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Abstract

Recent work has shown that LRNN models such as S4D, Mamba, and DeltaNet lack state-tracking capability
due to either time-invariant transition matrices or restricted eigenvalue ranges. To address this, input-dependent
transition matrices, particularly those that are complex or non-triangular, have been proposed to enhance SSM
performance on such tasks. While existing theorems demonstrate that both input-independent and non-negative
SSMs are incapable of solving simple state-tracking tasks like parity, regardless of depth, they do not explore
whether combining these two types in a multilayer SSM could help. We investigate this question for efficient
SSMs with diagonal transition matrices and show that such combinations still fail to solve parity. This implies that
a recurrence layer must be both input-dependent and include negative eigenvalues. Our experiments support this
conclusion by analyzing an SSM model that combines S4D and Mamba layers.

1. Introduction
While efficiency and compute have motivated alternatives to Transformers, an equally important concern is understanding the
failure modes of different architectures. Addressing these failures is key to designing better models and requires analyzing
three aspects: (1) the model’s intrinsic expressive capacity, (2) whether learning dynamics (e.g., gradient descent) can reach
solutions within that capacity, and (3) the practical impact of these limitations on real tasks. In this work, we focus on the
first aspect, architectural expressivity, and examine structural constraints in state space models (SSMs) that cause them to fail
on simple synthetic tasks like parity. Expressivity is crucial because a model may perform well on a particular distribution,
but it will fail to generalize to out-of-distribution (OOD) inputs if it cannot represent the correct underlying algorithm.

Examples of Transformers (Liu et al., 2023) and linear RNNs (Sarrof et al., 2024) failing to generalize to out-of-distribution
(OOD) inputs highlight how limited expressivity can lead models to rely on shortcut solutions that do not generalize beyond
the training distribution. These failures may stem from practical constraints such as finite-precision computation or other
factors. A particularly illustrative class of tasks where such models are known to fail is state-tracking (Deletang et al.,
2023; Hahn & Rofin, 2024; Bhattamishra et al., 2022; Merrill et al., 2024; Sarrof et al., 2024; Grazzi et al., 2024), a subset
of regular languages in formal language theory that includes simple tasks like parity. State tracking tasks are considered
representative of a model’s performance on real-world problems, such as code execution and program analysis.

Recent work has examined the failure modes of linear recurrent models, including SSMs and linear Transformers, on
state-tracking tasks. Starting with a study by Merrill et al. (2024) that highlights this issue in the context of tracking states
over sequences of non-solvable group operations, later work by Sarrof et al. (2024); Grazzi et al. (2024) reveals that these
models are unable to solve even solvable group operation tasks such as parity, due to design limitations in their state
transition matrices; that is, these matrices either lack input dependence or have no negative (or complex) eigenvalues, both
of which are essential for solving state-tracking tasks. We defer a detailed discussion of these findings to Section 3. Our
goal in this paper is to test whether these architectural limitations can be circumvented by combining desirable properties,
namely input dependence and the use of negative or complex eigenvalues, in a multi-layer setup. Interestingly, we find that
merely layering SSMs with complementary properties (e.g., stacking Mamba and S4D) does not overcome these limitations.
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Instead, we show, both theoretically and empirically, that to solve even a simple task like parity, a single recurrence layer
must simultaneously satisfy both properties. Our contributions are as follows:
1. We prove that layer-wise combinations of non-negative input-dependent and negative input-invariant SSMs (e.g., Mamba
and S4D) cannot solve parity in finite precision, even when skip connections are allowed.
2. We introduce new failure modes for non-negative, input-dependent SSMs and show how they persist across various SSMs.
3. We provide a constructive example demonstrating how S4D with complex eigenvalues can solve modular counting,
contrasting it with the limitations of Mamba (Grazzi et al., 2024).
4. We conduct empirical experiments to validate the theory and demonstrate the inability of hybrid models consisting of
S4D and Mamba to extrapolate beyond training lengths on the parity task.

2. Background
We briefly review structured state space models (SSMs) and provide background on two relevant variants: S4D and Mamba.
State space models describe the relationship between an input signal x(t) and output y(t) through a hidden state h(t)
using the equations ḣ(t) = Ah(t) +Bx(t), y(t) = Ch(t) +Dx(t), where x(t) ∈ R, y(t) ∈ R, A ∈ RN×N , B ∈ RN×1,
C ∈ R1×N , and D ∈ R.

A discretized version of this model was introduced to the deep learning community by Gu et al. (2021), with recurrence and
output equations: ht = Aht−1 +Bxt, yt = σ(Cht +Dxt), where σ denotes an output nonlinearity. Careful initialization
of the parameters, especially the transition matrix A (e.g., via HiPPO (Gu et al., 2020)), allows these models to mitigate
the vanishing gradient problem that affects classical RNNs. Moreover, the structure imposed on the A matrix (normal plus
low-rank) makes learning efficient. These innovations led to the Structured State Space Sequential model (S4) (Gu et al.,
2021), which achieved state-of-the-art results on a range of long-range sequence modeling tasks (Tay et al., 2021), where
transformers had previously struggled. As a result, S4 was seen as a promising alternative or complement to attention-based
models.

S4 inspired several follow-up models. On the one hand, simpler variants such as DSS (Gupta et al., 2022), S4D (Gu et al.,
2022), and S5 (Smith et al., 2023) simplified S4’s architecture while retaining strong performance. On the other hand, more
sophisticated models such as H3 (Fu et al., 2022) and Mamba (Gu & Dao, 2024) extended SSMs to handle a more diverse
set of tasks, particularly language modeling. We now briefly describe S4D and Mamba, two models we focus on in this
paper, and highlight how they differ from the original S4.

Note that since SSMs relate the states xt and xt−1 via a linear equation, they are also known as linear recurrent neural
networks (LRNNs). We use “SSM” and “LRNN” interchangeably.

S4D S4D is a simplified version of S4 in which the complex transition matrix A is constrained to be diagonal. This reduces
the cost of matrix multiplication in the recurrence equations and hence leads to more efficient computation.

Mamba Designed specifically for language modeling tasks, Mamba introduces input dependence (also called selectivity)
into the state and output equations: ht = A(xt)ht−1+B(xt)xt, yt = σ(C(xt)ht+D(xt)xt). Unlike time-invariant models
like S4D, Mamba’s parameters vary with the input, making it input-dependent or time-variant. A critical design choice
in Mamba, which, as we will see later, significantly affects its performance on state-tracking tasks, is that the transition
matrix A is real and diagonal. Furthermore, the original implementation (commonly used in practice) restricts A to have
only non-negative entries. In the next section, we will see that this first constraint prevents Mamba from solving many
state-tracking tasks, such as modular counting. The further restriction to non-negative eigenvalues makes it incapable of
solving even the parity task.

3. Related Work

Difficulty of state-tracking for SSMs and Linear RNNs Merrill et al. (2024) argue that the linear recurrence in most
(parallelizable) SSMs places them in the complexity class TC0, the class of problems solvable by constant-depth, polynomial-
size threshold circuits. This class is widely believed to be incapable of expressing non-solvable state-tracking tasks such as
S5

1. This implies that parallelizable SSMs cannot solve S5 or similarly complex state-tracking tasks for long sequences
unless the model depth scales with sequence length. To address this, Merrill et al. (2024) propose either adding nonlinearities
to the recurrence or making the recurrence input-dependent. They show empirically that the latter approach enables a

1S5 is the symmetric group on five elements, representing all permutations of five distinct objects.
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single-layer S4D to solve non-solvable state-tracking tasks across arbitrary sequence lengths.

Difficulty of Parity While Merrill et al. (2024) focus on the limitations of linear RNNs compared to full RNNs on
non-solvable state-tracking tasks, Sarrof et al. (2024) highlight a significant gap between linear and nonlinear RNNs, even
on solvable tasks such as parity, though for different reasons. They prove that multilayer input-dependent linear RNNs
(SSMs) with diagonal, non-negative transition matrices (e.g., Mamba) cannot solve parity in finite precision for arbitrary
sequence lengths (their Theorem 2), despite being able to solve all star-free regular tasks. They also show that time-invariant
diagonal SSMs with negative eigenvalues (e.g., S4D) fail on parity due to the lack of input dependence (Theorem 13).

Extending these results to non-diagonal models, Grazzi et al. (2024) prove that a multilayer SSM can solve parity in finite
precision for arbitrary sequence lengths only if at least one layer has a negative eigenvalue. This implies that even DeltaNet2

fails to solve parity in its standard form. They argue that existing SSMs typically lack either input dependence or negative
(or complex) eigenvalues. Both of these are essential for solving parity and, more generally, for complex state-tracking tasks.
To address this, they modify Mamba and DeltaNet to allow eigenvalues in the range [−1, 1] instead of [0, 1]. This leads to
empirical improvements on both parity and more challenging tasks like modular arithmetic.

While negative eigenvalues are sufficient for solving parity, Grazzi et al. (2024) show that complex eigenvalues are necessary
for harder tasks such as modular counting.3 Thus, although modifying Mamba to include negative eigenvalues enables it
to solve parity, solving more complex tasks demands transition matrices with complex eigenvalues. They note that such
matrices can be constructed by multiplying several real-eigenvalued matrices, provided the product is not triangular.4

Building on this idea, Siems et al. (2025) propose DeltaProduct, an adaptive extension of DeltaNet that generalizes the
transition matrix from diagonal-plus-rank-1 to a structured rank-n matrix. Here n is tunable to trade off between expressivity
and efficiency. Their construction is based on products of n generalized Householder matrices. A limitation of this approach
is the computational cost of multiplying non-diagonal matrices. Moreover, Theorem 1 in Grazzi et al. (2024) does not
specify whether the single layer containing negative or complex eigenvalues must also be input-dependent. It is unclear
whether input dependence and eigenvalue complexity can be separated across different layers. In that case, a layer-wise
combination of the two diagonal models of Mamba and S4D may provide a more efficient solution to the problem. We
address this question in our main theorem in the next section.

4. Theory
We begin by reviewing Theorem 2 from Sarrof et al. (2024) and Theorem 1 from Grazzi et al. (2024), which establish the
impossibility of solving parity with multilayer SSMs that do not simultaneously satisfy input-dependence and negativity
conditions. The proofs in both works for the non-negative case rely on the failure of such models on a specific input, a
sufficiently long sequence of all ones. Next, we prove that a one-layer, input-invariant model like S4D, with complex
eigenvalues, can solve modular counting for any modulus, and accordingly can solve parity on that specific input. This result
implies that the failure mode underpinning the negative result for non-negative SSMs on parity can be bypassed by adding a
single S4D layer. Intuitively, because the input is constant, input dependence is not required for this task. Consequently, we
propose a different class of input sequences that not only defeat non-negative SSMs but also challenge time-invariant SSMs.
We show that even a layer-wise combination of positive and time-invariant SSMs fails to model parity on these sequences.

4.1. non-negative SSMs Cannot Solve Parity

Parity is the language of bitstrings with an even number of ones.
Theorem 4.1 (Theorem 1 of Grazzi et al. (2024)). A finite precision LRNN with finitely many layers can solve parity
for arbitrary input lengths only if in at least one layer, there exists x such that A(x) has at least one eigenvalue λ /∈
{x ∈ R | x ≥ 0}.

In Appendix A, we provide a simplified overview of their proof in the diagonal case. The key point is that the argument
relies on the specific input sequence 1T , and the crux of the proof is that the SSM’s hidden state converges to a fixed value
after sufficiently many steps on this input. In the following section, we prove that adding a time-invariant SSM layer with

2DeltaNet is a linear attention model that can also be interpreted as an SSM, with a diagonal plus low-rank transition matrix. More
specifically, a generalized Householder matrix.

3In a way, the modular counting task is simpler than parity, since the input is fixed to 1, hence input dependence is not required.
4Because the eigenvalues of a triangular matrix are the diagonal elements, and the product of two triangular matrices remains triangular.

3



Parity Requires Unified Input Dependence and Negative Eigenvalues in SSMs

negative eigenvalues enables the model to solve parity on 1T , meaning this convergence-based argument no longer applies
to the combination of positive Mamba and S4D. Building on this, the next section introduces a distinct failure mode.

4.2. Modular Counting

Modular counting is the problem of counting modulo m with the input of length T being 1T and the desired output at the
final step is T mod m. The following theorem states that time-invariant SSMs with complex eigenvalues can solve this task.

Proposition 4.2. A single-layer S4D can solve modular counting.

Proof. Since the input sequence is always the same, i.e., 1’s, we expect that there exist a solution independent of the weight
B; keeping the input and hidden space dimension as one, we let B = 0, A = exp(2πi/T ) and h0 = 1. If we take h0 to be
the accept state then this S4D model recognizes the language (1T )∗.

Since solving parity on the sequence 1T is equivalent to doing modular counting with modulus 2 on it , the above theorem
implies that the failure mode used to prove Theorem 4.1 can be circumvented by adding a time-invariant SSM layer including
complex (even only negative ) eigenvalues. This raises the question of whether parity task can be solved by a combination
of input-dependent and complex-valued recurrence layers. To answer this question, we suggest another failure mode for
non-negative SSMs that cannot be alleviated by adding a time-invariant layer, even with complex or negative eigenvalues.

4.3. Another Failure Mode for non-negative SSMs

Lemma 4.3. Non-negative diagonal SSMs fail to solve parity task for arbitrary sequence length in finite precision on any
input sequence of the form 0 . . . 0︸ ︷︷ ︸

k zeros

1 . . . 1︸ ︷︷ ︸
m ones, m odd︸ ︷︷ ︸

one cycle

0 . . . 0︸ ︷︷ ︸
k zeros

1 . . . 1︸ ︷︷ ︸
m ones, m odd

· · · .

Proof. Starting with k = m = 1, with the input sequence simplified to (01)T , the first two steps of the recurrence (2) give

h1 = A(0)h0 +B(0) , h2 = A(1)A(0)h0 +A(1)B(0) +B(1) (1)

By defining A(01) := A(1)A(0) and B(01) := A(1)B(0) + B(1) and starting from h0, for any even step 2t, t ∈ Z, we
have h2t = A(01)h2t−2 +B(01). For A(0) and A(1) positive semi-definite (PSD), which is the case for all SSMs we are
aware of, A(01) is guaranteed to be non-negative (proof in Appendix E). Hence, this “two-step” recurrence will have the
same dynamics as the one in Equation (2) with non-negative transition matrices. In particular, the states at even steps in the
sequence, follow a similar evolution to the one described by Equation (3) in the proof of Theorem 4.1. The only difference
is that A(1) and B(1) are replaced by A(01) and B(01). Therefore, the finite precision assumption again results in the state
collapse after some threshold τ0. As before, this means that non-negative SSMs cannot model parity on the sequence (01)T ,
since the state after each length-2 cycle of the form 01 should flip, while its collapse means that the state remains constant.
The same logic goes for any sequence of the form used in the statement of the lemma, i.e., with an odd number of ones in
each cycle. The key point is that the product of any number of non-negative diagonal matrices remains non-negative.

4.4. Can S4D and Mamba Together Solve Parity?

The following theorem states that combining S4D and Mamba in different layers still cannot solve parity. This result can be
generalized to the case of a model made of non-negative input-dependent SSM layers and time-invariant SSM layers with
negative eigenvalues, where both types of layers are diagonal.The proof is provided in Appendix B.

Theorem 4.4. A finite precision LRNN consisting of S4D and Mamba layers and skip connections and learnable initial
state cannot solve parity.

5. Experiments
The code for our experiments is available at this repository. Our implementation for RNN is based on the PyTorch RNN
layer. For S4D, we use the original implementation from state-spaces/s4. For Mamba, we use the implementation from
mamba-minimal.

4

https://github.com/abhishekpanigrahi1996/MOSS/tree/main/submissions/submission-92
https://github.com/state-spaces/s4/blob/main/models/s4/s4.py
https://github.com/johnma2006/mamba-minimal


Parity Requires Unified Input Dependence and Negative Eigenvalues in SSMs

Parity We try the parity task with four types of models: vanilla RNN, two-layer S4D, two-layer Mamba, two-layer model
with both S4D and Mamba (Model sizes are given in Appendix D). We show the summary of results for training the models
on sequences of length 8 and their extrapolation to longer length up to 10K. The main observation is that extrapolation
remains an issue for all models except RNN. The training accuracy of SSMs indicates non-trivial performance on the train
set, whereas performance on the longer sequences remains around 50%, which means that linear models did not learn the
correct algorithm for parity.

Model Train Accuracy Extrapolation Accuracy

RNN 100% 100%
S4D 99.7% 50%

Mamba 100% 50%
Mamba + S4D 100% 50%

Table 1. Performance of various models on the parity task.

Offset Prediction We design a counting task that is very similar to modular counting. Here the goal is to examine
the practical implications of Proposition 4.2 on a real task. While modular counting by definition has a fixed input, this
variation allows the model to see different inputs. The input is a binary on/off signal: a stimulus of 1 is presented for a
fixed 10-timestep interval (inter-stimulus interval, or ISI), followed by a stimulus of 0 for a randomly selected duration
from [20, 40] (inter-trial interval, or ITI). This ITI/ISI cycle repeats throughout a sequence of fixed length 200 timesteps.
Each sequence begins with an ITI, followed by alternating ITIs and ISIs. The task requires the models to detect an ISI
onset to count till at the end of the stimulus, encouraging them to learn the fixed duration and representation of the ISI. In
Appendix C, we propose an analytic solution for it that S4D can find. Interestingly, as shown in Figure 1, both S4D and
Mamba can solve this task. For Mamba, we still do not have an explanation how it can solve the task. Appendix C provides
all the details on the theory and results for this task.

Figure 1. (Top) Outputs of S4D on the offset prediction task, trained for 1k epochs with a hidden size of 8 and a learning rate of 0.005.
(Bottom) Outputs of Mamba on the offset prediction task, trained for 1k epochs with a hidden size of 8 and a learning rate of 0.01. Mamba
predicts the offset correctly and anticipates the onset.

6. Conclusion, Limitations, and Future Directions
The core question we addressed in this paper is whether a layer-wise combination of input-independent negative SSMs (like
S4D) and input-dependent non-negative ones (such as Mamba) can solve parity on all sequences, or both properties should
be present in a single recurrence layer simultaneously. Our theoretical result shows that for the diagonal case, combining
these two types of recurrence in different layers does not enable the model to solve parity. Hence, we hypothesize that there
should exist at least one recurrence layer with both properties. Possible future directions include generalizing our results to
non-diagonal recurrence for the parity task and to the complex-valued recurrence for more complicated state tracking tasks.

Limitations Our study simplifies the SSM formulation by using a vector-valued hidden state, as in (Sarrof et al., 2024),
instead of the common matrix representation used in SSMs. While we do not expect this to affect our results, a careful
analysis using the full formulation is a valuable direction for future work. Additionally, accounting for other architectural
components, such as layer normalization or dropout, would further strengthen the analysis.
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Gu, A., Goel, K., and Ré, C. Efficiently modeling long sequences with structured state spaces. arXiv preprint
arXiv:2111.00396, 2021.
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A. Non-negative SSMs Cannot Solve Parity
For simplicity, we focus on the diagonal SSM and adjust their proof to it. Consider the SSM equations as

ht = A(xt)ht−1 +B(xt) , yt = σ(ht, xt) (2)

where σ represents a general non-linear function of ht and xt. By unrolling the recursion relation, we get the hidden state at
step k given by hk =

∏k
i=1 A(xi)h0 +

∑k
i=1 B(xi)

∏k
j=i+1 A(xj), with the convention of

∏k
j=k+1 A(xj) = I to reduce

clutter. Now, if we assume the input sequence is x1 . . . xk = 1k, the state at time k is

hk = A(1)kh0 +

k∑
i=1

B(1)A(1)k−i = A(1)kh0 +

k−1∑
i=0

B(1)A(1)i (3)

Next step is to show that in finite precision, this value converges to a constant after some sequence step τcut-off. Since the
powers of a diagonal matrix are given by the matrix of the diagonal elements, λi, each to that same power, and here the
matrix A is positive, the elements of A(1)k and A(1)i after some given time t0 will either grow to beyond the defined
precision (if λi > 1), or fall below it and converge to zero (if λi < 1). For λi = 1, if B(1) = 0, it converges to some fixed
values, otherwise the sum term continues growing until it goes beyond the fixed precision and hence converges to a fixed
rounded value. The proof for non-diagonal case is given in (Grazzi et al., 2024).

B. Proof of Theorem 4.4
Proof. For every such model, we construct an input sequence on which it fails to produce the correct output. We follow the
proof structure of Theorem 13 from Sarrof et al. (2024), while extending it to account for the possibility of positive Mamba
layers, skip connections, and arbitrary initial states. Note that the A matrix in both S4D and Mamba is diagonal. Moreover,
in Mamba, the diagonal entries are non-negative.

In any S4D layer, each diagonal entry Aj ∈ C can be written as Aj = rj exp(2πiqj), where qj ∈ [0, 1] is rational and
rj ∈ R≥0. Since there are finitely many S4D layers and each layer has finitely many such Aj , we can choose a positive
integer W such that Wqj ∈ N for every j in each layer. Importantly, this ensures (Aj)

W = (rj)
W ∈ R≥0.

Let s = 10W−1 (i.e., a string consisting of a single one followed by W − 1 zeros). We will show that the model fails to
compute parity on the input sT (the string s repeated T times) when T is sufficiently large.

Consider the state dynamics of any layer of the model (whether S4D or Mamba) on an input sequence of the form
(x)i = (x1 . . . xW )∗5. Note that sT is of this form. The claim is that for each layer k and for each i = 1, . . . ,W , the
sequence (h

(k)
tW+i)t∈N converges in the finite-precision setting as t → ∞. In this context, convergence means that the

sequence becomes stationary after some finite time. Since the parity of sT equals the parity of T , it becomes impossible to
extract the parity from hTW for large T .

We prove the claim by induction on the number of layers. For simplicity, we treat the state of the zeroth layer as the raw
input. The base case holds since the input sT is of the form (x1 . . . xW )∗.

Assume the input to the k-th layer is of this form and show that its output will also be of the same form. We suppress the
layer index k and dimension index for clarity. This layer is either an S4D layer or a positive Mamba layer.

Case 1: S4D layer. Consider the sequence (htW )t∈N and let h0 be the state of the system after the input has stabilized. The

5∗ denotes the Kleene star: zero or more repetitions.
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derivation, similar to Sarrof et al. (2024), proceeds as follows:

htW = AtWh0 +

tW∑
k=1

AtW−kB(xk)

= rtWh0 +

W∑
j=1

t−1∑
k=0

A(t−k)W−jB(xkW+j)

= rtWh0 +

W∑
j=1

t−1∑
k=0

r(t−k)WA−jB(xj)

= rtWh0 +

W∑
j=1

(
t−1∑
k=0

r(t−k)W

)(
A−jB(xj)

)
= rtWh0︸ ︷︷ ︸

U1

+

W∑
j=1

(
t∑

k=1

rkW

)
︸ ︷︷ ︸

U2

(
r−j exp(−2πijq)B(xj)

)︸ ︷︷ ︸
U3

Here, U2 is independent of t. Intuitively, U3 ∈ C determines a direction in the complex plane, while U2 ∈ R determines
the magnitude. U1 may converge or diverge exponentially. Similarly, U2 may converge exponentially, diverge linearly, or
diverge exponentially. Consequently, in the finite-precision setting, htW must converge for sufficiently large T .

Case 2: Positive Mamba layer. The idea here is to approximate linear time-invariant (LTI) behavior at a coarse-grained
level. Again, consider the sequence (htW )t∈N and let h0 be the state of the system after its input has stabilized. Let
Ã = A(x1) . . . A(xW ). Then:

htW = (A(x1) . . . A(xtW ))h0 +

tW∑
k=1

(A(xk+1) . . . A(xtW ))B(xk)

= Ãth0 +

W∑
j=1

t−1∑
k=0

(A(xkW+j+1) . . . A(xtW ))B(xkW+j)

= Ãth0 +

W∑
j=1

t−1∑
k=0

Ã(t−k) (A(xj+1) . . . A(xW ))B(xj)

= Ãth0︸ ︷︷ ︸
U1

+

W∑
j=1

(
t∑

k=1

Ãk

)
︸ ︷︷ ︸

U2

(A(xj+1) . . . A(xW )B(xj))︸ ︷︷ ︸
U3

As before, U3 does not depend on t. Both Ãt and U2 are diagonal matrices with non-negative entries. Thus, U1 can converge
or diverge exponentially, and U2 can converge exponentially, diverge linearly, or diverge exponentially. Hence, in the
finite-precision setting, htW must converge for sufficiently large T .

Since both the input and state fall into a cycle of length W , any non-recurrent function of their concatenation also falls into
a cycle of length W . This completes the induction step and proves our claim for any finite number of layers. Allowing for
concatenation shows that skip connections do not increase expressivity in this setting. The proof also holds regardless of the
system’s initial state.

C. Offset Prediction Task
Here, we show an analytic solution for S4D for this task. Next, we present our results.
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A Solution for Offset Prediction Task with S4D

We consider the task of next-token prediction for 1s and random bursts of 0s of fixed length n. We show that one layer
of S4D with complex scalar state is capable of correctly predicting all tokens except for the first token of a burst. At a
high-level, we will be simulating a finite-state automaton that remains in a sleep state when observing 1s, and counts to n
when observing 0s, ending up back at the sleep state. There are thus n states in total. Note that the automata will not be able
to handle interruptions to the counting procedure, so it will go into a fail state if the number of 0s is not a multiple of n. The
model will predict 1 at the sleep state and 0 otherwise. Letting h0 = 1, A = exp(i2π/n), B = 1− exp(i2π/n) constructs
the desired system. The sleep state is h = 1. The output function is ϕ(ht) = 1{ht=1}.

s0start s1 s2 s3

fail

1

0 0 0

0

1 1 1

0, 1

Figure 2. Finite-state automaton for offset prediction task when n = 4.

C.1. Results

In this section, we provide the results for the offset prediction task and generalization performance of S4D and Mamba on
the offset prediction task. The two setups designed for evaluating their generalization are explained below.

Figure 3. Offset prediction of S4D. We see that S4D correctly predicts the offset for all ISIs.

Figure 4. Offset prediction of Mamba. We see that Mamba correctly predicts the offset for all ISIs.

Figure 5. Two ISI outputs of S4D. We see that S4D correctly predicts the offset for both ISIs.

9
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Figure 6. Two ISI outputs of Mamba. We see that Mamba correctly predicts the offset for both ISIs.

Two ISIs Here we test the model’s generalizability by introducing it to signals where there are only two ISI present,
separated by a longer than trained ITI. The objective is to determine if the models truly understand the onset of the ISI and
reset their memory. The results in Figure 6 show that both models correctly predict both offsets.

Figure 7. Double ISI outputs for S4D. We observe that S4D can anticipate the second ISI.

Figure 8. Double ISI outputs for Mamba . Mamba does not anticipate the second ISI.

Double ISI This tests the model’s ability to count when introduced to two consecutive ISIs. The model should turn off at
the first offset and then turn on again before the end of the second offset. Figure 8 shows that S4D predicts the initial offset
accurately and turns on afterwards. Mamba only predicts the offset correctly, but fails to predict the initial anticipated offset.

D. Parity Task
Here, we give the details of model sizes for the parity task. For each model, the embedding size and hidden state size are as
below

is 8. We use a vocabulary of 2 (0 and 1). For all models, their states use a size of 16. Each model is 2 layers in depth. We
train models on sequences of length 8 and then test extrapolation to a sequence length of 10K tokens. All models are trained
on 1M sequences of length 8.

We test a number of different models

• A simple RNN.

• A diagonal structured state-space sequence model (S4D) (Gu et al., 2022).

• A S4D with negative eigenvalues.

• Mamba (Gu & Dao, 2024)

• Two version of a stacked S4D (with negative eigenvalues) and Mamba: one with Mamba followed by S4D, and another
the other way around.
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Model number of layers embedding size hidden size (for RNN) /state size (for SSM)

RNN 1 2 8
S4D 2 8 16

Mamba 2 8 16
Mamba + S4D 2 8 16

Table 2. Performance of various models on the parity task.

E. Product of PSD Matrices is non-Negative
The proof is based on the following definition and the two following lemmas.

Definition E.1. (Positive Semi-Definite Matrix) An n×n Matrix A is positive semi-definite (PSD) iff ∀x ∈ R⋉ : xTAx ≥ 0.

Lemma E.2. For two positive semi-definite (PSD) matrices A and B, which are also real and symmetric, the product AB
has only non-negative values.

Proof. The proof is based on the following lemmas.

Lemma E.3. For two square matrices S and T , ST has the same non-zero eigenvalues as TS.

Proof. Let λ be an eigenvalue of ST with the corresponding eigenvector v: STv = λv. Multiplying both sides by T , we
have TSTv = λTv. Now, redefining v′ = Tv, the preceding relation can be rewritten as TSv′ = λv′, which means that v′

is an eigenvector of TS with the same eigenvalue λ. Since for every non-zero eigenvector v of ST , v′ can be defined, the
set of non-zero eigenvalues will be the same.

Lemma E.4. (Principal Square Root of positive semi-definite (PSD) Matrix) A symmetric real PSD matrix A has a unique
square root B2 = A which is also symmetric and PSD.

From Lemma E.4 the principal square root of A exists; we call it
√
A. We can write AB =

√
A
√
AB =

√
A(

√
AB).

Lemma E.3 proves that AB has the same eigenvalues as (
√
AB)

√
A. Therefore, if we show that the eigenvalues of

(
√
AB)

√
A are non-negative, the lemma is proved. From the symmetry of the principar square root, we have (

√
AB)

√
A =

(
√
A

T
B)

√
A and we can show that it is PSD, because B is so. We use Definition E.1.

xT (
√
A

T
B)

√
Ax = (

√
Ax)TB

√
Ax = vTBv ≥ 0 , v =

√
Ax (4)

Now, since (
√
AB)

√
A = (

√
A

T
B)

√
A and (

√
A

T
B)

√
A is PSD,

(
√
AB)

√
A

is also PSD with non-negative eignenvalues. Hence, the proof is complete.
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