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Abstract

Most of the existing algorithms for zero-shot classification problems typically
rely on the attribute-based semantic relations among categories to realize the
classification of novel categories without observing any of their instances. However,
training the zero-shot classification models still requires attribute labeling for each
class (or even instance) in the training dataset, which is also expensive. To this
end, in this paper, we bring up a new problem scenario: “Can we derive zero-shot
learning for novel attribute detectors/classifiers and use them to automatically
annotate the dataset for labeling efficiency?”. Basically, given only a small set of
detectors that are learned to recognize some manually annotated attributes (i.e., the
seen attributes), we aim to synthesize the detectors of novel attributes in a zero-shot
learning manner. Our proposed method, Zero-Shot Learning for Attributes (ZSLA),
which is the first of its kind to the best of our knowledge, tackles this new research
problem by applying the set operations to first decompose the seen attributes into
their basic attributes and then recombine these basic attributes into the novel ones.
Extensive experiments are conducted to verify the capacity of our synthesized
detectors for accurately capturing the semantics of the novel attributes and show
their superior performance in terms of detection and localization compared to
other baseline approaches. Moreover, we demonstrate the application of automatic
annotation using our synthesized detectors on Caltech-UCSD Birds-200-2011
dataset. Various generalized zero-shot classification algorithms trained upon the
dataset re-annotated by ZSLA shows comparable performance with those trained
with the manual ground-truth annotations. Please refer to our project page for
source code: https://yuhsuanli.github.io/ZSLA/

1 Introduction

Zero-shot learning (ZSL) algorithms for classification aim to recognize novel categories without
observing any of their instances during model training; thus, the cost of collecting training samples for
the novel categories can be eliminated. Typically, the core challenge behind zero-shot classification
lies in associating novel categories with the seen ones during training. Various existing approaches
leverage different auxiliary semantic information to construct such associations across categories,
thus being able to generalize the learned models for classifying novel categories [17, 1, 32, 16, 3, 37]
or synthesize the training samples for each novel category [39, 40, 33, 43, 26]. Among different
types of auxiliary semantic information adopted for ZSL, defining a group of attributes shared among
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Figure 1: Given a set of trained/seen attribute detectors (e.g. “red wing", “red head", “blue breast",
and “green breast"), our ZSLA can synthesize a novel detector for the unseen attribute (e.g. “red
breast") by the following process: (1) applying the intersection operation on the subsets {“red wing",
“red head"} and {“blue breast", “green breast"} respectively to extract the common semantics of each
subsets, i.e. “red" and “breast", as the base attributes; (2) combining the base attributes via the union
operation to realize the novel/unseen attribute detector, i.e. “red breast". The novel attribute detectors
can later be applied to annotate the dataset.

categories becomes one of the most popular choices, where each category is described by multiple
attributes (i.e., multi-labeled by the attributes), and the attribute-based representations are discrimina-
tive across categories. However, it comes with the expensive cost of manually annotating the samples
in the dataset their attribute labels at a much granular level. For example, CUB dataset [35], one of
the most widely-used benchmarks for learning zero-shot classification, is built by spending a great
deal of time and effort to label 312 attributes for 11788 images.

As motivated by the issue of annotation efficiency on attribute labels, this paper aims to develop ZSL
on known attributes to annotate novel attributes for a dataset automatically . That is, analogous to
the zero-shot classification scenario, we now advance to annotate novel attributes for a dataset via
utilizing the knowledge from a few types of seen/given manual attributes, as illustrated in Figure
1. Specifically, we take the well-known CUB dataset [35] as our main test-bed and have a deep
investigation on its attributes. We discover that, many attributes in CUB dataset (e.g. “red head" or
“blue belly") follow the form of combinations over base attributes (e.g. “red", “blue", “head" and
“belly" respectively). Building upon such observation, given a defined set of attributes in the form
of the ones used in the CUB dataset and labels of a few seen attributes (where the number is far
less than that of overall defined attributes), we propose Zero-Shot Learning for Attributes (ZSLA), a
method of training the seen attribute detectors and then tackle the ZSL problem to synthesize unseen
attribute detectors via a decompose-and-reassemble manner. In detail, the seen attribute detectors
are firstly decomposed into base attribute representations, in which they are further reassembled
with novel combinations into novel attribute detectors, as illustrated in Figure 1. Here, both the
decomposition and reassembly steps are achieved via set operations (i.e., the interaction and union
operators, respectively). Together with the seen ones, the novel attribute detectors can be utilized to
annotate the attribute labels for the dataset automatically.

To demonstrate the efficiency of ZSLA, we synthesize 207 novel attribute detectors by leveraging
only 32 seen ones from the CUB dataset. These novel attribute detectors are shown to be effective
in capturing their corresponding semantic information and benefit both the attribute detection and
localization for the samples in CUB dataset. Besides, we also synthesize α-CLEVR dataset by [13]
for conducting the controlled experiments to further discuss the influence of noisy seen attribute
labels. The results show that ZSLA can provide more robust annotations than the other baseline
methods under the noisy scenario. Below, we highlight the contributions of this paper:

• To the best of our knowledge, we are the first to propose ZSL for attributes to automatically annotate
attribute labels for the zero-shot classification datasets.

• We propose a novel decompose-and-reassemble approach to single out the base attribute represen-
tations by applying intersection on the seen attribute detectors and synthesize the unseen ones by
having the union operation over the base attributes representations.

• In Section 4.2, we show on the CUB dataset that, given only 32 attributes with manual annotations,
ZSLA can synthesize novel attribute detectors to provide high-quality annotations for the dataset.
By using the auto-annotated attributes, generalized zero-shot classification algorithms can also
achieve comparable or even better performance than that using 312 manually-annotated attributes.
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2 Related Works

Zero-shot learning (ZSL) was originally proposed to tackle the specific classification problem, where
the model is expected to be capable of classifying the samples belonging to the novel categories which
are not seen previously during training. The problem setup has been extended to other applications
such as detection [5, 31, 9] and segmentation [6, 45]. Here we provide a brief review of the works
of zero-shot classification [17, 32, 1, 2, 16, 41, 39, 40, 33, 43, 26]. Without loss of generality,
the ZSL approaches rely on using the auxiliary information (such as attributes, word embeddings,
or text descriptions) as the basis for describing the categories and building the semantic relation
among seen and unseen categories; and the existing methods can be roughly categorized into two
groups: the embedding-based methods [1, 2, 16, 33, 41] and generative methods [39, 40, 33, 43, 26].
The embedding-based methods basically aim to learn a latent space that connects between the
feature representations of training samples and the embeddings of their corresponding auxiliary
information (e.g., the visual features and the embeddings of attribute labels for the training images
in the CUB dataset), such that the test samples can be classified as the novel categories once their
feature representations are close to the embeddings of novel categories (which are defined upon
auxiliary information without requiring any additional training samples). The generative methods
instead utilize the deep-generative models (e.g., generative adversarial networks [11], variational
autoencoder [15], or their hybrids/variants) for learning to synthesize the samples or features of
the unseen categories based on their auxiliary semantic information. Though saving the effort
of collecting the training samples to recognize novel categories via ZSL techniques, manually
annotating the auxiliary semantic information for the samples in the zero-shot training dataset is
still quite expensive and time-consuming. In turn, our proposed task of zero-shot learning for novel
attributes helps to reduce such costs for the scenario of zero-shot classification where the auxiliary
information is defined on attributes.

Aside from the typical zero-shot classification problem, compositional zero-shot learning (CZSL)
and blind source separation (BSS) are tasks that our work is conceptually related to. CZSL [23, 25,
4, 21, 12, 24], also as known as state-object compositionality problem, aims to recognize the novel
compositions (e.g. “ripe tomato”) given the seen visual primitives of states (e.g. “ripe”, “rotten”)
and objects (e.g. “apple”, “tomato”) in the training dataset. Our proposed problem scenario ZSLA is
distinct from CZSL under several perspectives: (1) An image in our problem scenario would have
multiple attributes while there usually exists only a single state-object composition for CZSL; (2)
Our synthesized attribute detectors are able to provide labels of novel attributes (i.e. these novel
attributes do not have any manually labeled samples in the training set) for the images thus leading to
more detailed descriptions for all the categories, while CZSL typically aims to increase the number
of categories (i.e. each novel composition is treated as a new fine-grained class). We provide the
extensive discussions and experiments with respect to CZSL in Appendix D.3.

On the other hand, BSS[7, 36, 42, 8] aims to separate and distinguish the source of several signals
from their mixture. Though our ZSLA framework composed of a decompose-and-reassemble
procedure seems to be similar to blind source separation at first glance, there exists a significant
distinction that differentiates our ZSLA from BSS in signal processing: Our intersection operation to
perform decomposition on seen attributes is non-blind, in which it works by the guidance of logical
and semantic constraints (i.e. two input attributes should have a common ground in one of the base
attributes but not both); by contrast, there is no such constraint in the blind source separation (which
instead typically adopts independent assumption or mutual information in its modeling).

3 ZSLA: Proposed Method

Given a zero-shot classification dataset {X,Y,As}, each image x ∈ X has its class label y ∈ Y and
the multi-attribute labels ϕs(x), where ϕs(x) is a binary vector with its each element denoting if x
has a certain attribute a ∈ As. ZSLA starts with using {X,As} to train the detectors Ms for all the
attributes in As, which are treated as seen attributes, then it adopts the seen attribute detectors Ms to
synthesize the detectors Mu for the unseen attributes Au via a decompose-and-reassemble procedure,
where As ∩Au = ∅. For ease of understanding, we use the most popular zero-shot classification
dataset, CUB [35], to illustrate how these steps are realized as follows.
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3.1 Training Seen Attribute Detectors

Our attribute detectors are built on top of the image feature space produced by the image feature
extractor f . Given an input image x and its feature map f(x) ∈ RW×H×C where each C-dimensional
feature vector at position (i, j) of f(x), denoted as f(x)[i, j], is the feature representation of the
corresponding image patch on x, the attribute detectors Ms ∈ RC×Ns

(in which Ns denotes
the number of attributes in As) aim to give high response on the image patches containing the
visual appearance related to the attributes in As. Specifically, each column in Ms is acting as the
embedding of a certain attribute. We use ms

k to indicate the k-th column of Ms. The response of
the corresponding k-th attribute in As with respect to the patch-wise feature vector f(x)[i, j] is
calculated by a specific form of their cosine similarity cos(|ms

k| , f(x)[i, j]), where |ms
k| denotes

applying element-wise absolute-value operator on ms
k. We have |ms

k| in our cosine similarity
computation due to the reason that: Each dimension along channels of f(x) is considered to capture a
specific visual pattern. Our |ms

k| hence acts as to apply the weighted combination over these various
visual patterns for representing the characteristics of the k-th attribute in As, and the absolute-value
operator over ms

k is to ensure the combination weights are non-negative.

Figure 2: Overview of Our ZSLA. (1) Training the seen attribute detectors: Seen attribute detectors,
defined as the embeddings for each seen attribute, are built on top of the image features and their
training is guided by two objectives: Lbce and Lumc, where the former drives the trained detectors
to perform binary classification for attributes on image patches (cf. Eq. 2) while the latter enforces
the uni-modal constraint on the response map Rs(x) of patch-wise image features with respect to
each attribute, in order to make it compact and concentrated (cf. Eq. 3). (2) Learning to synthesize
novel/unseen attribute detectors via a decompose-and-reassemble procedure: Given the trained
detectors of seen attributes, the intersection operation is firstly applied on them to extract base
attributes, and then these base attributes are further combined by union operation to synthesize the
novel/unseen attributes. The training of these operations is driven by the reconstruction loss Lrec (cf.
Eq. 5) once the synthesized attribute coincides with any of the seen ones.

We denoteRs(x) ∈ RW×H×Ns

as the response map which has included the cosine similarities of all
the seen attributes As at each position on f(x). Note that, as our feature extractor f adopts the ReLU
activation function in its last layer (similar to most image feature extractors based on the convolutional
networks), the values in f(x) become non-negative. Furthermore, as both |ms

k| and f(x)[i, j] are
non-negative vectors, all entries of Rs results to be within the range [0, 1]. Following the popular
tricks for ZSL and deep learning pointed out in [34], where adopting scaled cosine similarity in logits
computation is important to achieve better model training, we use the computation below to calibrate
the value of elements inRs(x):

R̃s(x) = γ2 · (2 ·Rs(x)− 1) (1)

where the calculation within brackets shifts and expands the values in Rs(x) towards [−1, 1] to match
the typical value range of cosine similarity, and the hyperparameter γ is set to 5 as suggested by [34].
Then, we perform the max-pooling operation on R̃s(x) and obtain the image-wise attribute response
r̃s(x) ∈ RNs

. Such logits over attributes thus are able to drive the model training (i.e. optimization
over Ms and f ) via the error between the attribute detection results and the ground-truth attribute
labels ϕs(x). The objective function Lbce to evaluate the error between the logits of attribute detection
result r̃s(x) and the ground-truth attribute labels ϕs(x) is defined via the binary cross-entropy:
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Lbce = −
Ns∑
k

ϕs
k(x) · log(σ(r̃sk(x))) + (1− ϕs

k(x)) · log(1− σ(r̃sk(x))) (2)

where ϕs
k(x) and r̃sk(x) denote the k-th elements in ϕs(x) and r̃s(x) respectively, and σ is the sigmoid

function.

In addition to the Lbce loss, we introduce another objective function Lumc to place the uni-modal
constraint [44] on the response map R̃s(x), which encourages the response map for a certain
attribute (e.g. R̃s

k(x), the k-th channel of R̃s
k(x)) to be uni-modal and concentrated. In other words,

we regularize a detector to focus on a single location or a small region in the image x. We provide a
further discussion of relaxing this assumption in Appendix A.4.

Lumc =

Ns∑
k

∑
(i,j)

σ(R̃s
k(x)[i, j]) · (

∥∥∥i− ĭk

∥∥∥2 + ∥∥∥j − j̆k

∥∥∥2), (3)

where ĭk, j̆k = argmaxi,j R̃
s
k(x)[i, j] and ∥ · ∥ denotes the Euclidean norm.

The overall objective to train the feature extractor f and the seen attribute detectors Ms is illustrated
in the left portion of Figure 2 and summarized as: Lbce + λLumc, where the hyperparameter λ
controls the balance between losses and is set to 0.2 in our experiments.

Moreover, we are aware that in CUB dataset the additional annotations indicating the ground-truth
locations for the attributes which an image x has are also available (e.g. we know where the attribute
“brown wing” appears on an image of “gadwall”). Hence, in addition to max-pooling the response
map Rs(x) to obtain the image-wise response rs(x) for attributes, we experiment another way to
obtain rs(x): (1) If ϕs

k(x) is true, the k-th element in rs(x), i.e. rsk(x), is assigned by Rs(x)[i, j]
where the centre of the ground-truth location for the k-th attribute in As is located on the patch
related to the position (i, j) of Rs; (2) If ϕs

k(x) is false, rsk(x) is assigned by having the average
pooling over the k-th channel ofRs(x). Appendix D.1 provides the analysis for the impact of using
such additional annotations of attribute location on the performance of ZSLA.

3.2 Decompose-and-Reassemble for Synthesizing Novel Attribute Detectors

After obtaining the seen attribute detectors Ms, we now aim to perform the decompose-and-
reassemble procedure (as shown in the right-half of Figure 2) for generating the detectors Mu ∈
RC×Nu

of the novel attributes Au (where Nu is the number of attributes in Au) by leveraging Ms.

First, we observe that most of the attributes in CUB dataset (the most popular zero-shot classification
dataset and also our test-bed in this work) follow the form of “adjective + object part”, for instance:
“black eye”, “brown forehead”, “red upper-tail”, or “buff breast”. Starting from such observation, we
define two disjoint sets of base attributes, Bc and Bp, representing the adjectives and object parts
used in the seen attributes, respectively (e.g. “blue”, “yellow”, “solid”, and “perching-like” for Bc;
“leg”, “beak”, “belly”, and “throat” for Bp). Please note that the concepts behind adjectives Bc in
CUB dataset include not only color but also texture, shape, and others. Formally, given an attribute a,
we use βc(a) and βp(a) to denote its corresponding base attributes on the adjective and object part,
respectively (i.e. βc(a) ∈ Bc and βp(a) ∈ Bp), where βc(·) and βp(·) are functions to indicate the
base attributes in Bc and Bp for an attribute a, respectively.

Now, given two seen attributes ak and al ∈ As in which ak = {βc(ak), β
p(ak)} and al =

{βc(al), β
p(al)}, if ak and al have common ground in either the base attribute of adjectives (i.e.

βc(ak) = βc(al) ∈ Bc) or the one of object parts (i.e. βp(ak) = βp(al) ∈ Bp) but not both, then
we can use the intersection operation I to extract such common base attribute from ak and al:

I(ak, al) =
{
βc(ak) if βc(ak) = βc(al), β

p(ak) ̸= βp(al)

βp(ak) if βc(ak) ̸= βc(al), β
p(ak) = βp(al)

(4)

For instance, I is able to extract the base attribute “red” from the seen attributes “red wing” and “red
breast”; or the base attribute “tail” from the seen attributes “buff tail” and “black tail”.

Once we obtain the base attributes via intersection over seen attributes, we further adopt the union
operation U to create novel attributes. Given two pairs of seen attributes {ak, al} and {ak′ , al′}
in which βc(ak) = I(ak, al) and βp(ak′) = I(ak′ , al′), i.e. {ak, al} share the same base attribute
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of adjective while {ak′ , al′} share the same base attribute of object part, a novel attribute ã can be
synthesized by combining βc(ak) and βp(ak′), i.e. ã = U(βc(ak), β

p(ak′)). In particular, if such
combination of base attributes has been seen in As, i.e. there exists an attribute a ∈ As where
βc(a) = βc(ã) and βp(a) = βp(ã), we say the seen attribute a is reconstructed by ã. Otherwise, if
none of the seen attributes has the identical combination as our synthesized ã, we denote ã a novel
attribute and ã ∈ Au. In summary, extracting base attributes from seen attributes via intersection,
followed by combining the base attributes into novel attributes via union, holistically forms our
decompose-and-reassemble procedure to synthesize the novel attributes.

In practice, our implementation of the intersection function I (please refer to its illustration provided
in Appendix. A.2) is built based on the encoder architecture of vision transformer [10] (ViT) , in
which its input is the embeddings of the seen attributes, i.e. the model takes ms

k and ms
l from Ms as

input when performing I(ak, al), where ak, al ∈ As. To be detailed, there are several modifications
in our model for intersection I with respect to the original ViT: (1) We remove the position embedding
in order to fulfil the commutative property of intersection, i.e. I(ak, al) = I(al, ak); (2) We attach
a learnable token named “intersection head” to the input sequence of transformer, which is similar
to the extra class embedding in ViT. The corresponding output of this intersection head after going
through the transformer encoder represents the embedding of the resultant base attribute, where
we apply the element-wise absolute-value operation on it to make it a non-negative vector (being
analogous to what we did for the seen attributes); (3) There is only a single self-attention block in
the transformer. Please note that, the embedding of a base attribute is also a C-dimensional vector.
Regarding our union function U, we simply adopt the average operation for its implementation, that
is: Given two base attributes bc ∈ Bc and bp ∈ Bp, we obtain the embedding m̃ of the synthesized
attribute ã = U(bc, bp) by averaging the embeddings of bc and bp. Specifically, such C-dimensional
embedding m̃ is also defined upon the image feature and acts as the detector for the synthesized
attribute ã.

The training of our decompose-and-reassemble procedure for synthesizing novel attributes is simply
based on the reconstruction loss of the seen attributes Lrec. Given a synthesized attribute ã, if there
exists a seen attribute ak ∈ As with having βc(ak) = βc(ã) and βp(ak) = βp(ã), the embedding m̃
of ã and the embedding ms

k of ak are expected to be identical to each other, Lrec is thus defined as:

Lrec = ∥ms
k − m̃∥ (5)

Note that, as our union function U has no trainable parameters (since it is simply an average operation),
the gradient of Lrec is propagated to focus on learning the parameters of our transformer for the
intersection function I. In other words, we expect that the transformer is so powerful to be capable
of extracting the base attributes where their averages are informative enough to act as the detectors
for the synthesized attributes. Note that in order to fully leverage the seen attributes for training our
decompose-and-reassemble procedure, we have a particular training scheme where its algorithm and
the implementation details are shown in the Appendix. A.1.

4 Experimental Results

Dataset. Our experiments are mainly conducted on the Caltech-UCSD Birds-200-2011 dataset [35]
(usually abbreviated as CUB) for zero-shot classification. CUB dataset collects 11,788 images of 200
bird categories, where each image is annotated with 312 attributes. We select 32 attributes as our seen
attributes As, which can be decomposed into 15 base attributes of adjective Bc and 16 base attributes
of object part Bp, and we use these base attributes to synthesize 207 novel attributes Au. We follow
the setting proposed by [38] for the task of generalized zero-shot learning (GZSL) to split the CUB
dataset, where such training and testing sets are used to train and evaluate our proposed scenario of
ZSL on attributes, respectively. Furthermore, we base on [13] to create a synthetic dataset, named
α-CLEVR, for providing extensive analysis on the robustness of our proposed ZSLA against the
noisy seen attributes (which are related to an issue hidden behind CUB dataset). α-CLEVR contains
24 attributes (i.e. types of toy bricks) which are the combinations of 8 colors (i.e., base attributes
of adjective Bc) and 3 shapes (i.e., base attributes of object part Bp). Among them, 16 attributes,
which can be decomposed into the 11 base attributes, are selected as seen attributes As for training
our proposed ZSLA, where we are then able to synthesize novel attribute detectors to annotate the
images of α-CLEVR dataset. Noting that, classes in our α-CLEVR dataset are defined by the specific
combinations of toy bricks (where toy bricks with different color-shape combinations are treated as
different attributes) For performing the GZSL task on α-CLEVR and evaluate the annotation quality
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Table 1: Evaluation of synthesized novel/unseen attributes on attribute classification (mAUROC),
retrieval (mAP@50), and localization (mLA). Ns is the number of seen attributes.

mAUROC mAP@50 mLA
Ns 32 64 96 32 64 96 32 64 96

A-LAGO 0.600 0.612 0.627 0.173 0.180 0.222 0.782 0.787 0.795
A-ESZSL 0.626 0.614 0.632 0.223 0.200 0.234 0.756 0.769 0.756
Our ZSLA 0.689 0.704 0.717 0.320 0.327 0.329 0.846 0.860 0.867

of our synthesized attribute detectors, we create 160 classes in α-CLEVR, where each class has 30
images; 80 classes are set as seen data, and the other 80 are set as unseen data. For GZSL inference,
testing images from both seen and unseen classes are used.

Baselines. As our task of ZSL on attributes for dataset annotation is novel, there is no prior work that
we can directly make a comparison with. However, as the task of ZSL on attribute has a hierarchy
between attributes and base attributes, we adapt two representative methods of zero-shot classification
(which explicitly have the class–attribute hierarchy behind their formulation) to be our baselines,
by using the analogy between two hierarchies (i.e. our attribute–base attribute versus their class–
attribute). These two baselines are ESZSL [32] and LAGO singleton [3] (note that both of them
realize classification with the help of attribute prediction), in which we particularly rename their
adaptions to our scenario of ZSL on attributes as A-ESZSL and A-LAGO respectively for avoiding
confusion. Details of implementing baselines are provided in Appendix C.3.

Note that, in the following experiments, both the baselines and ZSLA use the additional ground-truth
of attribute locations (i.e. knowing where an attribute appears on the image) provided by CUB to
train the seen attribute detectors, unless stated otherwise.

Limitation and discussion. Our proposed method (ZSLA) tackles zero-shot learning for unseen
attributes and enables the efficient attribute annotations when constructing the new datasets (later
shown in Sec 4.2) as long as the attribute format can be re-factored (e.g. blue wing) for assembling
novel attributes via the decompose-and-reassemble approach. Although such requirement on the
attribute format restricts the direct application of our ZSLA on some ZSL datasets (e.g. AWA2
and SUN datasets), the particular attribute format adopted in our ZSLA actually better fits the
human’s intuition for describing the discriminative attributes for the “fine-grained” classes. Hence,
we would not see this format requirement on attributes as the limitation of our proposed method but
the restriction of the mainstream ZSL datasets for not having the fine-grained attributes.

4.1 Evaluation of Unseen Attributes

We design three schemes to evaluate the quality of the synthesized novel attribute detectors learnt
by ZSLA: (1) Attribute Classification. Based on ground-truth attribute annotation of the test
images (note that each image typically has multiple attributes), we measure the performance of our
synthesized attribute detectors on recognizing their corresponding attributes in the test images. We
adopt the area under receiver operating characteristic (AUROC) as our metric for the classification
accuracy of each attribute, and we report the average over AUROCs (denoted as mAUROC) of
all synthesized attribute detectors; (2) Attribute Retrieval. We rank the test images according to
their image-wise responses as to a given attribute detector, to simulate the application scenario of
retrieving the images which are most likely to own the target attribute from an image set. Note that the
image-wise response is computed by max-pooling over the responses of patch-wise image features
with respect to the attribute detector. For each attribute detector we compute the average precision
(AP) of its top 50 retrieved images, and report the average AP (denoted as mAP@50) of all detectors
as the metric; (3) Attribute Localization. As in CUB the ground-truth locations that an attribute
appears on the test images are available, we introduce the localization accuracy (LA) to measure how
well the location having the highest response to an attribute detector matches with the ground-truth
ones (counted as correct if they are located on the same or neighboring patches). We average over the
LA of each attribute as the metric (denoted as mLA).

Table 1 summarizes the performance in terms of mAUROC, mAP@50, and mLA obtained by
baselines and ZSLA, with the number Ns of seen attributes As set as {32, 64, 96}. It is clear to see
that ZSLA provides superior performance in comparison to the baselines on all the settings of Ns
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Figure 3: Examples of attribute retrieval and localization. Each set shows the top-5 retrieved images
and their response maps for a synthesized novel attribute, where the images marked with red borders
are the false positives according to CUB ground-truth.

Figure 4: Examples of showing the retrieval and localization ability of base attributes. Each set shows
the top-5 retrieved images and their corresponding response map for a base attribute representation
(extracted by applying our intersection operation on seen attributes detectors).

and evaluation schemes, particularly the localization accuracy. Moreover, by using merely 32 seen
attributes to perform the synthesis of novel attribute detectors, ZSLA can achieve comparable results
with the baselines of using 64 or 96 seen attributes. Qualitative examples for showing the results of
attribute retrieval and attribute localization for the novel attributes synthesized by ZSLA are provided
in Figure 3. Besides these quantitative and qualitative results demonstrating the efficacy of ZSLA on
novel attributes, we also provide some qualitative examples in Figure 4 to showcase the localization
and retrieval ability of our base attribute representations extracted from the seen attribute detectors.

4.2 Automatic Annotations for Learning Generalized Zero-Shot Image Classification

To further access the quality of our synthesized attribute detectors, we adopt the 32 seen attribute
detectors and the 207 novel attribute detectors (i.e. Ns=32, Nu=207) learned by ZSLA to re-annotate
the attribute labels for the whole CUB dataset to simulate the labeling process during constructing
a new dataset, and name the resultant new dataset “δ-CUB”. Then we adopt δ-CUB to train and
evaluate four representative GZSL algorithms, i.e. ALE [1], ESZSL [32], CADAVAE [33], and
TFVAEGAN [26] using the settings proposed by [38] (i.e. for δ-CUB and CUB, training with samples
from the 150 seen classes, then evaluating the performance on all 200 classes including the 50 unseen
ones). Note that, the class-attribute matrix, which shows the composition of attributes for each class
and is needed for GZSL (i.e. the semantic information of classes), is computed by the statistics in
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Table 2: Experiments results of training and evaluating four representative GZSL methods (i.e.
CADAVAE, TFVAEGAN, ALE, ESZSL) on the datasets built upon different sources of attribute
annotation (e.g. manual annotation given by original CUB dataset, and re-annotation provided by
ZSLA or baselines). As for the columns, S and U represent the accuracy on seen and unseen classes
respectively, while H represents the harmonic mean of S and U. The highest scores are marked
in bold red, while the second-highest ones are marked in bold blue. Particularly, we encourage
the readers to observe the relative improvement/gain (in terms of harmonic mean) produced by
various approaches/settings with respect to the results obtained by using 32 manually-labelled seen
attributes for GZSL (i.e. the results on the blue-shaded row for CUB dataset), where the superior gain
contributed by our propose ZSLA well demonstrates its practical value of automatically producing
high-quality annotations on the novel attributes.

CADAVAE [33] TFVAEGAN [26] ALE [1] ESZSL [32]
S U H S U H S U H S U H

Manual 42.9 27.3 33.4 45.5 31.2 37.1 26.4 9.2 13.7 29.8 10.8 15.9
(Ns=32 for CUB)

Manual 53.5 51.6 52.4 64.7 52.8 58.1 62.8 23.7 34.4 63.8 12.6 21.0
(Ns=312 for CUB)

A-LAGO 45.4 55.4 49.9 57.4 53.0 55.1 51.8 27.2 35.6 49.7 17.1 25.4
A-ESZSL 41.5 48.7 44.8 56.0 48.5 52.0 49.7 17.1 25.4 61.3 9.2 16.0
Our ZSLA 50.3 56.4 53.2 59.0 55.9 57.4 52.4 27.5 36.1 65.1 16.4 26.2

(Ns=32, Nu=207 for δ-CUB)

δ-CUB. Similarly, we also use A-ESZSL and A-LAGO baselines to re-annotate CUB dataset and
perform GZSL under the same aforementioned setting. The results related to ZSLA and baselines are
summarized in the row shaded by the orange color of Table 2. Moreover, we additionally experiment
on training the four GZSL algorithms by using only 32 attributes or using all 312 attributes obtained
from the original CUB dataset as the semantic information, where their results are summarized in the
rows shaded by the blue and green color of Table 2, respectively.

From the results, we observe that using δ-CUB for training, where our ZSLA automatically annotates
all the attribute labels, can largely benefit the performance of GZSL algorithms. By treating the
harmonic mean over the accuracy numbers on both seen and unseen categories as the metric for
GZSL, δ-CUB is superior to those datasets annotated by baselines or even the one using manual
annotations. Specifically, the gain obtained by using our δ-CUB with respect to the setting of using
32 manually-labeled attributes (i.e., the blue-shaded row of Table 2) demonstrates the practical
value of our proposed problem scenario of ZSL on attributes: Without additional cost for collecting
annotation, we provide more attribute labels via synthesizing novel attribute detectors from the
seen ones, and thus different categories can be better distinguished by more fine-grained/detailed
attribute-based representations. Moreover, regarding the results that our automatic re-annotation
leads to better performance than the manual one (i.e., the green-shaded row of Table 2), we believe
that this is mainly due to the biased semantic information caused by noisy labels stemming from the
inconsistency between different human annotators when building CUB dataset. In comparison, our
attribute detectors can produce consistent attribute annotations as we use the same set of attribute
detectors for labeling all images; it eventually contributes to a more suitable semantic for learning
zero-shot classification. We provide more discussions on such issues in Appendix C.1

4.3 Robustness Against Noisy Attribute Labels

Due to the preference bias among different annotators mentioned in Section 4.2, it is hard to obtain
perfect seen attribute labels for training. Thus, it is interesting to discuss the effect of the noisy level
of seen attribute labels (used for training) on the final annotation quality produced by different auto-
annotation methods. Thus, we conduct the controlled experiments using α-CLEVR to understand the
effect of the noisy labels. In detail, we adjust the amount of noisy labels for the analysis. To measure
the performance drop caused by noisy seen attribute labels, we define the wrong attribute label rate
(abbreviated as WALR) to represent the noisy level of attribute labels. For example, when WALR is
set to 0.3, any toy brick in the training images has a 30% chance of inaccurately annotating (e.g., a
blue cube is annotated as a red sphere).

As the mAUROC curves shown in Figure 5(a), we can observe that: (1) ZSLA outperforms the
baselines in attribution classification, no matter how noisy the training data is; (2) the performance
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Figure 5: (a) Left: Evaluation (in terms of attribute classification, with mAUROC as the metric) on
the robustness against noisy attribute labels for various methods which learn to synthesize the novel
attributes. (b) Right: Evaluation on the quality of automatic re-annotation produced by different
methods, where the performance is based on the average harmonic mean of four GZSL algorithms
using the re-annotated attributes (cf. the last paragraph of Sec. 4.3 for details). Noting that each
curve reports the average performance over 5 runs of different noisy label sets (as the label noise is
randomly injected), while the shaded bands around each curve represent the 95% confidence interval.

drop of ZSLA with respect to WALR is much smaller than that of the baselines; (3) baselines have a
larger variance than ours, i.e., they are more sensitive to different combinations of the noisy labels
even the noise level is the same. The observations prove the robustness of ZSLA against the noisy
labels of training attributes. We also show in Figure 13 in Appendix that mAP@50 and mLA (for
attribute retrieval and location) have a similar trend as mAUROC.

Moreover, similar to the experimental setting as Section 4.2, we use the novel attribute detectors, syn-
thesized by different methods under various WALR settings, to automatically re-annotate the dataset.
The resultant dataset is used for learning four GZSL algorithms (i.e., CADAVAE, TFVAEGAN, ALE,
and ESZSL). The average of their harmonic means is reported in Figure 5(b). We can observe the
superior quality in terms of automatic re-annotation produced by our ZSLA (i.e., the red curve)
compared to the other baselines (i.e., the blue and green curves for A-ESZSL A-LAGO, respectively)
under all WALR settings. Specifically, we also simulate the situation where humans annotate all
attribute labels for the dataset while maintaining the corresponding WALRs (i.e., the purple curve). It
leads to a similar observation as we find in the CUB dataset. Once WALR is high (i.e., quite noisy
labeling), the performance of GZSL algorithms trained with the semantic information provided by
our ZSLA (i.e., the red curve) becomes superior to the one trained with the noisy manual labels.

5 Conclusion

This paper proposes a new method of developing zero-shot learning on novel attributes to reduce
the attribute annotation cost for constructing a zero-shot classification dataset. By leveraging the
trained detectors of seen attributes, our model learns to decompose them into base attributes to further
synthesize novel unseen attributes by reassembling pairs of base attributes. Experimental results
show that our method is able to exploit the information embedded in the seen attributes to generate
high-quality unseen attributes, validated by various evaluation schemes for attribute classification,
retrieval, and localization. We also demonstrate that the semantic information based on our automatic
re-annotation is beneficial for the GZSL task.
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