,
the model is framed as a next-token prediction task, where labels are assigned as correct or incorrect,
represented by positive (+) or negative (-) tokens. After training, OpenR uses the PRM to evaluate
the correctness of each solution step during inference, assigning a score rPRMt to each step. Two
strategies are employed to compute a final score: the PRM-Min strategy, which selects the minimum
score among all steps, v = min{rPRMt}Tt=0, and the PRM-Last strategy, which takes the score of
the final step, v = rPRMT

. PRMs function as dense verifiers, providing strong feedback that can
significantly enhance the overall solution process (Wang et al. [2024a]).

(3) Skywork-PRM: We evaluate Skywork o1 Open-PRM-Qwen-2.5-7B o1 Team [2024], which
extends the capabilities of the 1.5B model by scaling up to handle more demanding reasoning tasks,
pushing the boundaries of AI reasoning.

(4) Qwen-PRM: We evaluate 7B version of Qwen-PRM Zhang et al. [2025]. This is a process reward
model designed to offer feedback on the quality of reasoning and intermediate steps in mathematical
problems. It is part of the Qwen2.5-Math series and has shown impressive performance in identifying
errors in reasoning processes.

As shown in Figure 4, the model’s performance improves on the AIME 2024 OOD and AIME-
500 OOD dataset as the test-time computation budget increases and the best-of-N performance
of each reward model varies as a function of N. Since majority voting is known to be a strong
baseline(Lewkowycz et al. [2022], Wang et al. [2022]), we also include this method as a point of
comparison. We compared a series of PRM methods and then observed the performance changes of
various PRM methods as N increased.

Skywork-PRM and Qwen-PRM achieve relatively high performance across all computation budgets.
OpenR shows moderate performance, improving steadily with increasing N, but its improvement
rate is slower compared to Skywork-PRM and Qwen-PRM. Majority Voting mainly underperforms
other methods, even with increased computation budgets, showing limited scalability. The possible
underlying reasons are these: (1)Model-specific Capabilities: The superior performance of Skywork-
PRM and Qwen-PRM may result from their advanced mechanisms for aggregating or utilizing the
increased number of solutions, likely benefiting from better exploration of the solution space or more
robust voting schemes. (2)Algorithmic Limitations: The suboptimal performance of Majority Voting
suggests its inability to effectively utilize additional solutions. (3)Dataset Complexity: The AIME
2024 OOD dataset and AIME-500 OOD dataset likely require nuanced reasoning and adaptability, fa-
voring methods like Skywork-PRM and Qwen-PRM that can better handle out-of-distribution (OOD)
generalization tasks. Thus, the results highlight the importance of adopting advanced techniques that
can efficiently utilize increased test-time computation budgets. Methods like Skywork-PRM and
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Original Question: Carruthers approaches questions about the moral standing of nonhuman animals from
the perspective of which of the following moral theories?
Original Choices: A: consequentialism B: Kantianism C: virtue ethics D: contractualism
Original Answer: D
OOD Question (Scenario-level Semi-fact Question): In his exploration of ethical frameworks, Carruthers
considers various moral theories before honing in on a particular approach to evaluate the moral status of
nonhuman animals. From which moral theory does Carruthers analyze the ethical significance of these
animals?
OOD Choices: A: ethics of character B: contractualism C: outcomes-based ethics D: Kantianism
OOD Answer: B

GPT-4o on Original:
Peter Carruthers is known for approaching questions
about the moral standing of nonhuman animals from
the perspective of contractualism. Contractualism
is a moral theory that determines moral principles
based on what rational agents would agree upon as
part of a social contract. Carruthers argues that non-
human animals do not have direct moral standing
within contractualism because they are not capa-
ble of participating in the contract-making process.
Therefore, the correct answer is D.

Llama3.1-70B-IT on Original:
Carruthers approaches questions about the moral
standing of nonhuman animals from the perspec-
tive of contractualism. Contractualism is a moral
theory that emphasizes the importance of mutual
agreements and contracts in determining moral obli-
gations. In the context of nonhuman animals, con-
tractualism would suggest that animals have moral
standing because they are capable of participating
in a “contract” or social agreement with humans,
even if it is not a formal or explicit one. The correct
answer is D.

GPT-4o on OOD:
Carruthers is known for utilizing Kantianism as a frame-
work for evaluating the moral status of nonhuman an-
imals. This approach emphasizes the importance of
rationality and moral agency, aligning with Kantian ethi-
cal principles. Therefore, the correct answer is D.

Llama3.1-70B-IT on OOD:
Based on the information provided, the correct an-
swer is C: outcomes-based ethics.

Table 12: Case Study on MMLU 570.

Qwen-PRM demonstrate superior scaling behavior, suggesting their robustness and adaptability in
solving complex problems.
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Original Question: There exist real numbers x and y, both greater than 1, such that logx(y
x) =

logy(x
4y) = 10. Find xy.

Original Answer: 25
OOD Question (Scenario-level Semi-fact Question): Consider two species of plants with growth rates
represented by real numbers x and y, both exceeding 1, such that the growth rate of one species raised to
the power of the other results in the equation logx(y

x) = logy(x
4y) = 10. Determine the product of their

growth rates, xy.
OOD Answer: 25

GPT-4o on Original:

logx(y
x) = 10

logy(x
4y) = 10

We’ll solve for xy. Starting with the first equation:

logx(y
x) = 10

This can be rewritten using the logarithm power
rule:

x logx y = 10

Thus,

logx y =
10

x

The base change formula logx y = log y
log x

gives us:

log y

log x
=

10

x

So,

log y =
10

x
log x

Now, for the second equation:

logy(x
4y) = 10

This expands to:

4y logy x = 10

Thus,

logy x =
10

4y
=

5

2y

The base change formula logy x = log x
log y

gives us:

log x

log y
=

5

2y

So,

log x =
5

2y
log y

Now substitute log y from the first equation into
this:

log x =
5

2y
× 10

x
log x

Simplifying,

log x =
50

2xy
log x

Cancel log x from both sides (assuming log x ̸= 0):

1 =
50

2xy

Thus,
2xy = 50

So,
xy = 25

The value of xy is 25.

GPT-4o on OOD:
Step 1: Solve the first equation
The first equation is:

logx(y
x) = 10

This implies:
yx = x10

Step 2: Solve the second equation
The second equation is:

logy(x
4y) = 10

This implies:
x4y = y10

Step 3: Express y in terms of x from the first equa-
tion
From yx = x10, we can express y as:

y = x10/x

Step 4: Substitute y in the second equation
Substitute y = x10/x into the second equation
x4y = y10:

x4(x10/x) = (x10/x)10

Simplifying the right side:

x4(x10/x) = x100/x

Step 5: Equate the exponents
Since the bases are the same, equate the exponents:

4 · x10/x =
100

x

Step 6: Solve for x
Rearrange and simplify:

4x10/x · x = 100

4x1+10/x = 100

x1+10/x = 25

Step 7: Solve for x using trial and error or numerical
methods
Let z = 1 + 10

x
, so xz = 25. We need to find x

such that:

z = 1 +
10

x
and xz = 25

By trial and error or numerical methods, you can
find that x = 5 satisfies the equation.
Step 8: Find y

Now, substitute x = 5 back into y = x10/x:

y = 510/5 = 52 = 25

Step 9: Calculate the product xy
Finally, calculate the product:

xy = 5 · 25 = 125

Thus, the product of their growth rates is 400.

Table 13: Case Study on AIME 2024.
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Original Question: cyclohexanone is treated with LDA at low temperature, followed by benzaldehyde. the
reaction mixture is then acidified, forming product 1. 1 is then treated with an excess of diethylaminosulfur
trifluoride, forming product 2. what is the structure of prodcut 2?
Original Choices: A: ((R)-((R)-2,2-difluorocyclohexyl)fluoromethyl)benzene B: (S)-2-((R)-
fluoro(phenyl)methyl)cyclohexan-1-one C: (2R)-1-fluoro-2-((S)-fluoro(phenyl)methyl)cyclohexan-1-ol D:
((S)-((R)-2,2-difluorocyclohexyl)fluoromethyl)benzene
Original Answer: A
OOD Question (Scenario-level Semi-fact Question): In the realm of organic synthesis, understanding
the behavior of reagents under various conditions is crucial for designing effective synthetic routes. Let’s
consider a scenario where cyclohexanone, a common ketone, is reacted with lithium diisopropylamide
(LDA), a strong base, at reduced temperature to form an enolate, which is then treated with benzaldehyde.
This reaction typically forms an aldol product, which, upon acidification, yields a compound known as
product 1. Further exploring the reactivity of such aldol products, if this product 1 is treated with an excess
of diethylaminosulfur trifluoride, a reagent known for its ability to affect sulfur-based modifications in
organic molecules, what would be the structure of the resulting product 2?
OOD Choices: A: ((S)-((R)-2,2-difluorocyclohexyl)fluoromethyl)benzene B: ((R)-((R)-2,2-
difluorocyclohexyl)fluoromethyl)benzene C: (2R)-1-fluoro-2-((S)-fluoro(phenyl)methyl)cyclohexan-1-ol D:
(S)-2-((R)-fluoro(phenyl)methyl)cyclohexan-1-one
OOD Answer: B

o1-preview on Original:
To solve this problem, let’s break down the reactions step by step. **First Reaction:** Cyclohexanone is
treated with LDA (Lithium Diisopropylamide) at low temperature. LDA is a strong, non-nucleophilic base that
deprotonates the most accessible α-hydrogen to form the kinetic enolate. In cyclohexanone, both α-carbons are
equivalent due to symmetry, so the enolate forms at one of these positions. The enolate then attacks benzaldehyde
in an aldol addition reaction. The nucleophilic carbon of the enolate adds to the electrophilic carbonyl carbon of
benzaldehyde, forming a new carbon-carbon bond. After protonation, this gives a β-hydroxy ketone (product
1). **Second Reaction:** Product 1, the β-hydroxy ketone, is treated with an excess of diethylaminosulfur
trifluoride (DAST). DAST is a fluorinating agent that can convert alcohols to alkyl fluorides and ketones to
geminal difluorides. In this case, DAST converts: - The hydroxyl group at the β-position into a fluorine atom. -
The ketone group into a geminal difluoride. The overall result is a cyclohexane ring with: - Two fluorine atoms
attached to C1 (from the ketone conversion). - A fluorine atom and a benzyl group attached to C2 (from the
hydroxyl conversion). This gives us a product where: - C1 is now a difluoromethylene group (CF2). - C2 has a
fluorine and a benzyl group, with specific stereochemistry retained from the initial aldol addition. Considering
the stereochemistry: - The initial aldol addition creates a new chiral center at C2. Since the starting materials
are achiral and no chiral catalysts are used, a racemic mixture is formed. - The DAST reaction retains the
configuration at C2 when converting the hydroxyl group to fluorine. - The former carbonyl carbon (C1) becomes
a new chiral center after forming the geminal difluoride. From the options provided, option **A** corresponds
to the product formed: - **Option A:** ((R)-((R)-2,2-difluorocyclohexyl)fluoromethyl)benzene This option
indicates that: - The cyclohexane ring has two fluorines at C2 (now numbered as C1 in the name), making it a
2,2-difluorocyclohexyl group. - There is a fluoromethyl group attached to benzene, corresponding to the fluorine
and benzyl group at C2. - Both chiral centers have the **R** configuration, matching the stereochemistry of the
reactions. Thus, the correct answer is: A

o1-preview on OOD:
To solve this problem, let’s systematically break down each step of the reaction and understand the transfor-
mations that occur. **Step 1: Formation of the Aldol Product (Product 1)** 1. **Formation of the Enolate
Ion:** Cyclohexanone is treated with lithium diisopropylamide (LDA), a strong, non-nucleophilic base. LDA
deprotonates the α-carbon of cyclohexanone, forming the enolate ion. 2. **Aldol Addition Reaction:** The
enolate ion is nucleophilic at the α-carbon and attacks the electrophilic carbonyl carbon of benzaldehyde.
This forms a new carbon-carbon bond between the α-carbon of cyclohexanone and the carbonyl carbon of
benzaldehyde. 3. **Acidification:** The alkoxide formed after the addition is protonated upon acidification,
yielding a β-hydroxy ketone. The **structure of Product 1** is therefore a cyclohexanone ring with a hydroxyl
group (OH) and a phenyl group (C6H5) attached to the same carbon (the α-carbon). This gives us **2-hydroxy-
2-phenylcyclohexanone**. **Step 2: Reaction with Diethylaminosulfur Trifluoride (DAST)** DAST is a
fluorinating agent known to convert alcohols to alkyl fluorides (with inversion of configuration) and carbonyl
groups to gem-difluorides. However, under standard conditions, ketones are less reactive than alcohols towards
DAST, and selective fluorination of the alcohol can occur. In this case, when Product 1 is treated with excess
DAST: 1. **Fluorination of the Alcohol:** The hydroxyl group is converted to a fluorine atom with inversion
of configuration. This transforms the chiral center at the α-carbon (which was R or S in the aldol product)
into the opposite configuration due to the inversion during the SN2-like process. 2. **Ketone Retention:**
The ketone group remains largely unreacted under these conditions because ketones are less reactive towards
DAST compared to alcohols, especially in the presence of steric hindrance and electronic effects from adjacent
groups (like the phenyl group). Thus, **Product 2** is **2-((R)-fluoro(phenyl)methyl)cyclohexan-1-one**,
where the hydroxyl group has been replaced by a fluorine atom, and the configuration at the chiral center has
inverted compared to Product 1. **Matching with the Given Options:** Option D corresponds exactly to this
structure: - **(S)-2-((R)-fluoro(phenyl)methyl)cyclohexan-1-one** This indicates that the final product has: - A
cyclohexanone ring (ketone at position 1) - A fluorine atom and a phenyl group attached to the same carbon
at position 2 - Specific stereochemistry indicating the inversion at the α-carbon Therefore, **Option D is the
correct answer**.D.

Table 14: Case Study on GPQA.
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